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ON THE SINGULARITIES OF THE SPECTRAL AND BERGMAN PROJECTIONS
ON COMPLEX MANIFOLDS WITH BOUNDARY

CHIN-YU HSIAO AND GEORGE MARINESCU

We show that the spectral kernel of the d-Neumann Laplacian acting on (0, ¢)-forms on a smooth relatively
compact domain admits a full asymptotic expansion near the nondegenerate part of the boundary. We
show further that the Bergman projection admits an asymptotic expansion under certain local closed range
condition. In particular, if condition Z(qg) fails but conditions Z(q — 1) and Z(q + 1) hold, the Bergman
projection on (0, g)-forms admits an asymptotic expansion. As applications, we establish Bergman kernel
asymptotic expansions near nondegenerate points of some domains with weakly pseudoconvex boundary
and S!-equivariant asymptotic expansions and embedding theorems for domains with holomorphic

S 1-action.
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1. Introduction

1.1. Setting and statement of the main results. Let M be a relatively compact open subset with smooth
boundary X of a complex manifold M’ of complex dimension n > 2. The study of the d-Neumann
Laplacian on M is a classical subject in several complex variables. For g € {0, 1,...,n — 1}, let 0@
be the d-Neumann Laplacian for (0, g)-forms on M. The domain M is said to satisfy condition Z(q)
(0<g<n-—1)at p € X if the Levi form of a (and hence any) defining function of M near p has at
least n — g positive or at least g 4+ 1 negative eigenvalues on the holomorphic tangential space to IM
at p. When condition Z(g) holds at each point of X, Kohn proved subelliptic estimates with gain of one
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derivative in Sobolev norms for the solutions of 0 = f (see [Chen and Shaw 2001; Folland and
Kohn 1972; Hormander 1965; Kohn 1963; 1964; Kohn and Nirenberg 1965]). This means that for each
(0, q)-form f orthogonal to Ker 0@ with derivatives of order < s in L2 the equation 0@y = f has a
solution u with derivatives of order < s + 1 in L2. Moreover, Ker 0@ is a finite-dimensional subspace of
Q%4 (M). A closely related notion to the condition Z(q) is the notion of g-convexity (and g-concavity)
in the sense of [Andreotti and Grauert 1962] and is one of the basic tools in the study of the geometry of
noncompact complex manifolds.

The Bergman projection B is the orthogonal projection onto the kernel of (1@ in the L2 space. The
Schwartz kernel B@)(-,-) of B@ is called the Bergman kernel. If Z(g) holds, the above results show
that the Bergman projection B @ js a smoothing operator on M and B@(-,.) is smooth on M x M.
When Z(g) fails at some point of X, the study of the boundary behavior of the Bergman kernel B@(- )
is a very interesting problem.

The case when ¢ = 0 and the Levi form is positive definite on X (so Z(0) fails) is especially a classical
subject with a rich history. After the seminal paper [Bergmann 1933], Hérmander [1965, Theorem 3.5.1]
(see also [Diederich 1970]) determined the limit of B(®) (x, x) when x approaches a strictly pseudoconvex
point of the boundary of a domain for which the maximal ] operator acting on functions has closed range.

More precisely, let p € €°°(M’) be a defining function of M, that is, M = {p <0}, X = {p = 0},
and dp # 0 near X. We can and will assume that |dp| = 1 on the boundary X. Let x¢o € X be a point
where the Levi form Ly, (p) is positive definite. Then we have!

—n+1 n!
(—p(x))”+lB(0)(x,x)—>2 2 M—ndetﬁxo(p), X = Xo. (1-1)

There are many extensions and variations of Hoérmander’s asymptotics for weakly pseudoconvex or
hyperconvex domains; see, e.g., [Boas et al. 1995; Catlin 1989; Hsiao and Savale 2022; Nagel et al. 1989;
Ohsawa 1984].

The existence of the complete asymptotic expansion BO(x, x) at the boundary was obtained by
Fefferman [1974] on the diagonal; namely, there are functions a, b € €*° (ZW ) such that

BO(x,x) = a(x)(—p(x)""*D 4+ b(x) log(—p(x)) (1-2)

in M. Subsequently, Boutet de Monvel and Sjostrand [1976] described the singularity of the full Bergman
kernel B (x, ¥) by showing that it is a Fourier integral operator with complex phase (see (1-15), (1-19)).

If ¢ = n—1 and the Levi form is negative definite (so Z(n — 1) fails), Hormander [2004, Theorem 4.6]
obtained the corresponding asymptotics for the Bergman projection for (0, n — 1)-forms in the distribution
sense. For general ¢ > 0, the first author showed in [Hsiao 2010, Part II] that if Z(g) fails, the Levi form
is nondegenerate on X and 0@ has L2 closed range, the singularities of the Bergman projection on
(0, g)-forms admits a full asymptotic expansion.

The developments about the Bergman projection mentioned above regard the points of the boundary
where the Levi form is nondegenerate. For points where the Levi form is degenerate there are fewer

IThe constant before the determinant of the Levi form here differs by rescaling from the corresponding constant in [Hérmander
1965, Theorem 3.5.1], since in this reference p satisfies |dp| = 1/+/2 on the boundary.



THE SPECTRAL AND BERGMAN PROJECTIONS ON COMPLEX MANIFOLDS WITH BOUNDARY 411

results. For example, in [Hsiao and Savale 2022] a pointwise asymptotic expansion of the Bergman kernel
of a weakly pseudoconvex domain of finite type in C? was obtained.

Fix a point p € X. Suppose that Z(q) fails at p and the Levi form is nondegenerate near p (the Levi
form can be degenerate away from p). In this work, we show that the spectral kernel of 0@ admits
a full asymptotic expansion near p and the Bergman projection for (0, ¢)-forms admits an asymptotic
expansion near p under a certain closed range condition. Our results are natural generalizations of the
asymptotics of the Bergman kernel for strictly pseudoconvex domains by Fefferman [1974] and Boutet de
Monvel and Sjostrand [1976].

Another motivation to study the spectral kernel of 0@ comes from geometric quantization. An
important question in the presence of a Lie group G acting on M’ is “quantization commutes with
reduction” [Guillemin and Sternberg 1982]; see [Ma 2010] for a survey. The study of G-invariant
Bergman projection plays an important role in geometric quantization. If we consider a manifold
with boundary as above, the 9-Neumann Laplacian may not have L? closed range but the G-invariant
9-Neumann Laplacian has L? closed range. In these cases, we can use the asymptotic expansion for the
spectral kernel of 0@ to study G-invariant Bergman projection. Therefore, our results about spectral
kernels for the d-Neumann Laplacian could have applications in geometric quantization on complex
manifolds with boundary. In [Hsiao et al. 2023], we used the asymptotic expansions of the spectral
kernels for the Kohn Laplacian to study the geometric quantization on CR manifolds.

We now formulate the main results. We refer to Section 2 for some notation and terminology used here.
Let (M’, J) be a complex manifold of dimension n with complex structure J. We denote by T1-9M’ the
holomorphic and antiholomorphic tangent bundles of M’, and by T*P4 M’ the bundle of (p, ¢)-forms.
We fix a J-invariant Riemannian metric g7™ "on TM' and let dvys be its volume form. We denote
by (- |-) the pointwise Hermitian product induced by g7™ " on the fibers of CTM’ and by duality on
CT*M’; hence on T*P4 M’

Let M be a relatively compact open subset with ¥*° boundary of M’. We denote by X = M
the boundary of M. Let p € ¥*°(M’,R) be a defining function of M with |dp| = 1 on X. Let
% € € (M’, TM’) be the gradient of p with respect to the metric g7 Then

dp((%) =1 onX, <%(x) ‘ v> =0 atevery x € X, forevery v € Ty X. (1-3)
Put ;
_ o0 00 ’ ’ _
T—J(ap)e% (M, TM"). (1-4)

It is easy to see that T is orthogonal to 710X @ 791X and |T| = 1 on X. We consider the 1-form on M/,

wo=—dpoJ =i(dp—dp). (1-5)

We have
wo(x)(u) =0 forevery x € X and every u € Txl’OX <) T)?’IX, (1-6)
wo(T)=1 onX.
For x € X, the Levi form Ly is the Hermitian quadratic form on Tx1 Oy given by

Lo(Z, W) = %dwo(x)(Z, W) = 0dp(x)(Z, W), Z.W eT}OX. (1-7)
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For a given point x € X let { Wj};’;l be an orthonormal frame of (T1:%X, (-|-)) near x for which the

Levi form is diagonal at x. We define the eigenvalues w;(x), j =1,...,n—1, of the Levi form L, by
Lx(Wj We)=pj(x)8;g, jl=1,....n—1. (1-8)
The determinant of the Levi form at x is denoted by
n—1
det L = [ ] wy(x). (1-9)
j=1

Forevery g =0,1,...,n—1, let T*94 X be the bundle of (0, g)-forms on X. We assume that p;(x) <0
ifl1<j<n_andp;j(x)>0ifn_+1=<j <n-—1.Let {ej};?;{ denote the basis of 7*%1X, dual to
{Wj};?;i. Put
N(x,n_):=Cer(x) A= Aep_(x), (1-10)
and let
Ten  TFO"=X — N(x,n_) (1-11)

be the orthogonal projection onto N (xo,n—) with respect to (- | - ).
Fix x € M’ Let L € Ty M’ and let L™ : To%I M’ — T%9T M’ be the operator with wedge
multiplication by L and let L™* : T;O’qHM’ — T;O’qM’ be its adjoint with respect to (- | - ), that is,

(LAaulv)y=(u|L™v), ueT M veTrtpm (1-12)

