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Abstract We prove the stability of the equivariant embedding of compact strictly pseudo-
convex CR manifolds with transversal CR circle action under circle invariant deformations
of the CR structures.
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1 Introduction and statement of the main results

Let X be a compact strictly pseudoconvex CR manifold. The question of whether or not X
admits a CR embedding into a complex Euclidean space has attracted a lot attention. This
amounts to showing that the manifold has a sufficiently rich collection of global CR functions.
It was shown by Boutet de Monvel [4] that the answer is affirmative if the dimension of X is
at least five. The obstructions to constructing global CR functions lie in the first Kohn—Rossi
cohomology group H bl (X), which is finite dimensional if dim X > 5. An essential ingredient
in the embedding theorem [4] is the Hodge theory for this group, that will play an important
role in the present paper, too.

In contrast, if X has dimension three, X may not be even locally embeddable, see [24,
25,30]. Furthermore, there are examples [1,5,17,31] which show that even when the CR
structure on X is locally embeddable (for example, when it is real analytic), it can happen
that the global CR functions on X fail to separate points of X. It was shown in [6] that, in a
rather precise sense, “generic” perturbations of the standard structure on the three sphere are
nonembeddable.

On the other hand, if a compact three dimensional strictly pseudoconvex CR manifold
admits a transversal CR S'-action, it was shown by Lempert [27], Epstein [12] and recently
in [18,21] by using the Szeg6 kernel, that such CR manifolds can always be CR embedded
into a complex Euclidean space.

In recent years, much progress has been made in understanding the embedding question
from a deformational point of view, that is, for CR structures which lie in a small neighborhood
of a fixed embedded structure, see e. g. [3,6,12,13,23,26-28,33].

There are several distinct notions of stability:

1. A CR-structure (X, J) is said to be stable provided that the entire algebra of CR functions
deforms continuously under any sufficiently small embeddable deformation J'.

2. A CR-structure (X, J) is said to be stable for a class of embeddable deformations F pro-
vided that the entire algebra of CR-functions deforms continuously under any sufficiently
small deformation J' € F.

3. An embedding F : (X,J) — CV is stable for a class F of embeddable deforma-
tions, provided that for each J' € F sufficiently close to J, there is an embedding
F':(X,J) — CN, sothat F’ is a small perturbation of F.

Notion (1) of course implies that, for any given embedding F : (X, J) — C¥, there
is a nearby embedding F’ : (X, J') — CV, provided that (X, J') is embeddable and J’
is sufficiently close to J. We say that two tensors are close if they are close in the C*
topology on the appropriate space. For the round 3-sphere the first and second notions, while
not explicitly stated, already appear in Burns and Epstein [6], where it is demonstrated that
the entire algebra of CR functions is stable for the class of “positive” deformations, with no
requirement of S'-invariance. This work was extended by Epstein to positive deformations
of circle bundles in [12]. Lempert [27] showed that all small embeddable deformations of
the round sphere are, in fact, positive. In a later paper [28] he went on to show that all
small embeddable deformations of CR-structures on the boundaries of strictly pseudoconvex
domains in C? are stable in the strongest sense, (1), above.
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In the present paper we will only use the notion (3) of stability. When X is strictly pseudo-
convex, of dimension at least five, Tanaka [32] proved the stability in the sense (3), provided
the dimension of the Kohn—Rossi cohomology H, g (X) is independent of CR structure. Huang
etal. [23] studied the stability of embeddings for a family of strongly pseudoconvex CR man-
ifolds depending in a CR way on the parameters. The CR dependence on the parameters is
crucial for the study of deformations of complex structures of isolated singularities. For this
topic we refer the readers to [7,22,23,29] and the references therein.

On the other hand, in the case of three dimensional strictly pseudoconvex CR manifolds,
Catlin and Lempert [8] showed that unstable CR embeddings exist. The CR manifolds with
unstable embeddings arise as unit circle bundles in Hermitian line bundles over projective
manifolds. The instability of CR embeddings is a consequence of the instability of very
ampleness of line bundles.

As mentioned above, the stability of CR embeddings is closely related to the stability
of the first Kohn—Rossi cohomology (see [23,32]). Recently, it was shown in [18] that a
compact strictly pseudoconvex CR manifold with a locally free transversal CR S'-action
can be CR embedded into some complex Euclidean space by CR functions lying in the
Fourier components with large positive frequency of the space of CR functions. Since Fourier
components with large frequency of the first Kohn—Rossi cohomology vanish uniformly
under S!-invariant deformations of the CR structure (see Theorem 3.5), we can expect in
analogy to [23,32] that the CR embedding established in [18] should be stable under the
S'-invariant deformations. We will prove this using an additional argument, the stability of
the Szeg6 projector. Similar arguments can be found in a series of papers by Epstein [14—16]
on relative index, where the Szeg6 projector also plays a central role.

Let us now formulate our main results. We refer to Sect. 2.1 for some standard notations
and terminology used here. Let (X, H X, J) be a compact CR manifold of dimension 2n — 1,
n > 2, endowed with a locally free Sl action $! x X — X, (em, X) > ¢'%x and we let T be
the infinitesimal generator of the Sl action. We assume that this $!-action is transversal CR,
that is, T preserves the CR structure 710X, and 7 and T1-0X @ T1.0X generate the complex
tangent bundle to X. Let 3, be the tangential Cauchy—Riemann operator on X. We denote by
Ker(dp) = {u € C®(X) : dpu = 0} the space of smooth CR functions. For any m € Z, we
define the mth Fourier component of CR functions HE,m (X) = {u € Ker(dp) : Tu = imu)}.
It was shown in [18] that X can be CR embedded into complex Euclidean space by CR
functions which lie in the Fourier components of CR functions with large positive frequency
m. Precisely, for every m € N, there exist integers {m j}ﬁy: (withmj; >m,1 < j <N, and

CR functions { f j}?/=1 with f; € HS m; (X) such the (equivariant) CR map from X to cN

®:X > CVN, x> (filx),..., fn(x)), (1.1

is an embedding. Our goal is to show that such an embedding is stable under S'-invariant
deformations of the CR structure (cf. Definition 2.1). Our main result is the following.

Theorem 1.1 Let (X, HX, J) be a compact connected strictly pseudoconvex CR mani-
fold with a locally free transversal CR S'-action. Let {J;}ie(—s,.5,) be any S'-invariant
deformation of J. Then there is a positive integer mq such that every CR embedding
O = (Py,...,Py) : (X, HX,J) = CN with (OFNS ngmi(X),mj >mg,j=1,...,N,
is stable with respect to the deformation {J;}ic(—s,.5,), that is, for |t| small enough there
exists an S'-equivariant CR embedding f; of the structure J; such that f; converges to f as
t — 0 in the C™ topology for any non-negative m € Z.
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This paper is organized as follows. In Sect. 2, we set up notation and terminology. Section
3 is devoted to study the S'-invariant deformation of CR structure. Furthermore, will prove
the simultaneous vanishing theorem of Fourier component of Kohn-Rossi cohomology. In
Sect. 4, we will be concerned with the stability of the Szeg6 kernel of Fourier components
of Kohn—Rossi cohomology. Using the stability of Szegd kernel, we will prove Theorem 1.1
in Sect. 5.

