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1. Introduction and Statement of the Main Results

The famous geometric quantization conjecture of Guillemin and Sternberg [19]
states that for a compact pre-quantizable symplectic manifold admitting a
Hamiltonian action of a compact Lie group, the principle of “quantization com-
mutes with reduction” holds. This conjecture was first proved independently by
Meinrenken [43] and Vergne [53] for the case where the Lie group is abelian, and by
Meinrenken [44] in the general case, then Tian-Zhang [52] gave a purely analytic
proof in general case with various generalizations, see [54] for a survey and complete
references on this subject. In the case of a non-compact symplectic manifold M with
a compact Lie group action G, this question was solved by Ma—-Zhang [39, [40] as
a solution to a conjecture of Vergne in her ICM 2006 plenary lecture [55], see [36]
for a survey. Paradan [47] gave a new proof, cf. also the recent work [24]. A natural
choice for the quantum spaces of a compact symplectic manifold is the kernel of
the Dirac operator.

In [38], Ma—Zhang established the asymptotic expansion of the G-invariant
Bergman kernel for a positive line bundle L over a compact symplectic manifold M
and by using the asymptotic expansion of G-invariant Bergman kernel, they could
establish the “quantization commutes with reduction” theorem when the power of
the line bundle L is high enough.

On a compact Kéahler manifold M endowed with a prequantum line bundle L,
a natural choice for the Hilbert space of quantum states is the space H(M, L™)
of holomorphic sections of the tensor powers L. The family of quantum spaces
H°(M,L™) indexed by m € N plays an essential role in geometric quantization
and the semi-classical limit m — oo allows to recover the classical mechanics of the
phase space M.

One can wrap up the family of spaces H°(M,L™), m € N, as subspaces of
a single Hilbert space by considering the S'-bundle X C L*, which is a strictly
pseudoconvex CR manifold and identifying H°(M, L™) with the S isotypes of
m-equivariant CR functions on X. The Hilbert space sum @®penH O(M, L™) can
be identified to the space HY(X) of L? CR functions on X and the sum of the
Bergman projections B, on H°(M, L™) can be identified to the Szegé projector S
on HY(X). A fundamental fact is that the asymptotic behavior of B,, is encoded in
the singularities of the Szeg8 kernel S(-, -). We can thus think of X as the quantizing
principal bundle of M and of the space of L? CR functions as the quantum space
of X. In the presence of a G-action on M, which lifts to an action on L, we have
an induced G-action on X and on HY(X).

The quantization of strictly pseudoconvex or more generally contact manifolds
via the Szeg6 projector or its generalizations was developed by Boutet de Monvel
and Guillemin [7] and can be applied to the Kéhler quantization by using the above
construction. In this paper, we study the quantization of CR manifolds and the
principle of “quantization commutes with reduction”. For this purpose we develop
a G-invariant Fourier integral operator calculus which will be used to obtain the
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asymptotics of the G-invariant Szegd kernel. Our Theorem [[L2is new even for com-
pact strictly pseudoconvex CR manifolds and our results pertain also to Sasakian
manifolds (see Theorem [[3]). Sasakian geometry is an important odd-dimensional
counterpart of Kahler geometry. It is known that irregular Sasakian manifolds admit
a compact CR torus action (see |23, Sec. 3] or Remark [Z2]) and the study of G-
equivariant CR functions on a Sasakian manifold is important in Sasaki geometry.
We refer to [T}, [0, 16l 17, [57] for the fundamentals of contact and Sasakian reduction
and examples.

An important difference between the CR setting and the Kéhler/symplectic
setting is that the quantum spaces in the case of a compact Kéhler/symplectic
manifolds are finite-dimensional, whereas for the compact strictly pseudoconvex
CR manifolds that we consider the quantum spaces consist of CR functions and are
infinite-dimensional. In [20, Theorem 3.6], Guillemin—Sternberg proposed a version
of quantization for symplectic cones associated with a homogeneous moment map.
Again, in contrast to our Theorem [[.2] their invariant spaces are finite-dimensional.

We now formulate the main results. We refer to Sec. [Z for some notations and
terminology used here. Let (X, T1°X) be a compact orientable CR manifold of
dimension 2n + 1, n > 1, where T1°X denotes the CR structure of X. Let HX C
TX be the associated Levi distribution with complex structure J € End(HX)
and let wy € €°°(X,T*X) be a non-vanishing real 1-form annihilating H X, called
characteristic 1-form.

Let G be a d-dimensional compact Lie group with Lie algebra g acting on X
by preserving J and wg. Let p: X — g* be the associated moment map p: X — g*
(cf. 221)). We will mainly work in the following setting.

Assumption 1.1. The G-action preserves the complex structure J on HX and

the characteristic 1-form wy, it is free on ©=1(0), and one of the following conditions
are fulfilled:

(i) dim X > 5 and the Levi form of X is positive definite near ;~*(0).
(ii) dim X = 3, the Levi form of X is positive definite everywhere and 9; has closed
range in L? on X.

Due to Lemma 2.5 Assumption [Tl implies that 0 is a regular value of u, hence
= 1(0) is a d-codimensional submanifold of X. Let

Y :i=pu10), Xg:=p*0)/G. (1.1)
The space X¢ is called the CR reduction. Under our hypotheses, if dim Xg > 3,
X is a strictly pseudoconvex CR manifold with characteristic 1-form (in this case

also contact form) wg ¢ induced canonically by wy, see (Z38). If dim X¢ = 1, then
each of the finitely many components of X is diffeomorphic to a circle.
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Let 517 16> (X) — Qo’l(X) and if dim X > 3, let gb,Xc :Cgoo(Xg) — Qo’l(Xg)
be the tangential Cauchy—Riemann operators on X and X, respectively. We extend
0y and 9, x, to L? spaces by taking their weak maximal extension, see (ZI3)). We
consider the spaces of L? CR functions

H)(X):={ue L*(X):0u=0}, H)(X¢g):={ueL*’(Xg):0px,u=0}.
(1.2)

If dim X = 1, so X¢ is a finite union of circles, we set H (X¢) to be the direct sum
of the Hardy spaces of the components, that is, the L? subspaces of functions with
vanishing Fourier coefficients of negative degree. The common feature of the spaces
HP(X¢) for dim X > 3 and dim X = 1 is the fact that they are boundary values
of holomorphic functions in a filling of X by a complex manifold (see Sec. 2.4)).

Then HP(X) is a (possible infinite-dimensional) G-representation, its G-
invariant part is the G-invariant L? CR functions on X,

HY)(X)C .= {ue H)(X): h*u=u, for any h € G}. (1.3)

For every s € R let H*(X) and H*(X¢) denote the Sobolev spaces of X and X of
order s and let (-, -)s and (-, - ) x5 be the inner products on H*(X) and H*(X¢),
respectively (see (B3)). For every s € R put

H)(X), = {u € H*(X):0pu = 0 in the sense of distributions}. (1.4)

We define HY(Xg)s and HY(X)¢ in the same way. If dim X = 1, we set HY (X¢)s
to be the direct sum of the Hardy—Sobolev spaces of the components, that is, the
subspaces of H*(S*) of distributions with vanishing Fourier coefficients of negative
degree.

Let ¢:Y — X be the natural inclusion and let ¢*: €*°(X) — €>°(Y) be the
pull-back by ¢. Let 1 : €< (Y)% — € (X¢) be the natural identification. Let

oo H) (X)) N&>(X)® — H)(Xa), oc=1tgo" (1.5)

The map (L)) is well defined, see the construction of the CR reduction in Sec.
The map og does not extend to a bounded operator on L?, so it is necessary to
consider its extension to Sobolev spaces. From Theorem[5.3] o¢ extends by density
to a bounded operator

oc =o0g.s: HY(X)S — Hg(Xg)sf%, for every s € R. (1.6)

S

This operator can be thought as a Guillemin-Sternberg map in the CR setting.
It maps the “first quantize and then reduce” space (the space of G-invariant
Sobolev CR functions on X) to the “first reduce and then quantize” space (the
space of Sobolev CR functions on X¢). Indeed, from the point of view of quan-
tum mechanics, the Hilbert space structures play an essential role. It is natural,
then, to investigate the extent to which the CR Guillemin—Sternberg map is Fred-
holm. The following main result of this work gives a CR analogue of the fact that
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the canonical reduction map in the symplectic context is an isomorphism for suf-
ficiently large tensor powers of the prequantum line bundle (cf. [38, Theorem 0.9]
and Theorem [[4]).

Theorem 1.2. Let X be a compact orientable CR manifold and let G be a com-
pact Lie group acting on X such that the G-action preserves J and wy and Assump-
tion[ I holds. Suppose that 5b7XG has closed range in L?. Then, for every s € R, the
CR Guillemin—Sternberg map ([(L6) is Fredholm. Actually, Kerog s and (Im UG,S)J-
are finite-dimensional subspaces of €°°(X) N HY(X)Y and € (X¢) N HY(Xa),
respectively, Ker og s and the index dim Ker og s —dim (Im UG,S)J- are independent

of s.
We note that (Imog ¢)* is given by

(Imoge)t = {u € H,?(Xg)s_% : (O'G)SU,U)XG,S_% =0, for every v € Hl?(X)SG}.
(1.7)

Under Assumption [[I}i) the hypothesis that dim X > 5 is used in order to have
local subelliptic Sobolev estimates on the set where the Levi form is positive definite
(Theorem B.I0) and leads to the fact that the G-invariant Kohn Laplacian (3:26])
has closed range in L?. Note also that the Kohn Laplacian on strictly pseudoconvex
CR manifolds of dimension greater than or equal to five has always closed range in
L? but this is not true for all three-dimensional strictly pseudoconvex CR manifolds
(a detailed discussion about the closed range of d in L? can be found in Sec. 24).
In the case when dim X = 3 we will state in Theorem [5.7] a version of Theorem [[2]
under weaker hypotheses as Assumption [[I[ii), namely that X is pseudoconvex of
finite type and 51,7 x has closed range in L2

We turn now our attention to Sasakian manifolds. Let (X, T1°X) be a compact
connected Sasakian manifold (see Sec. Z2), i.e. (X, T1X) is a compact connected
strictly pseudoconvex CR manifold and we can fix a contact form wy and a Reeb
vector field R such that irwg = 1, igdwy = 0 and the flow associated with R
preserves TV X (cf. Remarks and [Z3]). Assume that the action of the compact
Lie group G on X verifies Assumption [[.T] Moreover, we assume that

R is G-invariant. (1.8)

By Remark[2.2] the flow associated with R preserves H X, J and the natural metric
9w, o1 T'X, in particular, R is a Killing vector field. Since X is compact, this implies
the flow associated with R generates a compact torus T-action on X and this T-
action commutes with the G-action. Thus it naturally induces a T-action on X and
the generator R induces the Reeb vector field R on X¢. Since the flow associated
with R preserves the CR structure T"°X and commutes with G, it follows that the
flow associated with R preserves the CR structure 710 X¢. Thus, (X¢, TV0X¢) is
a strictly pseudoconvex CR manifold with a CR Reeb vector field R. By (ZI7) and
Remark 23] X is also a compact Sasakian manifold.
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Now HP(X)¢ and HY(X¢) are both T-Hilbert spaces, thus we have the decom-
position of Hilbert spaces via the weight o € T (=~ Z24mT) of T-action:

HZ?(X)G = 69&6']1‘* Hl?,a(X)Gv HZ?(XG) = 69&6']1‘* Hl?,a(XG)' (19)

We refer to [23] for further applications of this weight decomposition. Both
HY (X)¢ and HY,(Xq) are finite-dimensional subspaces of €>°(X)¢ and
¢>(Xq), respectively, as subspaces of the eigenspaces of the elliptic operators
Ty xOb,x — R%, 0y x,0p.x0 — R2, respectively, of eigenvalues |o(R)[2. From the
definition (LX) of the map o we see that

ogRu = Rogu, for any u € H)(X)C, (1.10)

and hence ¢ maps Hy (X)“ to HY ,(X¢). From this observation, Theorem [2

and the fact that J, has closed range in L? on Sasakian manifolds (see [42], also
Sec. 24)), we deduce:

Theorem 1.3 (quantization commutes with reduction for Sasakian man-
ifolds). Let X be a compact connected Sasakian manifold with a CR Reeb vector
field R. Suppose that X admits a compact Lie group action G which preserves the
complex structure J on HX and the characteristic 1-form wy, it is free on u=*(0),
and the Reeb vector field R is G-invariant. Then with the exception of finitely many
aeT the map

oG Hyo(X)Y = Hyo(Xc) (1.11)
is an isomorphism.

We now apply Theorem to the case of complex manifolds. Let (L,h%) be
a Hermitian holomorphic line bundle over a connected compact complex manifold
(M, J) with dim ¢ M = n, where J denotes the complex structure of TM and hl is a
Hermitian metric of L. We denote by R the Chern curvature of (L, h’"). We assume
that G acts holomorphically on (M, J), and that the action lifts to a holomorphic
action on L. We assume further that h” is preserved by the G-action. Then R’ is
a G-invariant form. Let f: M — g* be the moment map defined by the Kostant
formula (G1)).

Assume that 0 € g* is regular and the action of G on i~1(0) is free. If iR is
positive near 1(0), then the analogue of the Marsden—Weinstein reduction holds.
More precisely, the complex structure J on M induces a complex structure Jg on
Mg = ji71(0)/G, for which the line bundle L := L/G is a holomorphic line bundle
over Mg. For m € N, let HY(M, L™)% denote the space of G-invariant holomorphic
sections with values in L™.

Let X = {v € L*:|v[?,. = 1} be the circle bundle of L*, where hL" is the
Hermitian metric on L* induced by hL. Let e? be the natural S'-action on the
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fibers of X. The action of G on M lifts to a CR action on X. For every m € N, put
Hgm(X)G ={ue HY(X)C:(e”)u = ¢4 on X, for every ¢ € S'}.
(1.12)
It is easy to check that for every m € N there are canonical isomorphisms
Hy (X)¢ = HY (M, L™, H), (X¢)= H' (Mg, LE). (1.13)

On account of (LI3), Theorem (under Assumption [IT] (i)) and the correspon-
dence between the curvature iRY and the Levi form of X (cf. Section 22)) we

deduce:

Theorem 1.4. Let M be a compact connected complex manifold, dimc M > 2,
and (L,h*) be a Hermitian holomorphic line bundle over M. Let G be a compact
Lie group acting holomorphically on M and whose action lifts to (L, h*). Suppose
that iRL is positive near i=1(0) and G acts freely on i~ 1(0). Then for m large
enough, the canonical map between H°(M,L™)% and H°(Mg, L) by restriction
18 an wsomorphism, in particular

dim HO(M, L™)¢ = dim H* (Mg, L®). 1.14
G

If L is positive on the whole M, this canonical isomorphism between
HO(M,L™)¢ and H°(Mg, L) was constructed in [I9, 58] for m = 1 (see also
for the metric aspect of this isomorphism [38, (0.27), Corollary 4.13] for m large
enough). This implies that the map o in Theorem [[2]is actually an isomorphism
in the case of the circle bundle X of L*. Thus we expect in many situations (in
particular, if additionally X is strictly pseudoconvex), that o in Theorem [[2 is
an isomorphism. Theorem [[4] gives a version of the result of [19, 58] for large
enough powers of L by requiring the positivity of iRY only on i=1(0). In the case
dime¢ M = 1, hence dim X = 3, Assumption [[.T[ii) corresponds to L being positive
everywhere on M, so an application of Theorem does not bring anything new.
We will give in Theorem[6.1] a version for almost complex manifolds of Theorem [T.4

In the rest of Introduction we explain some technical aspects, in particular some
results on the G-invariant Szegdé projection, necessary to establish Theorem

We introduce a G-invariant Hermitian metric ¢ = ¢®7* on X as in Lemma 21
which fixes the L? spaces on X. The G-invariant Szegd projection is the orthogonal
projection

Sq:L*(X) — HY(X)C (1.15)

with respect to (-, ). The G-invariant Szegd kernel Sg(z,y) € 2'(X x X) is
the distribution kernel of Sg. In Theorem [B.28] we will prove that Sg is a complex
Fourier integral operator and in Theorem [3.27] we will show the regularity property

Sg:€>°(X) — HY (X)) NnE€>=(X). (1.16)
From (CI6) we conclude that HY(X)¢ N %€>°(X) is dense in HY(X)C.
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Let Sx,:L*(Xg) — HY(Xc) be the orthogonal projection with respect to
(-, )xg (cf. Convention ZF). It follows from general results [8, 27] that if dp x,,
has closed range in L2, then Sx,, is a Fourier integral operator with complex phase
and also a pseudodifferential operator on Xq. In particular,

Sxe: € (Xa) — H)(Xa)NE=(Xa) (1.17)

which implies that HY (X¢)N€ > (X¢) is dense in HY (X¢) if Oy, x, has closed range
in L2.

We consider the linear map
Reig, — 9, u—Reu, (Reu,v)=dwo(u,Jv)s. (1.18)

For z € Y we denote by Y, = {h.x:h € G} the G-orbit of V; then Y, is a
d-dimensional submanifold of X. The G-invariant Hermitian metric ¢ induces a
volume form dvy, on Y. Put

Fo(@) = |det R 3/ Vot (@) € €°(V)C with Vigr () = / dvy., (1.19)
Yo
where €°(Y)¢ denotes the space of G-invariant smooth functions on Y = p~1(0).
Let E:€¢>*(X¢g) — €°°(Xg) be a classical elliptic pseudodifferential operator
with principal symbol pg(z,€) = [¢]~%%. Let

o HY(X)YN&>(X)Y - H)(Xg), o=SxsoEoiwgofaor*. (1.20)

It turns out that the operator o in (L20) is bounded, see Corollary [£.16 and thus
extends by density to a bounded operator

o:HY(X)C — H)(Xg). (1.21)

We have encoded in the definition (L20) some corrections in order to obtain good
analytic properties of o. One correction is the multiplication with the function fg
from (CI9); this reflects the need to reconcile the volume forms on p~!(0) and on
X¢ . The multiplication by fg changes the CR character of the result, therefore
the need to project back to the CR space by Sx,. Here comes the role of E, which
is more subtle (see also Remark [[L0). Ideally, the map o should be unitary. But
we can content ourselves to require that o *o is “microlocally close” to S¢g, where
o*:HY(Xg) — 2'(X) is the adjoint of 0. In other words, we want o *o to be a
complex Fourier integral operator with the same phase, the same order and the
same leading symbol as Sg. To achieve this, we need to take E to be a classical
elliptic pseudodifferential operator with principal symbol pg(z,€) = [£]~%/4.

The main technical result of this work is the following.

Theorem 1.5. Under the assumption of Theorem [L2 the map o is Fredholm.
Actually, Kero and (Im o)t are finite-dimensional subspaces of €°°(X) N HY(X)¢
and € (Xg) N HY (Xq), respectively.
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Remark 1.6. Note that the definition of ¢ depends on the choice of the elliptic
pseudodifferential operator . We actually show that for any classical elliptic pseu-
dodifferential operator F with the same principal symbol pg(x,€&) = [£|~%/4, the
map o: H)(X)¢ — HY(X¢) is Fredholm. Up to lower order terms of E, the map
o is a canonical choice. The elliptic pseudodifferential operator E corresponds to
the power m~%* in the isomorphism map between H°(M, L™)¢ and H°(Mg, L)
in complex case. Here we use the same notations as in the discussion after Theo-
rem [[31 More precisely, Ma—Zhang [38, Theorem 0.10] showed that the map

O HY (M, L™)% — H' (Mg, L), om=m "By owgofaor*, (1.22)

is an asymptotic isometry if m is large enough, where ¢, t* and fg € €>°(M)% are

defined as in the discussion before (L20) and By, : L*(Mg, L) — H°(Ma, L)

is the orthogonal projection. When we change m~%* in (22 to any m-depend

function with order m~%4 4+ O(m~%1), we still have an isomorphism between

HO(M,L™)¢ and H°(Mg, L) for m large. Moreover, in view of Theorem [[2} to

get L? isomorphism it makes sense to take an elliptic pseudodifferential operator E
d

of order -1

Remark 1.7. (i) In this work, we do not assume that 9; has closed range in L2
on X. We will show in Sec. that under the assumption that the Levi form
is positive on Y = p~1(0), the G-invariant Kohn Laplacian has closed range
in L? and this is enough to obtain a full asymptotic expansion for the G-
invariant Szegd kernel Sg(z,y) (see Theorem B28]). In order to show that the
G-invariant Kohn Laplacian has closed range in L? we need the hypothesis
that the dimension of X is greater than or equal to five.