Let (- |-)ar be the L? inner product on %4 (M) induced by (- | -) (see (2-7)). Let L%O q)(M) be the

completion of %4 (M) with respect to (- | - )as. Let

0@ :Dom D@ c LY, (M) — L% (M), g€{0.1,....n—1},

be the d-Neumann Laplacian on (0, ¢)-forms (see (2-8)). The operator (1) is a nonnegative self-adjoint
operator. We denote by £@ the spectral measure of 1), For a Borel set B C R, £@)(B) is the spectral
projection of 0@ corresponding to the set B. For A > 0 we consider the spectral projectors,

BY) .= £ (=00, 2]) : L2 ;) (M) — HL, (i) := Ran BY) (1-13)

2
(0,9 <A’

and denote by
BY(x,y) € 7'(M x M, T**I M R (T** M)*)

their distribution kernels. For A = 0 we obtain the Bergman projection B@ .= B;qo) , the Bergman kernel
B@(x,y):= B;qo) (x, y) and the space of harmonic forms #4 (M) := Hio (M) =Ker 0. Let us define

0, 0.,q9) .
AGONOD . 700 0" 1 (7709 M)

and set, for W C M’ x M’ open,
Q(O,Q)l(O,CI)(W) e %OO(W, A(O,/(i)jl‘flﬂ/,q)) — %OO(W, T*O,qu X (T*O,qu)*)’

QODIOD (W 1 (M x M)) := ¢ (W N (M x M), ASGDI-D).
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Let U be an open set of M’ with U N X # &. We shall consider B(q)a as a continuous operator,
B Q2 WU NM)—> 7' (UNMT* M),

and let Biql) (x,y)eZ(UxU)yN(M x M), Aj(‘g’,‘i)jl\flo,’q)) be the distribution kernel of B(Q) We denote
in the sequel by S {”0 the Hormander symbol space. Our first main result is the followmg.

Theorem 1.1. Let M = {p < 0} be a relatively compact open subset with smooth boundary X of a
complex manifold M' of complex dimension n. Let U be an open set of M’ with U N X # &. Suppose that
the Levi form is nondegenerate of constant signature (n—,ny) on U N X, where n_ denotes the number
of negative eigenvalues of the Levi form on U N X. Fix A > 0. If q¢ # n—_, we have

Biqz(x’ y) e Q(O,q)I(O,q)((U xU)N (M x M)), (1-14)

BiQ)

and for ¢ = n_ the operator B is a Fourier integral operator with complex phase. More precisely,

B(q)(x y)— / PN p(x v 1) dt € QUINOD (U xU)YN (M x M)), (1-15)

where b(x, y,1) € ST (U xU)N (M x M) x (0, 00), Agg,’i)jl‘(lo/ q)) has asymptotic expansion b(x, y,t) ~
302 0 b (e, )" in ST o, b (x, y) € €X((U x U) N (M x M), ASSDN0?), j =0,1,..., and the
leading term is given by

bo(x,x) = 27 ""|det Ly |Tx.n_ 0 (0p(x))V*(0p(x))"  foreveryx eUNX. (1-16)

Moreover,
P(x,y) (U xU)N(M xM)), Im¢ >0,
P(x,x)=0, xeUNX, ¢x,y)#0 if (x,y) ¢diag((UxU)N (X x X)),
Imep(x,y)>0 if (x,y)¢ (U xU)N(X x X), (1-17)
$(x,y) ==y, x),
dx¢(x,y)|x=y = —2i0p(x) foreveryxeUNX.
Moreover, we can describe the phase function ¢ from (1-15) in the following complement to Theorem 1.1.

Let 3;‘; denote the formal adjoint of 9, and let Dj(,q) = 8* d+0 8* be the d-Laplacian acting on 2%*(M’).
We denote by O’(D(q)) its principal symbol.

Zusatz 1.2. Fix p € UNX and choose local holomorphic coordinates z = (z1, ..., zx), z; =X2j—1+iXx2/,
Jj =1,....n, vanishing at p such that the metric on T"OM" is }7_, dz; ® dz; at p and p(z) =
«/_Imzn + 21_1 wilzj|* + 0(|z]?), where uj, j =1,. — 1, are the eigenvalues of £,. We also
write W = (W1, ..., Wn), W; =Yy2;—1+1iy2;, j=1,...,n. Then, we can take ¢(z, w) in (1-15) so that
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in some neighborhood of (p, p) in M’ x M’ we have
2n—1 2n—1

1 1
¢ (2. w) =—v2X20-14+V2y2n— 1—1P(Z)(1+Z ajxj+2a2nx2n) lp(w)(H'Z ajyj+2a2ny2n)
n—1 /=1 n—1 !
i) lpgllzi—wi P4 iy Giwi—zjw)+0(|(z, w)?),  (1-18)
j=1 Jj=1

where a; = 13,0 (0%)(p. —2i9p(p)), j =1.....2n.

The essential step in the proof of Theorem 1.1 is the construction of a microlocal Hodge decompo-
sition (Theorems 5.9, 5.23) up to smoothing operators. Namely, there exists an approximate Neumann
operator N (@ and an approximate Bergman operator 117 on U N M such that 0@ N @ 4 1@ —
N@OW 4+ 1@ — 7, ODTI@ are smoothing on U N M (here I denotes the identity) and 14 differs
from the Fourier integral operator f ¢! Y)p(x, y,1)dt by a smoothing operator on U N M. In
Theorem 6.7 we prove that, for every A > 0, B(q) 1@ is smoothing on U N M. Since IT@ is
independent of A, the complex Fourier integral operator f el P (x, y t) dt in (1-15) can be taken
to be independent of A. Hence, for every A1 > A > 0, B( (x y) and BY <i (x y) differ by a smooth
section on (U x U) N (M x M).

By integrating over ¢ in the oscillatory integral fooo el p(x .y, 1) dt in (1-15), we have the
following corollary of Theorem 1.1.

Corollary 1.3. Under the assumptions of Theorem 1.1, let U be an open set of M’ with U N X # &.

Suppose that the Levi form is nondegenerate of constant signature (n—,ny) on U N X. Let ¢ = n_. There
exist forms F, G € QODNO-D (U x U) N (M x M)) such that for every A > 0 we have

BO(x,y) = F(x, ) (=i (@(x, ») +10) """ + G(x, y) log(=i (¢ (x, ) +i0) + Ra(x. ). (1-19)
where Ry (x,y) € QUDIOD (U x U)N (M x M)) is a A-dependent smooth form. Moreover, we have
F(x,y) = (n—j)b;(x, y)(—ig(x, ),
j=0

NS (1-20)

Gx.y) ~ Z( b1 (5,0, ) mod (U xU) 1 (3 x D),

where bj(x,y), j € No, and ¢(x,y) are as in Theorem 1.1.

We introduce now a condition which allows us to pass from spectral projections Biqk) with A > 0 to

the Bergman projector B@ = B(q)

Definition 1.4. Let U be an open set in M’ with U N X # &. We say that 0@ has local closed range
in U if, for every open set W C U with W N X # @, W C U, there is a constant Cy > 0 such that

I(I = BDYu|p < Cw |0Dulps. ueQP4W N M)NDomO@,

Note that if 04 has closed range then [0 has local closed range in U for any U.
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Our second main result is the following.

Theorem 1.5. Under the assumptions of Theorem 1.1, let U be an open set of M’ with U N X # @.
Suppose that the Levi form is nondegenerate of constant signature (n—,n4y) on U N X. Let ¢ = n_.
Suppose that 09 has local closed range in U. Then

oo —
BD(x,y) —/ e PN p(x v, 1) di € QUINOD (U xU)YN (M x M)), (1-21)
0

where b(x, y,t) and ¢(x, y) are as in Theorem 1.1. In particular, B@ (x, y) has the asymptotics (1-19).

Hormander [2004, Theorem 4.6] determined the leading asymptotics of B®=D(x, y) near a bound-
ary point where the Levi form is negative definite under the condition that 0®~1) has closed range.
Theorem 1.5 thus generalizes this result and gives the full asymptotics.

Remark 1.6. Let (E, hE) be a Hermitian holomorphic vector bundle over M’. As in (2-8) below, we can
consider the d-Neumann Laplacian on (0, g)-forms with values in E:

A% 9% 7. 2 2
0@ =00*+0*0:DomO% c LY (M. E) - LY, (M. E), (1-22)
where L%O q)(M , E) denotes the L? space of (0, g)-forms with values in E. We can define Biql) (x,y)

in the same way as above and by the same proofs, Theorems 1.1 and 1.5 hold also in the presence of a
vector bundle E.

In particular, we can consider the trivial line bundle £ = C with the metric hE = e %, where
@ € €°(M’) is a weight function. In this case the space L%o,q) (M, E) is the completion of %9 (M)
with respect to the weighted L2 inner product (u|v), = Jar (ulv)e™ dvpyr and is denoted by L%O,q) (M, p).
The Bergman projection is denoted byBg]) and the Bergman kernel by Béq) (+,+). So all the results above

have versions for weighted Bergman kernels B(f,q)( ).
We now give some applications of the results above.

Corollary 1.7. (i) Let M be a bounded domain of holomorphy in C* with smooth boundary and let ¢ be
any function in € (M). Let U be an open set in C"* such that U N OM is strictly pseudoconvex. Then
the weighted Bergman kernel Béo)(- ,+) has the asymptotics (1-21) on U N M.

(ii) Let M be an open relatively compact domain with smooth boundary X in a complex manifold M’ of
dimension n. Assume that X satisfies condition Z(1), i.e., the Levi form of X has everywhere either n — 1
positive or two negative eigenvalues. Let U be an open set in M’ such that U N X is strictly pseudoconvex.
Then the Bergman kernel B(O)(- ,+) has the asymptotics (1-21) on U N M.

(iii) Let M be a pseudoconvex domain with smooth boundary in P"™. Let U be an open set in P"* such that
U N3M is strictly pseudoconvex. Then the Bergman kernel B© (-, -) has the asymptotics (1-21) on U N\ M.