2 Preliminaries

In this section we recall necessary notions of CR geometry, such as the canonical local
coordinates of Baouendi—Rothschild—Treves, and the Tanaka—Webster connection. We also
formulate a vanishing theorem for the Fourier components of Kohn—Rossi cohomology.

2.1 Set up and terminology

Let (X, T"9X) be a compact CR manifold of dimension 2n — 1, n > 2, where T'0X isa
CR structure of X, that is, 719X is a subbundle of the complexified tangent bundle CT X
of rank n — 1 satisfying THOXNTOlY = {0}, where T91x = T1.0X and v, vlicvy,
where V = C®(X, T'9X). There is a unique subbundle HX of TX such that CHX =
TOX@PTO%X, ie., HX is the real part of 710X @ 77! X. Furthermore, there exists
a homomorphism J : HX — HX such that J> = —id, where id denotes the identity
id : CHX — CHX. By complex linear extension of J to CT X, the i-eigenspace of J is
given by TIOX = {Ve CHX : JV = iV}. We shall also write (X, HX, J) to denote a
compact CR manifold. Let E be a smooth vector bundle over X. We use I'(E) to denote the
space of C*°-smooth sections of E on X.

Let (X, HX, J) be a compact CR manifold. Let 2 C R be an open neighborhood of 0.
We say that {J;},cq is a deformation of J if

(I) For eacht € Q, there is an endomorphism J; : HX — HX with J,2 = —id and the i
eigenspace T,]’OX ={U e CHX : J;U = iU} is a CR structure on X.
a Jo=1J.
(III) J; depends smoothly on ¢, that is, for every U € HX and V* € T*X we have
(JiU, V*) e C®(Q).

From now on, we assume that (X, HX, J) admits an S'-action: ' x X — X, (¢!?, x) >
¢ o x. Here, we use ¢ to denote the S!-action. Let T € C®°(X, TX) denote the global
real vector field induced by the S'-action given as follows

_ 0 i0 00
(Tu)) = 5 (u(e ox)) ‘9:0, i e C¥(X). @.1)
We say that the Sl-action e'? (0 <6 <2m)is CRif

[7,0(T"°x)] c 0(1"%X), (2.2)

where [-, -] denotes the Lie bracket between the smooth vector fields on X. Furthermore, we
say that the S'- action is transversal if for each x € X,

ChX=CTx)®Tx)o1>'X. (2.3)
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From now on, we assume that the S!-action on (X, HX, J) is transversal and CR. Let
{J:};eq be a deformation of J, where 2 C R is an open neighborhood 0 € 2. As before, put

T'"X = (U e CHX : J,U = iU}. We need

Definition 2.1 With the notations above, we say that {J;},cq, are S'-invariant deformations
of Jif [T, T(T°X)] ¢ T(T}°X) for every 1 € Q.

Definition 2.2 Let f : (X, HX,J) — Ck be a CR embedding and let {J;};cq be st
invariant deformations of J, where 2 C R is an open neighborhood of 0. We say that
f is stable with respect to {J;},cq if there is a § > 0 with [—§,8] C 2 such that
for every t+ € (—4,8), we can find a CR embedding f; : (X,HX,J;) — Ck and
im0 |/t = fllemx,cry =0, for every m € Ny := N U {0}.

Lemma 2.3 With the notations used above, we have LtJ = 0 on HX, where Lt denotes
the Lie derivative along the direction T.

Proof Forany U € T(T'°X), Ly J(U) = Ly (JU)—JLyU = /—1L7U —/—1L7U =
0. Here, we have used the fact that the S!-action is CR, that is, LyU € T'(T1°X) for any
U e I(T"0X). Forany V € I'(T%'X), we have Ly J(V) = LyJ(V) = 0. Since HX is
the real part of D¢ ) 791X, the Lemma follows. O

Since [T(T19X), T(T'°X)] ¢ I(T10X), we have [JU, JV]—[U, V] € C®(X, HX)
forall U, V € C®(X, HX). Let w) be the global real 1-form dual to T, that is,

(@0, T) = 1, (wp, HX) = 0. 2.4)
Then for each x € X, we define a quadratic form on H X by
Ly(U,V)=—-dwo(JU,V),YU,V € H: X. (2.5)

The quadratic form is called the Levi form at x. We extend £ to CH X by complex linear
extension. Then for U, V € TXI’OX,

LU, V) =—dwy(JU, V) = —idwo(U, V). (2.6)

Definition 2.4 We say 710X is a strictly pseudoconvex structure and X is a strictly pseu-
doconvex CR manifold if the Levi form L is a positive definite quadratic form on H, X for
each x € X.

In the following, we always assume that X is a compact connected strictly pseudoconvex
CR manifold with a transversal CR S'-action. It should be noted that a strictly pseudoconvex
CR manifold is always a contact manifold. From (2.4), we see that wy is a contact form, H X
is the contact plane and T is the Reeb vector field. Using (2.5) we may extend the Levi form
to a Riemannian metric g on 7' X, which will play a crucial role in the sequel.

Definition 2.5 Let X be a compact strictly pseudoconvex CR manifold with a transversal
CR S'-action. Let g be the Riemannian metric given by

gW, V) =Ly(U,V), gU,T)=¢T,U)=0, g(T.T)=1, 2.7

forany U,V € H, X, x € X. This is called the Webster metric on X.
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206 C.-Y. Hsiao et al.

The volume form associated with the Webster metric is denoted by dvy and by direct
calculation

dvy = wp N ——. (2.8)

The volume form dvy associated with the Webster metric depends only on the contact form
o.

For U,V e Txl’OX, we can check that £, (U, V) = (wo(x), [J%, V](x)) = 0, where
%,V e I'(T"0X) with % (x) = U, ¥(x) = V. Thus, L;(U, V) = —idwy(U, V) is a
positive definite Hermitian quadratic form on T1-9X. We extend the Webster metric g to
CT X by complex linear extension. The Webster metric g on X induces a Hermitian metric
(-1-)gonCTX:

(U|V),:=g(U,V), UV eCTX. (2.9)

It is easy to check that the Webster metric is J-invariant on H X, so we have the pointwise
orthogonal decomposition

CT,X =CTx) & T (X)) & T>'X. (2.10)

We call (|- ), the Webster Hermitian metric.

Denote by 7*-9X and 7*%1 X the dual bundles of 719X and 70! X, respectively. Define
the vector bundle of (0, ¢)-forms by A9T*%1 X . Let D C X be an open subset. Then 27 (D)
denotes the space of smooth sections of A9T*%1 X over D.