(ii) The asymptotic expansion for S¢ is also a new result. In [28], Hsiao and Huang
obtained an asymptotic expansion for Sg under the assumption that 9, has
closed range in L? on X. In [28], Hsiao and Huang established “quantization
commutes with reduction” results for CR manifolds with S'-action. The spaces
considered in [2§] are finite-dimensional. To handle the infinite-dimensional
case, we need to develop a new kind of calculus of complex Fourier integral
operators.

(iii) In [T9, Theorem A6], Guillemin and Sternberg showed that the underlying
canonical relation of Sg is given by {(hz,z):x € p=1(0),h € G} under the
assumption that X is strictly pseudoconvex. From our result about Sg we can
also deduce Guillemin and Sternberg’s result and also generalize this result to
some class of non-strictly pseudoconvex cases.

(iv) If we assume that the CR manifold X is strictly pseudoconvex of dimension
greater or equal to five, the proof is shorter. In this case, from the result of
Boutet de Monvel-Sjostrand [§], we see that the Szegd projection is a complex
Fourier integral operator on X and by using integration by parts, we can easily
see that S is smoothing away p~1(0). Hence, we do not need Secs.
For some class of CR manifolds, the Levi form is just positive near x=*(0) (see
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Example (1) in Sec. 23l), therefore it is natural to work with the assumption
that the Levi form is just positive near ;1 ~1(0) since we cannot apply the result
of Boutet de Monvel-Sjostrand directly.

This paper is organized as follows. In Sec. Bl we review some facts on CR and
Sasakian manifolds, CR reduction and Szegé kernel. In Sec. Bl we establish asymp-
totic expansion for the G-invariant Szegé kernel. In Sec. @] we study the distribution
kernel of the map o in (L20) and establish Theorem In Sec. B we establish
Theorem In Sec. [0 we establish a version for almost complex manifolds of
Theorem [[41

Notations. We denote by N = {0,1,2,...} the set of natural numbers and set
N* = N\{0}, Ry = [0,00). We use standard notations about distributions and
Sobolev spaces on manifolds, as in [30, B7]. In this paper we will systematically use
the correspondence between operators A and their kernels A(-,-) = A(x,y) via the
Schwartz kernel theorem [26, Theorems 5.2.1, 5.2.6], [37, Theorem B.2.7]. For two
distributions u, v we write u = v if u — v is a smooth function. For two operators A,
B, we write A = B if their Schwartz kernels satisfy A(-,-) = B(-,-), equivalently, if
A — B is a smoothing operator.

In the whole paper we will denote by G a compact Lie group, by g its Lie
algebra, and by du the Haar measure on G' with [, du(h) = 1. If E is a complex
representation of G, we denote by E¢ the G-trivial component of F.

We denote by Spec A the spectrum of an operator A. For a real vector
space/bundle V' we denote by CV = V ®g C the associated complexified vector
space/bundle.

2. Preliminaries

In this section, we explain some basic facts on CR and Sasakian manifolds, CR
reduction and Szeg6 kernel.

2.1. CR manifolds and CR functions
Let (X,T%°X) be a compact, connected and orientable Cauchy-Riemann (CR)

manifold of dimension 2n 4+ 1, n > 1, where T"YX is a CR structure of X, that is,
T19X is a complex vector sub-bundle of rank n of the complexified tangent bundle
CT X, satistying
TYOXNT" X ={0}, [V,V]CV, with T"'X =TLOX |V = ¢>(X,T"°X).
(2.1)

Denote by T*1'0X and T*%1 X the dual bundles of T10X and T%'X, respectively.
Define the vector bundle of (0, ¢)-forms by

T*09X = AT X, (2.2)

2250074-10
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The Levi distribution (or holomorphic tangent space) HX of the CR manifold X

is the real part of 710X @ T%1X | i.e. the unique sub-bundle HX of TX such that

CHX =T""X T X. (2.3)

Let J: HX — HX be the complex structure given by J(u+%) = iu — i@, for every
u € THX. If we extend J complex linearly to CHX we have

'YX ={VeCHX:JV = iV}. (2.4)

Thus the CR structure T"°X is determined by the Levi distribution and we shall
also write (X, HX, J) to denote the CR manifold (X,T%°X).

The annihilator (HX)? € T*X of HX is called the characteristic conormal
bundle of the CR manifold. Since X is orientable, the characteristic bundle (HX)°
is a trivial real line sub-bundle. We fix a global frame of (H X)?, that is, a real non-
vanishing 1-form wy € ¢°°(X, T*X) such that (HX)? = Rwy, called characteristic
1-form. We have

(wo(x),u) =0, foranyue H,X, z¢€X. (2.5)

Then by (Z1), the restriction of dwy on HX is a (1, 1)-form. The Levi form .%, =
20 of X at x € X associated to wq is the symmetric bilinear map
Ly H, X x Hy X - R, Zyp(u,v) = %dwo(u, Jv), foru,ve H;X. (2.6)
It induces a Hermitian symmetric map
Ly THX x THX - C, Z.(UV)= %dwO(U, V), forU,V eT}HX.
(2.7)

A CR manifold X is said to be strictly pseudoconvex if there exists a characteristic
1-form wy such that for every € X the Levi form .£° is positive definite. In this
case wy is a contact form and the Levi distribution H X is a contact structure.

Back to the general case, given a characteristic 1-form wy, let T € (X, TX)
be a vector field, called characteristic vector field, such that

CTX =T"°X T X aCT (2.8)
and
iT wo = 1. (29)

Let ¢®7X be a Hermitian metric on CT'X such that the decomposition (ZJ) is
orthogonal. For u,v € CT'X we denote by (u,v), the inner product given by gtTX
and for u € CTX, we write |u|? := (u,u),.

The determinant of the Levi form %, at © € X with respect to ¢®7¥X is
defined by

det L, = Mi(z) ... An(2), (2.10)

where A1 (), ..., A\n (), are the eigenvalues of %, as Hermitian form on T} X with
respect to the inner product (-,-), on T}0X.
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The Hermitian metric g7 on CTX induces, by duality, a Hermitian metric
on CT*X and also on the bundles of (0,¢q) forms T*%9X, ¢ =1,2,...,n. We shall
also denote the inner product given by these metrics by (-, )y. The metric gtTx
induces a Riemannian metric g7 on TX and ¢7¥ induces in turn a Riemannian
volume form dv = dv(x) on X and a distance function d(-,-) on X.

The natural global L? inner product (-, -) on 2%¢(X) induced by dv(z) and
(-, -)q is given by

(u,v) ::/X<u(x),v(:17) Ygdu(z), u,veQMI(X). (2.11)

We denote by (L, ,(X), (-, -)) the completion of Q%¢(X) with respect to (-, -)
and den_ote || - || the corresponding L? norm. We set L?(X) := L%o,o) (X).

Let 0y : Q%9(X) — Q%471(X) be the tangential CR operators on X which is the
composition of the exterior differential d and the projection 7%4+1: A9+ (CT* X ) —

T*0:a+1 X We consider the weak maximal extension of ; to L? spaces as follows:
Dom 3y, = {u € L3 (X):Fyu € L%O,qﬂ)(X)},
(2.12)

Op: Domdy > u— Opu € L?O,qﬂ)(X),

where Oyu is defined in the sense of distributions. The space of L? CR functions on
X is given by

HO(X) = {u € LX(X) = L3 4(X) : Dpu = 0}. (2.13)

Since differential operators are continuous on distributions, H(X) is a closed sub-
space of L?(X). The Szegd projection is the orthogonal projection

S:(LHX), (-, ) = HY(X). (2.14)
The Szegd kernel S(z,y) € 2'(X x X) is the distribution kernel of S.

2.2. Sasakian manifolds

We recall here some facts about Sasakian manifolds, cf. [9}[I7]. Recently, the subject
of Sasakian geometry generated a great deal of interest due to the study of existence
of Sasaki-Einstein metrics, and more generally, Sasakian metrics of constant scalar
curvature, see for example [13].

Let (X, HX,J) be an orientable strictly pseudoconvex CR manifold of dimen-
sion 2n 4+ 1 and let wp be a contact form whose Levi form (26 is positive definite,
hence g% = dwg(-, J-) defines a J-invariant metric on HX. The Reeb vector field
R associated to the contact form wy is the vector field on X defined by

iRwo = 1, iRdwo =0. (215)
From 2I8), 0 = dwo(R,u) = —wo([R, u]) for any u € €°°(X, HX), thus we get
(R, ¢>(X,HX)] C ¢=(X,HX). (2.16)
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We define a Riemannian metric g, on X by gu, (-,*) = dwo (-, J-) +wo(-)wo(-). Asso-
ciated to the data (X, wo, R, J, gu, ), called contact metric manifold, there is a canon-
ical connection V on T'X, called the Tanaka—Webster connection (see Tanaka [51]
and Webster [56]), that is the unique affine connection on TX such that

e Vg, =0, VJ =0, Vdwy = 0 and V preserves the decomposition TX = HX &
RR.

e For any u, v in the Levi distribution H X, the torsion Ty of V satisfies Ty (u, v) =
dwo(u,v)R and Ty (R, Ju) = —JTv (R, u).

The torsion of the Tanaka—Webster connection in the direction of the Reeb vector
field, 7: u — Ty (R, u), is called pseudo-Hermitian torsion of V. We see that VR = 0
and thus Vi = 7 + Lg, where £ denotes the Lie derivative. By using VJ = 0 we
deduce that (cf. [5I, Lemma 3.2(3)])

2Jru = (LgJ)u for any u € HX. (2.17)

Definition 2.1. A contact metric manifold (X,wy, R, J, g.,) is called a Sasakian
manifold if the pseudo-Hermitian torsion of its Tanaka—Webster connection van-
ishes: 7 =Ty (R,-) = 0.

By @2I7), 7 = 0 is equivalent to LrJ = 0 and by [9, Corollary 6.5.11] this
is equivalent to the fact that the contact metric structure on X is normal. Thus
the definition above is equivalent to the definition of Sasaki manifolds given in [J,
Definition 6.5.13] (which in turn is equivalent to the metric cone (C(X) = Ry x
X, dr? + r%g,,) being a Kéhler manifold [9, Definition 6.5.15]).

Sasakian manifolds can be classified in three categories based on the properties
of the Reeb foliation Fr consisting of the orbits of the Reeb field (see [0, Definition
6.1.25]). If the orbits of the Reeb field are all closed, then the Reeb field R generates
a locally free, isometric S'-action on (X, g.,) and the Reeb foliation is called quasi-
regular. If this S'-action is free, then the Reeb foliation is said to be regular. If Fg
is not quasi-regular, it is said to be irregular. In this case, the flow associated with
R generates a transversal CR R-action on X. We say that the R-action  on X is
CR transversal if HX @ Rnx = T X, where nx denotes the infinitesimal generator
field of the R-action.

If Fr is quasi-regular, then by the structure theorem [9, Theorem 7.1.3] the
quotient space M := X/Fr = X/S! is a Kihler orbifold and the quotient map
m:X — M an orbifold Riemannian submersion. Moreover, X is the total space of
a principal S'-bundle over M with connection 1-form wy; there exists an integral
Kahler form w on M such that the curvature dwgy of wy is the pullback by the
quotient map of w: dwy = 7*w. If Fp is regular, then (M,w) is a Hodge manifold
and the assertions above are the content of the Boothby-Wang theorem [5] (cf.

also [22]).

Remark 2.2. For a Sasakian manifold (X, wo, R, J, gu, ), from (ZI0)), the flow asso-
ciated with R preserves HX. Moreover, it follows from Definition 2] and (Z17)
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that LrJ = 0. Combining with 2I5), we get Lrgw, = 0, i.e. the Reeb vector field
is a Killing vector field on (X, gu, )-

Remark 2.3. Let (X,T%%X) be a strictly pseudoconvex CR manifold. Then X is
Sasakian if and only if there is a global vector field T' € €°°(X, T X) such that

[T,¢°°(X,T"°X)] Cc €>(X,T""X) (2.18)

and 710X @T%1 X and T generate the complex tangent bundle of X (cf. [9, Proposi-
tion 6.4.8], [46, Theorem 1.2]). In fact, if X is Sasakian, we can take T' = R by (217).
For the inverse direction, we define wy € Q' (X) by irwo = 1, wo|mx = 0. Now for
any V € ¢°°(X, T*YX) we get by (ZIJ) that (irdwo)(V) = —wo([T, V]) = 0. Thus
wo verifies (Z10). Again by ([2I8) we have LpJ = 0, thus X is Sasakian by [21I7]).

Related to Theorem[.4land motivated by the structure of quasi-regular Sasakian
manifolds let us consider now the case of a circle bundle associated to a Hermitian
holomorphic line bundle. Let (L, h") be a Hermitian holomorphic line bundle over
a connected compact complex manifold (M,.J). Let h%" be the Hermitian metric
on L* induced by h%. Let

X :={vel*: |, =1} (2.19)

be the circle bundle of L* (Grauert tube); it is isomorphic to the S! principal
bundle associated to L. Since X is a hypersurface in the complex manifold L*, it
has a CR structure inherited from the complex structure of L* by setting T'°X =
TX NTHOL*.

In this situation, S acts on X by fiberwise multiplication, denoted (x,e?) —
ze?. A point z € X is a pair z = (p,\), where X is a linear functional on L,, the
St action is xe? = (p, \)e? = (p, e \).

On X we have a globally defined vector field 9y, the generator of the S* action.
The span of 9y defines a rank one subbundle 7V X = T'S' C TX, the vertical
subbundle of the fibration 7: X — M. Moreover ([2.8]) holds for T' = 0.

For m € Z the space €>°(X, L™) of smooth sections of L™ can be identified to
the space m-equivariant smooth functions

C°(X)m ={f € E>°(X,C): f(xe?) = ™ f(x), for e € S,z € X}.
by
CX(M,L™) 55— f€C®(X)m, flx)=f(p,A\)=A""(s(p)), (2:20)

where \™ = A\2™ for m > 0 and A™ = (A"1)®(=") for m < 0. Through the
identification (Z20) holomorphic sections correspond to CR, functions

HY(M,L™) = Hy ,,(X) = {f € €™ (X)n :0sf = 0}. (2.21)

We construct now a Riemannian metric on X. Let ¢g?™ be a J-invariant metric
on M. The Chern connection V¥ on L induces a connection on the S!'-principal
bundle 7: X — M, and let T” X C TX be the corresponding horizontal bundle.
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Let g7X = g gTM g % be the metric on TX = TH X @ TS*, with df? the standard
metric on S = R/27Z.

Pertaining to 7% we construct the L? inner product (-,-)x given by (2II)) on
X. The metric g7 induces a Riemannian volume form dvys on M, which together
with the fiber metric h*™ gives rise to an L? inner product (-,-),, on € (X, L™).
Then the isomorphism (220) becomes an isometry (€°°(M,L™), (-, )m) =
(€°(X)m, (-,-)x) and accordingly an isometry L?(M,L™) = L*(X),,, where the
latter space is the completion of (¢°°(X)m, (-, )x). Moreover, (Z20) induces an
isometry

(HO(M,L™), (-, )m) = (Hp (X)), () x)- (2.22)

~

The S'-action gives rise to a Fourier decomposition L?(X) = @mel L?(X),, and
this induces the following decomposition at the level of CR functions:

—_— —

HY(X) = @mezﬂgmo{) = @meZHO(M, Lm). (2.23)

Let wg be the connection 1-form on X associated to the Chern connection VZ. Then
wo(Jg) = 1, thus (Z]) and (ZI) are fulfilled and T' = 9y is a characteristic vector
field on X and wy is a characteristic 1-form for the CR structure on X. Moreover,

dwo = 7 (iR"), (2.24)

where R” is the curvature of VL. On account of (Z6) X is strictly pseudoconvex
at z € X if and only if (L, k) is positive at w(z) € M. In particular, if (L, ) is
positive on M, X is a strictly pseudoconvex CR manifold, wg is a contact form and
Op is the associated Reeb vector field.

Assume now (L, h%) is positive on M. We claim that X is a Sasakian manifold. In
fact, the S'-action is fiberwise multiplication on L*, thus S' acts holomorphically
on L* and preserves THOL*. This means that the S'-action preserves T1°X =
TXNTYL* ie. Ly,J =0, hence X is Sasakian by (ZIT). Since the S-action is
free, X is a regular Sasakian manifold. Conversely, any compact regular Sasakian
manifold is CR-isomorphic to a S!-fibration associated with a positive line bundle
on a projective manifold by the Boothby—Wang theorem [5], [9, Theorem 6.1.26],
[22].
Note also that if (L, h") is positive on M then H°(X,L™) = 0 for m < 0 by
the Kodaira vanishing theorem, so the decomposition (2.23)) becomes

—

H)(X) = @meNHQm(X) o @meNHO(M, Lm). (2.25)

Note further that X is (weakly) pseudoconvex, that is, the Levi form is positive
semidefinite on X if and only if the curvature iR” is semi-positive on M. More-
over, X has finite type if and only if R” vanishes to finite order at any point of
M, cf. [31], 41 Proposition 11]. A CR manifold X is said to be of finite type
if at each point p € X if the space T, X is generated by vectors of the form
Vi, [Va, [ [Vie—1, Vi) .. . ]]](p), where Vi, ..., Vi, k > 2, are sections of HX.
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2.3. CR reduction

We refer to [II, [0l [1I7] for the fundamentals of contact geometry and examples. In
this subsection, we extend the well-known symplectic reduction of Kéahler manifolds
to CR manifolds. We refer to [Il, @l [16] 17, [57] for constructions and examples of
contact and Sasakian reduction. Our construction is a CR analogue of [48], §2.1].

Let (X, HX,J) be a compact connected and orientable CR manifold of dimen-
sion 2n + 1, n > 1, and let wg be a characteristic 1-form.

Let G be a d-dimensional compact Lie group with Lie algebra g. We assume
that G acts smoothly on X and that the G-action preserves J and wy.

For any £ € g, we denote &x(z) = %exp(ftﬁ)x{tzo the vector field on X
induced by &. For x € X, set

g, = Span{¢{x(z): € € g} (2.26)

Definition 2.4. The moment map associated to the characteristic 1-form wy is the
map u: X — g* defined by

((@),6) = wo(€x(2), z€X, Ecq. (2.27)
The moment map is G-equivariant, i.e. for z € X, h € G, we have
pu(h.z) = Ad: p(z). (2.28)
Relation (Z28) implies that G acts on x~1(0). In fact, for any £ € g, we have
((hz),€) = wo(€x (h2))) = wo(dh(Ady-1 €)x))h.e
= (*w0) (Adj 1 &) x)e = wol(Ady1 €)x)a
= (u(x), Adp-1 §) = (Ady, p(2), £). (2.29)

Lemma 2.5. If G acts freely on u='(0) and the Levi form is positive on u~1(0),
then 0 is a regular value of .

Proof. Observe first that since wg is G-invariant, (2.3]) yields that HX is an G-
equivariant sub-bundle of T'X, thus

[€x, U]l € ¢°(X,HX) forany U e ¢>*(X,HX),£€g. (2.30)
Now (Z8) and (Z27) entail
Ex(x) € HX if x € p=(0). (2.31)

Let U, € H,X that we extend to a section U of HX near z. Then (23) and (Z30)
yield

dwo(U,€x )2 = Ulwo(§x)) — Ex (wo(U)) — wo([U, Ex])
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If du, : HX — g* were not surjective for some y € u=1(0), there would exist £ € g
such that (Y (u),,&) = 0 for any Y € H,X. This is a contradiction since dwy is
nondegenerate on Hy X and 0 # {x, € H,X by @3I). Thus du,: HX — g* is
surjective for y € u=1(0). O

Set as in (1) X¢ = Y/G with Y = p=1(0). Let t:Y — X be the natural
injection and let 7:Y — X5 = Y/G be the natural projection.