(iv) Let M be an open relatively compact domain with smooth boundary X in a complex manifold M’ of
dimension n. Fix p € X and assume that the Levi form is nondegenerate of constant signature (n—,n4.)
at every point of U N X, where U is an open set of p in M'. Let ¢ = n—. Assume that Z(q — 1), Z(q + 1)
hold of every point of X. The Bergman kernel B(q)( -,+) has the asymptotics (1-21) on U N M.
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Note that by the solution of the Levi problem [Range 1986, Theorem V.1.5], for a bounded domain
M c C" with smooth boundary the notions of domain of holomorphy and weak (Levi) pseudoconvexity
are equivalent. We can apply the L2 estimates for d of [Hormander 1965, Theorem 2.2.1] to obtain that
0© has closed range in L2, and hence settle case (i). Note that the analogous L? estimate for B along the
boundary was done in [Shaw 1985]. Moreover, it follows from [Folland and Kohn 1972, Theorem 3.1.19],
[Hormander 1965, Theorem 3.4.1] in case (ii), and [Henkin and Iordan 2000, Corollary 3.6] in case (iii),
that 0© has closed range. Note that these assertions are independent of the choice of the function
@ € €°° (M), since changing ¢ only means introducing equivalent norms in the Hilbert spaces concerned.
Obviously, the items (i) and (ii) hold also if we work with Bergman kernels of holomorphic sections in a
Hermitian holomorphic vector bundle (E, h¥) defined in a neighborhood of M (see Remark 1.6).

We now explain point (iv). Let M be an open relatively compact domain with smooth boundary X
in a complex manifold M’ of dimension n. We recall that X satisfies condition Z(q) if the Levi from
of X has at least n — g positive eigenvalues or at least g + 1 negative eigenvalues at every point of X.
It was proved in [Folland and Kohn 1972, Proposition 3.1.18] that if Z(¢ — 1), Z(g + 1) hold at every
point of X, then 0@ has closed range. If the Levi form is nondegenerate of signature (n_,n4) then
Z(q) holds if and only if ¢ # n_. We call n_ the critical degree.

Next we consider Bergman kernels on shell domains. These are domains with two boundary components,
one pseudoconvex, the other pseudoconcave They appear for example in Andreotti—Grauert theory, e.g.,
as (1, 1)-convex-concave domains (roughly speaking of the form M = {¢ <¢ <d}, where ¢ : M’ — R is
a strictly plurisubharmonic exhaustion function on M’). Such domains play an important role in problems
of compactification of complex manifolds; see, e.g., [Andreotti and Siu 1970].

Corollary 1.8. Let M € C" be the shell domain M = Mo\ M between two pseudoconvex domains
My and My with smooth boundary and My @ My. Let U an open set such that U N dM is strictly
pseudoconvex and U N dMy = @. Then the Bergman kernel B®~=Y (x, y) on (0,n — 1)-forms has the
asymptotics (1-21) and (1-19).

By [Shaw 2010, Theorem 3.5], the operator 1®~1) has closed range in L2 for a shell domain between
two pseudoconvex domains as above. Moreover, the Levi form of dM is negative definite on U N dM, so
the corollary follows from Theorem 1.5.

We consider further shell domains M = Mgy \ M in a complex manifold M’. For general shell
domains, e.g., (1, 1)-convex-concave domains, the associated 9-Neumann Laplacian may not have closed
range. This happens for example for domains which cannot be compactified on the pseudoconcave end
[Andreotti and Siu 1970] (the pseudoconcave boundary component is not embeddable in the Euclidean
space). To overcome this difficulty, we consider a holomorphic line bundle L over M’. In Theorem 1.9
below, we will see that the associated 9-Neumann Laplacian with values in L has closed range if k is
large and the curvature of L is positive. We refer to [Ma and Marinescu 2007] for a comprehensive study
of Bergman kernel asymptotics for high tensor powers of a line bundles.

Suppose that there is a holomorphic line bundle (L, h%) over M’, where h~ denotes a Hermitian metric
of L and R is the curvature of L induced by hL. For every k € N, let (L*, th) be the k-th power of
(L,hL). Let (- | -)g be the L2 inner product on 29 (M, L¥) induced by the given Hermitian metric
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/ L 2
(+|-)on CTM’ and h* and let L(O,q)

@ .33%  5%7. 2 k 2 k
O :00% +0*0:Dom 0@ C LY (M. L¥) — L (M. L¥)

(M, L*) be the completion of 2%49(M, L¥). Let

be the 8-Neumann operator on M with values in L¥ and let

@ .2 k (@)
BT 1 L{y (M, L") — Ker O}

be the orthogonal projection with respect to (- | - )z and let Blgq)(- ,+) be the distribution kernel of B ng) .

Theorem 1.9. Let M = My \ M 1 be the shell domain between two pseudoconvex domains My and M
with smooth boundary, M1 € My @ M. Let Xo = 0My and X = M. Assume that (L, h™) is a positive
line bundle in a neighborhood of M. Let U be an open set in M’ with of U N Xo # @ and U N X; = @.
There exists ko € N such that, for every k € N, k > ko,

I:I,(CO) has local closed range in U . (1-23)

Moreover, for every k € N, k > k¢, the Bergman kernel of M with values in Lk satisfies
0 0o —
BO(x,y) = /0 P p(x v, 1) dt mod €°((U x U) N (M x M), LR (L)),  (1-24)

where ¢ (x., y) €6 ((UxU)N(M xM)) and b(x. y.1) € ST o (UxU)N(M x M))x (0, 00), LKR(L¥)*)
are as in Theorem 1.1.

The next applications concerns the asymptotics of the S !'-equivariant Bergman kernel and embedding
theorems. We assume that M’ admits a holomorphic S !-action

Stx M — M, (eie,x)i—>ei90x.

The S!-action preserves the complex structure J of M'. Let To € €°°(M’, TM’) be the infinitesimal
generator of the S!-action on M’, that is (Tou)(x) = %u(eie ) x)|0=0 for every u € ¢>°(M’).

We take the Hermitian metric (- | -) on CTM’ to be S!-invariant and |Ty| = 1 on X. We take an
Sl invariant defining function p so that |dp| = 1 on X. Fix an open connected component X of X.
Suppose that

a)()(TQ) >0 on X(), (1-25)

where J is the complex structure map on 7*M’. From (1-4), (1-25) and noting that |To| = |dp| = 1
on X, it is easy to see that
To=T on Xp. (1-26)
For every m € Z, put
QUMY ={ue QM) : Tu=imu}, (1-27)

where T'u is the Lie derivative of u along direction 7. Similarly, let Qg,’q (M) denote the space of

restrictions to M of elements in sz,?;q (M’). We write CK,S,O(M) = 921’0(1\7). Let L%O 2 (M) be the
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completion of 2, 0.4 (M) with respect to (- | -)as. For ¢ = 0, we write L2, (M) := L(0 0). (M) FixA>0
and m € Z. Put
HL ) (M) :=HL, (M) N LG, g (M), (1-28)
where ’HqA(M) is given by (1-13). Let
BY) LY (M) —>HL, (M) (1-29)

be the orthogonal projection with respect to (- | -)ps and let

B(‘I)

<A,m
be the distribution kernel of B (q) Am- For A =0, we write Hl, (M) := HZ <0, m(M ), B (@ . Biqo) m

By, (@) (x,y):=B @ (x,y). From [Hsiao et al. 2020, Theorem 3.3], we see that ’H,i 1 m(M ) is a finite-

<0,m
dimensional subspace of €2, 0.4 (M) and hence

(x,y) € 2" (M x M, A](‘O,I’,‘Qlléﬁ’q))

B(‘I)

<A.m

(x,y) € QUDIOD (37 5 pr).

Moreover, it is straightforward to see that
B9 (x,y)= B(q)(x ¢'? 0 y)el™? 4o. (1-30)
=A,m 271

We have the following asymptotic expansion for the S !-equivariant Bergman kernel. We use here the
symbol spaces S ; see Definition 2.1 and the discussion after (2-6).

Theorem 1.10. Assume that M’ admits a holomorphic S-action that is boundary preserving, locally free
and transversal to the CR structure on the boundary. Let Xo be a connected component of X such that
(1-26) holds, let p € X and let U be an open set of p in M’ with U N X # @. Suppose that Z(1) holds
on X and that the Levi form is positive U N Xo. Let Ny :={g € S':gop=p}=1{go:=e,81,...,8r}
where e denotes the identity element in S' and g; # g if j # £ for every j, £ =0,1,...,r. Then

,
B,gf)(x, y) = Z g?eim"b(x’g“oy)ba(x,y,m) mod O(m~°) onUNM, (1-31)
a=0
where, foreverya =0,1,...,r,
bOt(x’ y?m) € Sl’(l)c((U 2 U) N (M X M))’
ba(x,y,m) ~ Y 520 ba,j(x, y)m" =1 in S (U xU)N(M x M)), (1-32)

ba,o(x,x) = bo(x,x),
where bo(x, x) is given by (5-124) and ¢ (x,y) € €° (U x U) N (M x M)) is as in (1-17).

Actually, we have more general results than Theorem 1.10. In Theorem 8.2, we get an asymptotic
expansion for B(q) in m for every A > 0, and in Theorem 8.3, we get an asymptotic expansion for B(q)
in m under the locél closed range condition of 0@, Moreover, when Z (g—1) and Z(g + 1) hold, then
0@ has closed range and an analogous statement to Theorem 1.10 holds for B,S? )
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For every m € N, let
Dy M — CIm, Xt (fi(X), ... fa, (X)), (1-33)

where { f1(x)...., fg, (x)} is an orthonormal basis for HO (M) with respect to (- | -)p and dyy =
dim 7—[9,1 (M). We have the following S !-equivariant embedding theorem

Theorem 1.11. Assume that M’ admits a holomorphic S!-action that is boundary preserving, locally free
and transversal to the CR structure on the boundary. Let X be a connected component of X such that
(1-26) holds. Assume that the Levi form is positive definite on Xo and Z(1) holds on X. For every mg € N,
there exist my, ... ,mg € N, withm; >mg, j =1,...,k, and an S Y invariant open neighborhood V
of Xo such that the map

By oy VM = CO x5 (B, (x), ..., Dpy (X)), (1-34)

is a holomorphic embedding, where @, ; is given by (1-33) and c?m =dm, +-+dm,.
Without the Z(1) condition, we can still formulate the following S '-equivariant embedding theorem.