Fix 6y € [0, 2m). Let

de'® : CT, X — CT,i,, X

denote the differential map of ¢!% : X — X. By the property of transversal CR S'-action,
we can check that )
det® :T0x — 10 x|
e'0ox
de'® 10 x - 7% X (2.11)

e%ox

de'® (T (x)) = T (' o x).

Let (¢!%)* : A9(CT*X) — A9(CT*X) be the pull back of ¢!, g = 0,1, ..., n — 1. From
(2.11), we can check that forevery ¢ =0, 1,...,n — 1

(e'%)* . A4 T;}}(;ixx — AT X (2.12)
For u € Q%9(X) we define Tu as follows:

9
(Tw)(X1,.... Xq) = oo

From (2.12) and (2.13), we have Tu € Q%4 (X) for all u € %4 (X). From the definition of
Tu it is easy to check that Tu = Lru foru € Q%4 (X), where Lru is the Lie derivative of
u along the direction T'.

Letdp : Q09(X) — Q%4F1(X) be the tangential Cauchy—Riemann operator. It is straight-
forward from (2.11) and (2.13) to see that

T3, = 3T on Q%9 (X). (2.14)

For every m € Z, put QS;"(X) = {u € QU9(X) : Tu = imu}. From (2.14) we have the
dp-complex for every m € Z:

(€@yucxi,....Xp)| X1.... X, e TIOX. (2.13)

)
6=0

o Q2 x) o Q% x) - %I (x) L (2.15)

@ Springer



On the stability of equivariant embedding of compact... 207

For every m € 7Z, the mth Fourier component of Kohn—Rossi cohomology is defined as

follows B
Ker d), : Q29 (X) — Q%9 (x)

? - (2.16)
ma, : Q%9 (x) — % (x)

Hy, (X) =
Definition 2.6 We say that a function u € C *(X) is a Cauchy-Riemann (CR for short)
function if dpu = 0, or in the other words, Zu = 0 forall Z € F(TLOX).

Form € Z, when g = 0, Hé) . (X) is a subspace of the space of CR functions which lie

in the im eigenspace of T and we call ng o (X) the mth Fourier component of the space of
CR functions. The paper [20] gives asymptotic bounds for the Fourier components of the
Kohn-Rossi cohomology.

2.2 Canonical local coordinates

In this work, we need the following result due to Baouendi—Rothschild—Treves.

Theorem 2.7 [2, Proposition I.2] Let X be a compact CR manifold of dimX =2n—1,n > 2

with a transversal CR S'-action. For xy € X, there exist local coordinates X1y .oy X2p—1) =
(2,0) = 21y ..y zn—1,0),2j = x2j—1 +ixzj, j =1,...,n — 1, x40 = 0, defined in a
small neighborhood D = {(z,0) : |z|] < &, 10| < 8§} centered at xo such that
0
T = T
0 .0p(z) 9 . 217
Zi=—+i —, j=1...,n—1

0z; 0z; 30’

where {Z (x)}’;;i form a basis of TXI’OX for each x € D, and ¢(z) € C®°(D, R) is inde-
pendent of 6.

We call D a canonical local patch, x = (z, ) canonical local coordinates on D and
{Z; }';;% a canonical frame of 710X over D. On D, the contact form is given by

d

n—1 —1
— 0z

a n
wo=db—iy a‘p@dzﬂriz
j_

(p,(Z) dz;
2j 2j

j=1

and the Levi form on 719X can be expressed as

9202
Ly =—idwyg=2 —dzx NdZ;. 2.18
X 0 k§l aZkaZj k J ( )

Forx € D, 6 € [0,27) with ¢! o x € D, it is straightforward to see that e’ (Z; (x)) =
Zj@?ox)forl <j<n-—1.

2.3 Hermitian CR geometry

Definition 2.8 [19, Definition 1.18] Let D be an open set and let V € C*°(D, CT X) be a
vector field on D. We say that V is rigid if

de'® (V(x)) = V(e? ox) (2.19)

for any x, 6 € [0, 2m) satisfying x € D, e?ox e D.
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208 C.-Y. Hsiao et al.

The canonical frame {Z; }" ! defined in (2.17) are rigid vector fields on the canonical
local patch. Let D be an open %ub@et of X and U be a rigid vector field on D. Then for any
o € [0, 27), de'?o(U) is still a rigid vector field on ép = {e®ox:x e D}

Definition 2.9 [19, Definition 1.19] Let (- | -) be a Hermitian metric on CT X. We say that
(- -) is rigid if for rigid vector fields V, W on €2, where 2 is any open set, we have

(V)W @) = ((de?V)(e? o x)|(de W) (e'? ox)), Vx e Q,0e[0,21). (2.20)

Lemma 2.10 The Webster Hermitian metric (- |-)q defined in (2.9) is a rigid Hermitian
metric on CT X.

Proof Let Q be an open subset of X and U, V € T"0X be rigid vector fields on 2. For any
xo € €2, choose canonical coordinates x =(z, 0) centered at xo and a canonical local patch
D = {(z,0) : |z| < &,]0] < §} with D C 2. Let {Zj};f;} be a canonical frame over D.

Thenon D, U = Z;’;]l aj‘(z, 6)Z; and V = Z;’;]l bj(z,6)Z;. Since U, V are rigid vector
fields we have thaton D, a;(z,6) = 5bj(z,0) = 0for1 < j <n— 1. Thenfor 0] <8,

n—1

(e U (x0) [ eV (x0) = Y a0, 00B4(0, 0) {de” Z; x0) |de"92k(xo>>g- 221
J.k=1
Substituting deiQZj (x0) = dz +1i d“’ (0) 37 1(0.0) to (2.21) we have
(e (x0) |de"9wxo)>g = (Uxo) | V(x0))g, V10l <. (2.22)

Now, we claim that the above equality is also true for all 6 € [0, 27). Let 0 < §; < 27 be
any number such that

(de' U (xo) | de'®V (x0))g = (U(x0) | V(x0))g, VO <6 < 8. (2.23)
First, we show that
(de®' U (xo) | de™' V (x0))g = (U(x0) | V(x0))g- (2.24)

Set U] =de U, V) = det®V and Yo = %1 o x¢. Since Uy, V; are still rigid vector fields
on €1, then by the same argument in the proof of (2.22), there exist ¢ > 0 such that

(de'" U1 (y0) |de” Vi(yo))g = (U1(30) | Viv0))g, VIOl <o (2.25)
Thus, by (2.23) and (2.25) we have

(de'' U (x0) | de™' V (x0))g = (de' DU (x0) | de'® =DV (x0))g = (U (x0) | V (x0))s-
(2.26)
Thus, we get the conclusion of (2.24). On the other hand, by (2.25) and (2.26) we have

(Ux0) | V(x0))g = (de'©TU (x0) | de'® TV (x)), Ve € (0,0). (2.27)
Thus, from (2.24) and (2.27) we have
(de'U(x0) | de'’V (x0)) = (U(x0) | V(x0))g, YO <O <81 +0.  (2.28)

From (2.24) and (2.28) we get the conclusion of the claim and the lemma follows. ]
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For the existence of rigid Hermitian metric on general CR manifold with § L_action, we refer
the readers to [19, Theorem 9.2].

