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Abstract We prove the stability of the equivariant embedding of compact strictly pseudo-
convex CR manifolds with transversal CR circle action under circle invariant deformations
of the CR structures.
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1 Introduction and statement of the main results

Let X be a compact strictly pseudoconvex CR manifold. The question of whether or not X
admits a CR embedding into a complex Euclidean space has attracted a lot attention. This
amounts to showing that themanifold has a sufficiently rich collection of global CR functions.
It was shown by Boutet de Monvel [4] that the answer is affirmative if the dimension of X is
at least five. The obstructions to constructing global CR functions lie in the first Kohn–Rossi
cohomology group H1

b (X), which is finite dimensional if dim X ≥ 5. An essential ingredient
in the embedding theorem [4] is the Hodge theory for this group, that will play an important
role in the present paper, too.

In contrast, if X has dimension three, X may not be even locally embeddable, see [24,
25,30]. Furthermore, there are examples [1,5,17,31] which show that even when the CR
structure on X is locally embeddable (for example, when it is real analytic), it can happen
that the global CR functions on X fail to separate points of X . It was shown in [6] that, in a
rather precise sense, “generic” perturbations of the standard structure on the three sphere are
nonembeddable.

On the other hand, if a compact three dimensional strictly pseudoconvex CR manifold
admits a transversal CR S1-action, it was shown by Lempert [27], Epstein [12] and recently
in [18,21] by using the Szegő kernel, that such CR manifolds can always be CR embedded
into a complex Euclidean space.

In recent years, much progress has been made in understanding the embedding question
fromadeformational point of view, that is, forCRstructureswhich lie in a small neighborhood
of a fixed embedded structure, see e. g. [3,6,12,13,23,26–28,33].

There are several distinct notions of stability:

1. A CR-structure (X, J ) is said to be stable provided that the entire algebra of CR functions
deforms continuously under any sufficiently small embeddable deformation J ′.

2. A CR-structure (X, J ) is said to be stable for a class of embeddable deformationsF pro-
vided that the entire algebra of CR-functions deforms continuously under any sufficiently
small deformation J ′ ∈ F .

3. An embedding F : (X, J ) → C
N is stable for a class F of embeddable deforma-

tions, provided that for each J ′ ∈ F sufficiently close to J , there is an embedding
F ′ : (X, J ′) → C

N , so that F ′ is a small perturbation of F .

Notion (1) of course implies that, for any given embedding F : (X, J ) → C
N , there

is a nearby embedding F ′ : (X, J ′) → C
N , provided that (X, J ′) is embeddable and J ′

is sufficiently close to J . We say that two tensors are close if they are close in the C∞
topology on the appropriate space. For the round 3-sphere the first and second notions, while
not explicitly stated, already appear in Burns and Epstein [6], where it is demonstrated that
the entire algebra of CR functions is stable for the class of “positive” deformations, with no
requirement of S1-invariance. This work was extended by Epstein to positive deformations
of circle bundles in [12]. Lempert [27] showed that all small embeddable deformations of
the round sphere are, in fact, positive. In a later paper [28] he went on to show that all
small embeddable deformations of CR-structures on the boundaries of strictly pseudoconvex
domains in C2 are stable in the strongest sense, (1), above.
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In the present paper we will only use the notion (3) of stability. When X is strictly pseudo-
convex, of dimension at least five, Tanaka [32] proved the stability in the sense (3), provided
the dimension of the Kohn–Rossi cohomology H1

b (X) is independent of CR structure. Huang
et al. [23] studied the stability of embeddings for a family of strongly pseudoconvex CRman-
ifolds depending in a CR way on the parameters. The CR dependence on the parameters is
crucial for the study of deformations of complex structures of isolated singularities. For this
topic we refer the readers to [7,22,23,29] and the references therein.

On the other hand, in the case of three dimensional strictly pseudoconvex CR manifolds,
Catlin and Lempert [8] showed that unstable CR embeddings exist. The CR manifolds with
unstable embeddings arise as unit circle bundles in Hermitian line bundles over projective
manifolds. The instability of CR embeddings is a consequence of the instability of very
ampleness of line bundles.

As mentioned above, the stability of CR embeddings is closely related to the stability
of the first Kohn–Rossi cohomology (see [23,32]). Recently, it was shown in [18] that a
compact strictly pseudoconvex CR manifold with a locally free transversal CR S1-action
can be CR embedded into some complex Euclidean space by CR functions lying in the
Fourier components with large positive frequency of the space of CR functions. Since Fourier
components with large frequency of the first Kohn–Rossi cohomology vanish uniformly
under S1-invariant deformations of the CR structure (see Theorem 3.5), we can expect in
analogy to [23,32] that the CR embedding established in [18] should be stable under the
S1-invariant deformations. We will prove this using an additional argument, the stability of
the Szegő projector. Similar arguments can be found in a series of papers by Epstein [14–16]
on relative index, where the Szegő projector also plays a central role.

Let us now formulate our main results. We refer to Sect. 2.1 for some standard notations
and terminology used here. Let (X, HX, J ) be a compact CR manifold of dimension 2n−1,
n � 2, endowed with a locally free S1-action S1 × X → X , (eiθ , x) �→ eiθ x and we let T be
the infinitesimal generator of the S1-action. We assume that this S1-action is transversal CR,
that is, T preserves the CR structure T 1,0X , and T and T 1,0X ⊕T 1,0X generate the complex
tangent bundle to X . Let ∂b be the tangential Cauchy–Riemann operator on X . We denote by
Ker(∂b) = {u ∈ C∞(X) : ∂bu = 0} the space of smooth CR functions. For any m ∈ Z, we
define the mth Fourier component of CR functions H0

b,m(X) = {u ∈ Ker(∂b) : Tu = imu}.
It was shown in [18] that X can be CR embedded into complex Euclidean space by CR
functions which lie in the Fourier components of CR functions with large positive frequency
m. Precisely, for every m ∈ N, there exist integers {m j }Nj=1 with m j ≥ m, 1 ≤ j ≤ N , and

CR functions { f j }Nj=1 with f j ∈ H0
b,m j

(X) such the (equivariant) CR map from X to C
N

� : X → C
N , x �→ ( f1(x), . . . , fN (x)), (1.1)

is an embedding. Our goal is to show that such an embedding is stable under S1-invariant
deformations of the CR structure (cf. Definition 2.1). Our main result is the following.

Theorem 1.1 Let (X, HX, J ) be a compact connected strictly pseudoconvex CR mani-
fold with a locally free transversal CR S1-action. Let {Jt }t∈(−δ0,δ0) be any S1-invariant
deformation of J . Then there is a positive integer m0 such that every CR embedding
� = (�1, . . . , �N ) : (X, HX, J ) → C

N with � j ∈ H0
b,m j

(X),m j > m0, j = 1, . . . , N,
is stable with respect to the deformation {Jt }t∈(−δ0,δ0), that is, for |t | small enough there
exists an S1-equivariant CR embedding ft of the structure Jt such that ft converges to f as
t → 0 in the Cm topology for any non-negative m ∈ Z.
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This paper is organized as follows. In Sect. 2, we set up notation and terminology. Section
3 is devoted to study the S1-invariant deformation of CR structure. Furthermore, will prove
the simultaneous vanishing theorem of Fourier component of Kohn-Rossi cohomology. In
Sect. 4, we will be concerned with the stability of the Szegő kernel of Fourier components
of Kohn–Rossi cohomology. Using the stability of Szegő kernel, we will prove Theorem 1.1
in Sect. 5.

2 Preliminaries

In this section we recall necessary notions of CR geometry, such as the canonical local
coordinates of Baouendi–Rothschild–Treves, and the Tanaka–Webster connection. We also
formulate a vanishing theorem for the Fourier components of Kohn–Rossi cohomology.