Theorem 2.6. If G acts freely on Y = pu=(0) and the Levi form is positive on
u=t(0), then the reduced space Xg = Y/G is a strictly pseudoconver manifold
with contact form wo g satisfying *wyg = T wo,q. Moreover, we can choose the

characteristic vector field T (c¢f. 2.8), @A) such that T|y € €Y, TY) and T is

G-invariant.

Proof. By Lemma 5 x4~ 1(0) is a smooth manifold. Since G acts freely on Y, X¢
is a compact manifold. The positivity of the Levi form on x~1(0) means that

9" = dwo(-, J) (2.33)

is a J-invariant and G-equivariant metric on HX on a neighborhood of Y = 1=1(0).
Since G acts freely on Y, the vector spaces g, defined in (Z26]) form a vector
bundle g near z~'(0). We denote g, = gly. Then g, C TY N HX by 31).
For z € p~1(0), by @31), @32), and the fact that dwo(-,J-) is a metric on
H, X we have that du|ry = 0 and du|;3 — g* is surjective. Since dimY +dimg =
dim T X, we have -

Jaly ®TY =TX|y. (2.34)

From ([234) and Jg|y C HX, we know wo(7Y) # 0. Thus 7Y N HX is a codimen-
sion 1 sub-bundle of TY, and

Y  TX
TYNHX HX|,

(2.35)

From (Z35]), we can choose the vector field T in (Z8]) such that T'|y € €>(Y,TY)
and T is G-invariant.

Let THY be the orthogonal complement of g, in TY N HX with respect to
g"X. By @32), @33), for any U € TY N HX, £ € g, as Jg,, C HX, we have
gt X (U, Jéx) = —dwo(U,&x) = 0. This means that TY N HX is orthogonal with
J 9y with respect to g7X. Thus we have the G-equivariant orthogonal decomposi-
tion on Y,

TYNHX =T"Y @g,, HX|y=T"Y @g, & Jg|y, (2.36)

note that the second equation is from the dimension counting argument as TYNH X
is a codimension 1 sub-bundle of TY. Thus from (Z36) and the metric g7X on
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HX|y is J-invariant, we get
JTHY =THY = (TY nHX)NJ(TY N HX). (2.37)

By 227) t*wy is a G-invariant horizontal 1-form on Y, thus there exists a unique
1-form wo ¢ € Q' (X¢) such that

Fwo = T wo,G- (2.38)
We now define the Levi distribution on X4 by
HX¢ :=kerwy g. (2.39)

From Z37), @30), dr: RT&THY — T X is bijective, and we get the isomorphism
RTSTHY ~ 7m*T Xg. Thus dr maps THY onto H X and this gives an isomorphism
THY ~ 7m*HX¢. Thus for U € HyXq, we take x € 7~ !(y) and U € THY the lift
of U, then by [237), we define Jg € End(HXq) by

(JeU)? = JUH. (2.40)
From (Z38), we have
tdwy = T dwo - (2.41)

Thus from Z37), t*dwo(-, J-) is positive and G-invariant on TH#Y implies that
dwo,c(+, Jg-) is positive and Je-invariant on H X . We verify now that

TH°Xe = {u—vV-1Jgu: ue HXg}. (2.42)
defines a CR structure on X. For U,V € €°°(Xqg, HX¢), from (240),
(U —V=1JgU)? =U" —/=1JU" € €= (Y, T*"°X NCTY), (2.43)

thus by @), [UY —/—1JUH, VE —y—T1JVH] € ¢>(Y,T"OXNCTY). By (Z30),
TYX NCTY = {v—+/—1Jv:v € THY}. Thus there exists W € €°(X¢, HX()
such that

[UH —/—1JU" vHE -/ —1gvH =wH -/ -1JwH. (2.44)
From ([243), (Z44), we obtain
U —V=1JcU,V —V=1JgV] = dr[U" — V=1JUH VT — /=1JVH]
=W —V-1JcW. (2.45)

Le. [¢°(Xa, T Xq), ¢ (Xa, T Xg)] C €*(Xa, TH"Xg). Let us finally note
that ([2.35)) shows that we can choose the characteristic vector field T' (cf. (Z8)), [29))
such that T|y € €°°(Y,TY) and T is G-invariant. The proof of Theorem is
completed. O

In the rest of this paper we will work under Assumption [T
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Lemma 2.7. Under Assumption[L1] there is a G-invariant Hermitian metric g =
gTX on CTX so that

(i) TOX is orthogonal to TO1 X,

(ii) g 4s orthogonal to HY N JHY at every point of Y,
(i) (1,7 = 1,
(iv) T is orthogonal to TY°X & TO1X,

where on'Y, HY := HX NTY.

Proof. This follows from the proof of Theorem 26l Let U be a G-invariant neigh-
borhood of Y so that the Levi form is positive definite on U. Then the metric
g% = dwg(-, J-) is a J-invariant and G-equivariant metric on HX and we have
the orthogonal decomposition ([Z36) on Y. Now we extend the metric ¢7X from
U to X as a J-invariant and G-equivariant metric on HX by a partition of unity
argument. Thus we can take g7~ on TX = RT @ HX as the direct sum metric on
(HX, g"X) and (RT, (T, T) = 1). O
Convention 2.8. From now on we fix a G-invariant Hermitian metric g = ¢©7¥
on CTX so that (i)—(iv) in Lemma [2Z7 hold. This metric induces natural Her-
mitian metrics (-, -)x, on CTXg and CT*Xg. As in (ZII) we define the L?
inner products and spaces induced by g on X and X¢g by (L? y(X), (-, +)) and

(0,q
(L2 ) (X6)s (- - )xa)-

2.4. Closed range in L? for 0, and Szegd projections

The property of closed range in L? for ) in (ZIZ) plays an important role
in CR geometry. It follows from the works of Boutet de Monvel [6], Boutet de
Monvel-Sjostrand [§], Harvey—Lawson [21], Burns [10] and Kohn [33] that the con-
ditions below are equivalent for a compact strictly pseudoconvex CR manifold X,
dimg X > 3:

(a) X is embeddable in the Euclidean space CV, for N sufficiently large;

(b) X bounds a strictly pseudoconvex complex manifold;

(c) The tangential CR operator d,: Domd, C L?*(X) — L?o,l)(X) on functions
has closed range.

If X is a compact strictly pseudoconvex CR manifold of dimension greater than or
equal to five, then X satisfies condition (a), by the embedding theorem of Boutet
de Monvel [6]. However, there are examples of non-embeddable compact strictly
pseudoconvex CR manifolds of dimension three given by Grauert et al. [2] [I8] [49],
see also Coltoiu-Tibar [I4]. In fact this happens for arbitrarily small perturbations
of the standard CR structure on the unit sphere in C2. For these examples the
closed range in L? property fails.
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Assume that condition (b) is satisfied and let M be a strictly pseudoconvex
complex manifold such that OM = X. If v is continuous on M and holomorphic on
M, then u|x satisfies the tangential CR equations 9y (u|x) = 0. Conversely, by [34]
any smooth function u on X satisfying Ou = 0 admits a smooth extension u to M
which is holomorphic in M. In this sense the space Hp(X) N %¢>°(X) is the space
of boundary values of holomorphic functions O(M) N %> (M). Note also that the
Hardy space HY(S') consists of boundary values of holomorphic functions on the
unit disc in C cf. [50, Theorem 17.10]. This is the unifying feature of our definition
of HY(X) for strictly pseudoconvex X and X = S*.

There are important classes of embeddable compact strictly pseudoconvex three-
dimensional CR manifolds (for which J, has thus closed range in L2?) carrying
interesting geometric structures such as

e transverse CR S'-actions [4, [15] [35],
e conformal structures [3],
e Sasakian structures (transverse CR R-actions) [42],

If X is a compact strictly pseudoconvex CR manifold and 9, has closed range
in L?, Boutet de Monvel-Sjostrand [§8] showed that S(z,y) is a Fourier integral
operator with complex phase. In particular, S(z,y) is smooth outside the diagonal
of X x X and there is a precise description of the singularity on the diagonal
x =y, where S(z, ) has a certain asymptotic expansion. Hsiao [27, Theorem 1.2]
generalized Boutet de Monvel-Sjostrand’s result to (0, ¢) forms when the Levi form
is non-degenerate and Kohn Laplacian for (0,q) forms has closed range in L?. If
the Levi form is degenerate (for example X is weakly pseudoconvex), Hsiao and
Marinescu [30, Theorem 1.14] showed that the Szegd projector S is a complex
Fourier integral operator on the subset where the Levi form is positive definite if
0y has closed range in L2.
Let

3, : Dom3, C LY, ;) (X) — L*(X) (2.46)

be the Hilbert space adjoint of 9y in the L? space with respect to (-, -). Let [J,
denote the (Gaffney extension) of the Kohn Laplacian on functions given by

Dom O, = {u € L*(X):u € Dom 8y, dyu € Domd, },
o (2.47)
Oyu = 9, 0pu for u € Dom IZIZ()O).

By a result of Gaffney, 0, is a positive self-adjoint operator (see [37, Proposi-
tion 3.1.2]). In particular, the spectrum Spec O, of O, is contained in [0, 00). For a
Borel set B C R we denote by E(B) the spectral projection of O, corresponding to
the set B, where E is the spectral measure of [J,. For A > 0, we set

Hy (X)) :=Im E((—o0, \]) C L*(X), (2.48)
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and let
S<x: L*(X) — Hl?,gA(X)» (2.49)
be the orthogonal projection with respect to the product (-, -) and let
S<i(z,y) € 7'(X x X) (2.50)

denote the distribution kernel of S<y. For A = 0, we write S := S<q, S(z,y) =

SSO(xv y) . _ _
Without the assumption that the range of Jy is closed, Ker 0, could be trivial
and therefore it is natural to consider the spectral projection S<, for A > 0.

Theorem 2.9 ([30, Theorem 1.5]). For any A > 0 the spectral projector S<x
is a complex Fourier integral operator on the subset where the Levi form is positive

definite.

Theorems and are more detailed statements of this result. Since we do
not assume that 0, has closed range in L? on X, Theorem 23 plays an important
role in this work. We only assume that the Levi form is non-degenerate on Y and
we will show in Theorems BI7 and that the G-invariant tangential CR 9, ¢
has closed range in L?(X)® and we have

Scla,y) = /G Sero (@, ko y)du(h) (2.51)

for some Ao > 0, where du(h) is the Haar measure on G with [, du(h) = 1.
From (Z51]), we can apply Theorem 20 to study Sg without a closed range in L?
assumption on d, on X.

2.5. Examples
We give here some simple but non-trivial examples.

(1) Let X := {(21,22,23) € C3:|21|* + |22|? + |23]> = 1}. Then X is a weakly
pseudoconvex CR manifold of dimension five, and X admits a S'-action

S'x X = X, €9 (21,22,23) = (6721, 2, € 23).

Let £x € €°°(X,TX) be the vector field on X induced by ¢ = —% in the Lie
algebra of S, then

0 _ 0
Ex = —zzla + 221 —|— Z (zz]a —1Z; %)

Let wg := J(dr), where r := |z1|* + |22|% + |23]%> — 1 and J is the complex structure
map on TC3. Tt is straightforward to calculate that
3
wWo = 22212%([2’1 — 222%21([21 + Z(szdzj — szdzj)
j=2
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and
(wo, &x ) = 4|z1]* — 2|z2f* — 225
Hence,

1

2
i 0) = {120 20) €€ a4 Jal? = ol = 3

Thus, X is strictly pseudoconvex near p~1(0). Since X is strictly pseudoconvex

near 1~ 1(0) and St acts freely on X, from Lemma 2.5 zero is a regular value of

the moment map u. Note that p=1(0)/S? = S3. From our main results, we see

that modulo some finite-dimensional subspaces of smooth functions, the space of

S1 invariant CR functions on X is isomorphic to the space of CR functions on S2.
(2) Let

X = (21722723724725726) E((:6:(|Z5|44>|Z6|2)
4
X Z|Zj|2 + 2123+ 2024 +Z123+ 2224 | =1
j=1

Then, X admits a G := S x SU(2) action:

(eievg) TR = (UI1,U)2,...,’UJ6),

0 0

(w1, wa)" = g(z1,22)", (w3, ws)" :=G(z3,21)", (w5, we) = (e 25,e"2),

g e SU?2), eSS z2eX,

where z! denotes the transpose of z. Then X is a weakly pseudoconvex CR manifold
and we set wg := J(dr), where

4
rTi= (|Z5|4+|2’6|2) Z|Zj|2+2123+2’22’4+2123 +2224 71
j=1

and J is the complex structure map on TC. As in Example (1) we can check that
if 2 = (21, 22, 23, 24, 25, 26) € u~1(0), then z5 # 0. Thus, X is strictly pseudoconvex
near £~ 1(0). Since X is strictly pseudoconvex near p~1(0) and S* x SU(2) acts
freely on X, from Lemma[2F] zero is a regular value of the moment map p. Since X
is weakly pseudoconvex, it is difficult to understand the Szegé kernel. But from our
main results, we see that the G-invariant Szegé kernel is a complex Fourier integral
operator.

3. G-Invariant Szeg6 Kernel Asymptotics

In this section, we will establish an asymptotic expansion of the G-invariant Szegd
kernel. From now on, we work under Assumption [I.1] and use the same notations
as in Secs. [ and We do not assume that gb,XG has closed range in L2.
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3.1. Subelliptic estimates for G-invariant smooth
functions away Y

In this section, we estimate the Szeg6 kernel outside Y. The manifold X is supposed
to have arbitrary dimension > 3. Let

Li,...,Ly € €°(X,HX), N €N,

such that for any = € X, {Li(x),...,Ly(x)} span HyX. Let s € N*. For u €
¢ (X), we define

lulls:==>" > ILuLs- Lyul + |ul. (3.1)
v=1 1<j1,....jy <N
Theorem 3.1. There exists C > 0 such that for all u € €°°(X),
i} < C(Opu,w) + [(Tu,w)] + ull). (32)
Proof. The proof uses the same method as the proof of [I1, Theorem 8.3.5], so we
only sketch the proof for the convenience of the reader. Let D € X be a small open

set and let {Z1,...,Z,} € €°°(D,T*°X) be an orthonormal frame of T1°X on
D. Let u € ¥°°(D). We have

(Do, u) = [[Fpul* = ZHZ ul® (3.3)

For every j = 1,...,n, by using integration by parts, we have
1Zjull* = (Zju, Zjuw) = (Z; Zju,u) = (=Z;Zju,u) + O(| Zjullul)
= (=2Z;Zju,u) + (1Z;, Z;lu,u) + O(| Zjull|u]))
| Zul + (125, Z5Ju,w) + O( Zsullul) + O Zsullul),  (3.4)
where Z* is the formal adjoint of Z;. From (B.3) and (B4), we get ([B.2) for every
u € €2°(D). By using a partition of unity we get (B2) for every u € €°(X). DO
Fix xo ¢ Y. By definition of Y, we can find a vector field V' € €>°(X, g) such
that wo(V') # 0 in an open neighborhood D of zo with D NY = (). Then,
L=V —w(V)T € HX. (3.5)
In the rest of this subsection we fix the neighborhood D as above and let
X5 X> X1 € 65°(D), X =1 near supp x and x1 = 1 near supp Y. (3.6)

Let u € €(X)%. From ([@3) and since that V(u) = 0 and wo(V) # 0 on D, we
have

L(u) on D,
(3.7)

T'(xu) = (I'x)u+ xTu= (T'x)u+x L(u).

1
wo(V)
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From (B), we deduce that there exists C' > 0 such that for all u € €>°(X)%,

ITOc) | < Cllbxew [l +lxaull)- (3-8)

For k € N*, U C X an open set, let 2*(U) be the set of differential operators
which can be written as a linear combination of operators as Wj o --- o W; with
Wi,...,W; € ¢°(U,CHX),1<j <k

Lemma 3.2. With the notations above, fix Vi,..., Vs € €°(X,CHX), s € N*
then there exist Vi1 € €°(X,CHX), Q1 € 2°1(X), Q2 € 2°(X), a,b € €>(X),
such that

TV =ViT+ Vi1 + a(x)T, ifs=1, (3.9)
V.. Ve =V1.. VT + Q1T+ Q2+ b(x)T, if s>2. (3.10)

Proof. We first prove (89). Note that
TVi = VT + [T, 4] (3.11)

We have [T, V4] = Vi1 + a(2)T, where V;; € €°°(X,CHX) and a(z) € €>(X).
From this observation and [B.I1), we get (3:9).
We now prove [BI0). Let s = 2. By the argument after (3.11]), we have

TViVa = ViTVa + [T, V4]V2
= WVTVs + (Vi1 + a(z)T)Va. (3.12)
From &9) and BI12), we get BI0) for s = 2.

Assume that the claim [BI0) holds for s = sg for some sp > 2. We are going to
prove that the claim (BI0) holds for s = sg + 1. From the argument after (31T,
we have

TVi.. Vg1 = ViTVa.. Veys1 + [T, ViV .. Vaysa
=ViTVa.. Vigr1 + (Via +a(@)T)Va.. . Vigpq.  (3.13)

From [BI3) and the induction assumption we get the claim BI0) for s = sg + 1.
The lemma follows. O

Theorem 3.3. Fiz s € N*. Let V1,..., Vi € €°°(D,CTX). Then there exists
Q € 2°(D) such that we have for every u € €>(X)%,

Vi...Vsu=Qu on D. (3.14)

Proof. From [B7), we see that ([BI4) holds for s = 1. Assume that ([3I4) holds
for s = so. We are going to prove that BI4) holds for s = sp + 1. By induc-
tion assumption we only need to assume that V3 = T and V; € ¢°>°(D,CHX),
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j = 2,3,...,5 + 1. From J) and (ZI0), there exist Vi, € €°°(D,CHX),
Q1€ 2°71(D), Q2 € 2°(D) such that
TVy = VoT 4 Vig 4 a(x)T, if sg=1,
(3.15)
T‘/Q...‘/SO+1:‘/2...‘/50+1T+Q1T+Q2+b($)T, if8022,

where a,b € €°°(D). From (B1) and BIH), we get BI4). m|
From Theorem B3 and [B.6]) we deduce:

Corollary 3.4. Let s € N* and V,...,Vy, € €°(D,CTX). Then, there exists
C > 0 such that for all u € €>=(X)¢ we have

(Ve Vx|l < Ol [lls + I xaullls—1),
XV Vi)ull < Ol s + Il xaullls—1)-

For s € Z, let || - ||s denote the standard Sobolev norm of order s on X. From
Corollary B4 and (), we deduce:

(3.16)

Corollary 3.5. For every s € N there exists Cs > 0 such that for any u €
G(X)“,
Ixulls < Cs [l xau |lls-

Theorem 3.6. For every s € N, there exists Cs > 0 such that for anyu € €>°(X)%
we have

Il xwller < Callln@ou 12 + I xaull?)- (3.17)

Proof. We prove (8I7) by induction over s. From ([B2]), there exists C' > 0 such
that for any u € €°°(X)¢ we have

I xulllf < C(Op(xuw), xu) + [(T(xu), xuw )|+ Ixul?). (3.18)
Now by (B.6l),
(Op(xu), xu) = (xOpu, xu ) + (x[Op, X]u, x10)- (3.19)

From (B1), 3I8), 3I9), and some elementary computation, we get (317) for
s = 0. We now assume that (BI7) holds for every s < k and k > 1. We will prove

that (3I7) holds for s = k. Let Zy,..., Zp41 € €°°(X,CHX). By (32), there exist
Co, C > 0 such that for any u € € (X)%, we have

1Z1 ... Ziyr (xu) |
<Coll Z2... Zira(xw) I}

< c((mb22 o T (W), Za . Zia () + | Za . Ziopr () |2
Y (TZs... Zisr (X0), Z2 - .. Zis1 (x0) )|). (3.20)
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We have

(Op(Za ... Zigy1)xu, (Za ... Ziy1)xu)
=(Zy... Zrp1ixOpu+ [0y, Za ... Ziy1]xu
+Zo. . Zp1 Doy Xu, Zo . .. Zip1xu)
=(Zy... Zip1xOpu, Zo ... Zpr1xu)
+(x1Z5. - Zi41 O, X]u, Z5 Zs . .. Zr1x0)
+ (@b, Za ... Zis1lxu, Za . .. Zip1 X ), (3.21)

where Z5 denotes the adjoint of Zs and Z5 = —Zs + zero-order term. From (B.16])
and (BZI) we see that there exists C' > 0 such that

|(|:|bZ2 N Zk+1(XU)7 ZQ e Z]ﬁLl(X’UJ)”

1
<C <|||XDbu %+ Mxaw Iz + XU||ﬁ+1>, (3.22)
for every ¢ > 0. Similarly, from (I6), there exists C' > 0 such that
~ (1
(TZ2... Zksr(xu), Z2- . Zisa(xu))| < C (g Il xae 1% +e I XU|||i+1), (3.23)

for every € > 0. From B20), 322) and (323), we conclude that BI7) holds for
s = k by applying [BI7) for s < k for the term || Zs ... Zp+1(xw)||? in (B20). The
theorem follows. O

From Corollary B.5 and Theorem we get:
Theorem 3.7. For every s € N, there is Cs > 0 such that for any u € €< (X)%,
IxullZer < Cs(lxaBuull? + xaul?), (3.24)

where x, x1 € 65°(D) are as in (3.0).