Theorem 1.12. Assume that M’ admits a holomorphic S-action that is boundary preserving, locally free
and transversal to the CR structure on the boundary. Let Xo be a connected component of X such that
(1-26) holds and the Levi form is positive definite on Xgo. For every mqg € N, there exist an S'-invariant
open neighborhood V of Xo and f;j € €°(V N M) with éfj =0onVNM, fj(eiex) = ei™mi% f(x),
j=1,...k, foreie e Stand every x € V and some mj > mo, such that the map

O:VNM—>Ck x> (i), ..., fr(x)), (1-35)
is a holomorphic embedding.

1.2. Methods and further previous results. In [Hsiao 2010] the first author extended the results of the
fundamental paper [Boutet de Monvel and Sjostrand 1976] on the off-diagonal and boundary asymptotics
of the Szeg6 and Bergman kernels to the case of domains whose Levi form is everywhere nondegenerate on
the boundary. Building on [Hsiao 2010] we constructed in [Hsiao and Marinescu 2017] a parametrix for the
Szegd kernel on the boundary, and extended the above results in several directions: (i) the global nondegen-
eracy condition on the Levi form was relaxed to local nondegeneracy near the point where the parametrix
is being constructed; (ii) a more general projector onto low-energy eigenspaces of the Kohn Laplacian
was considered; (iii) the boundary and domain were allowed to be noncompact. In the present paper we
achieve the passage from the Szeg6 parametrix on the boundary to the Bergman parametrix in the interior.

The main technical part of this paper is the construction of the microlocal parametrices for the
9-Neumann problem done in Sections 4 and 5 (see Theorems 4.7, 5.9, 5.23). More precisely, in Section 4,
we construct parametrices for 0@ near a point p € X under the assumptions that Z(g) holds at p and
the Levi form is nondegenerate at p. Our result generalizes the global result [Folland and Kohn 1972,
Theorem 3.1.14] (see also [Kohn 1963; 1964]) about the solution of the 9-Neumann problem under the
hypothesis that the Z(q) condition holds on the whole boundary. In this case 0@ has a parametrix N @),
the -Neumann operator, which has a local character. Our method uses a reduction to the analysis on the
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boundary and the use of a boundary pseudodifferential operator 09 which is elliptic along the negative
component X_ C T*X of the characteristic cone (see Section 3).

In Section 5, we construct microlocal Hodge decomposition theorems for 0@ near a point p € X
under the assumptions that Z(q) fails at p and the Levi form is nondegenerate at p. This is the most
technical part of the paper. Again, this is the local counterpart of the global result [Folland and Kohn
1972, Proposition 3.1.17] saying that if Z(g) fails but Z(q — 1) and Z(g + 1) hold on X, there exists a
global Hodge decomposition theorem for 0@, Our method is to first construct a parametrix N @ of the
d-Neumann Laplacian and an approximate Bergman projector 1@, then to link T4 to an approximate
Szegd projector, which turns out to be a Fourier operator with complex phase, on the boundary via the
Poisson operator. Note that already in [Boutet de Monvel and Sjostrand 1976] the analysis of the Bergman
projector on a strictly pseudoconvex domain was done by reduction to the Szeg6 projector.

The localization of the d-Neumann operator was observed in several papers under global assumptions.
It was remarked in [Folland and Kohn 1972, p. 52] that the d-Neumann operator localizes assuming that
0@ has globally closed range (see also Theorem 3.6 and Remark (ii) on page 70 of [Straube 2010]). Near
a strictly pseudoconvex point (n_— = 0), the existence of the localized d-Neumann operator in Theorems 4.7
and 5.9 follows from the main results of [Henkin et al. 1996; Henkin and Iordan 1997; Michel and Shaw
1998], under various hypotheses, such as piecewise smooth boundary. The generalizations of these articles
for higher g have been considered in [Hefer and Lieb 2000, Theorem 3.16].

As mentioned above, a geometric counterpart of the condition Z(g) is the notion of g-convexity
[Andreotti and Grauert 1962]. A manifold M of dimension # is called g-convex (1 < g < n) if there exists
an exhaustion function ¢ : M — R such that its Levi form iaé_)(p has n —q + 1 positive eigenvalues outside
a compact set K. If ¢ € R is a regular value of ¢ such that M, :={x € M : p(x) <c¢} € M contains K,
then M, satisfies condition Z () for every £ > g. By [Andreotti and Grauert 1962], if M is g-convex then
the cohomology H¢(M, E) with values in any holomorphic bundle E is finite-dimensional for any £ > g.
This can be also deduced from the fact that the dim Ker 0® < oo for £ > ¢ and from Hodge theory of the
d-Neumann Laplacian; see [Hormander 1965]. If M is a domain such that the Levi form of the boundary
is nondegenerate of signature (n—, ny ), it follows from Andreotti—Grauert theory and [Andreotti and Hill
1972] that dim H¢(M, E) < oo for £ # n_ and dim HY(M, E) = oo for £ = n_. This reflects the fact
that in this case the Bergman projector on (0, n_)-forms has infinite-dimensional range.

1.3. Organization of the paper. The paper is organized as follows. In Section 2, we collect some standard
notation, terminology, definitions and statements we use throughout. To construct parametrices for 0@,
we introduce in Section 3 the boundary operator 0. In Section 4, we construct parametrices for 0@
near a point p € X under the assumption that Z(g) holds at p. Up to the authors’ knowledge, the
parametrices construction in Section 4 under no global assumptions is also a new result. In Section 5, we
obtain microlocal Hodge decomposition theorems for [0 near a point p € X under the assumption that
Z(q) fails at p. By using the results in Sections 4 and 5, we prove Theorems 1.1 and 1.5 in Section 6.
In Section 7, we prove Theorem 1.9. In Section 8, we prove Theorems 1.10, 1.11 and 1.12 about the
asymptotic expansions of the S !-equivariant Bergman kernel and embedding theorems for domains with
holomorphic S !-action.
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2. Preliminaries

2.1. Notions from microlocal and semiclassical analysis. We shall use the following notation: N =
{1,2, ...} is the set of natural numbers, Ng = N U {0}, R is the set of real numbers, and Ry := {x € R:

x > 0}. For a multiindex o = (aq,...,0,) € Nj we denote by || = oy + -+ + @ its norm and by
l(a) = nits length. Form e N, write € {1, ..., m}" ifaj € {1,...,m}, j =1,...,n. A multi-index «
is strictly increasing if ] < oy <--- < . For x = (x1,..., x,) we write
x® =x{'-xdn,
s, =%j, 9% = o .. g =%,
Dy, = llaxj, Dy =Dg!---Dy", Dy = %8»
Letz = (z1,...,2n), zj = X2j—1 +1ix2j, j =1,...,n, be coordinates of C". We write
2% =z{ ez, 2=z 20
9z = % = %(axzaj_l ! a)?zj)’ 92 = % = %(Bxi_l +ia;?2,-)’
d7 =03} --- 03" = 3702, 07 = 3‘;1‘ 8‘;3 = %

For j,seZ,setdjs=1if j =s,and §; 5 =0if j #s.

Let M be a smooth paracompact manifold. We let 7 M and T* M denote the tangent bundle of M
and the cotangent bundle of M respectively. The complexified tangent bundle of M and the complexified
cotangent bundle of M are denoted by CT M and CT* M, respectively. Write (-,-) to denote the
pointwise duality between T M and T* M. We extend (-, -) bilinearly to CT M x CT* M. Let E be
a ¢ vector bundle over M. The fiber of E at x € M will be denoted by Ex. Let E be another
vector bundle over M. We write £ X E* to denote the vector bundle over M x M with fiber over
(x,y) € M x M consisting of the linear maps from Ey to Ey. Let Y C M be an open set. From now
on, the spaces of distribution sections of E over Y and smooth sections of E over Y will be denoted by
2'(Y, E) and €*° (Y, E) respectively. Let &'(Y, E) be the subspace of 2'(Y, E) whose elements have
compact support in ¥ and let °°(Y, E) be the subspace of €°°(Y, E') whose elements have compact
support in Y. For m € R, let H™ (Y, E) denote the Sobolev space of order m of sections of E over Y. Put

HI(Y,E)={ue2'(Y,E):9ou e H™(Y, E) for every ¢ € €2°(Y)},
H"(Y,E)=HI(Y,E)N&'(Y,E).
Let E and E be € vector bundles over a paracompact orientable 4"°° manifold M equipped with a

smooth density of integration. If 4 : 6€2°(M, E) — 2'(M, E ) is continuous, we write A(x, y) to denote
the distribution kernel of A. The following two statements are equivalent:

(a) A is continuous: &' (M, E) = €°(M, E).
(b) A(x,y) € €°(Mx M, EXE*).
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If A satisfies (a) or (b), we say that A4 is smoothing on M. Let A, B : €>°(M, E) — 2'(M, E) be
continuous operators. We write
A= B (on M) -1

if A— B is a smoothing operator.

We say that A is properly supported if the restrictions of the two projections (x, y) — x, (x,y)+—y
to supp A(x, y) are proper.

Let H(x,y) € 2" (M x M, ERE *). We denote by H the unique continuous operator ¢.°(M, E) —
D'(M, E) with distribution kernel H(x, y). In this work, we identify H with H(x, y).