2.1 Set up and terminology

Let (X, T 1,0X) be a compact CR manifold of dimension 2n − 1, n ≥ 2, where T 1,0X is a
CR structure of X , that is, T 1,0X is a subbundle of the complexified tangent bundle CT X
of rank n − 1 satisfying T 1,0X ∩ T 0,1X = {0}, where T 0,1X = T 1,0X and [V,V] ⊂ V,

where V = C∞(X, T 1,0X). There is a unique subbundle HX of T X such that CHX =
T 1,0X

⊕
T 0,1X , i.e., HX is the real part of T 1,0X

⊕
T 0,1X. Furthermore, there exists

a homomorphism J : HX → HX such that J 2 = −id, where id denotes the identity
id : CHX → CHX . By complex linear extension of J to CT X , the i-eigenspace of J is
given by T 1,0X = {V ∈ CHX : JV = iV }. We shall also write (X, HX, J ) to denote a
compact CR manifold. Let E be a smooth vector bundle over X . We use �(E) to denote the
space of C∞-smooth sections of E on X .

Let (X, HX, J ) be a compact CR manifold. Let � ⊂ R be an open neighborhood of 0.
We say that {Jt }t∈� is a deformation of J if

(I) For each t ∈ �, there is an endomorphism Jt : HX → HX with J 2t = −id and the i
eigenspace T 1,0

t X = {U ∈ CHX : JtU = iU } is a CR structure on X .
(II) J0 = J .
(III) Jt depends smoothly on t , that is, for every U ∈ HX and V ∗ ∈ T ∗X we have

〈 JtU , V ∗ 〉 ∈ C∞(�).

From now on, we assume that (X, HX, J ) admits an S1-action: S1× X → X, (eiθ , x) �→
eiθ ◦ x . Here, we use eiθ to denote the S1-action. Let T ∈ C∞(X, T X) denote the global
real vector field induced by the S1-action given as follows

(Tu)(x) = ∂

∂θ

(
u(eiθ ◦ x)

) ∣
∣
∣
θ=0

, u ∈ C∞(X). (2.1)

We say that the S1-action eiθ (0 ≤ θ < 2π ) is CR if

[T, �(T 1,0X)] ⊂ �(T 1,0X), (2.2)

where [· , ·] denotes the Lie bracket between the smooth vector fields on X . Furthermore, we
say that the S1- action is transversal if for each x ∈ X ,

CTx X = CT (x) ⊕ T 1,0
x (X) ⊕ T 0,1

x X. (2.3)
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On the stability of equivariant embedding of compact… 205

From now on, we assume that the S1-action on (X, HX, J ) is transversal and CR. Let
{Jt }t∈� be a deformation of J , where � ⊂ R is an open neighborhood 0 ∈ �. As before, put
T 1,0
t X = {U ∈ CHX : JtU = iU }. We need

Definition 2.1 With the notations above, we say that {Jt }t∈� are S1-invariant deformations
of J if [T, �(T 1,0

t X)] ⊂ �(T 1,0
t X) for every t ∈ �.

Definition 2.2 Let f : (X, HX, J ) → C
k be a CR embedding and let {Jt }t∈� be S1-

invariant deformations of J , where � ⊂ R is an open neighborhood of 0. We say that
f is stable with respect to {Jt }t∈� if there is a δ > 0 with [−δ, δ] ⊂ � such that
for every t ∈ (−δ, δ), we can find a CR embedding ft : (X, HX, Jt ) → C

k and
limt→0 ‖ ft − f ‖Cm (X,Ck ) = 0, for every m ∈ N0 := N ∪ {0}.

Lemma 2.3 With the notations used above, we have LT J = 0 on H X, where LT denotes
the Lie derivative along the direction T .

Proof For anyU ∈ �(T 1,0X), LT J (U ) = LT (JU )− J LTU = √−1LTU −√−1LTU =
0. Here, we have used the fact that the S1-action is CR, that is, LTU ∈ �(T 1,0X) for any

U ∈ �(T 1,0X). For any V ∈ �(T 0,1X), we have LT J (V ) = LT J (V ) = 0. Since HX is
the real part of T 1,0X

⊕
T 0,1X , the Lemma follows. ��

Since [�(T 1,0X), �(T 1,0X)] ⊂ �(T 1,0X), we have [JU, JV ] − [U, V ] ∈ C∞(X, HX)

for all U, V ∈ C∞(X, HX). Let ω0 be the global real 1-form dual to T , that is,

〈ω0, T 〉 = 1, 〈ω0, HX〉 = 0. (2.4)

Then for each x ∈ X , we define a quadratic form on HX by

Lx (U, V ) = −dω0(JU, V ),∀ U, V ∈ Hx X. (2.5)

The quadratic form is called the Levi form at x . We extend L to CHX by complex linear
extension. Then for U, V ∈ T 1,0

x X ,

Lx (U, V ) = −dω0(JU, V ) = −idω0(U, V ). (2.6)

Definition 2.4 We say T 1,0X is a strictly pseudoconvex structure and X is a strictly pseu-
doconvex CR manifold if the Levi form Lx is a positive definite quadratic form on Hx X for
each x ∈ X .

In the following, we always assume that X is a compact connected strictly pseudoconvex
CRmanifold with a transversal CR S1-action. It should be noted that a strictly pseudoconvex
CR manifold is always a contact manifold. From (2.4), we see that ω0 is a contact form, HX
is the contact plane and T is the Reeb vector field. Using (2.5) we may extend the Levi form
to a Riemannian metric g on T X , which will play a crucial role in the sequel.

Definition 2.5 Let X be a compact strictly pseudoconvex CR manifold with a transversal
CR S1-action. Let g be the Riemannian metric given by

g(U, V ) = Lx (U, V ), g(U, T ) = g(T,U ) = 0, g(T, T ) = 1, (2.7)

for any U, V ∈ Hx X, x ∈ X . This is called the Webster metric on X .
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The volume form associated with the Webster metric is denoted by dvX and by direct
calculation

dvX = ω0 ∧ (dω0)
n−1

(n − 1)! . (2.8)

The volume form dvX associated with the Webster metric depends only on the contact form
ω0.

For U, V ∈ T 1,0
x X , we can check that Lx (U, V ) = 〈ω0(x), [JU ,V ](x) 〉 = 0, where

U ,V ∈ �(T 1,0X) with U (x) = U , V (x) = V . Thus, Lx (U, V ) = −idω0(U, V ) is a
positive definite Hermitian quadratic form on T 1,0X . We extend the Webster metric g to
CT X by complex linear extension. The Webster metric g on X induces a Hermitian metric
〈 · | · 〉g on CT X :

〈U | V 〉g := g(U, V ), U, V ∈ CT X. (2.9)

It is easy to check that the Webster metric is J -invariant on HX , so we have the pointwise
orthogonal decomposition

CTx X = CT (x) ⊕ T 1,0
x (X) ⊕ T 0,1

x X. (2.10)

We call 〈 · | · 〉g the Webster Hermitian metric.
Denote by T ∗1,0X and T ∗0,1X the dual bundles of T 1,0X and T 0,1X , respectively. Define

the vector bundle of (0, q)-forms by
qT ∗0,1X . Let D ⊂ X be an open subset. Then�0,q(D)

denotes the space of smooth sections of 
qT ∗0,1X over D.
Fix θ0 ∈ [0, 2π). Let

deiθ0 : CTx X → CTeiθ0◦x X

denote the differential map of eiθ0 : X → X . By the property of transversal CR S1-action,
we can check that

deiθ0 : T 1,0
x X → T 1,0

eiθ0◦x X,

deiθ0 : T 0,1
x X → T 0,1

eiθ0◦x X,

deiθ0(T (x)) = T (eiθ0 ◦ x).

(2.11)

Let (eiθ0)∗ : 
q(CT ∗X) → 
q(CT ∗X) be the pull back of eiθ0 , q = 0, 1, . . . , n − 1. From
(2.11), we can check that for every q = 0, 1, . . . , n − 1

(eiθ0)∗ : 
qT ∗0,1
eiθ0◦x X → 
qT ∗0,1

x X. (2.12)

For u ∈ �0,q(X) we define Tu as follows:

(Tu)(X1, . . . , Xq) := ∂

∂θ

(
(eiθ )∗u(X1, . . . , Xq)

) ∣
∣
∣
θ=0

, X1, . . . , Xq ∈ T 1,0
x X. (2.13)

From (2.12) and (2.13), we have Tu ∈ �0,q(X) for all u ∈ �0,q(X). From the definition of
Tu it is easy to check that Tu = LT u for u ∈ �0,q(X), where LT u is the Lie derivative of
u along the direction T .