3.2. Closed range property for the G-invariant Kohn Laplacian

In this section, we will work in the setting of Assumption [[J(i). Under these
hypotheses we prove subelliptic estimates, regularity and the closed range in L?
property for the G-invariant Kohn Laplacian.

. lt . .
~ Let 0,:Domd, C Lf, . ,\(X) — Lf, (X) be the HllEert_i,pace adjoint of
Op in (ZI2) with respect to (-, -) in ([ZII)). The operators Jp, 0, commute with
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G-action, thus we can define gb,g and 525 with
Dom 8, ¢ := Dom 9, N L?O,q) (X)€%, Dom 9, ; := Dom d;, N L%07q+1)(X)G,
(3.25)

and EZ)G :Domgz)c — L%O,q) (X)% is the Hilbert space adjoint of dp . Let Dg‘%
denote the (Gaffney extension) of the G-invariant Kohn Laplacian given by

Dom Dg‘% ={ue L%Qq)(X)G :u € Dom 0y ¢ N Domgzﬁ,

Op,cu € Domgz,G, EZ,GU € Domdy g}, (3.26)
Dz(;%u = gb,ggzﬁu + EZ,GEI,,Gu for u € Dom Dl(fé.

Lemma 3.8. Let u€ Domgb,gﬁL?O o (X)G. Then Oy qu€ Domdy g and 552,@
u=0.

Proof. By Friedrichs’ lemma [IT, Appendix D], there is a sequence {u;}72; C
Q%9(X)¢ such that u; — u in L q)(X)G as j — oo and Opcu; — Opcu in
L%O qul)(X)G as j — o0o. Let v € Q%9+2(X)%. We have

(gb,gu, 52,01)) = lim (gb,guj , 5:,6‘”) = lim (5Z,Guj ,v)=0. (3.27)
j—o0 j—o0
Hence, gb,gu S Domgbg and gi)cu =0. O

Lemma 3.9. The operator Dg‘%: Dom Dé‘% C L%

0.) (X)& — L?O,q) (X)E s closed.

Proof. Let {(fi, 0% fi) € L2, ,(X)¢ x L% (X)¥: f € Dom O, }32 | with

Jim fi=f,  lim OV fu = h in L% ) (X)C. (3.28)
By definition, to check that Dg% is a closed operator, we need to show that f €
Dom Dé‘% and Dg‘%f = h. Since f; € Dom Dé‘%, for each k, we have

195 (i — Fl® < 119h.c(f5 — Fll® + 100 (f; — fi)ll?
= (O (5 — fu) s f5 = ). (3.29)

From (B328) and (29), {5;Gfk}z°:1 is a Cauchy sequence in L% hence
limy—o0 By ¢ fi = hy in L?) 41y (X)€, for some hy € L, _,)(X)C.
Let v € Dom 0y, N L%O,qfl)(X)G. We have

(f,Ohcv)= klggo(fk , Ob,gv) = klin;o(5z,cfk, v)=(hi,v). (3.30)
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Hence, f € DomEZ,G and gzﬁf = limg 00 gz,cfk. Similarly, we can repeat the
procedure above and show that f € Dom gb,g and gb,gf = limg_, gb,gfk.
Now, we show that Jp ¢ f € Dom EZ,G. From Lemma 3.8 we know that

(5Z)G 0o, Op.c EZ,G'U) =0, for every u,v € Dom Dg%. (3.31)
From ([B31]), we have
1356 o (fs = Fl? + 1966 Dy (f5 = f)II> = IT55(F = f)lI2. (3:32)

From @B28), 332, {gz,Gﬁb,ij};?‘;l is a Cauchy sequence in L? hence

limg— 0o 52,G5b,cfk = hy in L%O)q)(X)G, for some hy € L%O)q)(X)G and thus,

Ohaf € Domgz,c and EZ,G O f = limp— oo EZ)G Ob,: fi- Similarly, we can repeat
the process above and show that

yaf €Domdyg, a0, cf = lim 8,60, ¢ fi- (3.33)
Hence, f € Dom Dl(fé and Dl(;%f = limg_ 0o Dé%fk = h. The lemma follows. |

Since the dimension of X is greater or equal to five, we can repeat Kohn’s
method [32] (see also the proof of [II, Theorem 8.3.5]) and deduce the following
subelliptic estimates:

Theorem 3.10. Under Assumption[LINi), let n,n € €°°(X) such that n = 1 near
Y, n1 = 1 near suppn and the Levi form is positive near suppn;. Then for every
s € N there is Cs > 0 such that for any u € Q%(X),

1
lmall2 1 < ColllmOEull? + lmyull?), (3.34)
Repeating the proof of Theorem 3.7 with minor changes we get:

Theorem 3.11. Let v,y € €°°(X) with v, = 1 near supp~y and suppy; NY = 0.
For every s € N, there exists Cs > 0 such that for any u € Q01 (X)C,

1
IvllZss < Cu(ImOpgull2 + raul?). (3.35)
From Theorems B.10] [3.11] and by using a partition of unity we obtain:

Theorem 3.12. Assume that Assumption[I(i) holds. Then for every s € N and
every v,v1 € €°°(X) with 1 = 1 near supp~y, there is Cs > 0 such that for any
u € QO (X)E,

Ivall? s < Ca(ImOpgul2 + raul?). (3.36)

For every s € Z, let H, (X)€ be the completion of 2%9(X) with respect to
Il - ||s- From Theorem BI2] we can repeat the technique of elliptic regularization
(see the proof of [IIl Theorem 8.4.2]) and conclude:
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Theorem 3.13. Under Assumption[[I|i) let u € Dom Dg% and let U be an open
set of X. Let Dé éu =ve€ L(o 1)(X)G. If v|y is smooth, then uly is smooth.
Let 7,71 € €(X)% with 7y = 1 near supp7. If v € H(SOJ)(X)G, for some

s € N, then Tu € H(SH) (X)€ and there is Cy > 0 independent of u, v, such that

Irullsss < Collln Ty dulls + rulls). (3.37)

Theorem 3.14. If Assumption[[INi) holds, then the operator Dl(),%: Dom Dl(),% C
L%O’l)(X) — L?O (X )¢ has closed range.
Proof. We claim that there is ¢ > 0 such that

|05 &l > cllull, for all u € Dom Of'%, w L Ker O\, (3.38)
Suppose that the claim is not true. We can find u; € Dom Dg%, u; L Ker Dg%,
|luj]l =1, j =1,2,..., such that

1 1 )
D5l < Sl G =12 (3.39)

From Theorem BI3] (3:39) and Rellich’s lemma in functional analysis, we can find
{Js}221 CN, 1 <ji <jo<...,lims o js = 00, such that lim,_, |lu;, —ul =0,
for some v € L%OJ)(X)G. It is obvious that [ju|| = 1 and v L Ker Dé%. Let g €
Dom dy ¢ () L2(X)%. We have

[(u,0p,cg)| = lim |(uj,,dp,c9)| = lim |(9, cuj,,9)|
§—00 §—00
- ) (1) 1 . 1
< i B gu. ol < Jum 108213 1ol < tim ——lgl =0,
S

Hence, u € Dom 8b ¢ and 31; cu=0.Let f e L(o o (X )¢. We have
(0.3 )] = lim |(uy, By o) = Jim (B, )]

§— 00

. 1
< Jim 3 6o, 171 < Y |00 12171 < Jim ——] 1] = 0.

Hence, u € Domabg and 8b cu = 0. We have proved that u € Ker D(l) But

u 1 Ker Dé)é, we get a contradiction. The claim [B38)) follows. From [338), we get
the lemma. O

.
Let N L%O 1
S(l L%O 1)(X) — Ker Dé% be the Szegb projection, i.e. the orthogonal projection

onto Ker Dl(;,é: with respect to (-, -). We have

(X)¢ — Dom Dg% be the partial inverse of Dé% and let

1 1 1
OYUNG) +88) =1 on L2, (X)C,
(3.40)
NFO + S8 =1 on Dom O}
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From Theorem [B.13] we deduce:

Theorem 3.15. Assume that Assumption [LIi) holds. Then for every s € Z we
can extend Nél) to a continuous operator Nél) :H(SOJ)(X) — H(SO‘T) (X). Moreover,
Ker Dé% is a finite-dimensional subspace of QU1 (X)<.
Let
P L2, (X)) — LY, ) (X)C, (3.41)

be the orthogonal projection with respect to (-, -). It is not difficult to see that for
every s € Z we can extend 7381) to Hp, (X) and P(q) H, (X)) — Hp, )(X)G is

continuous. We extend Nél) and S(l) to H{, 1) (X) by
NG u = NSPOu, 8 u= 8P u, forue H, ) (X), seZ (3.42)

From Theorem we see that Scl is smoothing and
Ng) tHpq)(X) — H(S(fll) (X)¢ is continuous for every s € Z. (3.43)

Theorem 3.16. Under Assumption [LINi), let 7,71 € €<(X)¢ with suppT N
_ (1) . .
supp7i = 0. Then TNy 11 is smoothing.

Proof. Let 7,7 € ¥°°(X)% with 7 = 1 near supp 7, 7 = 1 near supp 7 and supp 7N
supp7; = 0. Let v € L(o 1)(X) and put TN( v =ue H(0 (X )¥. From (3.40),
we have

0§ u = O LFNG o
= ?DIE%N((;I)TW + [DZ(),%,?']NS)TW

= 7(I - 8&)ymv + [0, FING v

= 755 v + [0 bG»M]Nc;l)TIU (3.44)
Since Sg) is smoothing, 7?58)7'1’0 € €>(X)%. Since 7 = 1 near supp*,

?[Dg%, ﬂNél)Tlv = 0. From this observation, we deduce that
705 hu € € (X)C. (3.45)

Fix s € N. From @37) and @Z4), there exist Cy,Cs > 0 such that for any v €
L?O,l)(X)G, we have

1 N 1 N
TN r1ollsar = Irullser < Cs(1F08 %ulls + 7ull,)
< C.(]|—+8W *ND 3.46
< G|l - #SProlls + IFNG r10]l,)- (3.46)

Take s = 1 in (346), from Theorem BTH and note that S(Gl ) s smoothing, we
conclude that ||TNé1)T1UH2 < C||v||. We have proved that for any v,v; € €>(X)“
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with supp~ Nsuppy1 = 0, we have
NG L2 1 (X)E — HE, 1) (X)C is continuous. (3.47)

Take s = 2 in [B44), from B4T) and note that 5’8 ) is smoothing, we conclude
that there exists C' > 0 such that for any v € L%O 1)(X)G, HTN((;1)7'1U||3 < C|vl|.
Continuing in this way, we conclude that for any v,v; € €°°(X)¢ with supp~y N
suppy1 = 0, we have

'yNél)'yl :L?O,l)(X)G — H(SOJ)(X)G is continuous, for every s € N*.  (3.48)
By taking adjoint in ([348), we deduce that for any v,v; € €>°(X)% with supp~y N
suppy1 = 0, we have

’yNél)m :H(le)(X)G — L?O,l)(X)G is continuous, for every s € N*.  (3.49)

Now, let v € H% (X)C, 59 € N*, and put FNG r1v = u € H)™ (X). Let

€ Q"N(X)Y, j=1,2,..., with v; — v in H: 1)(X)G as j — oo. Taking s =0
in (B46), we deduce from ([B49) and the fact that Sg ) is smoothing that there

exists C' > 0 such that for any h € L(o 1)(X)G,
IrNS 7ih|y < ClA) - (3.50)
From ([B320), we have
lim [[rNG (v — )1 < Clluj — vkl|—so = 0. (3.51)

7,k—o00
From ([B351]), we see that {TN((;«l)Tl’Uj }j>1 is a Cauchy sequence in H(1071)(X)G. Since
TN((;)Tﬂ}J — TN((;)Tﬂ} in H(OS{’)H(X)G as j — oo (see Theorem BIH), we deduce
that TNé ) e H(0,1)<X) and ||TNé1)T11}||1 < C||v||-s,- We have proved that for
any v,71 € €°(X)¢ with
suppy Nsuppy1 = 0,

we have

VNG 1 Hg (X)) — Hi 1) (X)¢ is continuous. (3.52)

Again, take s = 1 in (346) , from [B.52) and note that Sg) is smoothing, we
conclude that there exists C' > 0 such that for any h € L%O 1)(X)G,

IrNS 1hllz < Ol s, (3.53)

From B353), we can repeat the argument above and deduce that TN((;I)Tlv €
H(20 1)(X)G and HTNg)TlvHQ < C|v||=s,- Continuing in this way, we conclude that
for any v,y € €>(X)% with supp~y Nsuppy; = 0}, we have

’yNg)'yl tHo™) (X)¢ — H(SOJ)(X)G is continuous, for every s € N.  (3.54)

The theorem follows. O
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We return to the case of functions. As before, let Sg: L*(X) — Ker D{()og =
HP(X)® be the G-invariant Szegé projection. In view of Theorem [B.I4] we can
repeat the proof of [27, Proposition 6.15, p. 56] and deduce the following.

Theorem 3.17. Under Assumption [[Ii) the operator Dz(;%: Dom Dl(;% C
L?(X)% — L2(X)Y has closed range and

Se =PY — 8, «NY 8P on L3(X). (3.55)

Theorem 3.18. Let 7,71 € €°°(X)¢ with suppT Nsuppr = 0. If Assump-
tion [LINi) holds, then TSgm is smoothing.

Proof. By (341 and (B55) we have
_ _-aF Mz __ 7 =75
78aT1 = —T0, oN¢ ' ObcT1 = —T0, oTNG T10b,6T1, (3.56)
where 7,7 € €°(X)Y with 7 = 1 near supp7, 71 = 1 near suppTy, supp7 N

supp 71 = 0. In view of Theorem [3.16, we see that ?Nél)ﬂ is smoothing. From this
observation and (3.56]), the theorem follows. O

Let dpu = dpu(h) be the Haar measure on G with [, du(h) = 1. We also need the
following:

Theorem 3.19. Under Assumption [LINi) there exists co > 0 such that for any
A € (0, ¢cp) such that

Sa(z,y) :/ Scx(z,hy)du(h) on X x X,
G
where S<x is the spectral projection given by (2.49).

Proof. Since Dz(;%: Dom Dz(;% C L*(X)% — L2(X)Y has closed range, we can
define the partial inverse

NS L2(X)€ — DomO}%.

of D{()og as follows: Let u € L?(X)%. Since Im D{()og is closed in L?(X)%, we have
the orthogonal decomposition

u=uvg+vy, Vg€ Ing%, v; L ImDZ()%.

There is a unique 8 € Dom IZIZ()%7 8 L Ker Dg%, such that Dg%ﬁ = vg. Define
N((;O)u := (3. Since Dl(;% is self-adjoint, v; € Ker Dz(;%- Thus, we have the Hodge
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decomposition:
O LNE + Sg = I on L*(X)C,
NSO + Se =1 on Dom O, .
Then, Néo) : L2(X)% — Dom Dl(;% is a linear operator. We claim that
Néo) :L?(X)Y — Dom Dl(;% is a closed operator. (3.57)
Let {(fr, N fi) € L2(X)C x L*(X)% : k € N}, with limj o fi = f in L?(X)
and lirnkﬁOo Néo)fk = hin L?*(X)%. For every k € N, write
fo =00k + & gr € DomO ), g LKerDy%, & LImO%.  (3.58)
From (58) and the definition of N(O), we see that
N £ = g, lim gp=h in L2(X)C. (3.59)

Since {fx}32, is a Cauchy sequence, {Dé%gk}zozl and {&}72, are Cauchy
sequences. Hence,

Jim Oy b = 1, lim & =¢ in L2(X)C, (3.60)
for some 7, ¢ € L?(X)%, ¢ L Im Dl()%, and we have the orthogonal decomposition
f=n+¢& (3.61)
From [B59) and B60), we see that (gk,Dl(,Oégk) — (h,n) in L?(X)% x L*(X)¢
as k — oo. Since Dgé is a closed operator, we conclude that 2~ € Dom IZIZ()%7 h L
Ker Dl()%, and Dé%h = 1. From this observation and (B.61]), we get the orthogonal
decomposition

th+§

and hence Néo) f = h. The claim (B357) follows.
Since Néo) is a closed operator defined on the Banach space L?(X)Y, by the

closed graph theorem, Néo) is a continuous operator. Hence, there is ¢y > 0 such
that

1
INE'8I < 8], for every 5 € L2(X)“. (3.62)

Let 5 = D u in (B:62), where u € DomDéé, u L KerDéé, we get

||D§Oéu|\ > collul|, for every u € Dom Déoé, u 1 Ker D(O) (3.63)
Fix 0 < A < ¢p. We claim that with the notation (41, we have
Sg=S<xoPY on L2(X). (3.64)

If the claim is not true, we can find a u € H ,(X) N L?*(X) with u L Ker Déoé,
[ul = 1, where Hy_\(X) is given by (Z48). Since u € Hy _,(X), we have
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||D§Oéu|\ < AMul|l < collu||. From this observation and (B.63) we get a contradic-
tion. The claim ([B3.64) follows and this yields the theorem. |

3.3. G-invariant Szegb kernel asymptotics away Y

Let Sg(x,y) € 2'(X x X) be the distribution kernel of S¢. For any subset A of X,
put GA:={g-z:x € A, g € G}.

Theorem 3.20. Under Assumption[l] let T € €°°(X) with suppTNY = 0. Then
7Sq and SgT are smoothing operators.

Proof. First we work under Assumption [[LT[i) as in the previous section. Let
v € L?(X). Take v; € €°°(X), j € N*, such that ||v; —v|| — 0 as j — oo. We have
|Sqv; — Sav|| — 0 as j — co. By (B43) and (3.53]), we see that

Squ; € € (X), for every j € N*. (3.65)

For every j, put u; := Sgv;. By Corollary BH and (I7), it is straightforward to
see that for every s € N there exists Cs > 0 such that for x in ([B.6]),

lIxujlls < Cs, for every j € N*. (3.66)
From (3.60) we deduce that xySgv € H?(X) for every s € N and
xSg: L*(X) — H*(X) is continuous, for every s € N. (3.67)

By using a partition of unity we conclude that for any 7,73 € €°(X)Y with
suppT NY =0, suppm NY =0, we have

7S¢ : L*(X) — H*(X) is continuous, for every s € N (3.68)
and hence
Sgm : H *(X) — L*(X) is continuous, for every s € N. (3.69)
From ([B.68) and ([3.69), we conclude that

7Sam = (7Sg) o (Sgm): H *(X) — H*(X) is continuous, for every s € N,
(3.70)
and hence 75g7 is smoothing.
Since G acts on Y, it is not difficult to see that there is a small neighborhood

W of Y such that supp7 NGW = 0. Let 49,71 € €°(X)9 NG (GW) with 79 = 1
near suppyi1, y1 = 1 near Y. For i = 0,1, put 7; := 1 —~;; then 7; € €>°(X) with
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supp7; N'Y = (). Moreover, it is straightforward to check that
7o =1 on supp7, supp7oNsupp(l —7)=10. (3.71)
From (B.71) follows
7S¢ = 1710S¢ = 110861 + TT0SG(1 — ). (3.72)
By BX0) 79S¢ is smoothing. In view of Theorem B.I8 and (B71]), we see that
77056 (1 — 71) is smoothing. (3.73)

From [B72)) and B.73]), we get that 7S¢ is smoothing and hence S¢7 is smoothing.