Let D be an open set of a smooth manifold X and let £ be a vector bundle over X. Let

T1(D.ER E*), L™D,ERE*)

denote the space of pseudodifferential operators on D of order m and type (% %) from sections of E
to sections of E and the space of classical pseudodifferential operators on D of order i from sections
of E to sections of E respectively. The classical result of Calderon and Vaillancourt [Hormander 1985,
Chapter 18] tells us thatany A € LT, | (D, EXE *) induces for any s € R a continuous operator

1/2,1/
A:HS(D.E)— HS.™(D, E). (2-2)
Let A € L'l”/2 1/2(D’ EXE*), B e L'ln/‘2 1/2(D’ E X E*), where m,m; € R. If A or B is properly

supported, then the composition of A and B is well-defined. Moreover, we can repeat the proof of [Boutet
de Monvel 1974, Proposition 3.2] and conclude that

AB € L™"™(D,ER E*). (2-3)
2°2
FormeR, p,6eR, 0<p,§ <1, let
" (T*D.E®E”)

be the Hormander symbol space on 7* D with values in EX E™* of order m and type (p, §); see [Hormander
1983, Definition 7.8.1]. Let

S (T*DERE*):= (| SIs(T*D,ERE™).
meR

Leta; € S;’?g (T*D, ER E*) with m; \( —00, j — oc. Then there exists a € S;’fg(T*D, E X E*) such
that, for any k € N,

k—1
a—> ajeSs(T*D,ERE").
j=0
In this case we write
+00
a~) aj in SY(T*D, ER E¥).
j=0

The symbol a is unique modulo Sp_go(T*D, EXE™).
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Let W1 be an open set in RV and let W5 be an open set in RN2. Let E 1 and E, be vector bundles
over W and W, respectively. An m-dependent continuous operator Fy, : €2°(Wa, E2) — 2'(Wh, E1)
is called m-negligible on Wy x W, if, for m large enough, F;, is smoothing and, for any K € W) x W>,
any multi-indices , 8 and any N € N, there exists Cg 4 g y > 0 such that

10208 Fu|(x.y) < Cxapym™ on K form> 1. (2-4)
In that case we write
Fu(x,y)=0m ) or Fyu=0@m ) onW;xW,.

If F,Gm : €°(Wa, E2) — 2'(W1, E1) are m-dependent continuous operators, we write Fp, =
Gm+O0(m ) on Wy x W, or Frp(x,y) = Gp(x,y)+ O(m™ ) on Wy x W, it Fy — Gy = O (™)
on Wi x W,. When W = W; = W,, we sometimes write “on W”.

Let M and M5 be smooth manifolds and let £y and E, be vector bundles over M; and M,
respectively. Let Fy,, Gy, : €°° (M2, E2) — €°° (M1, E1) be m-dependent smoothing operators. We
write Fy, = G+ O(m™°°) on M x M, if, on every local coordinate patch D of M and local coordinate
patch Dy of My, Fpy = Gy + O(m™°) on D x Dy. When M1 = M>, we sometimes write “on M;”.

We recall the definition of the semiclassical symbol spaces.

Definition 2.1. Let W be an open set in RV. Let

S(W):={ae€®(W) |forevery a € N : sup|d¥a(x)| < oo},
xeEW

SI?,C(W) = {(a(-,m))meR } forall @ € NON, X EC (W), sup sup [0%(ya(x,m))| < oo}.

m>1xeW
For k € R, let
Sl]gc = Sl’ée(W) ={(a(-,m))mer | (m_ka(~,m)) € SlgC(W)}.

Hence a(-,m) € S{f)C(W) if, for every « € N{)V and y € €2°(W), there exists C > 0 independent of m

such that [3%(ya(-,m))| < Cqum® holds on W.
Consider a sequence a; € Sloé, J € Np, where k; \(—o0, and let a € Sl];(c’. We say that

o

. k

a(-,m) ~ Zaj(-,m) in S0
Jj=0

. k .
if, for every £ € Ny, we have a — Zti:O aj €8 1 For a given sequence a ; as above, we can always

] loc
find such an asymptotic sum a, which is unique up to an element in S,/ >° = S (W) := S{gc.

Similarly, we can define S¥

1o (Y, A) in the standard way, where Y is a smooth manifold and A4 is a

vector bundle over Y.

2.2. Manifolds with smooth boundary. Let M be a relatively compact open subset with smooth boundary
X of a smooth manifold M’. Let A be a ¥ vector bundle over M. Let U be an open set in M’. Let

EPUNM,A), 22(UNM,A), €°UNM,A), &UNM,A),
H*(UNM,A), HS(UNM,A), H.(UNM,A)
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(where s € R) denote the spaces of restrictions to U N M of elements in
EPWUNM A, 22UNM A, €°UNM, A, &UNM, A,
H*(M', 4), H:M' A), H.(M'. A,
respectively. Write
L2(UNM,A):=H(UNM,A), L2UNM,A):=HXUNM,A),
LE.(UNM,A):=HX.(UNM,A).
Let A and B be € vector bundles over M'. Let U be an open set in M. Let
Fi,F:€°(UNM,A)— 2 (UNM,B)
be continuous operators. Let Fy(x, y), Fa(x,y) € 2/(U xU)N (M x M), AKX B*) be the distribution
kernels of F; and F, respectively. We write
Fi = F, mod ¢ (U xU)N (M x M))
or F1(x,y)= Fa(x,y) mod ¢ (UxU)N(M xM)) if Fi(x,y) = Fa(x, y)+r(x, y), where r(x, y) €
E°(U xU)N(M x M), AR B*). Similarly, let
F1.F:€°(UNM, A) — 7' (UNX, B)
be continuous operators. Let
Fi(x,y), Fa(x.y) € 7/(U xU) N (X x M), AR B*)

be the distribution kernels of F; and F» respectively. We write Fi=F, mod ¥ (U xU)N(X xM)) or
Fi(x, y) = Fo(x, y) mod € (U xU) N (X x M)) if Fi(x, y) = F>(x, y) +7(x,y), where F(x, y) €
(U xU)N(X x M), AR B*). Similarly, let Fy, F> : €>°(U N X, A) — 2'(U N M, B) be continuous
operators. Let

Fi(x,y), Fo(x,y) € Z(UxU)N (M x X), AR B*)

be the distribution kernels of F; and F, respectively. We write F; = F> mod ¢°°((U xU)N (M x X)) or
Fi(x, y) = Fo(x, y) mod € (U x U) N (M x X)) if Fi(x, y) = F>(x, y)+7(x,y), where 7(x, y) €
ER((U xU)N (M xX), AK B*).
Let
Fon.Gm : €U NM, A) - 2'(UNM, B)

be m-dependent continuous operators. Let
Fn(x,9),Gm(x,y) € 2'(UxU)N(M x M), AR B¥)
be the distribution kernels of F},;, and G, respectively. We write
Fpn=G,modOm ) onUNM (2-5)
if there is a r, (x, y) € €°°(U x U, AR B*) with r,,(x, y) = O(m~°) on U x U such that

rm(x, y)|(UxU)m(MXH) = Fn(x,y)—Gpu(x,y) form> 1.



THE SPECTRAL AND BERGMAN PROJECTIONS ON COMPLEX MANIFOLDS WITH BOUNDARY 425

Let k € R. Let U be an open set in M’ and let E be a vector bundle over M’ x M. Let
Sk.(UxU)N (M x M), E) (2-6)
denote the space of restrictions to U N M of elements in S{f)C(U x U, E). Let
a; €SS (U xU)YN (M x M), E), j=012.....

with k; \( —oo, j — 0o. Then there exists a € sk O((U xU)N (M x M), E) such that, for every £ € N,

loc

a—za, e SK (U xU)YN (M x M), E).
If a and a; have the properties above, we write

loc

a~Zaj inS 0((UxU)ﬂ(]\7x]\7),E).

If E is trivial, then we write sk (U xU)N (M x M)) to denote sk O((UxU)N(M x M), E).

loc loc

2.3. The 3-Neumann Laplacian. Let M be a relatively compact open subset with 5 boundary X of
a complex manifold M’ of dimension n. Let T1-°M’ and T%! M’ be the holomorphic tangent bundle
of M’ and the antiholomorphic tangent bundle of M’. We fix a Hermitian metric (-|-) on CTM' so
that T1OM’ L T%'M’. For p,q € N, let T*P:4 M’ be the vector bundle of (p, q)-forms on M’. The
Hermitian metric (- | -) on CTM’ induces by duality a Hermitian metric (- | -) on @I’;”gif T*PaM'.
Let |- | be the corresponding pointwise norm with respect to (- | -). Let p € ¥°°(M’, R) be a defining
function of X, thatis, p=0o0n X, p <0 on M and dp # 0 near X. From now on, we take a defining
function p so that |dp| = 1 on X. Let U be an open set of M'. For every p,q =0,...,n, we define

QPUUNM):=¢°UNM,T*?IM"), QPIM'):=¢>°M' T*P1M"),
QPAUNM):=¢°UNM, T*?I1M’),
QPIM') =6 (M, T*PIM’), QPI(M):=C°(M, T*PIM).