Let ∂b : �0,q(X) → �0,q+1(X)be the tangentialCauchy–Riemannoperator. It is straight-
forward from (2.11) and (2.13) to see that

T ∂b = ∂bT on �0,q(X). (2.14)

For every m ∈ Z, put �
0,q
m (X) := {u ∈ �0,q(X) : Tu = imu}. From (2.14) we have the

∂b-complex for every m ∈ Z:

∂b : · · · → �
0,q−1
m (X) → �

0,q
m (X) → �

0,q+1
m (X) → · · · . (2.15)
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For every m ∈ Z, the mth Fourier component of Kohn–Rossi cohomology is defined as
follows

Hq
b,m(X) := Ker ∂b : �

0,q
m (X) → �

0,q+1
m (X)

Im ∂b : �
0,q−1
m (X) → �

0,q
m (X)

· (2.16)

Definition 2.6 We say that a function u ∈ C∞(X) is a Cauchy–Riemann (CR for short)
function if ∂bu = 0, or in the other words, Zu = 0 for all Z ∈ �(T 1,0X).

For m ∈ Z, when q = 0, H0
b,m(X) is a subspace of the space of CR functions which lie

in the im eigenspace of T and we call H0
b,m(X) the mth Fourier component of the space of

CR functions. The paper [20] gives asymptotic bounds for the Fourier components of the
Kohn-Rossi cohomology.

2.2 Canonical local coordinates

In this work, we need the following result due to Baouendi–Rothschild–Treves.

Theorem 2.7 [2, Proposition I.2] Let X be a compact CRmanifold of dimX = 2n−1, n ≥ 2
with a transversal CR S1-action. For x0 ∈ X, there exist local coordinates (x1, . . . , x2n−1) =
(z, θ) = (z1, . . . , zn−1, θ), z j = x2 j−1 + i x2 j , j = 1, . . . , n − 1, x2n−1 = θ , defined in a
small neighborhood D = {(z, θ) : |z| < ε, |θ | < δ} centered at x0 such that

T = ∂

∂θ

Z j = ∂

∂z j
+ i

∂ϕ(z)

∂z j

∂

∂θ
, j = 1, . . . , n − 1

(2.17)

where {Z j (x)}n−1
j=1 form a basis of T 1,0

x X for each x ∈ D, and ϕ(z) ∈ C∞(D,R) is inde-
pendent of θ .

We call D a canonical local patch, x = (z, θ) canonical local coordinates on D and
{Z j }n−1

j=1 a canonical frame of T 1,0X over D. On D, the contact form is given by

ω0 = dθ − i
n−1∑

j=1

∂ϕ(z)

∂z j
dz j + i

n−1∑

j=1

∂ϕ(z)

∂z j
dz j

and the Levi form on T 1,0X can be expressed as

Lx = −idω0 = 2
n−1∑

k, j=1

∂2ϕ(z)

∂zk∂z j
dzk ∧ dz j . (2.18)

For x ∈ D, θ ∈ [0, 2π) with eiθ ◦ x ∈ D, it is straightforward to see that deiθ (Z j (x)) =
Z j (eiθ ◦ x) for 1 ≤ j ≤ n − 1.

2.3 Hermitian CR geometry

Definition 2.8 [19, Definition 1.18] Let D be an open set and let V ∈ C∞(D,CT X) be a
vector field on D. We say that V is rigid if

deiθ (V (x)) = V (eiθ ◦ x) (2.19)

for any x, θ ∈ [0, 2π) satisfying x ∈ D, eiθ ◦ x ∈ D.
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The canonical frame {Z j }n−1
j=1 defined in (2.17) are rigid vector fields on the canonical

local patch. Let D be an open subset of X and U be a rigid vector field on D. Then for any
θ0 ∈ [0, 2π), deiθ0(U ) is still a rigid vector field on eiθ0D := {eiθ0 ◦ x : x ∈ D}.
Definition 2.9 [19, Definition 1.19] Let 〈· | ·〉 be a Hermitian metric on CT X . We say that
〈· | ·〉 is rigid if for rigid vector fields V,W on �, where � is any open set, we have

〈V (x)|W (x)〉 = 〈(deiθV )(eiθ ◦ x)|(deiθW )(eiθ ◦ x)〉, ∀x ∈ �, θ ∈ [0, 2π). (2.20)

Lemma 2.10 The Webster Hermitian metric 〈 · | · 〉g defined in (2.9) is a rigid Hermitian
metric on CT X.

Proof Let � be an open subset of X and U, V ∈ T 1,0X be rigid vector fields on �. For any
x0 ∈ �, choose canonical coordinates x = (z, θ) centered at x0 and a canonical local patch
D = {(z, θ) : |z| < ε, |θ | < δ} with D ⊂ �. Let {Z j }n−1

j=1 be a canonical frame over D.

Then on D, U = ∑n−1
j=1 a j (z, θ)Z j and V = ∑n−1

j=1 b j (z, θ)Z j . Since U, V are rigid vector

fields we have that on D, ∂
∂θ
a j (z, θ) = ∂

∂θ
b j (z, θ) = 0 for 1 ≤ j ≤ n− 1. Then for |θ | < δ,

〈deiθU (x0) | deiθV (x0)〉g =
n−1∑

j,k=1

a j (0, 0)bk(0, 0)
〈
deiθ Z j (x0) | deiθ Zk(x0)

〉

g
. (2.21)

Substituting deiθ Z j (x0) = ∂
∂z j

+ i ∂ϕ
∂z j

(0) ∂
∂θ

|(0,θ) to (2.21) we have

〈
deiθU (x0) | deiθV (x0)

〉

g
= 〈U (x0) | V (x0)〉g, ∀ |θ | < δ. (2.22)

Now, we claim that the above equality is also true for all θ ∈ [0, 2π). Let 0 < δ1 < 2π be
any number such that

〈deiθU (x0) | deiθV (x0)〉g = 〈U (x0) | V (x0)〉g,∀ 0 ≤ θ < δ1. (2.23)

First, we show that

〈deiδ1U (x0) | deiδ1V (x0)〉g = 〈U (x0) | V (x0)〉g. (2.24)

Set U1 = deiδ1U , V1 = deiδ1V and y0 = eiδ1 ◦ x0. Since U1, V1 are still rigid vector fields
on eiδ1�, then by the same argument in the proof of (2.22), there exist σ > 0 such that

〈deiθU1(y0) | deiθV1(y0)〉g = 〈U1(y0) | V1(y0)〉g, ∀|θ | < σ. (2.25)

Thus, by (2.23) and (2.25) we have

〈deiδ1U (x0) | deiδ1V (x0)〉g = 〈dei(δ1− σ
2 )U (x0) | dei(δ1− σ

2 )V (x0)〉g = 〈U (x0) | V (x0)〉g.
(2.26)

Thus, we get the conclusion of (2.24). On the other hand, by (2.25) and (2.26) we have

〈U (x0) | V (x0)〉g = 〈dei(δ1+ε)U (x0) | dei(δ1+ε)V (x0)〉, ∀ ε ∈ (0, σ ). (2.27)

Thus, from (2.24) and (2.27) we have

〈deiθU (x0) | deiθV (x0)〉 = 〈U (x0) | V (x0)〉g, ∀ 0 ≤ θ < δ1 + σ. (2.28)

From (2.24) and (2.28) we get the conclusion of the claim and the lemma follows. ��
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For the existence of rigid Hermitian metric on general CR manifold with S1-action, we refer
the readers to [19, Theorem 9.2].