Let us now work under the Assumption [L1[(ii). By [8], [30, Theorem 1.14] the
Szego projector S is a Fourier integral operator with complex phase on X. We have
Sg=8o P(GO ). Since S , P(GO ) map smooth functions to smooth functions, S maps
smooth functions to smooth functions. Thus, (3.63]) still holds. Now,

T105¢(1 — 71) = 7705 © 77((;0)(1 —71)=71105(1 —T11)0 ((;0). (3.74)

Since S is smoothing away the diagonal, 7795 o (1 — 71) is smoothing. From this
observation and B4, we conclude that 779S¢ (1 — 71) is smoothing. Thus, (3773)
still holds. Since (B:65) and (B73) hold so by repeating the proof above we conclude
also in this case. O

3.4. G-invariant Szegé kernel asymptotics near Y

In this section, X has arbitrary dimension > 3. We first recall the definition of
the Hormander symbol spaces. Let D C X be a local coordinate patch with local
coordinates x = (x1,...,Zan11)-

Definition 3.21. For m € R, S7%(D x D x Ry ) is the space of all a(z,y,t) €
(D x D x Ry) such that, for all compact K € D x D and all a, 3 € N>"*1
v € N, there exists Cy 3,4 > 0 such that
|8§858?a(w,y,t)| < Cop 1+, (z,y,t) e K xRy, t>1.
Put
S™D x D xRy) = [ Si%(D x D xRy).
meR
Let a; € STS(D x D xRy),7=0,1,2,... with m; \, —o0, as j — co. Then there
exists a € S7( (D x D x Ry ) unique modulo S™°°, such that
k—1
a—> a; € S/%(Dx DxRy) foralkeN
j=0

If a and a; have the properties above, we write a ~ Z;io aj in (D x D xRy).
We write

s(z,y,t) € ST (D x D x Ry) (3.75)
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if s(x,y,t) € S7%(D x D x Ry) and
s(z,y,t) ~ sj(x,y)tmfj in S{?O(D x D xRy),
j=0 (3.76)

sj(z,y) € € (D x D), for any j € N.

Let W7 ¢ RM, Wy € RY2 be open sets. We can also define S{’fO(Wl x Wa x Ry),
SH (Wi x Wa x Ry ) and asymptotic sum in the similar way.

By Theorem [Z9] (cf. [30, Theorem 1.5]) the spectral projector S<y is for every
A > 0 a complex Fourier integral operator on the subset where the Levi form is
positive definite. We give here a detailed description of the spectral kernel.

Theorem 3.22 ([30, Theorem 4.7]). Fiz A > 0. Let D C X be a local coordinate
patch with local coordinates © = (x1,...,22n41). Assume that the Levi form of X
1s positive definite at every point of D. Then,

Saa(z,y) = / ei“’(x’y)ts(x,y,t)dt on D x D,
0
with a symbol s(z,y,t) € SH(D x D x Ry) such that the coefficient sy of the
expansion (B0 is given by
1
so(z,x) = §7r_"_1|det Zyl, weD, (3.77)

where det %, is the determinant of the Levi form, see (ZI0), and the phase function
@ satisfies
p €E®(D x D), Ime(x,y) >0,
p(z,2) =0, @(z,y)#0 ifx#y, (3.78)
dep(2,Y)la=y = —dy (2, Y)lo=y = AM@)wo(2),  A(z) >0,
p(2,y) = =2y, ).
Moreover, let X' := {x € X : the Levi form is non-degenerate at x}. Then, S<x

is smoothing away the diagonal on X' x X'.

Remark 3.23. With the same notations used in Theorem [3.22] let

Ay = {(z, tdyp,y,tdyp) € T*D x T*D : p(x,y) = 0,t > 0}.
From ([B.78), we see that

Ay = {(z, \wo(2), 2, —Awo(x)) € T*D x T*D:2x € D, X > 0}.
Hence, the canonical relation Cy, of S<) is given by

Cy = {(z, \wo(z),z, Ao (2)) € T*"D x T*D:x € D, > 0}.

The following result describes the phase function in local coordinates (see [27]
Chap. 8 of part I]). For a given point p € D, let {W;}]_; be an orthonormal frame
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of T"9X in a neighborhood of p such that the Levi form is diagonal at p, i.e.
LYW, W) = 685115, 5,8 =1,...,n, where 6, , = 1if j = s, §; s = 0 if j # 5. We
take local coordinates x = (x1,. .., x2,+1) defined on some neighborhood of p such
that wo(p) = —dzan41, ©(p) = 0 and

_— 9
I 3_«% % 3I2n+1 Ci¥an+1 3$2n+1
2n o
, — 2 -
+kz_1a],k(x)axk +0(z]?), j=1,....n, (3.79)

where z; = x9j_1 + ix2j, ¢; € C, a;k(x) is €°°, a;jx(x) = O(|z|), for every j =
L..oon, k=1,....2n.Set y = (Y1, .., Y2n+1), Wj = Y2j-1 + Y25, j = 1,...,n.
Theorem 3.24. With the same notations and assumptions used in Theorem [B.22)

we have for the phase function ¢ in some neighborhood of (0,0),
2n

Im o(z,y) > cZ|xj —yil%, e>0, (3.80)
j=1

n
(7, y) = —Tant1 + Yant1 + 1 Z|uj||zj —w;j|?

j=1
+y (Wj (Zjw; — 2W;) + ¢; (=2 Tant1 + WjY2nt1)
=1
+¢j(—Zjwant1 + @jy2n+1)) + (T2n+1 — Yont1) f (2, )
+0(|(z,y)), (3.81)

where f is smooth and satisfies f(0,0) = 0, f(x,y) = f(y,z). Moreover, we can
take the phase ¢ so that

Opxp(,y) vanishes to infinite order at x = y. (3.82)

Furthermore, for any p1(x,y) € €°°(D x D), if p1 satisfies B18), B.30), BT
and [B.82), then there is a function h(z,y) € €<(D x D) with h(xz,z) # 0, for
every x € D, such that ¢(z,y) — h(z,y)e1(x,y) vanishes to infinite order at x = y.

For the next result we recall that the map R, and the function V.g were defined
in (II8) and (TI9). We denote by Aj(x),...,A,(x) the eigenvalues of R, with
respect to the G-invariant Hermitian metric g and we define the determinant of
R. by

det R, = Nj(z) ... \j(2). (3.83)
Theorem 3.25. Under the assumptions of Theorem [L2 let p € Y, let U be an

open neighborhood of p and let ¥ = (x1,...,Z2n41) be local coordinates defined in
U. Then,

Sa(z,y) E/ @z gy t)dt  on U x U (3.84)
0
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4
with a symbol a(z,y,t) € S}, *(U x U x Ry) such that the coefficient ag in its
expansion (B0l satisfies

1
Verr ()
and the phase function ® satisfies

O(x,y) € €U xU), Im®P(x,y) >0,

ao(z, ) T | det Ry 2|det L], z€UNY,  (3.85)

(3.86)
de®(z,2) = —dy®(x,x) = Mx)wo(z), Mz) >0, zeUNY.

Moreover, there exists C > 1 such that for all (x,y) € U x U,
|®(z,y)| + Im ®(z,y) < C(inf {d*(g-2,y): g € G} +d*(2,Y) + d*(y,Y)),

@ (2, y)| + Im &(z,y) > %(inf {d*(g-2,y):9 € G} + (2, Y) +d*(y,Y)), (3.87)

1
Cd*(x,Y) > Im ®(z,z) > adQ(x,Y), zeU,
and ®(x,y) satisfies 393), B94) and BIH) below.

Proof. If Assumption[I.T}i) holds, then by Theorem 320 we can localize the study
of the G-invariant Szegd kernel S¢ to Y and from Theorems[B.19and [3.22] we repeat
the proof of [28, Theorem 1.5] and conclude. If Assumption [[I{ii) holds, we know
by [8], [30, Theorem 1.14] that the Szegd projector S is a Fourier integral operator
with complex phase on X. Repeating the argument from [28, Theorem 1.5] we
conclude. O
Remark 3.26. With the same notations used in Theorem [3.25] let
Ao = {(z,td; D, y,td,®) e T*"X x T*X : ®(x,y) = 0,t > 0}.

From (B.817), we see that

Ao = {(z, \wo(2),9 -, —dwo(2)) e T"X xT*X:z €Y,g € G,\ > 0}.
Hence, the canonical relation Cg of S¢ is given by

Co = {(x, \wo(z),9 -2, wp(2)) e T* X xT*X:x €Y,g€ G,\> 0}

As applications of Theorems [BI8 B.20 and B.25, we establish the following
regularity property for Sg.

Theorem 3.27. Under the assumptions of Theorem [L.2 we have
Sq: € (X) — HY(X)° NE>(X).
In particular, HY(X)% N&>(X) is dense in HY(X)C.

Proof. Let U be an open coordinate patch of X and let u € 65°(U). f UNY = 0,
we see in view of Theorem B.20 that Sgu € €°°(X). Assume now U NY # (). By
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Theorem [3:23] S is a Fourier integral operator with complex phase on U and hence
Scu € €°°(U). We only need to show that Sgu is smooth outside U. Let xg ¢ U.
If 2y ¢ Y, by Theorem B.20 again we deduce that Sgu is smooth near xy. Now, we
suppose that zg € Y.

Case I: GzoNU = . We can find 7,7y € €°°(X)% with supp7Nsuppr =0, 7= 1
near xg, 71 = 1 near suppu. We have 7Squ = 7Sgmu. In view of Theorem
under Assumption [[LT}i) or by the fact that S¢ is a Fourier integral operator under
Assumption [[TI(ii), we see that 7557 is smoothing and we deduce that TSgmu €
¢ (X). In particular, Sgu is smooth near x.

Case Il: Gxo NU # ). There is a § € G such that §-x¢ € U. Since Sgu € €°°(U),
Sgu is smooth near § - zg. Since Sgu is G-invariant, Sgu is smooth near zg.

We have thus proved that Sgu € €°°(X). By using a partition of unity we
conclude. O

Let eg be the identity element in G. Fix p € Y. It was shown in [28, Theorem 3.6]

that there exist local coordinates v = (vy, ..., v4) on G defined in a neighborhood V/
of eg with v(eg) = (0,...,0) (until further notice, we will identify the element h € V/
with v(h)), local coordinates = (x1,...,22,41) of X defined in a neighborhood

U = Uy x Uy of p with 0 « p, where U; C R? is a neighborhood of 0 € RY,
Uy C R?"*1=4 i5 an open neighborhood of 0 € R?"+1=¢ and a smooth function
¥ =(1,...,72) € €F(Us,Uy) with 4(0) = 0 € R? such that for (v1,...,v4) € V,
(xd+1, . ,I2n+1) € Us,

(V1,5 0a)-(V(@a41, - T2nt1), Tdt1, - - -5 T2n41)
= (V1 + 71 (Tat15- -5 T2n41)s -+ -5 Va T Ya(Ta+1, - T2n41), Tdt1s - - -5 T2ng1),
0 0
YNnU = =...= =0 = spa — e, —
{xd+1 T2d }7 g pan {axlv ,6$d }7
0 0 0
J|\z— )= +a , onYNU,forl1l<j<d,
(8@) a$d+j j( )8$2n+1
(3.88)
where a;(z) are smooth functions on Y N U, independent of z1,..., %24, Tont1,

a;(0) = 0, and T°X = span{Zi,..., Z,} with

0 0
— == forj=1,...,d
(aIJ ZaId+j) (p)’ or j ) ) Wy

1

2

1/ 8 . d _ (3.89)
Zj:§ i (p), forj=d+1,...,n,

)

<Zj7Zk>g: 7,k jp(zjv7k)::uj5j,k7 for j,k:1,2,...,’ﬂ,
d n
—wo(z) = (14 O(|z]))dzan i1 + Y Apjzayjde; + Y 2pmeida;
=1 j=d+1
n 2n
— Z 2/Lj$2j_1dl'2j + Z bj.’L'gn_Hd,Tj +O(|!E|2), (390)
j=d+1 j=d+1
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where bg41,...,b2, € R. Put

i (:Bd+1, R $2n+1), o (:Bd+1, - ,xgd), 3 = (.’L’d+1, - ,:L‘gn). (3.91)

Theorem 3.28 (|28, Theorem 1.11]). The phase function ®(x,y) appearing in
the expression of the Szegd kernel (B34)), B80)) is independent of (x1,...,2x4) and
(ylv s 7yd)' HETLC@,

B(r,y) = B((0,2"), (0,4)) = Ba", ). (3.92)
Moreover, there exists ¢ > 0 such that
Im®(z",y") > (2" * + [§"]* + 2" = §"[*),  for (0,2"),(0,9") €U,  (3.93)
and there exists a smooth function g(z,y) € €°°(U x U, T**1X) such that
O ®(2",y") — g(z,y)®(z",y") vanishes to
infinite order on diag((Y NU) x (Y NU)), (3.94)
and with the same pij,bgi1, ..., ban € R as in (B90) we have

d d
(2",y") = —Tant1 + Y2nt1 + 27;Z|Mj|y§+j + 2752|Hj|$§+j
j=1 j=1
n n
i Y il —wiP+ > ip(Ew — 24;)
j=d+1 j=d+1

+

d
j=

(=basjTayiTant1 + bayYdtjY2ni1)
1

n 1 '
+ Z 5 (b2j—1 = ib2;) (= 2jT2n41 + WjYan+1)

Jj=d+1
"1 _ _ _
+ Z §(b2j71 +ib2;)(—ZjT2n41 + WjY2nt1)
j=d+1
+ (_$2’ﬂ+1 + y2n+1)f(x”7 yll) + O(|(,’B”, y”)|3)7 (3'95)
where zj = X951 + T2, Wj = Yaj—1 + Y25, for j =d+1,...,n, and f(z",y") €

€>°(U x U) with f(0,0) =0.

Remark 3.29. The phase function ®(z”,y”) is not unique. For example, we can
replace ®(z”,y") by ®(z”,y")r(z",y"), where r(z”,y") € €>°(U x U), r(0,0) = 1.
In [28, Theorem 5.2], the first author and Huang characterized the phase ®. Since
Oys, 1 ®(0,0) # 0, the Malgrange preparation theorem [26, Theorem 7.57] implies
that

@(x",y”) _ g(fc”,y”)(yzn+1 + (/I\)(CL'”,@”))
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in some neighborhood of (0,0), where g(z”,y"), ®(2", ") € €=U x U). We can
replace ®(z”,y"”) by yant+1 + ®(2”,3”). From now on, we assume that

(2", y") = yons1 + (", 5"), (",§") € €=U x U). (3.96)

Tt is straightforward to check that the phase ® (2", y") satisfies (3:80), (B.81), (3:93),
and

0p..®(2”,y") vanishes to infinite order at diag((Y NU) x (Y NU)) (3.97)

and with the same notations as in (.93 we have

d d

(2", y") = —w2pt1 + Yans1 + 2iZ|Hj|yc21+j + 2i2|ﬂj|x3+g‘
j=1 j=1

n

n
i wllz —wiP 4+ Y iy (Egws — 25;)

j=d+1 j=dt1
d

+ E (—bd+Td+jTan+1 + batjYd+jTan+1)
j=1

+ Z §(b2j—1 —ib2j)(—2jT2n41 + WiT2n41)
j=d+1

+ ‘al 5(()2]'_1 + szj)(—zj$2n+1 + wjx2n+1)
j=

+0((",5")I°). (3.98)

4. The Distribution Kernels of the Maps o and o*o

In this section, we will study the map o defined in (I20) and prove Theorem [[5
We assume throughout that dim X > 3 and 5;,, x has closed range in L?. The
case when dim X = 1 will be treated separately.

Let *: € (X) — €°°(Y) be the pull-back of the inclusion ¢:Y — X. Let
1g:E€<(Y)Y — ©€>(Xg) be the natural identification. Let Sx,:L?*(Xg) —
HY(X¢) be the orthogonal projection with respect to (-, - )x, (cf. Convention ZF]).
By Theorem and (CI7) (here we use that dy x, has closed range in L?), we
can extend o to €>°(X) by

o 6=(X) = HY(Xa) N 6™(Xq) C € (Xa), -
4.1
o=Sx,0FEouigo fcgoi oSq.

Let 0*: € (Xqg) — 2'(X) be the formal adjoint of 0. We will show in Theo-
rem [L12 that o * actually maps €' (X¢g) into HY(X)% N &> (X)C.
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In this section, we will study the distribution kernels of ¢ and o *o. We explain
briefly the role of the operator E in ([@Il). To prove our main result, we need to
show that o *c is “microlocally close” to Sg. In other words, we want o *o to be
a complex Fourier integral operator with the same phase, the same order and the
same leading symbol as Sg. To achieve this we need to take E to be a classical
elliptic pseudodifferential operator with principal symbol pg(z,£) = |€]~%*, see
also Remark

This section is organized as follows. In Sec. 1] we develop the calculus of
Fourier integral operators of G-Szeg6 type. In Sec. £.2] we study the distribution
kernels of ¢ and ¢*o and prove Theorem

4.1. Calculus of complex Fourier integral operators

Let p € Y and = (21,...,%2,41) be the local coordinates as in the discussion
before Theorem [B.2§ defined in an open neighborhood U of p. From now on, we
change Zo, 41 t0 Topi1 — Z;l:l a;(x)Tqs;, where a;(x) are as in (B.88). With this

new local coordinates x = (x1,...,22,+1) on Y NU we have
0 o0
J(—)z—, for j=1,2,....,d. (4.2)
8$j aId+j

Moreover, it is clear that ®(z, y)+2?:1 a;(z)rqs; 72?21 a;(y)yay; satisfies (3.98)).
Note that a;(x) is a smooth function on Y NU, independent of x1, ..., %24, Tant1
and a;(0) = 0, j = 1,...,d. We may assume that U = O x Qg x 3, where
Q1 Cc RY, Q, € R? are open neighborhoods of 0 € RY, Q3 ¢ R?"+1724 i5 an open
neighborhood of 0 € R2"*1=2¢_ From now on, we identify Qs with

{(0,...,0,2441,.-.,224,0,...,0) €U : (Tgq1,...,%24) € Qa},
Q3 with {(0, Ce ,O,$2d+1, Ce ,!E2n+1) eU: ($2d+1, Ce ,$2n+1) S 93}, Qs x Q3 with

{00,...,0,%a41, .-, Tany1) €U (Tat1, .-, T2n41) € Q2 X Q3}.