Let dvpy be the volume form on M’ induced by the Hermitian metric (- |-) on CTM’ and let (- |- )y
and (- | -)as be the inner products on Q%9 (M) and Q?’q (M) defined by

f | oyt = /M<f (hyduy. fih e QU4(T),
2-7)

(F 1w = [ (F IRy doae fih e 9290,

Let |- lar and || - || a7 be the corresponding norms with respect to (- | -)as and (- | - ) respectively. Let
(0 )(M ) be the completion of Q%49 (M) with respect to (- | -)ar. We extend (- | -)as to L2 (©, )(M ) in
the standard way. Let 8 : Q%4 (M’) — Q%471 (M’) be the part of the exterior differential operator which
maps forms of type (0, g) to forms of type (0, g + 1) and we denote by 8* QUITI (M) — Q%4 (M)
the formal adjoint of d. That is,
@f 1w = (f |5
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fe QS"J (M"), h € Q%911 (M’). We shall also use the notation 9 for the closure in L2 of the 9 operator,
initially defined on Q%4(M) and 9* for the Hilbert space adjoint of d. Recall that for u € L%O,q)(M ), we
say that u € Dom d if we can find a sequence u; € QO4(M), j =1,2,..., with limj o |luj —ulpr =0
such that lim; _, o0 ||5uj —v||p =0 for some v € L%o,q+1)(M)- We set du = v. The 9-Neumann Laplacian
on (0, g)-forms is then the nonnegative self-adjoint operator in the space L%O,q)(M ) (see [Folland and
Kohn 1972, Chapter 1]):

0@ =00*+0*0:DomOY C L) (M) — L (M), (2-8)
where

DomO@ = {y € L%O M), ue Dom 8* NDom d, 3*u € Dom d, du € Dom 9*} (2-9)
and Q%4(M) N Dom 0@ is dense in Dom 0@ for the norm
Dom 0@ 3 u = [[ullag + 1|8ullar + 118*uar:

see [Folland and Kohn 1972, p. 14]. We denote by Spec 0@ the spectrum of 0@,

Now, we consider the boundary X of M. The boundary X is a compact CR manifold of dimension
2n — 1 with natural CR structure 710X := T1:0M/ NCTX. Let T%' X := T1.0X. The Hermitian metric
on CTM’ induces Hermitian metrics (- | -) on CTX and also on the bundle @Jzi_ll AJ(CT*X). Let
dvy be the volume form on X induced by the Hermitian metric (- |-) on CTX and let (- | - )x be the

L? inner product on ¥ (X. @Jzijl A/ (CT*X )) induced by dvy and the Hermitian metric (- |-) on
;%' AJ(CT*X). Put
T*0x .= (%' X @ CT) cCcT*)x, T*%'X :=(T'"°X®CT): cCT*X.
We have the pointwise orthogonal decomposition (see (1-5))
CT*X =T*"9X o T*®1 X @ {Awo : A € C},

(2-10)
CTX =T"XaT%' X @ {AT : 1 cC}.

Define the vector bundle of (0, ¢)-forms by T*%4X := A9T*%1X. Let D C X be an open set. Let
Q%4 (D) denote the space of smooth sections of 7*%4 X over D and let Qg’q(D) be the subspace of
Q%4 (D) whose elements have compact support in D.

In order to describe the d-Neumann boundary conditions we introduce the operator of restriction to the
boundary X: let y denote the operator of restriction to the boundary X,

yiQU(M) > ¢ (X, T***M'|x), ur yu:=ulx. (2-11)
We have {u € Q%9(M) : (3p)*yu = 0} = Dom 0* N Q%9 (M). We have thus
u € DomO@ NQ%™ (M) <« (9p)*yu=0,(3p) " ydu =0. (2-12)

The conditions on the right-hand side are called first and second d-Neumann boundary conditions.
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3. The boundary operator 09’

In this section, we introduce a boundary operator on X = dM defined for a form u on X as the complex
tangential component of the form dv, where v = Pu is the extension of u from X to M by the Poisson
operator P. This operator will play a central role in Section 4 for the construction of the parametrix of
the 3-Neumann problem and Section 5 (Lemma 5.18). We fix ¢ € {0, 1,...,n—1}. Let

O =335 +079: Q" (M') > Q™M)
denote the complex Laplace—Beltrami operator on (0, g)-forms. The subscript f indicates that the
operator is not subject to any boundary conditions. The boundary problem (D}q), ) on M is the Dirichlet
boundary problem, which is a regular elliptic boundary problem; see, e.g., [Taylor 2011, Chapter 5,
Proposition 11.10]. Let us consider the map

F@O: HX (M. T* M) > L2 (M) @ H>(X. T**M'), > OPu.yu). G

By the general theory of regular elliptic boundary problems [Boutet de Monvel 1971; Taylor 2011,
Chapter 5, Proposition 11.16], we know that dim Ker F9) < oo and Ker F@ ¢ Q%49(M). Let

K@D H>(M,T*%9M') — Ker F@ (3-2)

[I](,q) + K@ and consider the map

be the orthogonal projection with respect to (- | -)as. Put ﬁ}Q) =

F@O HX(M.T*9M") > L2) (M) ® H3 (X, T**IM'), ur> O@uyu). 33

It is easy to see that F@ s injective. Let

P:e>®X, T*M") — Q%9 (M) (3-4)

be the Poisson operator for ﬁ}q) which is well-defined since (3-3) is injective. The Poisson operator P
satisfies

’Ii;q)ﬁu =0, yPu=u foreveryuec¢®(X,T*>M). (3-5)

By [Boutet de Monvel 1971, p. 29] the operator P extends continuously
P HS(X,T*M") - H"2(M,T**9M’) foralls €R, (3-6)

and there is a continuous operator

DD HS(M,T**M’y > HT2(M, T**9M’) forall s € R (3-7)
such that
DWOW + Py =1 onQ"4(M). (3-8)

Let &’ (M, T*%4 M) denote the space of continuous linear map from Q°%4(M) to C with respect to
(+|-)a- Let
P*: &M, T* M > 7' (X, T*>I M) (3-9)
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be the operator defined by
(P*ulv)xy =W| Py, ued M, T*™IM"), veec>® X, T*IM").
By [Boutet de Monvel 1971, p. 30] the operator
P* HS(M,T*“9M'y > HST2(X, T**9 M) (3-10)
is continuous for every s € R and
P*: Q% (M) — ¢>(X, T**IM").
Let
09 .= @3p)M*ydP : Q%9(X) > Q%9 (X). (3-11)
In this section, we will construct a parametrix for 09 under certain Levi curvature assumptions. Put
2T ={(x, wp(x)) € T*X : A <0}, (3-12)
ST ={(x,Awo(x)) e T*X : 1 > 0.

Note that we use here a different sign convention than in [Hsiao 2010], where wg equals dp o J (compare
[loc. cit., (1.9), p. 84], (1-5)), thus we swap here the roles of >t and ¥~ compared to [loc. cit.].

Definition 3.1. Let A € LT, | (D, T*0-4 X ¥ (T*%9X)*), where m € R. We write

A=0 near XTNT*D

) . ’ m
if there exists A’ € L1/2,1/2

a(x, )7) € SIV;Z,I/z(T*D, T*O,qX X (T*O,qX)*)

(D, T*%9 X K (T*%9 X)*) with full symbol

such that
A=A"on D
and a(x, n) vanishes in an open neighborhood of =+ NT*D.

For A as in Definition 3.1 we have WF(4) N 1 = @, where WF(A) denotes the wave front set of the
pseudodifferential operator A; see [Grigis and Sjostrand 1994, Chapter 7].
Let us consider the Hodge—de Rham Laplacian

Ay i=dd* +d*d : (X, A1(CT*X)) — € (X, A1 (CT* X)), (3-13)

where d* : €°(X, ATt (CT*X)) - ¢ (X, A4(CT*X)) is the formal adjoint of the exterior deriva-
tive d with respect to (- |- )x. Let «/Ax be the nonnegative square root of Ay.
Theorem 3.2 [Hsiao 2010, Part II, Proposition 4.1]. The operator 09 from (3-11) is a classical
pseudodifferential operator of order 1 and we have

00 = 1GT + /) + 0, (3-14)
where W0 ¢ Lgl (X, T*%4 X R (T*%9X)*). In particular, 0D is elliptic outside .
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Let dp : 2%9(X) — ©%4+1(X) be the tangential Cauchy—Riemann operator. It is not difficult to see
that
dp = 2(0p)*(3p) "y P : Q%9 (X) — Q%1 (X). (3-15)
We notice that, for u € €*°(X, AY(CT*X)),
ueQ%(X) ifandonlyif wu=2(9p)*(p) u on X (3-16)
and
2(3p)*(3p)™ +2(3p)"(@p)™* =1 on T2°(X, A1(CT*X)). (3-17)

Consider
)/Bf (X, NITHCT* X)) - €°°(X, A(CT*X)).

It is not difficult to check that (see [Hsiao 2010, Part II, Lemma 2.2])

yaf Q% (x) » Q%9(X). (3-18)
Put

O 1= y 5 Poy + Dy 35 P : Q9(X) - Q%9(X). (3-19)
Lemma 3.3. We have
O = —4(3p)"*(90)" 33 P(0p)" 09 + RD  on QO4(X),
where R@ : Q%4 (X) — Q%4 (X) is a smoothing operator.
Proof. From (3-5), (3-15), (3-16), (3-17), (3-18), we have
ﬁgq) _ 2(5P)A’*(5p)Aﬁ§f)
=2(3p)"*(@p)" (y9} POy + 0py 0 P)
=2(3p)"*(9p)"y 05 POy +2(3p)"*(3p) " 9py 3} P
=2(3p)"*(3p)"y 0} POy +2(3p)"*(3p) " yd Pyd; P
=2(0p)"*(9p)"y 05 P (yOP —2(0p)"(9p)*yIP) +2(3p)*(3p)"ydPyds P.  (3-20)
From (3-8), we have
P = PydP + D<q+1)ﬁ}4+1>5ﬁ
= PydP + DtV @@V 4 k@tD)5p
= PyaP + D(‘H'l)é([l}q) + KDYP - pUtDig@p 4 patD g@+D5p
= PydP mod € (M x X).