From now on, we will fix the Webster Hermitian metric as a rigid Hermitian metric on
CT X . For convenience, we use the notation 〈· | ·〉 to denote 〈· | ·〉g . The rigid Hermitianmetric
〈· | ·〉 on CT X induces by duality a Hermitian metric on CT ∗X and also on the bundles of
(0, q)-forms 
qT ∗0,1X, q = 0, 1 . . . , n − 1. We shall also denote all these induced metrics
by 〈· | ·〉. From (2.10) we have the pointwise orthogonal decomposition:

CT ∗X = T ∗1,0X ⊕ T ∗0,1X ⊕ {λω0 : λ ∈ C}. (2.29)

For every v ∈ 
qT ∗0,1X , we write |v|2 := 〈v|v〉. Let ( · | · ) be the L2 inner product on
�0,q(X) induced by 〈 · | · 〉 and let ‖·‖ denote the corresponding norm. Then for all u, v ∈
�0,q(X)

(u|v) =
∫

X
〈u|v〉dvX , (2.30)

where dvX given in (2.8) is the volume form on X induced by the rigid Hermitian metric. As
before, for m ∈ Z, we denote by

�
0,q
m (X) = {

u ∈ �0,q(X) : Tu = imu
}

(2.31)

the im eigenspace of T . Let L2
(0,q),m(X) be the completion of �

0,q
m (X) under the L2 inner

product.
Let ∂

∗
b : �0,q+1(X) → �0,q(X) be the formal adjoint of ∂b with respect to (· | ·). Since

the Hermitian metrics 〈· | ·〉 are rigid, we can check that

T ∂
∗
b = ∂

∗
bT on �0,q(X), ∀q = 1, . . . , n − 1 (2.32)

and from (2.32) we have

∂
∗
b : �

0,q+1
m (X) → �

0,q
m (X), ∀m ∈ Z. (2.33)

Put

�(q)
b := ∂b∂

∗
b + ∂

∗
b∂b : �0,q(X) → �0,q(X).

Combining (2.14), (2.32) and (2.33), we have

T�(q)
b = �(q)

b T on �0,q(X), ∀q = 0, 1, . . . , n − 1. (2.34)

A direct consequence of (2.34) is

�(q)
b : �

0,q
m (X) → �

0,q
m (X), ∀m ∈ Z. (2.35)

We will write�(q)
b,m to denote the restriction of�(q)

b on�
0,q
m (X). For everym ∈ Z, we extend

�(q)
b,m to L2

(0,q),m(X) by

�(q)
b,m : Dom(�(q)

b,m) ⊂ L2
(0,q),m(X) → L2

(0,q),m(X), (2.36)

whereDom(�(q)
b,m) = {u ∈ L2

(0,q),m(X) : �(q)
b,mu ∈ L2

(0,q),m(X) in the sense of distribution}.
The following result follows from Kohn’s L2-estimate (see Theorem 8.4.2 in [9]).

Theorem 2.11 For every s ∈ N0, there exists a constant Cs > 0 such that

‖u‖s+1 ≤ Cs

(
‖�(q)

b u‖s + ‖Tu‖s + ‖u‖s
)

, ∀u ∈ �0,q(X) (2.37)

where ‖ · ‖s denotes the standard Sobolev norm of order s on X.
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From Theorem 2.11, we deduce:

Theorem 2.12 For m ∈ Z and for every s ∈ N0, there is a constant Cs,m > 0 such that

‖u‖s+1 ≤ Cs,m

(
‖�(q)

b,mu‖s + ‖u‖s
)

,∀u ∈ �
0,q
m (X). (2.38)

According to Theorem 2.12 and a standard argument in functional analysis, we deduce
the following Hodge theory for �(q)

b,m (see Section 3 in [10]).

Theorem 2.13 Let q ∈ {0, 1, . . . , n − 1}, m ∈ Z. �(q)
b,m : Dom(�(q)

b,m) ⊂ L2
(0,q),m(X) →

L2
(0,q),m(X) is a self-adjoint operator. Set

Hq
b,m(X) =

{
u ∈ Dom(�(q)

b,m) : �(q)
b,mu = 0

}
. (2.39)

Then Hq
b,m(X) is a finite dimensional space with Hq

b,m(X) ⊂ �
0,q
m (X) and the map

Hq
b,m(X) ∼= Hq

b,m(X), α �→ [α], (2.40)

is an isomorphism, where [α] is the cohomology class of α in Hq
b,m(X). In particular,

dim Hq
b,m(X) < ∞,∀ m ∈ Z, ∀ 0 ≤ q ≤ n − 1. (2.41)

We call Hq
b,m(X) the harmonic space with respect to �(q)

b,m .

2.4 Tanaka–Webster connection

Let (X, HX, J ) be a compact strictly pseudoconvex CR manifold with a transversal CR
S1-action. Let T be the globally real vector field induced by the S1-action and ω0 be its dual
form. Then it is easy to check that ω0 is a contact form with HX as the contact structure and
T , ω0 satisfy

〈ω0, T 〉 = 1, 〈ω0, HX〉 = 0, T �dω0 = 0. (2.42)

In this section, with the notations defined above, we will review the Tanaka–Webster con-
nection [32,34] and the notions are mainly from [11,32].

Proposition 2.14 (Proposition 3.1 in [32]) There is a unique linear connection (Tanaka–
Webster connection) denoted by ∇ : �(T X) → �(T ∗X ⊗ T X) satisfying the following
conditions:

1. The contact structure H X is parallel, i.e., ∇U�(HX) ⊂ �(HX) for U ∈ �(T X).

2. The tensor fields T, J, dω0 are all parallel, i.e., ∇T = 0,∇ J = 0,∇dω0 = 0.
3. The torsion τ of ∇ satisfies: τ(U, V ) = dω0(U, V )T , τ(T, JU ) = −Jτ(T,U ), U, V ∈

C∞(X, HX).

Recall that ∇ J ∈ �(T ∗X ⊗L (HX, HX)), ∇dω0 ∈ �(T ∗X ⊗ 
2(CT ∗X)) are defined
by (∇U J )W = ∇U (JW )− J∇UW and∇Udω0(W, V ) = Udω0(W, V )−dω0(∇UW, V )−
dω0(W,∇UV ) for U ∈ �(T X),W, V ∈ �(HX). Similarly, for any u ∈ �0,q(X), we can
define ∇u ∈ �(T ∗X ⊗ 
q(CT ∗X)) in the standard way. By (1) and ∇ J = 0 in (2), we
have∇U�(T 1,0X) ⊂ �(T 1,0X) and∇U�(T 0,1X) ⊂ �(T 0,1X) forU ∈ �(T X).Moreover,
∇ J = 0 and ∇dω0 = 0 imply that the Tanaka–Webster connection is compatible with the
Webstermetric. By definition, the torsion of∇ is given by τ(W,U ) = ∇WU−∇UW−[W,U ]
for U, V ∈ �(T X) and τ(T,U ) for U ∈ �(HX) is called pseudohermitian torsion.
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The existence of an S1-action on X is not necessary in the definition of Tanaka–Webster
connection. But if X admits a transversal CR S1-action, by (2) in Proposition 2.14 andLemma
2.16, we have τ(T,U ) = 0 for U ∈ �(HX). The vanishing of pseudohermitian torsion
admits an important geometric interpretation. Webster [34] proved that for a strictly pseu-
doconvex CR manifold, the pseudohermitian torsion vanishes if and only if the 1-parameter
group of transformations of X induced by T consists of CR automorphisms.

Lemma 2.15 (Lemma 3.2 in [32]) Let U ∈ �(T 1,0X). Then ∇TU = LTU + JTU, where
LT denotes the Lie derivation and JT is given by JT = − 1

2 J ◦ LT J.

Since the S1-action on X is CR, by (2.2), the CR structure on X is invariant with respect to
the S1-action, that is, LT J = 0. By Lemma 2.15 and since LT J = 0, we have

Lemma 2.16 Let X be a compact strictly pseudoconvex CR manifold with a transversal CR
S1-action. Let ∇ be the Tanaka–Webster connection on T X. Then we have

JTU = 0 and ∇TU = LTU for U ∈ �(T 1,0X), (2.43)

where T denotes the induced vector field by the S1-action and J is the CR structure tensor
on X.

Since ∇T u ∈ �0,q(X) for u ∈ �0,q(X), then for any smooth sections U1, . . . ,Uq ∈
�(T 0,1X) we have

(∇T u)(U1, . . . ,Uq) = T (u(U1, . . . ,Uq)) −
q∑

j=1

u((U1, . . . ,∇TU j , . . . ,Uq))

= T (u(U1, . . . ,Uq)) −
q∑

j=1

u((U1, . . . , LTU j , . . . ,Uq))

= (LT u)(U1, . . . ,Uq).