From now on, we will fix the Webster Hermitian metric as a rigid Hermitian metric on
CT X . For convenience, we use the notation (- | -) to denote (- | -),. The rigid Hermitian metric
(-]-) on CT X induces by duality a Hermitian metric on C7*X and also on the bundles of
(0, g)-forms A4 701y g =0,1...,n— 1. We shall also denote all these induced metrics
by (- | -). From (2.10) we have the pointwise orthogonal decomposition:

CT*X =T""°X o T*"' X @ {pawp : % € C}. (2.29)

For every v € A1 701X we write |v|® := (v|v). Let (-|-) be the L? inner product on
Q09(X) induced by (-]-) and let ||-|| denote the corresponding norm. Then for all u, v €
Q04 (X)

(ulv) = / (ulv)dvy, (2.30)
X

where dvy given in (2.8) is the volume form on X induced by the rigid Hermitian metric. As
before, for m € Z, we denote by

o (X) = {u € Q%9(X) : Tu = imu) (2.31)

the im eigenspace of T. Let L%O 0 n (X) be the completion of Q%’q (X) under the L? inner
product. -~

Let BZ - QO9tl(X) > Q%4 (X) be the formal adjoint of 9, with respect to (- |-). Since
the Hermitian metrics (- | -) are rigid, we can check that

T3, =0,T onQ%(X), Vg=1,....n—1 (2.32)
and from (2.32) we have
3, it (x) > QY4(X), VmeZ. (2.33)
Put
O := 3,0, + 0,05 : Q%9(X) — Q%9(X).
Combining (2.14), (2.32) and (2.33), we have
7O = 09T on Q¥9(X), ¥g=0,1,....,n—1. (2.34)
A direct consequence of (2.34) is

O - Qi (X) — Qd(X), Vm € Z. (2.35)

We will write D[(;] ;1 to denote the restriction of D[(]q) on Qg{q (X). Forevery m € Z, we extend

(q) 2
Db’m to L(O,q),m(X) by

Dé?fn - Dom(O0?

b,m

) € Ly gy (X0 = Lig gy, (XD, (2.36)

whereDom(D,(f,)n) ={uce L%O q)!m(X) : D,(yqr)nu € L%O @ . (X) in the sense of distribution}.

The following result follows from Kohn’s L?-estimate (see Theorem 8.4.2 in [9]).

Theorem 2.11 For every s € Ny, there exists a constant Cy > 0 such that

g1 = € (05 ulls + 1 Tulls + lulls) . Vu € 229(X) (2.37)
where | - ||s denotes the standard Sobolev norm of order s on X.
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210 C.-Y. Hsiao et al.

From Theorem 2.11, we deduce:

Theorem 2.12 For m € Z and for every s € Ny, there is a constant C ,, > 0 such that

lulls1 = Com (TG, ulls + Nl ) Vi € 207 (X). 238)

,m

According to Theorem 2.12 and a standard argument in functional analysis, we deduce
the following Hodge theory for D,(;” (see Section 3 in [10]).

,m

Theorem 2.13 Let g € (0.1,....n — 1}, m € Z Of) : Dom(@")) € L\ (X) —

b,m ©,9),m
L%o o.m(X) is a self-adjoint operator: Set
Hy X = {” e Dom(C)) : O u = 0] : (2.39)

Then Hz,m (X) is a finite dimensional space with Hz,m (X) C Q?n‘q (X) and the map

HY L, (X) = H! (X), o [a], (2.40)

b,m

is an isomorphism, where [«] is the cohomology class of a in H,;I o (X). In particular,

dimH/ (X) <oo,YmeZ, VO<g<n-—1 (2.41)
We call Hj , (X) the harmonic space with respect to Dl(f,l;-

2.4 Tanaka—Webster connection

Let (X, HX, J) be a compact strictly pseudoconvex CR manifold with a transversal CR
S'-action. Let T be the globally real vector field induced by the S'-action and wy be its dual
form. Then it is easy to check that wq is a contact form with H X as the contact structure and
T, wo satisfy

(w0, T) =1, (wo, HX) =0, T]dwo = 0. (2.42)

In this section, with the notations defined above, we will review the Tanaka—Webster con-
nection [32,34] and the notions are mainly from [11,32].

Proposition 2.14 (Proposition 3.1 in [32]) There is a unique linear connection (Tanaka—
Webster connection) denoted by V : T'(TX) — T'(T*X ® TX) satisfying the following
conditions:

1. The contact structure H X is parallel, i.e., VyI'(HX) C I'(HX) for U € T'(T X).

2. The tensor fields T, J, dwg are all parallel, i.e., VT = 0,VJ =0, Vdwy = 0.

3. The torsion T of V satisfies: T(U, V) = dwo(U, V)T, t(T,JU) = —-Jt(T,U), U,V €
C®(X, HX).

Recall that VJ € T(T*X ® L (HX, HX)), Vdwy € T(T*X ® A2(CT*X)) are defined
by (Vu )W = Vy(UJW)—=JVyW and Vydwo(W, V) = Udwo(W, V) —dwo(Vy W, V) —
dwoy(W,Vy V) for U € I(TX), W, V e I'(HX). Similarly, for any u € Q%9(X), we can
define Vu € I'(T*X ® A?(CT*X)) in the standard way. By (1) and VJ = 0 in (2), we
have Vy I (T10X) ¢ T(T10X) and Vy T(T% ' X) € T(T*!X) for U € I'(T X). Moreover,
VJ = 0 and Vdwy = 0 imply that the Tanaka—Webster connection is compatible with the
Webster metric. By definition, the torsion of V is givenby © (W, U) = VU —-Vy W—[W, U]
for U,V e I'(TX) and (T, U) for U € I'(H X) is called pseudohermitian torsion.
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The existence of an S'-action on X is not necessary in the definition of Tanaka—Webster
connection. But if X admits a transversal CR S'-action, by (2) in Proposition 2.14 and Lemma
2.16, we have t(T,U) = 0 for U € I'(HX). The vanishing of pseudohermitian torsion
admits an important geometric interpretation. Webster [34] proved that for a strictly pseu-
doconvex CR manifold, the pseudohermitian torsion vanishes if and only if the 1-parameter
group of transformations of X induced by T consists of CR automorphisms.

Lemma 2.15 (Lemma 3.2 in [32]) Let U € I'(T'°X). Then VyU = LyU + J7U, where
Lt denotes the Lie derivation and Jt is given by J7 = —%J oLtJ.