Similarly, we have

Thus,
yd3 PyoP +ydPyds P =y(050+005)P. (3-21)
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From (3-11), (3-20) and (3-21), we get
O3 =2(3p)"* (3p) "y O P = 4(3p)*(9p) 3} P (3p)" O
= —2(0p)"* @p)" yK'D P —4(3p)"*(8p) v} P (3p)" O, (3-22)

where K@ is as in (3-2). Note that K@ = 0 mod € (M x M). From this observation and (3-6), we
deduce that
—2(0p)V*(0p) yKD P HS (X, T** M) — HTN (X, T*% M),

for every s € R and every N € N. Hence, —2(3p)*(3p)"yK @Pp is smoothing. From this observation
and (3-20), the lemma follows. O

Lemma 3.3 gives a relation between ﬁ](]q) and 09, Put
AD = —4(Dp)™*(p)"y 05 P (3p)" : Q%9 (X) — Q% (X). (3-23)

Then, ﬁg]) = ADOYD. We are going to show that AD is an elliptic classical pseudodifferential operator
near . We pause and introduce some notation. Near X, put

T IM = {ue T} M : dp(u) =0}, (3-24)
We have the orthogonal decompositions with respect to (- | -) for every z € M’, z is near X:

TIOUM! = T M @ (A(Bp)(2) 1 2 € T},

Tzo,er _ Tzo’lM/GB {A(iT 4 %)(z) e @}. (3-26)

Note that TZ*O’lM’ = TZ*O’lX and TZO’lM/ = TZO’lX for every z € X. Fix zg € X. We can choose an

orthonormal frame ¢1(z), ..., t,—1(z) for TZ*’O’IM " varying smoothly with z in a neighborhood U of zg
in M’. Then _
Ip(z)
1), ....th—1(2),ty(2) := =
9p(2)]

is an orthonormal frame for TZ*O’lM " Let
T1(2), ..., Tu—1(2), Tu(2)
denote the basis of 7! M’ which is dual to 1 (2), ..., n (z). We have Ti(z)e XM’ j=1,....,n—1,and
iT+4
Ty= P
}l T + %
From now on, we write W° to denote any element in LS] (X, T*%4X R (T*%4X)*). By [Hsiao 2010,

Part II, (4.11)] we have
1

yds P => 1M oTF +(@p)V o (iT - Ax)+9°, (3-27)

3
|

-
Il
—
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where Tj* is the adjoint of 7; with respect to (-|-),ie., (T; f | g)x = (f | Tj*g)X for every f, g €
€PWUNX), j=1,....,n—1,and ¥ € LY(X, T*09X R (T*09X)*).

Theorem 3.4. The operator AD from (3-23) is a classical pseudodifferential operator with
AD = (T - JAx)+9° on Q™ (X), (3-28)
where W0 € LY(X, T*%9X R (T*%9X)*). Hence AD js elliptic near ©+.
Proof. From (3-23) and (3-27), we have
n—1
A@D = —4(3p)"*(3p)" ( S @) T+ (@) ()G T — VAx) + w"). (3-29)
j=1
We notice that
(5p)/\’*(5p)/\(5p)/\7}* =0 onQ%(X) forevery j =1,...,n—1,

_ _ _ _ (3-30)
43p)™*(3p)"(3p) ™" (3p)" =1  on QVI(X).

From (3-29) and (3-30), we get (3-28). O

Let D C X be an open coordinate patch with local coordinates x = (x1, ..., X2,—1). Assume that the

Levi form is nondegenerate of constant signature (n_,n4) on D. Note that (9p)"*u =0, u € Q0*(X).
From this observation and (3-27), we deduce that
n—1
y_;'}ﬁ = Z ZJ{\’* oT/ + O on Q%°(X),
j=1
and hence
yé}lg =05 +9° onQ%*(X),

where U0 € LY (X, T*%9X R (T*%9X)*).
We can apply the method in [Sjostrand 1974] to construct a parametrix of D(q) near £ (see also
[Hsiao 2010, Part I, Proposition 6.3]) and deduce the following.

Theorem 3.5. Let D C X be an open coordinate patch such that the Levi form is nondegenerate of
constant signature (n—,ny) on D. Then for any q # n_ there exists a properly supported operator

E@ e L} | (D, T*4X R(T*%9X)*) such that

BPE@=14+R onD, (3-31)
where R € L 1, |, (D, T**4X R (T**9X)*) with R = 0 near T+ N T*D.

If g #n_,n4, then I:I(q) is hypoelliptic with loss of one derivative and from [Sjostrand 1974], we can
find £@ so that D(q)E (‘1) = ]. In Theorem 3.5, ¢ could be equal to n4 and D( +) is not hypoelliptic;
therefore we have R in (3-31). In [Hsiao 2010, Part I, Proposition 6.3], we do not have Rsinceq #n_,n4.

We can now prove the main result of this section. We will use it in the proof of Theorem 4.3 for the
definition of the operator NS(q); see (4-15).
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Theorem 3.6. Let D C X be an open coordinate patch such that the Levi form is nondegenerate of
constant signature (n—,n4) on D. Then for any q # n_ there exists a properly supported operator
GDeLl, (D, T*X R (T**9X)*) such that

O09G@D =1 on D. (3-32)
Proof. Let AW e L1 (D, T**9X R (T*%9X)*) be as in (3-23). Since 4@ is elliptic near X+
(see Theorem 3.4), there are properly supported elliptic pseudodifferential operators H 4, H l(q) €
L7Y (D, T*%4 X R (T*%9X)*) such that

ADH@D _ 1 =0 near Tt NT*D,

(3-33)
Hl(q)A(q) —I1=0 near XtNT*D.

From Lemma 3.3, (3-23) and (3-33), we have O = 4@0@, HOTY = H® A@0 and hence

09 =HPEP  near ST NT*D. (3-34)
Let E@ e L} | (D, T*X ®(T**4X)*) be as in Theorem 3.5. From (3-34), we have
DWE@AD — | = HOTDPE@DA@ — [ near ST NT*D. (3-35)

From (3-31), we have H{BYE@ 4@ — 1 = H® (1 + R)A® — I and hence
HOPBPE@AD [ = HPAD | near SHNT*D. (3-36)
From (3-36) and (3-33), we get
HPBPEDAD —[ =0 near STNT*D. (3-37)
From (3-35), (3-36) and (3-37), we conclude that
0@ E@ 4@ — [ 4.

where r € L%/z 1/2(D, T*%4X ) (T*%9X)*) with r = 0 near Xt N T*D. Since O is elliptic
outside =1, we can find a properly supported operator r; € L}/2,1/2(D’ T*0-4 X ) (T*%49 X)*) such that
09Dy =—ronD.Let G@ ¢ L(l)/2 12(D. T*0-4 X ® (T*%9 X)*) be a properly supported operator so
that G = E@D A@D 4 r; on D. Hence 092G = [ on D. O

4. Parametrices for the d-Neumann Laplacian outside the critical degree

In this section we consider boundary points where the Levi form is nondegenerate of constant signature
(n—,n4) on D. In the neighborhood of such points we construct a local parametrix of the d-Neumann
Laplacian on (0, g)-forms with g # n_.

We briefly recall the global situation [Chen and Shaw 2001; Folland and Kohn 1972; Kohn 1963;
1964]. If Z(q) holds at each point of the boundary X, then Ker 0@ is a finite-dimensional subspace
of 2%4(M), 0@ has closed range in L? and the Bergman projector B@ on Ker 0@ is a smoothing
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operator on M. Moreover, there exists a continuous partial inverse N © : L2(M, T*%4 M) — Dom (@)
of 0@, called the Neumann operator, such that we have the Hodge decomposition at the operator level,
OWDN@ 4 B@ =] on L%o,q)(M) and N@O@ 4 B@ = [ on Dom 0@, Moreover, the Neumann
operator N @ maps continuously the Sobolev spaces H® to H*T! for every s € Z, and maps the space
of smooth forms on M into itself. If the Levi form is nondegenerate of signature (n_,74) on X, then
Z(g) holds if and only if ¢ # n_. We will show in this section a local version of these global results, in
which case the Neumann operator will be a local parametrix of the d-Neumann operator.

Let D be a local coordinate patch of X with local coordinates x = (x1,...,X2,—1). Then X :=
(x1,....X2n—1. p) are local coordinates of M’ defined in an open set U of M’ with U N X = D. Until
further notice, we work on U.

Let éA”(U N M,T*%4M’) be the space of continuous linear forms from Q%4(U N M) to C. Let
F:Q¥UNM)— 2 (UNM,T*%4M’) be a continuous operator. We say that F is properly supported
on U N M if, for every y € €>°(U N M), there are y1 € €°(U N M), y2 € €2°(U N M), such that
Fyu=yyFu, yFu=F yju foreveryu € Qg’q(U N M). We say that F is smoothing away the diagonal
on U N M if, for every x, x1 € €2°(U N M) with supp y Nsupp x1 = &, we have

¥Fx1=0mod (U xU)N (M x M)).
Lemma 4.1. Let 1 € €2 (X), 1 € € (M) with supp t Nsupp 11 = &. Then,
TPty =0 mod (M x X).
Proof. Since yrﬁrl = 7|y 71 =0, we have ﬁ)/‘lfﬁ‘[l = 0. From this observation and (3-8), we have
1Pt = (D(q)ﬁj(,q) + isj/)rﬁfl = D(q)ﬁj(,q)rﬁtl = —D(q)[t, ﬁ}q)]ﬁl'l. 4-1)
By (3-7) the operator
DD, TP): HY (M, T**4M") > HTH (M. T**4 M)

is continuous, for every s € Z. Using this observation, (3-6) and (4-1), we have

P HY(X, T*M") - H* 3 (M, T* M)
is continuous for every s € Z. We have proved that, for any 7 € ¥°°(M) with supp 7 Nsupp 1 = @,

TP HS(X, T*M') — HS+3 (M, T M) 4-2)

is continuous for every s € Z. Let 7 € ¥°°(M) with 7 = 1 near supp t and supp T N supp 7; = &. From
(4-1), we have
tPry = D@[r, O1z Py (4-3)

From (4-3), (4-2) and (3-8), TPty : HS(X, T*%4M") — HST5/2(M, T*4 M) is continuous for every
s € Z. Continuing in this way, we conclude that

2N+1

tPo HS(X, T*"IM') — H*T 752 (M. T M)

is continuous for every s € Z and N > 0. The lemma follows. O
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From Lemma 4.1 we obtain the following result for the adjoint P* given by (3-9)

Lemma 4.2. Let 11 € €°(X), T € € (M) with supp t Nsupp 1 = @. Then,
11 P*1 =0 mod € (X x M).