Thus, we have ∇T u = LT u for u ∈ �0,q(X).
Let R be the curvature of Tanaka–Webster connection. Let e1, . . . , en−1 be any orthonor-

mal basis of T 1,0X with respect to the fixed rigidHermitianmetric 〈· | ·〉, that is, 〈ei |e j 〉 = δi j .

Then the Ricci curvature operator R∗ is defined by (page 34 in [32])

R∗U = −i
n−1∑

k=1

R(ek, ek)JU, U ∈ �(HX). (2.44)

By duality, we can extend the Ricci operator R∗ to �0,q(X) in the following way

R∗u(U1, . . . ,Uq) =
q∑

j=1

u(U1, . . . , R∗U j , . . . ,Uq) (2.45)

for all u ∈ �0,q(X) and U1, . . . ,Uq ∈ �(T 1,0X). It is straightforward to check that R∗ is a
self-adjoint operator with respect to the inner product 〈· | ·〉 on �0,q(X).

2.5 Pseudohermitian geometry

Let {Zα}n−1
α=1 be the canonical frame of T 1,0X on a canonical open set D in the BRT trivial-

ization given in Theorem 2.7. Then {dzα}n−1
α=1 is a dual frame of {Zα}n−1

α=1. Write Zα = Zα ,
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θα = dzα , θα = θα. Then {θα} is an admissible coframe on D. Then dω0 = igαβθα ∧ θβ ,

where gαβ = 2 ∂2ϕ(z)
∂zα∂zβ

. Let ω
β
α be the connection form of Tanaka–Webster connection with

respect to the frame {Zα}n−1
α=1. Thus, we have

∇Zα = ωβ
α Zβ, ∇Zα = ω

β
α Zβ,∇T = 0.

By direct calculation,
ωβ

α = gσβ∂gασ (2.46)

where {gσβ} is the inverse matrix of {gαβ}. We denote by �
β
α the Tanaka–Webster curvature

form. Since the pseudohermitian torsion vanishes, we have �
β
α = dω

β
α − ω

γ
α ∧ ω

β
γ . It is

easy to check that �
β
α = R β

α jk
θ j ∧ θk , where R β

α jk
is the Tanaka–Webster curvature and

by direct calculation

R β

α jk
θ j ∧ θk = −2gσβ ∂4ϕ(z)

∂zα∂zσ ∂z j∂zk
dz j ∧ dzk − 2

∂gασ

∂z j

∂gσβ

∂zk
dz j ∧ dzk . (2.47)

Proposition 2.17 ([32, Theorem5.2])For any u ∈ �0,q(X), we have the following equalities

(�(q)
b u|u) = ‖u‖2

S
− qi(∇T u|u) + (R∗u|u) (2.48)

where ‖u‖2
S

= − ∫
X (

∑n−1
k=1〈∇ek∇ek u|u〉)dvX . Here, {ek}n−1

k=1 is any orthonormal frame of

T 1,0X.

From (2) in Proposition 2.14, the rigid Hermitian metric 〈·|·〉g is invariant with respect the
Tanaka–Webster connection ∇. Integrating by parts, we have

‖u‖2
S

= −
∫

X

n−1∑

k=1

〈∇ek∇ek u|u〉dvX =
n−1∑

k=1

∫

X
〈∇ek u|∇ek u〉dvX ≥ 0. (2.49)

As a corollary of Proposition 2.17, we have the vanishing theorem for the Fourier components
of Kohn–Rossi cohomology.

Theorem 2.18 Let X be a strictly pseudoconvex CR manifold with a locally free transversal
CR S1-action. There exists m0 > 0 such that for q ≥ 1 and any m ∈ Z with m > m0, we
have Hq

b,m(X) = 0.

Proof By Lemma 2.16, we have ∇T u = LT u. Then by (2.48) for any u ∈ �
0,q
m (X) we have

(�(q)
b,mu|u) = ‖u‖2

S
+ qm‖u‖2 + (R∗u|u). (2.50)

There exists m0 > 0 such that for any m > m0,m ∈ N we have

(�(q)
b,mu|u) ≥ Cm‖u‖2 for u ∈ �

0,q
m (X), q ≥ 1. (2.51)

This implies Hq
b,m(X) = 0 for m > m0, q ≥ 1. By the Hodge isomorphism (2.40), we get

the conclusion of the theorem. ��
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3 S1-invariant deformation of the CR structure

Let {Jt }t∈(−δ,δ) be a deformation of J . As before, let T 1,0
t X = {U ∈ CHX : JtU = iU }. We

also say T 1,0
t X is a (smooth) deformation of T 1,0X . In this work, we are especially interested

in the S1-invariant deformations of CR structures. As in Definition 2.1, we introduce:

Definition 3.1 We say the smooth deformation T 1,0
t X of T 1,0X is S1-invariant if for any

t ∈ (−δ, δ) we have LT Jt = 0 or, equivalently, [T, �(T 1,0
t X)] ⊂ �(T 1,0

t X).

We give some examples of S1-invariant deformations of CR structures.

Example 3.2 Let X = S
3 = {z = (z1, z2) ∈ C

2 : |z1|2 + |z2|2 = 1} be the boundary of the
unit ball in C2, and let the induced CR structure T 1,0X be generated by Z = z2

∂
∂z1

− z1
∂

∂z2
.

Thus, (X, T 1,0X) forms a compact strictly pseudoconvex CR manifold. The S1-action on X
is given by

eiθ (z1, z2) = (eiθ z1, e
inθ z2), n ∈ Z, n > 0. (3.1)

By direct calculation, the S1- action given above is a locally free transversal CR S1- action.
The global vector field induced by the S1-action on X is given by

T = i

(

z1
∂

∂z1
− z1

∂

∂z1
+ nz2

∂

∂z2
− nz2

∂

∂z2

)

.

By simple calculation,
[T, Z ] = −i(n + 1)Z . (3.2)

Let �(z, t) = φ(z)χ(t) with φ(z) and χ(t) smooth functions on X and R respectively.
We assume that Tφ(z) = −2i(n + 1)φ with φ a non-zero smooth function on X and
χ(0) = 0. This is possible because we can find a smooth function h on X such that
∫ 2π
0 h(eiθ z)ei2(n+1)θdθ �= 0, then we define φ(z) = ∫ 2π

0 h(eiθ z)ei2(n+1)θdθ . Then for each

t ∈ R the deformation T 1,0
t X of T 1,0X is given by

T 1,0
t X = spanC{Z + �(z, t)Z}. (3.3)

It is easy to check that

[T, Z + �(z, t)Z ] = −i(n + 1)(Z + �(z, t)Z) ∈ �(T 1,0
t X). (3.4)

Thus, T 1,0
t X is an S1-invariant deformation of T 1,0X.

Remark 3.3 In Rossi’s global non-embeddability example [1,5,17,31], a real analytic defor-
mation of T 1,0

S
3 was considered. For each t ∈ R, the new CR structure T 1,0

t S
3 on S

3 is
generated by Z + t Z . It is easy to check that this is not an S1-invariant deformation with
respect to the S1-action given in (3.1).

Now, we assume that {Jt }t∈(−δ,δ) is an S1-invariant deformation of J . Then, CHX =
T 1,0
t X

⊕
T 0,1
t X , that is, the deformations are always horizontal. This implies that the S1-

action on X is transversal. From Definition 3.1, we know that the S1-action on X is a
transversal CR S1-action with respect to the deformation T 1,0

t X for t ∈ (−δ, δ).
We now express T 1,0

t X in an explicit way. Let {Z j }n−1
j=1 be a canonical frame of T 1,0X

defined in Theorem 2.7. Then locally we have

T 1,0
t X = SpanC

{

Z j +
n−1∑

k=1

� jk(·, t)Zk, j = 1, . . . , n − 1

}

(3.5)
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for |t | small. We may assume that (3.5) holds for all t ∈ (−δ, δ). Z j + ∑n−1
k=1 � jk(·, t)Zk ,

1 ≤ j ≤ n − 1 is a basis of CR structure T 1,0
t X . Here, {� j,k(·, t)}1≤ j,k≤n−1 is called

deformation matrix and {� jk}n−1
j,k=1 are smooth functions on X which smoothly depend on

t ∈ (−δ, δ).