Since the S'-action on X is CR, by (2.2), the CR structure on X is invariant with respect to
the S!-action, that is, L7J = 0. By Lemma 2.15 and since L7 J = 0, we have

Lemma 2.16 Let X be a compact strictly pseudoconvex CR manifold with a transversal CR
S'-action. Let V be the Tanaka—Webster connection on T X. Then we have

JrU =0 and VpU = L7U for U € T(T"°X), (2.43)

where T denotes the induced vector field by the S'-action and J is the CR structure tensor
on X.

Since Vru € Q99(X) for u € Q99(X), then for any smooth sections Uy, ..., U; €
['(T%1X) we have
q
Vrw) (U1, ..., U) =Tw(U1,....Up) = Y u((Uy,....V7Uj, ..., Uy)
j=1
q
=TW@.....U)) =Y w(@1.....LrUj,....Uy))
j=1

= (Lru)(U1,...,Uy).

Thus, we have Vyu = Lyu for u € Q9(X).

Let R be the curvature of Tanaka—Webster connection. Let ey, ..., ¢,—1 be any orthonor-
mal basis of 71-0X with respect to the fixed rigid Hermitian metric (- | -), that s, (e; lej) = &ij.
Then the Ricci curvature operator R, is defined by (page 34 in [32])

n—1
R.U = —i ZR(ek,Ek)JU, U e T(HX). (2.44)
k=1

By duality, we can extend the Ricci operator R, to Q%9(X) in the following way
j— p— q j— p— p—
Rau(y,....U) =) u(,....,RUj,....Uy) (2.45)
Jj=l1

forallu € Q%9(X) and Uy, . . ., U, € C(rhox). 1tis straightforward to check that R, is a
self-adjoint operator with respect to the inner product (- | -) on Q%9 (X).

2.5 Pseudohermitian geometry

Let {Z¢)¢}(’fl;l1 be the canonical frame of 71X on a canonical open set D in the BRT trivial-
ization given in Theorem 2.7. Then {dza}g;% is a dual frame of {Za}g;i. Write Zg = Zg,
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0% = dzy, 0% = 0%. Then {#} is an admissible coframe on D. Then dwg = igage"‘ A GE,

— 2 070@) 3%0(2)

ISR Let a)g be the connection form of Tanaka—Webster connection with

where g,z 5=

respect to the frame {Z, }Z;ll . Thus, we have

VZy=wfZp. VZg=whZz. VT =0.

By direct calculation, B
ol = ¢"Pogus (2.46)
where { gﬁﬂ} is the inverse matrix of {g E}' We denote by @’8 the Tanaka—Webster curvature

form. Since the pseudohermitian torsion vanishes, we have O‘6 = da)a —wh A wg It is

easy to check that @5 = Ra ﬁ/_EOJ A 9", where Ra fj% is the Tanaka—Webster curvature and
by direct calculation '
34(/)(2) 08a7 8g

B i k _ B _
R7_0/NOF =2 ———————dz; NdZ — 2 ———dz; NdZ, 2.47
a jk 8 2z 02,07 T T Tz R @47

Proposition 2.17 ([32, Theorem 5.2]) Foranyu € Q%9 (X), we have the following equalities

O ulu) = lull = qi (Vrulu) + (Ruulu) (2.48)
where ||u||% fX(ZZ % (Ve, Vg, ulu))dvy. Here, {ex}} _1 is any orthonormal frame of

710X,

From (2) in Proposition 2.14, the rigid Hermitian metric (-|-), is invariant with respect the
Tanaka—Webster connection V. Integrating by parts, we have

el = / Z Ve, Vaulu)dvy = Z/ (Va,u| Vg u)dvy > 0. (2.49)

As acorollary of Proposition 2.17, we have the vanishing theorem for the Fourier components
of Kohn—Rossi cohomology.

Theorem 2.18 Let X be a strictly pseudoconvex CR manifold with a locally free transversal
CR S'-action. There exists mo > 0 such that for ¢ > 1 and any m € Z with m > mg, we
have H/!  (X) = 0.

Proof By Lemma 2.16, we have Vru = Lru. Then by (2.48) for any u € ng’ (X) we have
@y ulu) = Jull:+ gmlu)® + (Roulu). (2.50)

There exists mq > 0 such that for any m > mg, m € N we have
O ulu) = Cpllull?® foru € Q?(X), q = 1. 2.51)

This implies Hzm(X) = 0 form > mo, g > 1. By the Hodge isomorphism (2.40), we get
the conclusion of the theorem. ]
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3 Sl.invariant deformation of the CR structure

Let {J;}se(—s,s) be a deformation of J. As before, let T,I’OX ={UeCHX:J,U=iU}.We
also say Tz] OXisa (smooth) deformation of 710X . In this work, we are especially interested
in the S!-invariant deformations of CR structures. As in Definition 2.1, we introduce:

Definition 3.1 We say the smooth deformation T,I’OX of T10X is S'-invariant if for any
t € (=8, 8) we have L7 J; = 0 or, equivalently, [T, T'(T,"°X)] c T(7,"*X).

We give some examples of S'-invariant deformations of CR structures.

Example 3.2 Let X =S* = {z = (z1,22) € C? : |z1]*> + |z2/*> = 1} be the boundary of the
unit ball in C2, and let the induced CR structure 719X be generated by Z = 7,5 6 = —71 agz

Thus, (X, T19X) forms a compact strictly pseudoconvex CR manifold. The S!-action on X
is given by
inf

¢¥(z1,20) = (€%21,¢"22), neZ,n>0. (3.1

By direct calculation, the S'- action given above is a locally free transversal CR S'- action.
The global vector field induced by the S'-action on X is given by

T — ( d a n d _ 0 )
U— — U= nzg no—1J.
"oz 21 lazl zazz 2812
By simple calculation,
[T,Z]=—-in+ 1)Z. 3.2)

Let ®(z,1) = ¢(z)x(¢t) with ¢(z) and x(¢) smooth functions on X and R respectively.
We assume that T¢(z) = —2i(n + 1)¢ with ¢ a non-zero smooth function on X and
x(0) = 0. This is possible because we can find a smooth function 2 on X such that
[ h(ei?2)e 20046 £ 0, then we define ¢(2) = [ h(e?2)e2@+1? 46, Then for each
t € R the deformation Ttl’OX of T1-0X is given by

7,"°X = spanc{Z + ®(z, ) Z}. (3.3)
It is easy to check that
[T.Z+ @z, 0Z] = —i(n+ D(Z + @z 0)Z) € T(T,"°X). (34)
Thus, Ttl’OX is an S!-invariant deformation of 710X,

Remark 3.3 In Rossi’s global non-embeddability example [1,5,17,31], a real analytic defor-
mation of T1:9S3 was considered. For each ¢ € R, the new CR structure T,l'OS3 on S is
generated by Z + ¢Z. It is easy to check that this is not an S'-invariant deformation with
respect to the S L_action given in (3.1).