For = (z1,...,Tan41), We set
= (#1,...,%a),
= (Tas1,-- > Tant1), ¥ = (Tar1,...,T2n), (4.3)
= (Tdy1,- - T2d);, Z' = (T2a41,-- -, Tang1)-

From now on, we identify

x” with (0, . .,0,{Bd+1, R 7$2n+1) eU,
7 with (0,...,0,Zag1,- -, 224,0,...,0) € U, (4.4)
g” with (0,...,0,$2d+1,...,$2n+1) eU.
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Since G acts freely on Y, we take 25 and €23 small enough so that if z, 21 € Q9 x Q3
and x # x1, then

g-x#x, forallged. (4.5)

Recall that we take ® so that (3.90), (3.97), (398) hold. Put

O (x,y) := —0(y, x). (4.6)
From (B:EZI) and notice that for j =1,...,d, x € Y, we have % +igm; € To X
and ax O(z,y) = 62 ®*(z,y) = 0, we conclude that for j =1,....d,
0 *
®(z,y) and " (x,y)
0%y j Yd+j
Tg41=...=T24=0 Yd+1=-..=Y24=0
vanish to infinite order at diag((Y NU) x (Y NU)). (4.7)
Let
Gj (xv y) = 6yd+j o~ (x, y) |yd+1:~~:yzd:07
H (:L. y) axd+J ¢<$7 y)|wd+1:...:12d:0-
Put
d
Py (2, y) == 7( Z Ya+; G
- (4.8)
Dy(x,y) := P(z,y) — Z$d+J
Then for j =1,2,...,d,
0 0
él(xay) = @2(.’[,y) = Oa (49)
8yd+j aZEd+j
Yd+1=...=y24=0 Tqgt1=...=T24=0

and
®*(z,y) — ®1(z,y) vanishes to infinite order on diag((Y NU) x (Y NU)),

O(x,y) — Po(x,y) vanishes to infinite order on diag((Y NU) x (Y NU)).
(4.10)

We also write u = (u1, ..., u2,+1) to denote the local coordinates of U. For any
smooth function h € €< (U), let h € €°>°(U) be an almost analytic extension of
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h (see [45], Sec. 1]). Let ¥ be a local coordinate of R. Let
F(z,y,u u’ 19) (x u”)+19f1)2( ”,@) (4.11)
We consider the following two systems for 7 = 1,2,...,2n —2d + 1 and j = 1,

2,...,2n —d + 1, respectively,
OF —~
S5 @0, 0) = &) =0,
, , 5 (4.12)
Fo ~ (I ~ 0P ~
—— (@G0 0) = oo — (T ) + Ve (" 7) = 0,
8u2d+g 8y2d+] 8x2d+]
and
OF _ _ ~ ~ ~ ~
—5(%9»“//’19) = q)2<u”’m = 07
, o ’i, (4.13)
F ~ D, )
T ,u 0 ") + 9 ”, =0,
S . 770) = )+ T ()
where 17 = (0 0 ﬂ2d+1,.. 172,14_1) Aﬁ = (0 0 ﬁd+1,.. 172,14_1) Here we
always use a~ for ﬁrst variable, 6~ for second Varlable From B.396]) and (£9), we
can take <I>1 and <I>2 so that for every j =1,2,...,d,
>~ By~
001 T,u) = 02 (W) =0, iflgys=...=1sq=0, (4.14)

OYaj 0T ayj

and &1, &y € €°(UC x UC) such that
~ . = ~I —~ ~ - = ~ ~11
Q1(Z,Y) = —Zony1 + P1(Z ,y"), P2(Z,Y) = Yont1 + P2(2”,y ), (4.15)

~I!
o

~11 _ - -~ ~
where £ = (0,...,0,Zg41,...,%2,,0), 9 =(0,...,0,Yd4+1,---,Y2n,0).
By B380), [@0), (1) and z” € Y, we know that d,®(z,x),d,®(z, ) are real

forzxeY,and for j =1,2,...,2n —d,
(?,q)l g”,g”) _ ?6 (QN,QN) — 0P (2”,@”)
d+; OTa+j Ozay;
_ oo £/17£// _ 09, _// //)7
OYa+j OYd-+;

(?V(I)2 g",g" _’_&(xl/
3yd+j

Note that by B87), ®(z,z) =0 for € Y. Combining it with the above equation,
we get

z'") =0.

AN -2

O0Tqyj

_ 9%, (4.16)

0P
L@ 2" 4 I (" 2|5, =0, j=1,2,....2n—d,

0Yayj
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are non-singular. Moreover, from (303, we calculate

1
det [ —F5 = ) (0,0,0,1) =
¢ <2m' Ju >( )

1 2n—2
det | —F% —;
¢ (27ri O

) (0,0,0,1) =

2n—2d—2
T2n—2d+2 (Iparal. .-

mﬂﬂﬂ---

9°F
990
o (4.17)
32@7 (0,0,0,1)
9°F
PPy
825; (4.18)
02" (0,0,0,1)
l1n])?,
(4.19)
pal)(ptaral - - |pn])?.

Hence, near (p,p) and U = 1, we can solve [@1Z) and @I3) and the solutions are

unique. Let

QI — a<$7y) = (042d+1(55ay)» sy

x,y) € €U x U,C),

u' = ﬂ(zvy) = (ﬁd+1(zvy)7 v
9 =68(z,y) € €U x U,C)

aopt1(z,y)) € €°(U x U, (C2”72d+1),

(4.20)

752n+1(:E,y)) c Cg‘x’(U X U, ((:2rz—d-|-1)7

(4.21)

be the solutions of (£12) and (@I3), respectively. From [I4), it is easy to see that

B(x,y) = (Bari(x,y),. ..
( )0, a2d+1($€ y)
V(z,y) =d(z,y).

From (Z.22)), we see that the value of dy (z, u”) + 19<I>2(
a(z,y), J = v(x,y) is equal to the value of &, (z, u”) +19<I)2(
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u" = B(z,y), U = d(x,y). Put

s (x,y) = ®1(2, o, ) + (2, 9) P2 (0w, ), v)
= &1(z, B(2,9)) + 8(2, ) ®2(B(,9), ). (4.23)
Then ®3(z,y) is a complex phase function, Im ®3(z,y) > 0 and Pz(x,y) =

Os(z”,y"). It is easy to check that
dy®3(x,x) = —dyPs(z,z) = dyO(z, x)
= —dy®(z,z) = —Nz)wo(z), Az)>0, forzeUNY. (4.24)
From now on we take U small enough so that the Levi form is positive on U and
de®s3(x,y) #0, dyPs(z,y) #0, forevery (z,y) eU xU (4.25)

and ap(x,y) # 0, for every (x,y) € U x U, where ag(x,y) € €U x U) is as
in (3.39).

Fix an open neighborhood U € U of p with (A)g X (A)g, C U, where (A)g € Ny C RYis
an open neighborhood of 0 € R? and (A)g, € Q3 C R?"*+1=2d j5 an open neighborhood
of 0 € R2n+1-2d,

Theorem 4.1. The phase functions ® and ®3 are equivalent on U, that is, for any
d
3

b € SZ_%(Z/{ x U x R, there exist by, by € ST (U x U x Ry) such that

/ ei‘b(m’y)tbl(x,y,t)dt E/ ei%(m’y)tbg(gﬂ,y,t)dt onU XU,
0 0 (4.26)

/ 2@ (&, y, t)dt E/ L@V (2 y t)dt  on U X U.

0 0

Proof. We consider the kernel (S¢ o Sg)(+,-) on U. Let U € Uy € U be open

neighborhoods of p. Let x(z”) € €5°(Q2 x Q3). By [@3) we can extend x(z”) to
Wi={g-x:9€G, zeyxQs}

by x(g-2") := x(a”), for every g € G. Assume that y = 1 on some neighborhood
of Uy. Let x1 € €5°(U) with x; = 1 on some neighborhood of U; and supp x1 C
{z € X : x(x) =1}. We have

x15¢ o Sa = x15a¢x © Sa + x19¢(1 — x) o Sa. (4.27)
Let us first consider x15¢(1 — x) o S¢. We have

(v1Sa(l — )@ w) = x1(x) /G Sero(,g - u)(1 — x(u))du(g)

- () /G Serg(z,u)(1— x(g" - w)dulg),  (4.28)

where \g > 0 is a small constant as in TheoremBIA If g~'-u ¢ {z € X : x(x) = 1},
since supp x1 C {x € X :x(x) =1} and x(z) = x(g9- ), for every g € G, z € X, we
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conclude that u ¢ supp x1. From this observation and since that S<), is smoothing
away the diagonal on GU (see Theorem B.22), we deduce that x1Sc(1 — x) is
smoothing and hence

X15¢(1—x)oSec =0 on X x X. (4.29)
From ([@27) and ([£29), we get
X15¢ 0 Sg = x1SgxoSg on X x X. (4.30)

From Theorem [3.25] and using that S¢. = Sq, where S¢ is the adjoint of Sg with
respect to (-, -), we obtain that on U,

(x1Sax ° 5¢)(x,y)

/ / / z<1> (z,u/" ) t+i®(u', y)s ( ) (.’,E”, U”, t)‘/cﬁ (ul/)
Qo x Q3

x x(uMa(u”,y", s)dsdtdv(u)

o0 o0 . 1" . "
= / / / €z<1>1(w,u Vt+iPa(u ,y)le(:L,)b(x? u/l7 t)
QoxN3 JO 0

x x(u")e(u”y, s)dsdtdv(u”)  (here we used ([I0))

o0 o0
_ / / / (@1 ()0 () D)t
QaxQ3 JO 0

x x1(x)b(z,u”, t)x (u")e(u”, y, t9)tdddtdv(u"), (4.31)
where s = ¥t, du(g)dv(v”) = dv(z) on U, a* (2", u",t) = a(u”’, 2", t) and
d
b(z,y,t), c(z,y,t) € Sy 2 (U x U x Ry),
(2.0, 0el0,) € S5 » )
bo(z,x) # 0, co(m,x) #0, for any z € UNY (cf. Notation [B70)).

We apply the complex stationary phase formula of Melin—Sjostrand [45] to
carry out the dv(u”)d¥ integration in (£3T]). This yields the existence of a symbol

d(z,y,t) € S:l_% (U x U xRy) with the expansion d(z,y,t) ~ 3277 =2 -id;(z, y)
in S7'6% (U x U x Ry) (cf. [@T8)) with do(x,2) #0 for € UNY and

(x1Sax o Se)(x,y) = / e @t (g y t)dt on U x U. (4.33)

0

From ([@30), (£33), we deduce that
/ e P @W (g gy t)dt = / @V (2)a(z,y, t)dt on U x U. (4.34)

0 0

Note that ®3 and ® are independent of z’ and 3. By the Malgrange preparation
theorem we may assume that ®3 and ® have the form

@3({1:// /) — y2n+1 + h( // //)7
(", y") = yon1 + ha (2", 9"),
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where ®3(z”,§"), ®(z”, ") € €>°(U x U). From ([@3d), we can repeat the proof
of 28, Theorem 5.2] and deduce that ®3(z,y) — ®(x,y) vanishes to infinite order at
diag (Y xY). Since ®3(z,y) and ®(z,y) are independent of 2, y’, we conclude that
Os5(x,y) — P(x,y) vanishes to infinite order on the underlying canonical relation

{(z,9-z):x€Y,ge G} N (U xU).

Hence, ® and ®3 are equivalent on /. For the convenience of the reader, we sketch
briefly the idea of the proof. We will use some semi-classical notations as in the
proof of |28, Theorem 5.2]. Suppose that U = U’ x (—¢,¢), e > 0, U’ is an open set

of R*". Let 7 € €2°((—¢,¢)), 7> 0, 7=1on [-£, 5. For each k > 0, we consider

the distributions (see the proof of [28, Theorem 5.2])

Apiu— // i(Yang1+h(@" 5" ) t—ikyan 1 d(x,y, t)T(yant1)u(y)dydt,

Bk:u»—>// e/ Wan it @I =kvan i () yy (2)a(e, y, )T (Yans1 Ju(§)dydt,
0

for w € €5°(U’), where y = (y1,...,Y2n). By using the stationary phase formula
of Melin—Sjostrand [45], we can show that (cf. the proof of [29, Theorem 3.12]) Ay,
and By are smoothing operators and

Ag(z,§) = I (25, k) + O(k™),
Bi(z,§) = *M @9 p(z, g k) + O(k~),

g(x,9, k), p(z,y, k) € SZ’%(U x U'),

g(:v,g},k) ~ Zgj(x,ﬁ)k"_%—j in S:l_%(U X UI),
7=0

. _d
p(z, 9,k ij x,y') n=5-J ip ShLTH(U XU,

gj(lU»g)»pj(lU,ﬁ) € (goo(U X Ul)a j=0,1,...,

go(zo, o) # 0.

Since

s

/ ! wantath(z”, y”))td(:lc,y,t)dt —/ e Wt @I (2)a(x, y, t)dt
0 0

is smoothing, by using integration by parts with respect to ya,41, it is easy to see
that Ay — By, = O(k~*°) (see [29, Sec. 3]). From this observation, we can repeat
the argument as in the discussion after 28] (5.2)] and deduce that h — hy vanishes
to infinite order at diag (Y x Y'). Since ®3(z,y) and ®(z,y) are independent of 2,
y', we conclude that ®3(z,y) — ®(z,y) vanishes to infinite order on the underlying
canonical relation {(x,g-z):x € Y,g € G} N (U x U). O
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The following two theorems follow from the proof of Theorem 1] (£10]), ([E23)),
the proof of ({34, the complex stationary phase formula of Melin—Sjostrand [45].

Theorem 4.2. Consider the Fourier integral operators

Amw:/emw%@%waBmw:/emw%@%wa
0 0

with symbols a(z,y,t) € € Sk (UXUXRY) and b(x,y,t) € S5 (UXUxRy). Consider
x(@) € €5°(Qa x Q3). Then, we have

/A(:E,u”)x(u”)B(u”,y)dv(u”) E/ e P@Wte(r y dt  on U x U,
0

with c(z,y,t) € SkM (n=%) (

cola,x) =272 T8+ det 2|~ |det Ry |2 ao(z, 2)bo(z, 2)x ("), (4.35)

where det R, is the determinant R, cf. B83)). Moreover, if there are N1, No € N*,
C > 0, such that for all xo € Y NU,

ao(T,Y)| = z,y)— (o, To ) o\L,Y)| = Z,Y) — (Zo, Lo ) .
lao(z,y)| < Cl(z,y) —( M oo, y)| < Cl(a,y) — ( )IM2,(4.36)
then there exists C > 0 such that forallzg €Y NU

o, y)] < Cl(a,y) — (o, 20)| . (4.37)

UxUXRY). Forx e Y NU we have

Proof. By ([{I0) and since ®, &1, P and ¢* are independent of (z/,y’), & — Po,
®* — @, vanish to infinite order on the underlying canonical relation

{(g-z,z):x€Y,g € G}
Hence, we can change the phase of A to ®; and the phase of B to ®5. Thus,

/M%WMW%MﬂwMW©

= [ar [ as [ e e s
0 0

for some e € Sk (U x U x Ry), f € S (U x U x Ry) such that the leading terms

eo, fo of e, f, respectively, satisfy (@36). From ([£23), the proof of ([@34]) and the
complex stationary phase formula of Melin—Sjostrand [45], we get

/A(:E,u”)x(u")B(u",y)dv(u”)
/ dt// HEs (e ® ) e (0 1) f (0 y, ) x (u” ) du" dry

E/ 7«q>(x y)t (:E,?J,t)dt on U XZ/{,
0

with e(x,y,t) € Sk—M (n=%) (UxU xR ) (as we integrate over v and 7, whose total

dimension is 2n — d + 2, we need to lower the order by n+ 1 — d/2; however, due to
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the factor ¢ in the integral we gain one order, thus we get the order k+1— (n—d/2))
and

CO(xvy) = g(x,y)évo(ir,ﬂ(x,y))ﬁ)(ﬁ(x,y),y), (438)

for some smooth function g, where 8(x,y) is as in (£ZI]), €y, fo denote almost
analytic extensions of eq, fo, respectively. Since f(z,z) = x for every z € Y, we
conclude that & (x, 3(z,y)) and fo(B(x,y),y) have vanishing order at least Ny and
N5 on diag (Y x Y), respectively. This observation and [@38)) yield ([{@37]). O

Theorem 4.3. Consider the Fourier integral operators

Az, y") = / @Y V(g ), Bl y) = / WGy t)dt,
- 0 0

with symbols a(w,y”,t) € SK (U x Q3 x Ry) and B(z",y,t) € S (U x U x Ry).
Let x1(2") € €5°(Q3). Then, we have

/ Az, u" ) (@) B y)do(u”) = / SNy 2,y Odt on U x U,
0

with y(x,y,t) € S§+27(n7d) (U xU x Ry) where

Yo(x, ) = 27" =dt det L, |7 det Ry|ao(z, 2”)Bo(z”, 2)x1 ("), = €Y NU.
(4.39)

Moreover, if there are N1, No € N*, C' > 0, such that for all xo € Y NU we have
lao(z,y")| < C|(z,y") = (@0, w0)|V,  [Bo(z,y")| < Cl(z,y") — (0, z0)|"?,
then there exists C > 0 such that forallzg €Y NU,
o, )] < Cl(w,y) — (w0, 20) N 2. (4.40)

The proof of Theorem [£3] is similar to the proof of Theorem We omit the
details.

Remark 4.4. (i) The reason why in Theorem we integrate only with respect
to y” is that in the proof of our main results, we need to integrate over the
reduced space and this corresponds to the integration only with respect to y”
variables. -

(ii) Theorems and are about compositions of Fourier integral operators. In
general, the composition of Fourier integral operators correspond to composi-
tion of canonical relation but we do not use this point of view since in the proof
of our main results we need to know the precise form of the phase function of
the composition of our Fourier integral operators.

We introduce next the following notion.
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Definition 4.5. Let H: 4> (X) — €>(X)“ be a continuous operator with dis-
tribution kernel H(z,y) € /(X x X) and k € R, £ € N.

(i) We say that H is a complex Fourier integral operator of G-Szegd type of leading
order (k,£), if for every open set D of X with DNY = {),

XH and Hy are smoothing operators on X, for every x € 65°(D)  (4.41)

and for every p € Y and any open coordinate neighborhood (U,xz =
(z1,...,2Z2n4+1)) of p, we have

H(z,y) E/ 2@V (g gy t)dt on U x U (4.42)
0

with ®(z,y) € €>°(U x U) as in Theorem 320 and
a(z,y,t) € SE(U x U x Ry) (4.43)
and under the notation (370,

ol +18lag (2, )

Dz 0yP =0, fora,BeN"T o]+ (8] <l—1. (4.44)

r=yecY

(ii) We say that H is a complex Fourier integral operator of G-Szegd type of order

(k,0), k € R, ¢ € N, if (@4I), (@42), (L43) hold and there is a r(z,y,t) €
S5.°(U x U x Ry) such that

ole+18l (a(z,y,t) — r(xz,y,1))
0z 0yP

=0, fora,fe Nt
rx=yeY

laf + 18] < £ — 1. (4.45)

Let Ge(X) denote the space of all complex Fourier integral operators of G-
Szegé type of leading order (k,¢) and let G ¢(X) denote the space of all complex
Fourier integral operators of G-Szegd type of order (k, ).

Note that ([A45) means that each coefficient a; has vanishing order at least ¢
at diag (Y x Y'). In Definition we use the terminology G-Szegé type in order to
stress the dependence on the set Y and thus on the group G.

Let us explain briefly the role of the spaces Gy, ¢(X) and @k7g(X). Our goal is to
study distribution kernel of o *o. In Theorem [£I3] we will show that Cyo *o is of
the same type as S and with the same leading term, where Cj is a constant. In the
terminology introduced in Definition 5] Co 0 *0 — Sg € G—(4/2),1(X). To prove
our main result, we need to show that Cyo *o — S¢ is “microlocally small”, and it
suffices to prove that elements H € G,,_(4/2),1(X) have good regularity properties
(see (E53)).

Let H = Ho + Hy, where Hy € G,,_(4/2),1(X) is the leading term of H and
Hy € Gp—(4/2)-1,0(X) is the lower order term of H. By using calculus of complex
Fourier integral operators, we can show that when we compose H; with itself, the
order of the composition will decrease. More precisely, HY¥ € Gr—(d/2)-N,0(X), for

2250074-51



C.-Y. Hsiao, X. Ma € G. Marinescu

every N € N*. Hence, for large N, H{¥ has good regularity properties and hence
H, itself has good regularity properties.

In order to handle Hy we observe that when we compose Hy with itself the
order of the composition will not decrease, that is, HY is still in Gn,(d/Q),l(X)
for every N € N*. To get good regularity properties, we need the space @k,e(X ).
Note that the space G ¢(X) is the subspace of Gy, ¢(X) whose elements have full
symbols have vanishing order at least ¢ on diag(Y x Y). The key observation is
that the leading symbol of H has vanishing order at least N on diag(Y x Y).
We write Hév = Ro,ny + Ri,n, where Ry N € Gn,(d/Q),LO(X) is the lower order
term of HY and Ry y € an_(d/g),N(X) is the the leading term of HJY. Since the
Jull symbol of Ry ny has vanishing order at least N at diag(Y x Y), even the order
of Ry n is high, Rg n still has good regularity properties if N is large. Note that
for an element A € G}, ¢(X), only the leading symbol of A has vanishing order at
least ¢ on diag(Y x Y'). Hence even for large ¢ we still do not have good regularity
property for A in general. That is why we need the space ék,l (X).