Lemma 3.4 With the notations used above, for any t ∈ (−δ, δ), we have T� jk = 0 for
1 ≤ j, k ≤ n − 1.

Proof Since the S1-action on X is transversal and CR with respect to the CR structure Jt ,
we have [T, Z j + ∑n−1

k=1 � jk Zk] ∈ �(T 1,0
t X). From Theorem 2.7, we know [T, Z j ] =

[T, Z j ] = 0 for 1 ≤ j ≤ n − 1. Then [T, Z j + ∑n−1
k=1 � jk Zk] = ∑n−1

k=1 T� jk Zk ∈
�(T 1,0

t X). At each point, we write
∑n−1

k=1 T� jk Zk = ∑n−1
j=1 c j (Z j + ∑n−1

l=1 � jl Zl) for
constants cl , 1 ≤ l ≤ n − 1. The equality implies that cl = 0, 1 ≤ l ≤ n − 1, i.e.,∑n−1

k=1 T� jk Zk = 0. Since {Zl}n−1
l=1 are linear independent, we have that T� jk = 0 for

1 ≤ j, k ≤ n − 1. ��

Associated with the CR structure tensor Jt , t ∈ (−δ, δ), the Levi form on X is defined by

Lt,x (U, V ) = −dω0(JtU, V ), ∀ U, V ∈ Hx X,∀ x ∈ X. (3.6)

When δ is sufficiently small, the quadratic form Lt,x is still positive and we may assume that
the CR manifold (X, T 1,0

t X) is strictly pseudoconvex for t ∈ (−δ, δ). Since the S1-action
on (X, T 1,0

t X) is transversal and CR, using Lt,x we can define a Riemannian metric gt on
CT X as (2.7). As (2.9), gt induces a rigid Hermitian metric 〈· | ·〉t on CT X such that

T 1,0
t X ⊥ T 0,1

t X, T ⊥ T 1,0
t X ⊕ T 0,1

t X. (3.7)

Denote by T ∗1,0
t X and T ∗0,1

t X the dual bundles of T 1,0
t X and T 0,1

t X respectively and
define the vector bundle of (0, q)-forms by 
qT ∗0,1

t X . Similarly as in Sect. 2, let �
0,q
t (X)

denote the space of global smooth sections of
qT ∗0,1
t X and for everym ∈ Z, let�0,q

t,m(X) =
{u ∈ �

0,q
t (X) : Tu = imu}. Let ∂ t,b : �

0,q
t (X) → �

0,q+1
t (X) be the tangential Cauchy–

Riemann operator with respect to the new CR structure T 1,0
t X . Then we still have that

T ∂ t,b = ∂ t,bT and ∂ t,b,m := ∂ t,b : �
0,q
t,m(X) → �

0,q+1
t,m (X), for every m ∈ Z. Using the

∂ t,b-complex, ∂ t,b,m-complex on �
0,q
t (X), �0,q

t,m(X) respectively, we can define the Kohn–
Rossi cohomology Hq

t,b(X) and the mth Fourier component of Kohn–Rossi cohomology

Hq
t,b,m(X) for eachm ∈ Z respectively, q = 0, 1, . . . , n−1. In the remainder of this section,

our goal is to prove the following:

Theorem 3.5 Let (X, HX, J ) be a compact strictly pseudoconvex CR manifold of real
dimension 2n − 1, n ≥ 2 with a locally free transversal CR S1-action. Let {Jt }t∈(−δ,δ)

be a S1-invariant deformation of J . Then there exists positive constants m0 and δ0 < δ such
that for m ∈ Z, m > m0 and |t | < δ0,

(
�(q)

t,b,mu|u
)

t
≥ Cm‖u‖2t , u ∈ �

0,q
t,m(X), q ≥ 1, (3.8)

where Cm is a constant independent of t . In particular, we have the simultaneous vanishing

Hq
t,b,m(X) = 0, m > m0, |t | < δ0, q ≥ 1. (3.9)
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Before the proof of Theorem 3.5, we first recall the harmonic theory with respect to
{Jt }t∈(−δ,δ) on X . Let ( · | · )t be the L2 inner product on �

0,q
t (X) induced by the rigid

Hermitian metric 〈· | ·〉t and let ‖ · ‖t denote the corresponding norm. Then for all u, v ∈
�

0,q
t (X)

(u|v)t =
∫

X
〈u|v〉t dvX , (3.10)

where dvX is the volume form on X induced by the rigid Hermitian metric 〈· | ·〉t . Recall
that the volume dvX = ω0 ∧ (dω0)

n−1

(n−1)! associated with 〈· | ·〉t does not depend on t . Let ∂∗
t,b :

�
0,q
t (X) → �

0,q−1
t (X) be the formal adjoint of ∂ t,b with respect to (· | ·)t for t ∈ (−δ, δ).

Since ∂ t,bT = T ∂ t,b and the Hermitian metric 〈· | ·〉t is rigid, we have T ∂
∗
t,b = ∂

∗
t,bT .

Define �(q)
t,b = ∂ t,b∂

∗
t,b + ∂

∗
t,b∂ t,b. From the commutation of T with ∂ t,b, ∂

∗
t,b, we have

�(q)
t,b T = T�(q)

t,b . Then �(q)
t,b maps �

0,q
t,m(X) into itself and we denote

�(q)
t,b,m := �(q)

t,b

∣
∣
∣
�
0,q
t,m (X)

: �
0,q
t,m(X) → �

0,q
t,m(X),

the restriction of �(q)
t,b to �

0,q
t,m(X). As in Sect. 2, let L2

t,(0,q),m(X) be the completion of

�
0,q
t,m(X) under the L2 inner product defined in (3.10). We extend �(q)

t,b,m to L2
t,(0,q),m(X) as

in (2.36). By Hodge theory for �(q)
t,b,m (Theorem 2.13) there is an isomorphism Hq

t,b,m(X) ∼=
Hq

t,b,m(X), where Hq
t,b,m(X) is the kernel of �(q)

t,b,m . Now we are going to show the simul-

taneous vanishing theorem for the harmonic space Hq
t,b,m(X), q ≥ 1 and as a consequence

we prove Theorem 3.5.

Proof of Theorem 3.5 Since {Zt, j = Z j + � jk(·, t)Zk}n−1
j=1 is a frame of T 1,0

t X and 〈· | ·〉t
depends smoothly on t , then by linear algebra argument we can find an orthonormal frame
of T 1,0

t X which depends smoothly on t . Locally, let {et, j }n−1
j=1 be an orthonormal basis of

T 1,0
t X with respect to 〈· | ·〉t depending smoothly on t and let {ω j

t }n−1
j=1 be its dual basis.

Let ∇ t be the Tanaka–Webster connection with respect to T 1,0
t X and 〈· | ·〉t for any t ∈

(−δ, δ). Let Rt and Rt∗ be its curvature and Ricci curvature operator respectively defined

as in (2.44) and (2.45). For any u ∈ �
0,q
t (X), then locally u = ∑′

|J |=q u Jω
J
t , where

∑′
means that the summation is performed only over strictly increasing multi-indices. Here for

a multi-index J = { j1, . . . , jq} ∈ {1, 2, . . . , n − 1}q , we set |J | = q , ωJ
t = ω

j1
t ∧ · · · ∧ ω

jq
t

and we say that J is strictly increasing if 1 ≤ j1 < · · · < jq ≤ n − 1. By definition of Rt∗,
for any strictly increasing multi-index 1 ≤ k1 < · · · < kq ≤ n − 1

Rt∗u(et,k1 , . . . , et,kq ) =
q∑

j=1

u
(
et,k1 , . . . , R

t∗et,k j , . . . , et,kq
)
, (3.11)

where

Rt∗et,k j = −
n−1∑

i=1

Rt (et,i , et,i )et,k j . (3.12)

By (2.50), for any u ∈ �
0,q
t,m(X) we have

(
�(q)

t,b,mu|u
)

t
= ‖u‖2

St
+ qm‖u‖2t + (Rt∗u|u)t (3.13)
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where ‖u‖2
St

= −∑n−1
i=1

∫ 〈∇ t
et,i ∇ t

et,i
u|u〉t dvX . We claim that (Rt∗u|u)t ≤ C‖u‖2t ,∀ |t | ≤ δ

for a constant C independent of t when δ is small. For u = ∑′
|J |=q u Jω

J
t ∈ �

0,q
t (X), write

Rt∗u = ∑′
|J |=q u

t
Jω

J
t . For any J = { j1, . . . , jq} with 1 ≤ j1 < · · · < jq ≤ n − 1 we have

utJ = Rt∗u(et, j1 , . . . , et, jq ). Then

(Rt∗u|u)t =
∑

j1<···< jq

∫

X
Rt∗u(et, j1 , . . . , et, jq )u j1··· jq dvX

=
∑

j1<···< jq

q∑

l=1

∫

X
u(et, j1 , . . . , R

t∗et, jl , . . . , et, jq )u j1··· jq dvX

= −
n−1∑

i=1

∑

j1<···< jq

q∑

l=1

∫

X
u(et, j1 , . . . , R

t (et,i , et,i )et, jl , . . . , et, jq )u j1··· jq dvX .