Now, we assume that {J;};c(—s5.5) is an S !_jnvariant deformation of J. Then, CHX =
T,I’OX &P T,O’] X, that is, the deformations are always horizontal. This implies that the S'-
action on X is transversal. From Definition 3.1, we know that the S!'-action on X is a
transversal CR S!-action with respect to the deformation T,l’oX fort € (-4, 5).

We now express T,I’OX in an explicit way. Let {Z; }'};i be a canonical frame of 710X
defined in Theorem 2.7. Then locally we have

n—1
7,"°X = Spang {Z,- +Y O 0Zk, j=1,...,n—1 (3.5)
k=1
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for |¢| small. We may assume that (3.5) holds for all t € (=§,6). Z; + ZZ;} CIDJI(-, Zx,
1 < j < n—1is a basis of CR structure T,l’OX. Here, {®; (-, H}1<jk<n—1 is called

deformation matrix and {$ jE};ﬁ(l:] are smooth functions on X which smoothly depend on

t e (=4,9).

Lemma 3.4 With the notations used above, for any t € (=6, 5), we have T ® = 0 for
1<jk<n-1.

Proof Since the S'-action on X is transversal and CR with respect to the CR structure J;,
we have [T, Z; + ZZ;} de;Zk] € F(TZI’OX). From Theorem 2.7, we know [T, Z;] =

[T,Zj]=0for1 < j <n—1Then [T,Z; + Y| ®zZi] = Y4_| T®zZs €
I(1;"°X). At each point, we write Y 4_| T® 1 Z; = Y"_{c;j(Z; + Y= @ ;Z)) for

constants Cl,l <l <n-— L The equality implies that ¢; = 0,1 <[ < n — 1, ie,
ZZ;II Tod jEZk = 0. Since {Z[};'z_]1 are linear independent, we have that 7® ' = 0 for
1<jk<n-1. ]

Associated with the CR structure tensor J;, t € (-4, 8), the Levi form on X is defined by
Lix(U,V)=—dwo(J;U, V), YU VeHX VxelX. (3.6)

When § is sufficiently small, the quadratic form £; y is still positive and we may assume that
the CR manifold (X, T,I’OX ) is strictly pseudoconvex for ¢ € (—8, 8). Since the S!-action

on (X, T,I’OX ) is transversal and CR, using £; y we can define a Riemannian metric g; on
CT X as (2.7). As (2.9), g; induces a rigid Hermitian metric (- | -); on CT X such that

7x L1Mx, T LT 'xe 1™ X (3.7)

Denote by Tt*]’OX and Tt*o’]X the dual bundles of Ttl‘oX and Tto’lX respectively and
define the vector bundle of (0, ¢)-forms by A? T,*O’IX . Similarly as in Sect. 2, let Q?’q (X)
denote the space of global smooth sections of A9 T,*O’ !X and for everym € Z,let Q?”,?q (X) =
{u e Q?’q(X) : Tu = imu). Let 9, : Q?’q(X) — Q?’qH(X) be the tangential Cauchy—
Riemann operator with respect to the new CR structure Ttl’OX . Then we still have that
Tdrp = 0;pT and 3, p := drp : Q?y’,Z(X) — Q?,’,ZH(X), for every m € Z. Using the
5,Yb—complex, 5,,b,m—complex on Q?’q (X), Q?.’,?, (X) respectively, we can define the Kohn—
Rossi cohomology Hfb (X) and the mth Fourier component of Kohn—-Rossi cohomology

sz,m (X) foreach m € Z respectively,q = 0, 1, ..., n — 1. In the remainder of this section,
our goal is to prove the following:

Theorem 3.5 Let (X, HX, J) be a compact strictly pseudoconvex CR manifold of real
dimension 2n — 1,n > 2 with a locally free transversal CR S'-action. Let {Ji}re(=s5.8)
be a S -invariant deformation of J. Then there exists positive constants mo and 8g < § such
that form € 7, m > mg and |t| < Jo,

(D(q)

t,b,m

2 0,
uln) = Collull, ue Q0. g =1, (3.8)
where C,, is a constant independent of t. In particular, we have the simultaneous vanishing

HY, (X)) =0, m>mo, |t] <8, q=1. (3.9)
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Before the proof of Theorem 3.5, we first recall the harmonic theory with respect to
{Ji}re(=s,5 on X. Let (-|-), be the L? inner product on Q?’q(X) induced by the rigid
Hermitian metric (- |-); and let || - ||; denote the corresponding norm. Then for all u, v €

0,
Q" (X)
(ulv); = / (ulv)idvy, (3.10)
X
where dvy is the volume form on X induced by the rigid Hermitian metric (- | -);. Recall
that the volume dvy = wp A (d(l‘;’(’)f; :

Q?’q(X) — O a- 1(X) be the formal adjoint of 8, » with respect to (- | -); for t € (-6, 5).
Since 5t,bT = Ta,,b and the Hermitian metric (- |-); is rigid, we have T8t’b = 3t!bT.

associated with (- | ), does not depend on 7. Let 5? b

Define D("b) =9, bgjb + 5? »1.5. From the commutation of 7 with 9, 5, 5:6,b’ we have
D;qb) T = Tqub) Then D?qb) maps Q, 7(X) into itself and we denote

Dl = Ol | # A0 = 00,

the restriction of D;f’b) to SZ (X) As in Sect. 2, let Lt ©.q).m

(X) be the completion of
Q?”,’fl (X) under the L? inner product defined in (3.10). We extend Dif]h)’m to Lt2 o, q) . (X) as

in (2 36). By Hodge theory for Dt(?b)’ n (Theorem 2.13) there is an isomorphism H;’ b,m X)) =
t b, (X)), where Hl b, (X)) is the kernel of Dt(qb) - NOw we are going to show the simul-

taneous vanishing theorem for the harmonic space H?
we prove Theorem 3.5.

1.b. »(X), ¢ = 1 and as a consequence

Proof of Theorem 3.5 Since (Z; ; = Z; + ® k( t)Zk} I'is a frame of T OX and (- 1)¢
depends smoothly on 7 , then by linear algebra argument We can find an orthonormal frame
of T,I‘OX which depends smoothly on . Locally, let {e;, j};f;i be an orthonormal basis of

T,l’OX with respect to (- | -); depending smoothly on ¢ and let {a)',i }'};% be its dual basis.