Remark 4.6. In the following, we will establish L? continuity and regularity prop-
erties for H € G ¢(X) under certain assumptions on k,¢ (see Theorem FI0).
Hérmander [25] already established the L? continuity for complex Fourier integral
operators but we cannot apply Hérmander’s results to our situation. More precisely,
from the main results in [25], we have that for H € G,,_(q/2)—m,0(X) with m € N,
the map H: H*(X) — H*"™(X) is continuous for every s € R. In this work, we
need the regularity property for H € G,_(4/2),¢(X) for £ large (see Lemma
and (£5])) but Héormander’s result can only be applied to £ = 0.

From Theorem [£2] we deduce the following.

Theorem 4.7. Let Hy € Gy, ¢, (X), Ho € Gy 0,(X), where ky,01,k2, 42 € R.
Then,

Hl ] H2 S Gk1+k27(n7%),21+52(X)'
Recall that || - ||s denotes the standard Sobolev norm on X of order s.

Theorem 4.8. Let H € G o(X) with k < n — % — 1. Then, there exists C > 0
such that for any u € €= (X),

[Hull < Cllu]. (4.46)

Moreover, for every s € N*| there exist Ny € N* and Cs > 0 such that for any
u € E(X),

”HNSUHS < Csllul|- (4.47)

Proof. Fix s € N*. By Theorem 7 for any N, € N* we have HY: ¢
GNSkf(stl)(nfg),OCX)' Taking now N, € N* such that Nok — (N, — 1)(n — %) <

—5 — 2. We claim that HY:(x,y) € €*(X x X). Since H* is smoothing outside
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Y, we only need to check this property near Y. Let U be an open set of p € Y. Fix
a, B € N> with |a] + |3| < s. Since H= € G N, k= (N.—1)(n—2),0(X), We have

2P HN: (x,y) = / @) o, . 1),
0

a(z,y,t) € Sﬁsk*wrl)(ﬂ*g)ﬂamm(U x U x Ry). Since there exist C,C' > 0 such

that

/Oo e PV gz, y, b)|dt < C/Oo gNek=(Na= (=) +lal+15] gy
1 1

. oo
< C/ t=2dt < oo,
1

we conclude that H™s(x,y) € €*(X x X) and (@41) follows.
We now prove ([@46). We claim that for every ¢ € N* we have for any u €
(X)),

| Eull* < | H ul* a7, (4.48)
where H* is the adjoint of H. We have for any u € €*°(X),
[Hul]? = (Hu, Hu) = (H*Hu, u) < | H* Hu|||u| (4.49)
and
[ H* Hul* = (H"Hu, H*Hu) = ((H"H)*u, u) < ||(H"H)*ullu]. (4.50)

We prove [I48)) by induction on ¢. From [@49]) and {@50), we get (@48 for ¢ = 1.
Suppose that (£48)) holds for £ € N*. We have for every u € € (X),

I(EH)* u)? = ((H*H)* u,(H*H)* u)
= ((H*H)* ", u) < |(HH)? | |Jul], (4.51)

From the induction hypothesis and (@5]]), we get (E48) for ¢ + 1.

It is obvious that H* € Gj,0 and hence H*H € G2k—(n—%),0' From this obser-
vation and ([@ZT), we deduce that for ¢ large, there exists C' > 0 such that for any
u€ € (X),

* 14
|(H*H)? ul| < Cllul. (4.52)
From (£48) and (£52), we get (£40). |

Lemma 4.9. Let H € ék)Qe(X). Ifk—t¢ < —s—2, for some s € N, then H(x,y) €
(X x X).

Proof. Since H is smoothing away Y, we only need to prove that H(z,y) is in €*
near Y. Let p € Y and « = (21, ..., 2Z2,41) be local coordinates as in the discussion
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before Theorem 328 defined in an open set U of p. We will use the same notations
as in the beginning of Sec. [l On U, write

Hiz,y) = / SPED (e, y, )t + Fla, y),
0

F(r,y) € €U x U), a € S5(U x U x Ry). Let u € €>°(U). Since Hu is G-
invariant, Hu is independent of 2’ and hence on U,

(Hu)(e) = (Hu)a") = [~ ¥ ata . oudotde + [ Fau()do(s).

Hence,
H(x,y) = / @2y t)dt on U x U.
0

We are going to prove the lemma by induction over ¢ € N. Let ¢ = 0. Let P and
@ be differential operators on U with ord (P) + ord (@) < s. Then the symbol of
PHQ is of order < k+ord (P)+ord (Q) < k+s < —2 and hence the integral over ¢
converges. We get that the lemma holds for £ = 0. We assume that the lemma holds
for some ¢ = ¢y € N. We are going to prove that the lemma holds for ¢ = ¢y + 1.
Since all the asymptotics of @ have vanishing order at least 2¢y+ 2 on diag (Y x Y),
we may assume for simplicity that a(z”,y,t) = t*b(z", %) and b has vanishing order
at least 20 + 2 on diag (Y x Y'). The Malgrange preparation theorem entails that
there exist a neighborhood Uy C U of p and functions f,g,(i,l; € €=Uy x Uy),
such that ® and b are independent of 9,41 and we have on Uy x Uy,

<I>(ac,y) = f(xvy)<y2n+1 + (i)(w//?g//))’

" " Eo 0 ol NN/ (4.53)
b(z",y) = g(z", y)(Y2n+1 + (2", ¥")) + b(2", §").

We claim that g(z,y) and b have vanishing order at least 20y + 1 and 2(y 4 2 on
diag (Y x Y'), respectively. For every j =1,...,2¢y + 1, we have

) 071y &g
- = ] ] 0
ay%n—i—l 8y%n+1 ay%nﬂ

Taking j = 20y + 1 in (@54) and using that (yont1 + i(w”,@”)ﬂdiag (vxy) =0,
we conclude that 92‘ g vanishes on diag (Y x Y). Taking j = 2/, in ([@54)) we

Y2n+1

conclude that 8552;1 ¢ has vanishing order at least 2 on diag (Y x Y"). Continuing in

a similar way, we can show that for every j =1,...,20y+ 1, 6{;;}; g has vanishing

order at least 2¢p + 2 — j on diag (Y x Y). Now we have from ([€53),

ob dg .
— g4+ a1 4+ O 5. 4.55
s =" g (Y2nt1 + (2", 9")) (4.55)

(yont1 + @(2”, ")) (4.54)

Since 0y, ., g has vanishing order at least 2{y on diag (Y xY), we deduce that g(x,y)
has vanishing order at least 2¢p+1 on diag (Y xY). Thus, b = b—g(y2n+1+P(z”,3"))

has vanishing order at least 2¢y + 2 at diag (Y x Y). The claim follows.
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By using integration by parts, we have

/ VDY )it = / FOED (g () (yamgs + B, §)) + b, §)de
0 0
=1, + I, where

Il(x,y)z/ eit(b(z’y)kitkfl%(x,y)dt,
0

Ly(z,y) E/ eit‘b(w’y)tkl;(x”,;&)dt.
0

Since g has vanishing order at least 2o+ 1 and k — 1 — ¢y < —s — 2, we deduce by
the induction assumption that I (z,y) € €°(Uy x Up). Since b(x”, y) has vanishing
order at least 20y + 2 on diag (Y x Y), there exist C,C' > 0 such that we have

[b(a”, )| < Cl(",y) — ((0,2"), (0,&"))[**
S é(|i'//|2 + |;%// _ i&//|2 + |y//|2)€g+17 (4.56)

where &’ = (22441, . .., T2,). From @33) and [@56), there exist ¢, C' > 0,C, Cy >
0 such that

/ ei@@,yn%(gﬁu,g)dt‘g [ et g
1 1

o0 1112 o/ o /2 A1\ 2
S/ o tell” P& 5" P +3” 1) g
1
% C’(|:f”|2 + |i” o yo//|2 + |yA//|2)20+1dt

oo o0
< Cl/ th=to=1qt < 02/ t7572dt < 0.
1 1

Let o, 8 € N?"*1 with |a| +|3| < s. We can repeat the procedure above with minor
changes and deduce that

/ 0200 (" @) tRp(2" ) dt < Cy / gh—to—1+lal+I8l < ¢ / t72dt < oo,
1 1 1

where C3,Cy > 0 are constants. Hence I (x,y) € €°(Uy x Up). The assertion holds
thus for £/ = £y + 1 and the lemma follows. O

In the proof of our main result, we need the following.

Theorem 4.10. Let H € Gn_%l(X). Then there exists C > 0 such that for any
u€ E®(X),

[Hul < Clluf. (4.57)
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Moreover, for every s € N*, there exist Ny € N* and Cs > 0 such that for any
u € E(X),

”HNSUHS < Csllul|. (4.58)

Proof. From Theorem [£.2] we see that for every N € N*, we have
HY = Hy x + Ho n,
~ (4.59)
HLN € ang,N(X% H27N € Gn7%71,0<X)'

Fix s € N*. Due to Lemma[L0lthere exists N > 1 such that Hy n(z,y) € €°(X xX)
and for every j € N*, there exists C; > 0 such that for every u € €°°(X) we have

1] yulls < Cllul- (4.60)

Since Hyn € G, _a_; o(X), Theorem shows that there exist Ky € N* and
Cs > 0 so that
| HySulls < Cllull,  for u € €°°(X). (4.61)
We have
HNKs = (Hy n + Han)"™. (4.62)

Let A= H{'yHZ' - Hy Hy', where aj,b; €N, j = 1,...,p, X0_ (a; + b;) =
K. We claim that

A:L*(X) — H*(X) is continuous. (4.63)

Ifas =a2=...=a, =0, then, A = H2KN From (L6T]), we get (£G3). Assume that
aj, # 0, for some jo € {1,2,...,p}. Let As be a classical elliptic pseudodifferential
operator on X of order s with inverse A_g. By the complex stationary phase formula
of Melin-Sjostrand, we have A;o Hy yoA_; € Gn_%_LO(X). From this observation
and (£40), we see that

Hy n:H*°(X)— H®(X) is continuous. (4.64)
By (4.60) and ([£.64) we deduce that
Hy yoHsy and Hyyo Hyn @ L*(X) — H*(X) are continuous.  (4.65)

From (@GHl), we get the claim (@63). From [62) and [@G3), we get ([EHE) with
N, = NK;. Using ([£5])) we can repeat the proof of (£4f) and obtain (57). O

Let H € ang)l(X). From (£51), we can extend I — H to a bounded operator in

I—H:L*X) — L*(X).
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Theorem 4.11. Let H € ang,l(X) and extend I — H to a bounded operator in
I—-H:L*X)— L*(X)

by density. Then Ker (I — H) is a finite-dimensional subspace of €°°(X) and there
exists C > 0 such that

(I — H)u|| > Cljul|, for anyu e L*(X), wu L Ker(I —H). (4.66)

Proof. Fix s € N*. Theorem H.10 shows that we can extend H™* to a bounded
operator

HY:: [?(X) — H*(X), (4.67)
by density. Now, let u € Ker (I — H). Then,
(I-HYYyu=I+H+ - +HY")I-Hu=0 (4.68)

and hence u = H™su € H*(X). Since s is arbitrary, we deduce that u € €>°(X).
Moreover, from ([AG8]), we can apply Rellich’s theorem and conclude that Ker (I—H)
is a finite-dimensional subspace of ¢°°(X). Since the argument is standard, we omit
the details.

We now prove ([EG0). Assume that (£60) is not true. For every j € N* we can
find u; € L*(X) with u; L Ker (I — H) and ||u;|| = 1 such that

(1 — Hyuj| < % - (4.69)

Put vj := (I — H)u;. We have for any j € N*,

(I—HYuj =T+ H+...+HY"1o,. (4.70)
From (L57) and (£69) we see that there exists C' > 0 such that

Ngs—1 C . *

[(IT+H+...+H" )vj||§7, Jj e N%. (4.71)
By ([@.67) and since ||u;|| = 1 we conclude that there exists C > 0 such that for any
j €N,

[N uj]|s < C. (4.72)

By Rellich’s theorem, we can find a subsequence H™:u;,, 1 < j; < jo < ..., such
that H™=u;, converges to some u in L?(X) as k — oo. From this observation, (Z70)
and ([T, we deduce that u;, converges to u in L*(X) with |lul| =1 as k — oo.
By (@57) and ([A69), we get u € Ker (I — H). Since u,, L Ker (I — H) for every k,
we have u | Ker (I — H). We get a contradiction and ([@GG]) follows. |
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4.2. The distribution kernels of o and o*o; proof of Theorem [L5

We are now ready to study the distribution kernels of o and oo* in (£1]). We will use
the same notations as before. Let #x, 4 be the Levi form on X¢ at ¢ € X¢ induced
naturally from .#. The Hermitian metric g7
T'O9X which in turn induces a Hermitian metric on T°X¢. Let Hdt1y -« - [y DE

on CTX restricts to a metric on

the eigenvalues of Ly , with respect to this Hermitian metric. We set
det Lxg.q = Hd+1-- - n- (4.73)
Recall that 7:Y = p~1(0) — X is the natural projection. Let
Sx. : L*(X¢g) — Ker 0y x. = H)(Xa), (4.74)

be the Szegd projection on X¢g (cf. [ZI4])). Since X¢ is assumed to be strictly
pseudoconvex and 51,7 X has closed range in L? on X, Sx, is smoothing away the
diagonal (see [8], [27, Theorem 1.2], [30, Theorem 4.7]). Hence, for any z,y € YV’
with m(x) # 7 (y), there are open neighborhoods U of 7(z) in X and Uy of 7(y)
in X¢ such that for all ¥ € 65°(U), X € 65°(U1), we have

XSxeX =0 on Xg x Xg. (4.75)

We will use the same notations as in Sec. LIl Fix p € Y and let z =
(21,...,22,11) be the local coordinates and Q3 C R?**+1724 be an open set as
in the discussion at the beginning of Sec. [l From now on, we identify z” as
local coordinates of X¢ near ¢ := w(p) € Xg and we identify W := Qg with an
neighborhood of 7(p) in X¢. Note that from @30), on x~1(0)/G,

wo.c(w) = (14 O(a]))dranis + > 25 (wajdus; 1 — waj 1dws;)

Jj=d+1
2n
+ Z bj$2n+1dl'j+0(|l’|2). (476)
j=2d+1

From (B.79), (£TM), we see that p;, j = d+1,...,n in (LT0) are the same y;
in B79) and ¢; = bgj_1 — iby;. From this observation and applying [§] (more

precisely Theorems B.22 B.24) to u~1(0)/G, we have

Sxo (2", y") = / e @y W dt on W ox W, (4.77)
; Y

where g(z",y",t) € SPTUW x W x Ry) with

1
Bo(z", ") = 57r—<"—0l>—1|c1et Lxgarl, €W, (4.78)

1=
1=
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and p(z",y") € €°°(W x W) with

dz”@(iﬂ,gﬂ) — *dy”@(gﬂ,z//) — *A(QN)WO,G(QN), )\(g//) > 0,
2n
Im @(QN,QN) >c Z IIj — yj|2, for some ¢ > 0,
j=2d+1

gb,lu(p(gu,g”) vanishes to infinite order at z" = y",

n
90(2”,%”) = —Zon+1 + Yo2nt1 1 Z lpsllz; — wj|2
Jj=d+1
0 (4.79)
+ Y in(Fjwy — zw;)
j=d+1
"1
+ Y 5 (b2j—1 = ib2;) (= 2jT2n 41 + WiYan+1)
j=d+1
"1
+j§1 5 (02j-1 + ib2;) (=ZjZ2n+1 + WiYan+1)

+ (Zont1 — yans)r(@”, y") + O((2", y")I?),

where r(z”,y") € €°(W x W), 7(0,0) =0, z; = x9j_1 +ixe;, j=d+1,...,n.
From Theorem B28, it is not difficult to see that the phase function ®(z”,y")
in Theorem 20 satisfies (79). Hence, there is a function h € €°°(W x W) with
h(z”,2") # 0 for any 2" € W, such that p(z”,y"”) — h(z”,y")®(2”,y") vanishes to
infinite order at 2/ = y” (see Theorem B.24). We can replace the phase o(z”, ")
by ®(z",y") and we have -

Sxe (@ y") = / YR " )dt on Wox W. (4.80)
o ¥

Theorem 4.12. Ify ¢ Y, then for any open neighborhood D of y with DNY = (),
we have

c=0 onXgxD. (4.81)

Let g, yo € Y. If m(x0) # 7(yo), then there are open neighborhoods U of m(xg) in
Xe and Uy of yo in X such that

oc=0 onUgxU. (4.82)

Let p € Y and let x = (x1,...,Tan41) be the local coordinates, and U an open
neighborhood of p as at the discussion in the beginning of Sec. Bl Then under the
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_s
notations at B10), @XD), there exists az”,y" ) € Sy 4d(W x U xRy) such that

o0
oz, y) = / @Y (2 " Odt on W x U,
0

ao(g”,g”) _ 27n+2d71ﬂ_%7n71 1 |det gﬁw (4.83)
Vet (2) -

x |det Ryn| ™%, forz” € W.

Proof. By Theorem B20] S¢ is smoothing away Y, which implies (@8] from
Theorem B.27 Let xq,yo € Y. Assume that 7(zo) # 7(yo). Let V4 be a G-invariant
neighborhood of yg and xo ¢ V4. We have

Sa(x,y) = /GSSAO (z,9 0 y)du(g),

where A\g > 0 is as in Theorem [B.19l Since S<), is smoothing away the diagonal
near Y, for any neighborhood Uy of zg in X with U; NV} = ), we have

Sa=0 onU; x V. (4.84)

Let Ve := {n(y) € X¢ : y € ViNY}. By [@X10) there is an open set Ug of (o) in
X such that

Sxe =0 onUg x Vg. (4.85)

The definition ([@T]) of o and Theorem B.27] relations (£84]) and (L] yield (£32).

Fix u = (u1,...,u2p41) € Y NU. In view of (@) and @I2), we
only need to show that (LR3) holds near w. We may assume that u =
(0,...,0,u2441,--.,U2n+1) = u”’. Let Uz be a small neighborhood of wu. Let
x(2") € €5°(23). By @A) we can extend x(z') to G-§23 by setting x(g-z”) := x(z)
for every g € G. Assume that y = 1 on some neighborhood of Us. Let x1 € 65°(X¢)
with x1 = 1 on some neighborhood of 7(Uz NY) C X and suppy; C 7w({z €

Y : x(x) =1}). We have by (@1,
X10 = X159xs 0 Eoitgo faoit o Sa
=Xx1Sxgs o Eoigo fgoi” oxSa
+x1Sxg 0 Eotgo fagoit*o(l—x)Sa. (4.86)

IfueY but u ¢ {x € X:x(x) =1}, then 7(u) ¢ supp x1. From this observation,
Theorem B.27 and ([@.7H), we get

X1Sxs 0 Eoigofegoit o(1—x)Se =0 on Xg x X. (4.87)
From ({80) and (£J1), we get
X160 = x1Sxs o Eoigo faot*oxSe on Xg x X. (4.88)
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From Theorem B.28] (£80) and (£388§]), we can check that on W x U,
a@ela’n) = [ fere gy e
(] 3w ol o0y syis ) dulw i (459
From the asymptotic formula of Melin—Sjostrand [45], (2.28)], we have

Eo (/ x(y")fc(y”)e“’“”’y)sa(y”,:y,S)dS) E/ WDy, 5)ds, (4.90)
0

0

Nl
[SES

n—

where b(v”,y,s) € S (W x U x Ry) with

cl
bo(v”,v") = 0% (v, —wo.c (") x(") fa(v")ao (v, v"),

where by denotes the leading term of b and ¢%, denotes the principal symbol of E,
ag is as in (385). Since 0% (z,&) = |¢]F and |wo| = 1, we have

bo(v”, ") = x(v") fa(v")ao(n",v"). (4.91)
From Theorem 3] [@89) and (@390), we get that there exists a(a”,y”,t) €
_3
S"TW x U x Ry) such that

oz, y) = / @Yoz " t)dt on W ox U. (4.92)
0

Now, we compute «g at (z,2”). From ([L19), (B:35), (£39), [@LT8) and [EIT), we

have that on {2 € W; x(z”) =1},

OZO(QN,EN) _ 27n+17_rn7d+1|det fz//|7l|det Rg”|b0(£”7£//)60(£”7£//)
— 27n+17_rn7d+1|det fz//|7l|det Rg”|fG(£N)aO(£N7Zﬂ)ﬁO(lN,Z//)

= 27 d 4 ot L7 | det Ry ||det Ry |~/ Vet (2)

1
« 9d-1 o //)W_n_1+% |det Ry |~ % |det Ly |
eff (L B N

1
x 5D det g |

1

_ 9—n+2d-1_§-n-1
Verr ()

|det L ||det Ry |~ 5. (4.93)

Here we used the fact that |det Lx, »#| = 2% det % ||det Ry |t From ([@32)
and [@93)), we get ([E33). m|
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Let 0*: ¢ (Xg) — 2'(X) be the formal adjoint of o. From Theorem we
deduce that
0" E®(Xg) — HY(X)C NnE>(X)C. (4.94)
Let

Ay =00 :€°(X) — H)(X)%,
(4.95)
Ay = 00" € (Xg) — HY (Xg).