(3.14)
Since Jt , 〈· | ·〉t and {Zt, j } depend smoothly on t , then the connection forms of ∇ t with
respect to the frame {Zt, j } depend smoothly on t and as a consequence, the curvature of the
∇ t also depend smoothly on t . Thus, there exists a constant δ0 such that for any |t | < δ0 we
have

(Rt∗u|u)t ≤ C‖u‖2t (3.15)

for some constant C independent of t . From (3.13) and (3.15), there exist a constant m0 > 0
independent of t such that for any m ∈ Z,m > m0 we have

(
�(q)

t,b,mu|u
)

t
≥ Cm‖u‖2t , ∀ u ∈ �

0,q
t,m(X), |t | < δ0, q ≥ 1, (3.16)

where Cm is a constant independent of t for |t | < δ0. From (3.16), we get Hq
t,b,m(X) = 0

for any m ∈ Z,m > m0 and |t | < δ0. By Hodge theory we get the conclusion of Theorem
3.5. ��

From (3.16) we have the following.

Corollary 3.6 Let λ(t,m) be an eigenvalue of �(q)
t,b,m , 1 ≤ q ≤ n − 1. Assume that m0, δ0

are the same as in Theorem 3.5. Then, for any m ∈ Z,m > m0 and |t | < δ0, we have
λ(t,m) ≥ Cm. Here, Cm is a constant satisfying C1m ≤ Cm ≤ C2m with C1, C2 independent
of m and t, |t | < δ0.

4 Stability of Szegő kernel of the Fourier components of CR functions

In this section, we assume m0, δ0 be the same constants as in Theorem 3.5 unless otherwise
stated. Let St,m : L2(X) → H0

t,b,m(X) be the orthogonal projection with respect to ( · | · )t .
Since the volume form dvX with respect to 〈· | ·〉t does not depend on t , the inner product
( · | · )t is the same as ( · | · ) on the space of smooth functions on X . Let St,m(x, y) ∈ C∞(X×
X) be the Schwartz kernel of St,m . We denote Sm := S0,m , Sm(x, y) := S0,m(x, y). The goal
of this section is to prove the following

Theorem 4.1 With the notations above, assume that m ≥ m0. For any k ∈ N and ε > 0
there exists δk,ε < δ0 such that for all t ∈ R with |t | < δk,ε, we have

|St,m(x, y) − Sm(x, y)|Ck (X×X) < ε. (4.1)
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For s ∈ Z, let Hs(X) denote the Sobolev space on X of order s of functions and let ‖·‖s
denote the standard Sobolev norm of order s with respect to ( · | · ). First, we need
Lemma 4.2 For every m ≥ m0 and every s0 ∈ N ∪ {0}, there is a constant Cs0,m > 0
independent of t ∈ (−δ0, δ0) such that

∥
∥St,mu

∥
∥
2s0

≤ Cs0,m ‖u‖−2s0 for u ∈ H−2s0(X) and |t | < δ0. (4.2)

Proof Fix m ≥ m0. By Gårding’s inequality, for every s ∈ N0, it is easy to see that there is
a constant Cs,m > 0 independent of t ∈ (−δ0, δ0) such that

‖St,mu‖s+2 ≤ Cs,m

(
‖(�(0)

t,b,m − T 2)St,mu‖s + ‖St,mu‖s
)
, ∀ u ∈ L2(X). (4.3)

From (4.3), by using induction and noticing that

T 2St,mu = −m2St,mu, ∀u ∈ L2(X),
∥
∥St,mu

∥
∥ ≤ ‖u‖ , ∀u ∈ L2(X),

it is straightforward to see that for every s ∈ N, there is a C̃s,m > 0 independent of t such
that ∥

∥St,mu
∥
∥
2s ≤ C̃s,m ‖u‖ , ∀u ∈ L2(X). (4.4)

From (4.4), it is straightforward to see that St,m can be extended from L2(X) to H−2s(X)

for every s ∈ N. Fix s0 ∈ N and let u ∈ H−2s0(X), we have (St,mu|v) = (u, St,mv) for
v ∈ L2(X), where (·, ·) is the pair between H−2s(X) and H2s(X). Then

∥
∥St,mu

∥
∥ = sup

{∣
∣( u , St,mv )

∣
∣ : v ∈ L2(X), ( v | v ) = 1

}
. (4.5)

Fix v ∈ L2(X), ( v | v ) = 1. From (4.4), we have
∣
∣( u , St,mv )

∣
∣ ≤ ‖u‖−2s0 · ∥

∥St,mv
∥
∥
2s0

≤ C̃s0,m ‖u‖−2s0 , (4.6)

where C̃s0,m > 0 is the constant as in (4.4). From (4.6) and (4.5), we conclude that
∥
∥St,mu

∥
∥ ≤ C̃s0,m ‖u‖−2s0 , ∀u ∈ H−2s0(X). (4.7)

Now, from (4.4) and (4.7), we have
∥
∥St,mu

∥
∥
2s0

= ∥
∥St,mSt,mu

∥
∥
2s0

≤ C̃s0,m
∥
∥St,mu

∥
∥

≤ (C̃s0,m)2 ‖u‖−2s0 , ∀u ∈ H−2s0(X).
(4.8)

From (4.8), the lemma follows. ��
Let Nt,m : L2

m(X) → Dom (�(0)
t,b,m) be the partial inverse of �(0)

t,b,m . We have

�(0)
t,b,mNt,m + St,m = I on L2

m(X),

Nt,m�(0)
t,b,m + St,m = I on Dom (�(0)

t,b,m).
(4.9)

We denote Nm := N0,m . We need

Lemma 4.3 For every m ≥ m0 and every s ∈ N0, there is a constant Cs,m > 0 independent
of t ∈ (−δ0, δ0) such that

∥
∥Nt,mu

∥
∥
s+2 ≤ Cs,m ‖u‖s for u ∈ Hs(X)

⋂
L2
m(X). (4.10)

123



218 C.-Y. Hsiao et al.

Proof We will prove (4.10) by induction over s ∈ N0. By Gårding’s inequality, it is easy to
see that there is a constant C̃m > 0 independent of t such that

‖Nt,mu‖2 ≤ C̃m

(
‖(�(0)

t,b,m − T 2)Nt,mu‖ + ‖Nt,mu‖
)
, ∀u ∈ L2

m(X). (4.11)

From (4.9), we have

(�(0)
t,b,m − T 2)Nt,mu = (I − St,m)u + m2Nt,mu. (4.12)

From (4.12) and Corollary 3.6, we see that there is a constant Ĉm > 0 independent of t such
that ∥

∥Nt,mu
∥
∥ +

∥
∥
∥(�(0)

t,b,m − T 2)Nt,mu
∥
∥
∥ ≤ Ĉm ‖u‖ , ∀u ∈ L2

m(X). (4.13)

From (4.13) and (4.11), we see that (4.10) holds for s = 0.
We assume that (4.10) holds for some s0 ≥ 0. We are going to prove that (4.10) holds for

s0+1. ByGårding’s inequality, it is easy to see that there is a constant C̃s0,m > 0 independent
of t such that

‖Nt,mu‖s0+3

≤ C̃s0,m

(
‖(�(0)

t,b,m − T 2)Nt,mu‖s0+1 + ‖Nt,mu‖s0+1

)
, ∀u ∈ Hs0+1(X)

⋂
L2
m(X).