Let V' be the Tanaka—Webster connection with respect to T,I’OX and (-|-), forany t €
(—6,8). Let R" and R! be its curvature and Ricci curvature operator respectively defined
as in (2.44) and (2.45). For any u € Q?’q (X), then locally u = Zf”:q uy;, where Y’
means that the summation is performed only over strictly increasing multi-indices. Here for

amulti-index J = {ji, ..., j4} € {1,2,...,n—1}q,weset|1|=q,6t —a)t]‘ /\---AE{"

and we say that J is strictly increasing if 1 < j; < --- < j; < n — 1. By definition of R,
for any strictly increasing multi-index 1 < k; <--- <k; <n-—1

q
Riu@itys €)=Y U (@rkyr-on Rk Erky) s (3.11)
where
n—1
RLe ), =— ) R'(eri. e i)er ;- (3.12)

i=1

By (2.50), for any u € Q?Z (X) we have

(0 ulu) = Tl + qmlul? + (Riulu), (3.13)
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where ||u||% = f EHV; ulu),;dvy. We claim that (R'u|u), < Cllu|?,V |t] <8
t
for a constant C mdependent of t when § is small. For u = Z\Jl:q u;@t € Q,’q(X), write
Rlu = Z[J‘zqutjal].l:orany] ={j1,..., jgtwith 1 < ji <--- < j, <n—1wehave
uy = Riue j, ..., e.j,)- Then
(Rfku|u)t = Z / Riu(gt,h’ - ,E,,A,-q)u_,-l‘..jqdvx
h<e<ig 7 X
= Z Z/u(etjl,.. Re,/,,.. etjq)uj1 /q vx
J1<-<jgq I=1
:_Z Z Z/u(e‘l/]’n R(etuett)el/p“ etjq)ujl Jq
i=l ji<-<jq I=1
(3.14)

Since J;, {-|-); and {Z; ;} depend smoothly on ¢, then the connection forms of V! with
respect to the frame {Z; ;} depend smoothly on ¢ and as a consequence, the curvature of the
V! also depend smoothly on 7 . Thus, there exists a constant 8y such that for any |¢| < 8y we
have

(RLulu); < Cllul? (3.15)

for some constant C independent of #. From (3.13) and (3.15), there exist a constant my > 0
independent of ¢ such that for any m € Z, m > mg we have

(D}‘fljmum) > Cullul® Yue QLX) |t] < 8o.q > 1, (3.16)
where C,, is a constant independent of ¢ for |f| < §p. From (3.16), we get H, bum (X)=0

forany m € Z,m > mg and |t| < 8o. By Hodge theory we get the conclusion of Theorem
3.5. O

From (3.16) we have the following.

Corollary 3.6 Let A(t, m) be an eigenvalue of qub) w1 < q <n— 1. Assume that mg, o
are the same as in Theorem 3.5. Then, for any m € Z,m > mqg and |t| < &g, we have
A(t,m) > Cy,. Here, Cy, is a constant satisfying Cym < C,, < Com with Cy, Cy independent

ofmandt, |t| < .

4 Stability of Szeg6 kernel of the Fourier components of CR functions

In this section, we assume m,, 80 be the same constants as in Theorem 3.5 unless otherwise
stated. Let Sy, : L3(X) > Ht b, . (X) be the orthogonal projection with respect to (| -);.
Since the volume form dvy with respect to (- | -); does not depend on ¢, the inner product
(+]-); isthe same as (- | - ) on the space of smooth functions on X. Let S; ,, (x, y) € C*°(X x
X) be the Schwartz kernel of S; ,,,. We denote Sy, := So,m, Sm (x, y) := So,m(x, y). The goal
of this section is to prove the following

Theorem 4.1 With the notations above, assume that m > mq. For any k € Nand ¢ > 0
there exists §i,¢ < 6o such that for all t € R with |t| < &k ¢, we have

|Sr,m(xay)_Sm(xsy)|ck(xxx) < é&. 4.1)
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For s € Z, let H*(X) denote the Sobolev space on X of order s of functions and let |- ||,
denote the standard Sobolev norm of order s with respect to (- | -). First, we need

Lemma 4.2 For every m > mq and every so € N U {0}, there is a constant Cyy, > 0
independent of t € (—do, 80) such that

|Semit]l 5y, < Csom llutll g, foru e H™2(X) and |t| < . (4.2)

Proof Fix m > mg. By Garding’s inequality, for every s € Ny, it is easy to see that there is
a constant Cy ;,, > 0 independent of # € (—3p, §p) such that

1Stmtllrz < Com(1ES, = TOSumully + 1Smull), YueL2(X).  @3)

t,b,m
From (4.3), by using induction and noticing that
TZS,‘mu = —sz,,mu, Yu € L2(X),
ISemul| < llull, Vu e L*(X),

it is straightforward to see that for every s € N, there is a d,m > 0 independent of ¢ such
that _
[ Stmt |5 < Com llull, Yu € L2(X). (4.4)

From (4.4), it is straightforward to see that S; ,, can be extended from LZ(X )to H (X )
for every s € N. Fix 5o € Nand let u € H~20(X), we have (S, mulv) = (u, S; nv) for
v e L*(X), where (-, -) is the pair between H~2(X) and H>*(X). Then

IS mul = sup {|(u, Spmv)|:ve LX), (v|v)=1}. (4.5)
Fix v € L%(X), (v|v) = 1. From (4.4), we have
|Gy Sem)] < Ml gy - [Semv]5, < Cooom el g, » (4.6)

where C so,m > 01s the constant as in (4.4). From (4.6) and (4.5), we conclude that

IS mu]| < Copm el 2y, Vi € HT20(X). (4.7)
Now, from (4.4) and (4.7), we have
[ Stamtell 5y = St Stamit |5y < Coon | Stamie| @)
< (Copm)* Null a5y, Yu € H™2(X).
From (4.8), the lemma follows. O
Let N : Lfn (X) — Dom (Dl(f)z,m) be the partial inverse of Dt(f),lm. We have

O Newn + Sem = 1 on L2,(X), wo)

Nem D) 0 + Staw = 1 on Dom (1) ).

We denote N, := No . We need

Lemma 4.3 For every m > mg and every s € Ny, there is a constant Cy , > 0 independent
of t € (—do, do) such that

|Neme], oy < Coom lully foru e H(X) () Lz (X). (4.10)
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Proof We will prove (4.10) by induction over s € Ny. By Garding’s inequality, it is easy to
see that there is a constant C;,, > 0 independent of ¢ such that

INemitllz < Co (IO, = TNl + [Nemal), Vae € L2 (X0, .11
From (4.9), we have
@) = TH N = (I = Syt + m* Ny . (4.12)

From (4.12) and Corollary 3.6, we see that there is a constant C‘m > () independent of ¢ such
that

t,b,m

| Nee| + H @ _ TZ)N,,mu” < Co lull, Yu e LE(X). (4.13)

From (4.13) and (4.11), we see that (4.10) holds for s = 0.