Let Aj(z,y) and As(z,y) be the distribution kernels of A; and As, respectively.
In view of Theorems [£.2], we can repeat the proof of Theorem A.12] with minor
changes and deduce the following two theorems.

Theorem 4.13. With the notations used above, if y ¢ Y, then for any neighborhood
D of y with DNY =, we have

Ai=0 on X xD. (4.96)

Let x,y €Y. If n(x) # w(y), then there are neighborhoods Dy of x in X and Do of
y in X such that

A1 =0 on Dy X Ds. (4.97)

Letp €Y andletx = (x1,...,x2,41) be the local coordinates as in the discussion
in the beginning of Sec. [l Then there exists an open neighborhood U of p and a
symbol a(z",y",t) € S;llf%(U x U x Ry) such that the following holds under the
notation ([B10),

Ay (z,y) = / Y (2 " )dt on U x U (4.98)
0
with
1
_ o—3n+4d—1__—n—1
ao@",g”) —9 + T 7%1? (g”) |det ngu|
x |det Ryr |72, forz’ eUNY. (4.99)

Theorem 4.14. Let x,y € Y. If w(x) # w(y), then there are neighborhoods Dg of
7w(x) and Vg of w(y) in X such that

Ay =0 on Dg x Vg. (4.100)

Letp € Y and letx = (x1,...,2Zan11) be the local coordinates as in the discussion
at the beginning of Sec. Bl Then there exists a(z”,y",t) € SPTU W x Wox Ry)
such that by using the notations B10), [ET7), we have

As (2", y") = / @G " dt on W x W, (4.101)
0
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with
oz, 2") = 27334 et s N det L, |, for 2’ € W. (4.102)
Set
Q:=—-Cyoooc+ Sg:=—CpA + Sg:
E=(X) — HY(X)Y, with Cy = 28D gd/2, (4.103)
Since Ay = A1Sq = Sg A1, it is clear that
Cod1 =8¢ -Q=5c—-QSc=(-Q)Sc =Sc(I - Q) (4.104)
and
Q" =0Q, (4.105)
where Q* is the formal adjoint of Q. From Theorems [3.25] [£11] and [£13] we get:

Theorem 4.15. The operator @Q belongs to the class ang,l(X) and hence I — Q
extends by density to a bounded self-adjoint operator I — Q: L*(X) — L*(X).

By Theorem ETH] there exists C' > 0 such that for every u € HY(X)“N€>(X),
we have

(ou,o0u)x, = (c*ou,u) = Cio((f — Q)u,u) < C|lull?. (4.106)

From (£I00), we deduce:
Corollary 4.16. There exists C' > 0 such that
(ou,0u)xs < Cllull?, for any u € H)(X)% N€>(X). (4.107)
Hence we can extend o by density to a bounded operator
o H)(X)% — Hy(Xe).
From now on, we consider ¢ as a bounded operator o : H)(X)¢ — HY(X¢).

Theorem 4.17. Kero is a finite-dimensional subspace of HY(X) N € (X).

Proof. From Theoremd.TTlwe see that Ker (I —Q) is a finite-dimensional subspace
of the space ¥°°(X). Note that Kero C HY(X)% NnKer (I — Q), so the theorem
follows. ]

From Theorem B4l we see that oo* is a complex Fourier integral operator
with the same type as Sx.. It is known that oo™ is a pseudodifferential operator
of order zero type (3, %) (see [27, Proposition 5.18]). Set Cy = 7223734 Then

2250074-63



C.-Y. Hsiao, X. Ma € G. Marinescu

the leading of the symbol of —Cjoo* 4+ Sx, vanishes on the diagonal x = vy,

and it is known that —Choo* + Sx, is a pseudodifferential operator of order —%

and type (4, 3) (see [27, Proposition 5.18]). By the classical Calderon—Vaillancourt

theorem [26], Chap. XVIII], we have for every s € R,

oo :H*(X¢g) — H*(X¢g) is continuous,
1 (4.108)
—Ci00* + Sx,:H*(Xg) — H*"2(Xg) is continuous.

From (£I08), we have a result similar to Theorem FLI0l Hence, we can apply the
proof of Corollary 416 with minor changes and deduce that there exists C' > 0 such
that

(0" v,0"0) < Clv||%,, for any v € H)(Xe) NE>(Xq). (4.109)
Therefore we can extend o* by density to a bounded operator
o HY(Xa) — HY(X)C.
We repeat the proof of Theorem .17 with minor changes and deduce:

Theorem 4.18. Kerco* is a finite-dimensional subspace of H)(X¢) N €= (Xe).

Finally, we obtain:

Theorem 4.19. Kero and (Im o)t are finite-dimensional subspaces of HY(X)% N
¢>*(X) and H)(Xg) N € (Xq), respectively.

Proof. We only need to prove that (Imo)* is a finite-dimensional subspace of

%> (Xq). Note that (Im o)+ C Kero*. From this observation and Theorem I8
the theorem follows. O

Theorem [£.19] implies Theorem

5. Proof of Theorem

The main goal of this section is to prove Theorem [[.2l Recall that the Riemannian
metrics g7% on X and g7¥¢ on Xg are given by Convention Let AX and
AX¢ be the (positive) Laplacians on (X, ¢g7%) and (Xg, g7X¢), respectively. For
s € R we consider the classical pseudodifferential operators of order s on X and
Xa, respectively,

Ag=(14+A%)%2 A, =1+ AXe)s/2, (5.1)

2250074-64



Geometric quantization on CR manifolds

They are self-adjoint and positive with respect to the inner products (-,-)x and
(*, ") xo, respectively. In particular, the maps

Ag: HY(X) — H5(X), A,:H'(Xg) — H™(Xg), (5.2)

are injective for any ¢ € R. For u,v € H*(X), v/,v' € H*(X¢), we define the inner
products

(u,v)s := (Asu, Agv)x, (u',v")s = (Asu, Agv) x,, (5.3)

and let || - ||s, || - || xo,s be the corresponding norms.
Recall that the space Gy¢(X) is given by Definition L and S¢: € G,,_a (X).

Theorem 5.1. Let A € Gn7g+,y,0(X), v € R. Then A can be extended continuously
to A:H*(X) — H*7(X) for every s € R.

Proof. For every s € R, put B := A,_,AA_;. As A, is G-invariant, we see from
complex stationary phase formula of Melin—Sjéstrand that B € G,,_ %70(X ). Near
Y, write B(z,y) = [;° '@Vt (x, y, t)dt as in (@A) and let by(z, y) be the leading
term of b(x,y,t). Let P be a classical pseudodifferential operator of order 0 on X
with

op(x,dy®(z,z))ag(z, ) = bo(x, x), (5.4)

for every x € Y, where op denotes the principal symbol of P and aq is the leading
term of the expansion of S (see (B:8H)). The complex stationary phase formula
yields

B=PSa+R, ReG,_ a4,(X). (5.5)

From Theorem EI0, (B5) and the fact that S is L? bounded, we deduce that
B=A AN is L? bounded. This implies that there exists C; > 0 such that for
every u € € (X),

[Aul[s—e = [As— AN s Asul] < Crf|[Asul = Cllulls. (5.6)

The theorem follows. O

From TheoremsB.27 B.Tland note that S¢ € G,,_4 o(X), we deduce the follow-
ing regularity property of the G-invariant Szegd projector.

Corollary 5.2. For every s € R, Sqg:H®*(X) — H?®(X) is continuous, and in
particular, HY(X)¢ N€>°(X) is dense in HY(X)S in H*(X).

S
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Due to Theorem B.27 the map o¢ given by (LH) has a well-defined extension
06 :C°(X) — H)(Xg)NE®(Xa), ur 1got*oSau.
Theorem 5.3. For every s € Z there exists Cs > 0 such that
llocul|? < Cyl|ul?,  for every u € €°°(X). (5.7)

Xc,s—%
Moreover, the map (D) can be extended continuously by density to a bounded
operator

oG =0 H) (X)) — HY(Xg)

S

(5.8)

s—4»
for every s € R.

Proof. Fix s € R. Let (Asf%ag)* 1€ (Xa) — 2'(X) be the formal adjoint of
/A\Sf%og 16 (X) — € (Xg). For u € €°(X), we have

locull,, .4 = (Ay_aoqu, A _aocu)x,

4

= ((A_g06)"(A,_soc)u, ). (5.9)
We repeat the proof of Theorem .13 and conclude that
(Ay_406)" (A,_a06) € Gp_a oy o(X). (5.10)

From Theorem [0 and (510), we deduce that there exist C,Cy > 0 such that
(((A_g06)"(A,_g06)u, w)| < CI(A,_g06)"(A,_goc)ull-s]ulls

4
< Cilull3, (5.11)
for every u € € (X). From (&9) and (&I1) we get (&1).

By Theorem 327 and Corollary we see that HY(X)% N €>°(X) is dense
in HY(X)%, for every s € R. From this observation and (51), we deduce that for
every s € R the map ([C3]) can be extended continuously by density to a bounded
operator og,s as in (0.8]). O

Let fg € €(Y)Y be as in (LI9). We identify fo with a smooth function
on Xg.

Theorem 5.4. For every s € R, Kerog,s is a finite-dimensional subspace of
> (X). Moreover, Kerog,s is independent of s.

Proof. Let E be a classical pseudodifferential operator on X with principal sym-
bol o (x, &) = |£|7%. Let for every s € R,

6 :=08x,0Eo fgoog: H) (X)) — HY(Xg)s. (5.12)
We repeat the proof of Theorem[ZI7 and deduce that Ker 6 is a finite-dimensional
subspace of €°°(X). Since Ker o C Ker 6, the theorem follows. O

Theorem 5.5. With oG s as in [B8), (Imog )+ in (D) is a finite-dimensional
subspace of € (X¢) for every s € R.
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Proof. Fix s € R. By Corollary 5.2l and Theorem 53] we can extend o¢ s in (B.8)
to H*(X) by

d
4

o :H*(X)— H 1(Xg), u— ogScu. (5.13)
We have A,_s06:4>(X) — €=(Xg). Let (A,_s06)": 7'(Xg) — 7'(X) be the
formal adjoint of [\57 40G- We repeat the proof of Theorem .12l with minor changes
7g0g)* : (foo(Xg) — %OO(X) Let

S

and deduce that (A

S

Fs = SchéA—ZSUG(As s

7%0(;)*/1 7%SXG Z@/(Xg) — @I(Xg). (5.14)

For any u € (Imog )t and v € €°°(X), by ([T), we have

(’U, SG(Asf%UG)*Asf%SXGU) = (Asf%UGSG'U»ASfQSXGU)XG

4
= (UGv,u)XG,Sf% =0. (5.15)
In view of (BIH), we see that
(Imog,s)t € Ker Fs N HY (Xa)s. (5.16)

We repeat the proof of Theorem T4 and conclude as in @I04)) that Fy = C(I —
R)Sx., where C' # 0 is a constant and R is a complex Fourier integral operator
with the same phase and order as Sx and vanishing leading term on the diagonal.
More precisely, in the local coordinates z” of X¢ defined in an open set W of X,
we have

R(g”,g”)z/ eié(z”ﬂﬂ)tr@”,g”,t)dt, (5.17)
0

where @ is as in @IOD), r € S YW x W xRy, ro(z”, ") = 0 for every 2’ € W,
where rg is the leading term of r. We repeat now the proof of Theorem LTIl with
minor changes and deduce that Ker (I — R) is a finite-dimensional subspace of

€< (Xg). From (5I6) we deduce that (Imog )t C Ker(I — R). The theorem
follows. ]

Theorem 5.6. dim(Imog ¢)* is independent of s.

Proof. Fix s € R and let u € (Imog ¢)*. By Theorem 5.5 we have u € € (Xg)N
HP(X¢). We have an orthogonal decomposition
u=0g4v+uw, UGHg(X)g,we(Imch&)J‘. (5.18)
We define a linear map
vs:(Imog o)t — (ImaG%)J‘, Vs =W € (ImaG%)J‘. (5.19)

We claim that ~; is injective. Assume that vsu = 0. Then there exists v € HY(X)§
4

~—

such that u = o4 av. Let (vj) be a sequence in €*°(X) with v; — v in Hi(X
as j — oo. By Corollary [0.2] we have Squ; — Sqv = v in H%(X) as j — oo.
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By Theorem B.3] we have o 4Sqv; — 0g av = u in L*(Xg) as j — oo. Since

u € (Imog ¢)t, we have as j — oo

0=(A_a06Scuj, A_au)xg = (06Scv;, (A,_a)’u)xo — (u,(A,_a)’u)x,.

Hence (u,([\s_%)2u )x; = 0 and thus As_%u = 0. Since AS_% is injective, we
get u = 0 and hence ~, is injective. Since 7 is injective, dim (Imog )t <
dim (ImoG,%)J‘.

Similarly, we can repeat the procedure above and conclude that dim (Im
O'G)%)J‘ < dim (Imog s)*. Thus, dim (Imog )+ = dim (Im O'G)%)J‘. The theorem
follows. O

Proof of Theorem Theorems [£.4] and yield Theorem for the
case when dim X¢g > 3.

Assume now that dim X = 1. Then X is a union of circles. For simplicity,
suppose that Xg = S'. The circle X admits a natural S action e : 8! x Xg —
Xg, (€, 2) — €%2. For every m € Z, put

L2,(Xg) = {u € L*(Xg): (e9)*u = e™%, for every ¥ ¢ St}

It is clear that L?(Xg) = @mezl?, (X¢). By definition H)(X¢) = @menl?,(Xa).
The Szegd projection on X is the orthogonal projection: Sx, : L?*(X¢) — Hp (Xq).
The S action induces a smooth vector field % on Xq. Fix a point p € Xg. Let x
be local coordinate of X¢ such that z(p) = 0 and % = %. Then

™

I
SXG(;c,y)E2—/O et @) gt (5.20)

In particular, Sx.(x,y) is a Fourier integral operator with complex phase. There-
fore, the above proof of Theorem in the case dim Xg > 3 works also when
dim Xg = 1. O

Theorem 5.7. Let X be a three-dimensional compact orientable CR manifold and
let G be a compact Lie group acting on X such that the G-action preserves J and
wo. We assume that X is pseudoconvex of finite type and that Oy has closed range
in L? on X. Then the conclusions of Theorem [L2 hold.

Proof. It was shown in [I2, Proposition 4.1] that there exists a bounded linear
operator G: Im 9, — L?(X) such that S = I — G0,. Furthermore G is smoothing
away the diagonal and maps smooth functions to smooth functions, where .S denotes
the Szeg6 projector. Hence, the Szeg6 projector is smoothing outside the diagonal
and preserves the space of smooth functions. Moreover, G is a circle and dim X¢g = 1
in this case, thus the arguments above apply again. O

Example 5.8. If X be a compact pseudoconvex three-dimensional CR manifold of
finite type admitting a transversal CR circle action, then dj has closed range in L2,
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see [31], §5.2]. Let M be a compact Riemann surface and (L, h’) be semi-positive
line bundle over M whose curvature R” vanishes to finite order at any point. Then
the Grauert tube X of L* (Z19) is a compact pseudoconvex three-dimensional CR
manifold of finite type (cf. [31], [41, Proposition 11]) admitting a transversal CR
circle action. If G is a compact Lie group acting holomorphically on M and whose
action lifts to (L, h%), Theorem B applies to X.

6. An Almost Complex Version of Theorem [1.4]

In this section, we will prove a version of Theorem [[.4] in the case of an almost
complex manifold. We will mostly follow [52] and adopt the notations therein.

Let (L,hl) be a Hermitian line bundle with Hermitian connection V¥ and
associated curvature R* on a compact almost complex manifold (M, .J).

Let G be a compact Lie group with Lie algebra g acting (on left) on M, whose
action lifts on L such that h*, V! are G-equivariant. Then the moment map
w:M — g* is defined by the Kostant formula

2V —1(p, &)+ = V¢, — Le, for € €g. (6.1)

For any ¢ € g, we have

d{p, &) =i¢gyw, withw = QRL. (6.2)

We assume that the almost complex structure J on M is G-invariant and R” is
J-invariant, G acts freely on p~!(0) and w(-,J-) defines a metric on TM|,-1 (o).

By choosing any G- and J-invariant Riemannian metric g7 on TM, we can

define an associated Dirac operator D on A(T*(“VM)® L and DX its restriction on

QOeven/odd(£r 1) (cf. [52, Definition 1.1]). Its index as a finite-dimensional virtual

representation of G,
Ind(D%) = Ker(D%) — Ker(D*) € R(G), (6.3)
does not depend on the choice of g7 .

Moreover (L, h%, VL), J,w on M induce canonically (Lg, hte,VEe), Jg, wg on
Mg = p~1(0)/G. In particular, (Mg,wg) is a compact symplectic manifold with
compatible almost complex structure Jg. Thus Ind(DiG) is well defined as a virtual
vector space.

Theorem 6.1. Let (M,.J) be a compact almost complex manifold and (L,h,V¥)
be a Hermitian line bundle with connection on M. Let G be a compact Lie group
acting (on left) on M, whose action lifts on L such that J, h* and V* are G-
equivariant. We assume that G acts freely on p=(0) and w(-,J-) defines a metric
on TM|,,~1(py. Then there exists mo € N such that for any m > mo we have

Ind(DX")% = nd(D9). (6.4)

Note that by the main result of [44], [52, Theorem 0.1], if w(-,J-) > 0 on the
whole M, then Theorem [6.1] holds for my = 1.
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Proof. We adapt directly the notation and argument from [52]. We fix a G- and

J-invariant metric g7 on T'M such that near u=1(0), g?™ is given by w(-, J-). We

fix an Adg-invariant scalar product on g and identify g and g* via this product.
Let hq,...,hq be an orthonormal basis of g. Set

XM (x) = 2(pu(x))p(z) = 22;11(;5)1/1(:3) with p = Zui(x)hi and V; = h; a1

(6.5)
Following [52] Definition 1.2] we set for T € R,
m m 71
DE" = D™ + —”2TC(XH) Q% (M, L) — Q% (M, L), (6.6)
where ¢(-) is the Clifford action. Then we have (cf. [52 (1.26)])
m m V-1 T2
(DE")? = (D" 4 Yoo S ey eV, X7) = VTTV s+ | X7,
J
(6.7)
where {e;}; is an orthonormal frame of (T'M, g7). Now as in [52 (1.27)],
Vin =23 pily, +4myV=TH + A, (6.8)

where A is an endomorphism of A(7*(%Y M) and does not depend on m.

We fix a sufficiently small G-invariant open neighborhoods U’ € U of p=1(0)
such that G acts freely on U and w(-,J-) > 0 on U. Note that on Q%*(M, L)%,
Ly, = 0. From ([@1) and (6.8)), there exists mg > 0 such that for any m > mg, the
assertion of [52, Theorem 2.1] holds for U’: there exist C' > 0,b > 0 such that for
any 7 > 1 and any s € Q%*(M, L™) with supps C M\U’, we have

IDE" sl = CllslIF + (T = b)lIsll3)- (6.9)
Thus we are on U exactly in same situation as considered in [52], §3(b)-3(e)]. Hence

Theorem [6.1] follows as in [52] (3.36), (3.37)]. O

It is an interesting question to show that in the holomorphic situation, under
the assumption of this section, we have

HI(M,L™)¢ =0 for any j > 0,m > 1. (6.10)
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