(4.14)
From (4.9), we have

(�(0)
t,b,m − T 2)Nt,mu = (I − St,m)u + m2Nt,mu. (4.15)

From the proof of Lemma 4.2, we have
∥
∥St,mu

∥
∥
s0+1 ≤ ∥

∥St,mu
∥
∥
2(s0+1) ≤ cm,s0 ‖u‖ ≤ cm,s0 ‖u‖s0+1 , (4.16)

where cm,s0 > 0 is a constant independent of t . By the induction, we have
∥
∥Nt,mu

∥
∥
s0+1 ≤ ∥

∥Nt,mu
∥
∥
s0+2 ≤ ĉm,s0 ‖u‖s0 ≤ ĉm,s0 ‖u‖s0+1 , (4.17)

where ĉm,s0 > 0 is a constant independent of t . From (4.14), (4.15), (4.16), and (4.17), we
see that (4.10) holds for s0 + 1. The lemma follows. ��

Let s1, s2 ∈ Z. For a t-dependent operator At : Hs1(X) → Hs2(X), we write

At = o(t) : Hs1(X) → Hs2(X), t → 0,

if for every ε > 0, there is a δ1 > 0 such that for all |t | < δ1, we have

‖Atu‖s2 ≤ ε ‖u‖s1 for all u ∈ Hs1(X).

Proof of Theorem 4.1 Assume that m ≥ m0. From (4.9), we have

Sm = (Nt,m�(0)
t,b,m + St,m)Sm

= Nt,m(�(0)
t,b,m − �(0)

b,m)Sm + St,mSm .
(4.18)

Note that

(�(0)
t,b,m − �(0)

b,m)Sm = o(t) : H−s(X) → Hs−2(X), ∀s ∈ N.

From this observation, (4.10) and (4.18), we deduce that

Sm − St,mSm = o(t) : H−s(X) → Hs(X), ∀s ∈ N. (4.19)

123



On the stability of equivariant embedding of compact… 219

Taking adjoints in (4.19) with respect to ( · | · ), we get
Sm − SmS

∗
t,m = o(t) : H−s(X) → Hs(X), ∀s ∈ N, (4.20)

where S∗
t,m is the adjoint of St,m with respect to ( · | · ). It is clear that

St,m = S∗
t,m : H−s(X) → Hs(X), ∀s ∈ N.

From this observation and (4.20), we conclude that

Sm − SmSt,m = o(t) : H−s(X) → Hs(X), ∀s ∈ N. (4.21)

Similarly, from (4.9), we have

St,m =
(
Nm�(0)

b,m + Sm
)
St,m

= Nm(�(0)
b,m − �(0)

t,b,m)St,m + SmSt,m .

(4.22)

From Lemma 4.2, it is easy to check that

Nm(�(0)
b,m − �(0)

t,b,m)St,m = o(t) : H−s(X) → Hs(X), ∀s ∈ N. (4.23)

From (4.23) and (4.22), we deduce that

St,m − SmSt,m = o(t) : H−s(X) → Hs(X), ∀s ∈ N. (4.24)

From (4.21) and (4.24), we deduce that

Sm − St,m = o(t) : H−s(X) → Hs(X), ∀s ∈ N. (4.25)

From (4.25) and the Sobolev embedding theorem, Theorem 4.1 follows. ��

Corollary 4.4 There exists δ1 < δ0 such that for m > m0, dimH0
t,b,m(X) does not depend

on t ∈ (−δ1, δ1).

Proof It is clear that

∣
∣dimH0

t,b,m(X) − dimH0
b,m(X)

∣
∣ =

∣
∣
∣
∣

∫

X
St,m(x, x) − Sm(x, x)dvX

∣
∣
∣
∣ → 0 (4.26)

as t → 0 by Theorem 4.1. Since dim H0
t,b,m(X) is an integer, for each m > m0 the function

t �→ dim H0
t,b,m(X) is constant for |t | is sufficiently small. ��

5 Stability of equivariant embedding of CR manifolds with S1-action

In a recent work [18, Theorem 1.2] we showed:

Theorem 5.1 Let (X, T 1,0X) be a compact connected strictly pseudoconvex CR manifold
with a transversal CR locally free S1-action. Then for every m ∈ N, there exist integers
{m j }Nj=1 with m j ≥ m, 1 ≤ j ≤ N, and CR functions { f j }Nj=1 with f j ∈ H0

b,m j
(X) such the

S1-equivariant CR map � : X → C
N , x �→ ( f1(x), . . . , fN (x)) is an embedding.
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In this section, we choose m0 as in Theorem 3.5. We will show that the equivariant
embedding in Theorem 5.1 is stable under S1-invariant deformations of CR structure. For
|t | < δ0, set �t, j = St,m j � j . Then {�t, j }Nj=1 are CR functions with respect to T 1,0

t X (or

Jt ). With these CR functions we define a CR map with respect to T 1,0
t X as follows

�t : X → C
N , x �→ (�t,1(x), . . . , �t,N (x)). (5.1)

Now, we come to the following result, which implies themain result of the paper, Theorem
1.1.

Theorem 5.2 Let (X, HX, J ) be a compact connected strictly pseudoconvex CR manifold
with a transversalCR S1-action. Let {Jt }t∈(−δ0,δ0) bean S

1-invariant deformationof J . Letm0

be as in Theorem 3.5. Let � = (�1, . . . , �N ) : X → C
N be an equivariant CR embedding

with� j ∈ H0
b,m j

(X), m j > m0, 1 ≤ j ≤ N. Then themap�t defined in (5.1) is a CR embed-
dingwhen |t | is sufficiently small.Moreover, for every k ∈ N, limt→0 ‖�t − �‖Ck (X,CN ) = 0.

Proof First, we prove �t is an immersion for each |t | is sufficiently small. Since

�t, j − � j = St,m j � j − Sm j � j = (St,m j − Sm j )� j , 1 ≤ j ≤ N , (5.2)

then byTheorem4.1,we have |�t, j−� j |C1(X) is sufficiently small as |t | → 0 for 1 ≤ j ≤ N .

Since � is an immersion, i.e., the rank of the Jacobian of � is 2n − 1, then there exists a
constant σ < δ0 such that for |t | < σ the rank of the Jacobian of �t is always 2n − 1, that
is, �t is an immersion when |t | < σ. Next, we claim that �t is an injective map when t is
sufficiently small. We prove this claim by seeking a contradiction. If it is not true, there exists
εn → 0 as n → ∞ and two sequences of points {xn}, {yn} ⊂ X , xn �= yn , for each n, such
that �εn (xn) = �εn (yn), ∀n. Since X is compact, we assume that xn → p and yn → q . If
p �= q , letting εn → 0 we will have �(p) = �(q). This is a contradiction with the fact that
� an injective map. Now, we assume that p = q. Then

|�(xn)−�(yn)| = |�(xn)−�εn (xn)+�εn (yn)−�(yn)| = |(�−�εn )(xn)−(�−�εn )(yn)|.
(5.3)

By Theorem 4.1, we have
∥
∥�εn − �

∥
∥
C1(X,CN )

→ 0 as εn → 0. (5.4)

Then
|(� − �εn )(xn) − (� − �εn )(yn)| ≤ cεn |xn − yn |, ∀n, (5.5)

where cεn is a sequence of constants with cεn → 0 as εn → 0. On the other hand, since
� is an embedding, by implicit function theorem, there exists a constant c independent of
{xn}, {yn} such that

|�(xn) − �(yn)| ≥ c|xn − yn |, for n large. (5.6)

From (5.5) and (5.6), we get a contradiction. Thus, we get the injectivity of �t for |t |
sufficiently small. The fact that ‖�t − �‖Ck (X,CN ) → 0 for t → 0 is a direct consequence
of (5.2) and Theorem 4.1. ��
Acknowledgements The authors thank the referee for many detailed remarks that have helped improve the
presentation.
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