We assume that (4.10) holds for some sg > 0. We are going to prove that (4.10) holds for
5o+ 1. By Gérding’s inequality, it is easy to see that there is a constant 550, m > 0independent
of t such that

||Nt,mu||so+3
~ 0
= Com (105, = THNumttlsgi + INemitllsgin ), Ve € HOH(X) () L3, (0.
(4.14)
From (4.9), we have
0
O = THNwut = (I = Spn)t + m* Ny . (4.15)
From the proof of Lemma 4.2, we have
1Sttty < 1Stmtlaisyry < mso 118 < Cmsg Nl g1 (4.16)
where ¢, 5, > 0 is a constant independent of ¢. By the induction, we have
HNt»’”uHs0+l = ||Nt,m”HSO+2 = 5m,50 ”u”so = ém,so ”u”so—H ’ 4.17)

where ¢, 5, > 0 is a constant independent of ¢. From (4.14), (4.15), (4.16), and (4.17), we
see that (4.10) holds for sg + 1. The lemma follows. O

Let sq, o € Z. For a t-dependent operator A; : H*' (X) — H*2(X), we write
A, =o0(): H"(X) - H2(X), t— 0,
if for every ¢ > 0, there is a §; > 0 such that for all |#| < §1, we have

lAuly, <elully, forallu e H'(X).

Proof of Theorem 4.1 Assume that m > mg. From (4.9), we have

Sm = (Nt,mljff)g’m + St,m)Sm 4

— (0) (0) (4.18)

- Nt,m (Dt,b,m - I:|b’,,,,)Sm + St,mSm-
Note that

) HO _ . g 52
(Dt,b’m Db’m)Sm =o(t): H’(X) > H*(X), VseN.
From this observation, (4.10) and (4.18), we deduce that
Sm— StmSm =0@) : H*(X) > H*(X), VseN. (4.19)
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Taking adjoints in (4.19) with respect to (- | -), we get
Sm =SS/ = 0(t) : H*(X) - H'(X), VseN, (4.20)
where S,’im is the adjoint of S; ,, with respect to (- |-). It is clear that
Stm =S/t H(X) — H(X), Vsel.
From this observation and (4.20), we conclude that
Sm— SuSim =0@): H*(X) > H*(X), VseN. 4.21)

Similarly, from (4.9), we have

0
St,m = <NmD1(,.:,, + Sm) St,m

(4.22)
= N (O = 0 DS + SnSpm.
From Lemma 4.2, it is easy to check that

N (@), =00 )Sim = 0(t) : H*(X) — H*(X), Vs eN. (4.23)

From (4.23) and (4.22), we deduce that
Stm — SmStm = o(t) : H*(X) - H*(X), VseN. (4.24)

From (4.21) and (4.24), we deduce that
Sm—Stm=o0@): H*(X) > H*(X), VseN. (4.25)
From (4.25) and the Sobolev embedding theorem, Theorem 4.1 follows. ]

Corollary 4.4 There exists §; < 8o such that for m > mg, dimH°

1b.m (X) does not depend
ont € (=61, d1).

Proof 1t is clear that
|dim A}, ,,(X) — dimH}), (X)| = ‘ / St (X, X) = S (x, x)dvx | — 0 (4.26)
X

ast — 0 by Theorem 4.1. Since dim Hto ».m(X) 18 an integer, for each m > my the function

¢+ dim H°

p.m (X) is constant for 7] is sufficiently small. m]

5 Stability of equivariant embedding of CR manifolds with S'-action

In a recent work [18, Theorem 1.2] we showed:

Theorem 5.1 Let (X, T'°X) be a compact connected strictly pseudoconvex CR manifold
with a transversal CR locally free S'-action. Then for every m € N, there exist integers
{mj}?]:1 withm; > m, 1 < j < N, and CR functions {fj}jyzl with f; € Hl?’mj (X) such the

S'-equivariant CR map ® : X — CVN, x > (fi(x), ..., fn(x)) is an embedding.
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In this section, we choose mq as in Theorem 3.5. We will show that the equivariant
embedding in Theorem 5.1 is stable under S'-invariant deformations of CR structure. For
[t] < 8o, set @, ; = S,,mj ® ;. Then {d>,,j}§v:1 are CR functions with respect to TII’OX (or

Jy). With these CR functions we define a CR map with respect to T,I’OX as follows
D, X > CV, x> (P 1(x), ..., Dry(x). 5.1

Now, we come to the following result, which implies the main result of the paper, Theorem
1.1.

Theorem 5.2 Let (X, HX, J) be a compact connected strictly pseudoconvex CR manifold
with a transversal CR S'-action. Let { J, }re(—80.80) bean S Uinvariant deformation of J. Letmy
be as in Theorem 3.5. Let ® = (®y, ..., ®y) : X — CV be an equivariant CR embedding
with®; € Hbo,mj (X),mj >mo, 1 < j < N.Thenthe map ®, defined in (5.1) is a CR embed-
ding when |t| is sufficiently small. Moreover, for everyk € N, lim;_,¢ ||®; — @llcrx.cvy = 0.

Proof First, we prove ®; is an immersion for each |¢] is sufficiently small. Since
q),,j - q)j = S;’qu)j - SijDj = (St,mj - Sm/)q)j, 1<j<N, 5.2)

thenby Theorem4.1, we have |®;, j —® |1y, is sufficiently small as [t — Ofor1 < j < N.
Since ® is an immersion, i.e., the rank of the Jacobian of ® is 2n — 1, then there exists a
constant o < Jg such that for |f| < o the rank of the Jacobian of @, is always 2n — 1, that
is, ®; is an immersion when |f| < o. Next, we claim that &, is an injective map when ¢ is
sufficiently small. We prove this claim by seeking a contradiction. If it is not true, there exists
en — 0asn — oo and two sequences of points {x,}, {v,} C X, x, # y,, for each n, such
that @, (x,) = P, (ys), Va. Since X is compact, we assume that x, — p and y, — ¢q.If
p # q, letting &, — 0 we will have ®(p) = ®(gq). This is a contradiction with the fact that
@ an injective map. Now, we assume that p = ¢g. Then

[P (x)—P(yn)| = |q>(xn)_q>£,, (xn)+q)an ) =Pyl = |(‘D_q)sn)(xn)_(q)_q)en)(yn)|-

(5.3)
By Theorem 4.1, we have
| ®e, = @] o1 x.cn) = Oasen — 0. (5.4)
Then
[(® — cbey,)(xn) —(® - q)sn)(yn)l < e, lxn — yul, Vn, (5.5)

where ¢, is a sequence of constants with ¢,, — 0 as ¢, — 0. On the other hand, since
@ is an embedding, by implicit function theorem, there exists a constant ¢ independent of
{xn}, {yn} such that

[P (xn) — P(yu)| = clxn — ynul, forn large. (5.6)

From (5.5) and (5.6), we get a contradiction. Thus, we get the injectivity of @, for |¢
sufficiently small. The fact that [|®; — ®||ck(x cvy — 0 for £ — 0 is a direct consequence
of (5.2) and Theorem 4.1. ]
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