We come back to our situation. Until further notice, we assume that the Levi form is nondegenerate of
constant signature (n_,n4) on D C X. In the following theorem we construct a local parametrix N @)
for the 0-Neumann Laplacian on (0, g )-forms for g # n_.

Theorem 4.3. We assume that the Levi form is nondegenerate of constant signature (n—,ny) on D and
let ¢ # n—_. Then there exist a properly supported operator N @ on U N M that is continuous for every
s € Z between

ND:HS (UNM, T** M) - HTYWU NM, T* M) foreverys € Z, (4-4)

loc

and such that N @y satisfies the d-Neumann conditions

@) *yNDu|p =0, ueQ®UNM), (4-5)
(3p)*ydN Dulp =0, ueQ®UNM), (4-6)
OYND =1+ FD on Q24U NM). 4-7)

where F @ : 9'(U N M) — Q%4(U N M) is a properly supported smoothing operator on U N M.

Hence for u € Qg’q(U N M) we have Ny € Dom 0@ and ODN@D = | + F@, with F@ a
smoothing operator on U N M.

Proof. Since Dj(fq) is an elliptic operator on M’, we can find a properly supported continuous operator

NDHS (UNM, T*IM') > HSF(UNM, T**9M’)  forevery s € Z
such that N 1(4) is smoothing away the diagonal on U N M and

OWND =1+F  onQ2IUNM), (4-8)

where F; =0 mod ¢ (U xU) N (M x M)).

For u € Q%9(U N M) the form N fq)u doesn’t necessarily satisfy the 0-Neumann conditions (4-5),
(4-6). We will now construct corrections N j(q), j=2,...,7,and finally N @, starting with N l(q), such
that at the end the operator N @) gatisfies (4-4)—(4-8). Consider, for every s € Z,

N = ND _PyND . HS(UNM, T*M') - HT2U N M, T M),
From (3-5) and (4-8), we see that

yNz(Q)u|D =0 foreveryue Qg’q(U nM) 4-9)
and
D}”Nz(‘” =I1+F onQYUNM), (4-10)
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where F» =0 mod ¢ (U x U) N (M x M)). From Lemma 4.1, it is not difficult to check that Nz(q) is
smoothing away the diagonal on U N M. Hence, we can find a properly supported continuous operator

N HS (UNM. T*M') > HSX2(U N M, T**9M’)  forevery s € 7
such that
N = NP mod ¢ (U x U) N (M x M)). 4-11)
From (4-9) and (4-11), we conclude that
YN =0 mod (U x U) N (X x M)). (4-12)

Let E@ =0 mod ¢ (U x U) N (M x M)) be any smoothing properly supported extension of yN. (q),
that is, yE @Qu|p = yN3(q)u|D, for every u € Q%4(U N M) and E@ is properly supported on U N M.
For every s € Z let

N@ = NP _E@D . g (UNM, T*M') - H2(U N M, T*9M'). (4-13)

loc

Then N, iq) is properly supported on U N M and

yNiq)u|D =0 for every u € Q%4(U N M),
ODND =14+ F5 on Q09U N M) R
f 4 - 3 C ’

where F3 =0 mod (U x U) N (M x M)). Let G@ ¢ LY,5.1,(D, T**4X ®(T**X)*) be as in

Theorem 3.6. Put, for every s € Z,
ND  HSUNM, T*M) - HSP' (U N M, T M), s
ND = NP — PGD(Hp)"*yin®.

From Theorem 3.6, (3-11), (3-32) and (4-14), we can check that

(E_ip)A’*yNéq)mD =0 foreveryu e Q%UNM),
@) *yINE =0 mod € (U x U) N (X x M)), (4-16)

OWND =1+ F;  on QU NM),

where F4 =0 mod ¢ (U x U) N (M x M)). We explain the first equation in (4-16). From (4-14), we
have (ép)/\’*yNs(q)u = —(E_)p)A’*G(q)(E_)p)’\’*yé_)Nafq)u = 0 since G@ maps Q%9 (X) to Q%4 (X). It is
not difficult to check that Ns(q) is smoothing away the diagonal on U N M. Hence, we can find a properly
supported continuous operator

NéQ) CHE (UNM, T*M') — HST' (U N M, T*9M')  forevery s € Z

loc

such that
N = ND mod ¢ (U x U) N (M x M)). (4-17)
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Let R@ = 0 mod (U x U) N (M x M)) be any smoothing properly supported extension of
2(8p)’\(8p)’\’*yN6(q). For every s € Z put

N .= N® _R@D . HS (UNM,T* M’y > HSF' (UM, T* M), (4-18)
From (3-17), we have
@p)*yN? = @p)>* YN = (@p)*yR@
= (3p)"*yND =2(3p)™* (3p)(@p) Y Ng"
= @)V yNg? = (@p)*yN® =0, (4-19)
From (4-16) and (4-19), we have

(5p)’\’*yN7(q)u|D =0 foreveryu e Q%9(UNM),

@) *yIND =0 mod € (U x U) N (X x M)), (4-20)
OWND =1+ Fs  on QU NM),

where F5 =0 mod ¢°°((U x U) N (M x M)). Let J@ be any smoothing properly supported extension
of (Bp)A’*y3N7(Q). Let y € €2°((—¢, ¢)) with x = 1 near 0, where ¢ > 0 is a sufficiently small constant.
For every s € Z put

ND = ND _2y(p)pJ @D HE (UNM, T*IM") — HEFY(U N M, T*% M), (4-21)
It is not difficult to see that N @ is properly supported on U N M,
N@ = NSO mod ¢ (U x U) N (M x M))

and
(0p)N*yNDy|p = (Z_)p)"’*)/N7(q)u|D =0 foreveryucQ%(UNM).

From (3-17), we have, for every u € Q%9(U N M),

= (@p)*yON;"ulp ~2(3p)* (8p)" (3p)™*y3N;"ulp

= (30)"*yONSPu|p — (@) *yIN,Pulp = 0. (4-22)
We have proved that N (@) gatisfies (4-5), (4-6) and (4-7). The theorem follows. O

Let N@ be as in Theorem 4.3 and let (N ©)* : Q29U N M) — 2/(U N M, T*9M’) be the formal
adjoint of N (@) given by

(NDOYy | v)pr = | N Do)y for every u, v € QU4(U N M).

The following result shows that N @ g formally self-adjoint up to a smoothing operator.
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Lemma 4.4. With the assumptions and notation used above, we have
(NDy*y = N@Dy + HDy  for everyu € Q24U N M), (4-23)
where HD : /(U N M, T**4 M) — Q%9 (U N M) is a properly supported continuous operator on
UNM with H9 =0 mod ¢° (U x U) N (M x M)).
Proof. Letu,v € Q?’q(U N M). From (4-7), we have
(VO u o)y = (VO @PND — FDyu | v)y
— (D}q)N(q)u | N@Dy)pr — (FDy | N@Dy)py. (4-24)
From (4-5) and (4-6), we can integrate by parts and get
(OWNDu | NDv)py = (NDu | OO N D)y = (NDu | (1 + F D))y, (4-25)
where we used (4-7). From (4-24) and (4-25), we deduce that
(N u | vy = (NP + (FOPNDyu [ o) — | (FOY N Do)y, (4-26)
where (FD)* : Q29U N M) — 2/(U N M, T**4M’) is the formal adjoint of F@ with respect to
(- | ). Itis clear that (F@)* is a properly supported continuous operator on U N M with (F@)* =
0 mod € (U xU)N (M x M)).
It is not difficult to check that (F(9))* N@ is a properly supported continuous operator on U N M
with (F@)*N@ =0 mod ¢°°((U x U) N (M x M)). Let
(FOYNOY* . Q0 UunM)—2'UNMT* M)
be the formal adjoint of (F@)*N @ with respect to (- | -)ar. Then ((F@)*N@)* is a properly
supported continuous operator on U N M with
(FDY* N@)* =0 mod ¢°(U x U) N (M x M)).
From this observation and (4-26), we have
((N(‘I))*u | V) = ((N(II) + (F(q))*N(q) _ ((F(q))*N(q))*)u | v)M'
Relation (4-23) follows. O
From (4-23), we can extend (N ©)* to

(N@y*: LE(UNM, T*M") - L2 (UNM,T**IM’) foreveryseZ

loc

as a properly supported continuous operator on U N M and we have

(N@DYy = NDy 4+ HDy  foreveryu e L2 (UNM, T*9 M), (4-27)

loc

where H (@ is as in (4-23). Moreover, for every g € L2(UNM, T**4 M’y andu € L2 (UNM, T*%1M’),
we have
(NOYul gy =@ | NP, (ND)g[uy = (g| NDuy. (4-28)
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We can now improve Theorem 4.3.

Theorem 4.5. With the assumptions and notation used above, let q # n—_. We have

NOOWDy =y + Fl(q)u on U N'M for every u € Dom 0@, (4-29)
D}Q)N(q)u =u+ Fz(q)u onUNM foreveryu € Q%4 (U N M), (4-30)

where Fl(q), Fz(q) 9" (UNM)— QO%9(U N M) are properly supported smoothing operators on U N M.

Remark 4.6. Let u € Dom 0. By (4-29) we have, for every g € Qg’q(U nM),
(NOTDu | @)y = (u+ F{u | )m. (4-31)

Since N@ and FI(Q) are properly supported operators on U N M, (4-31) makes sense. For u €
Q%4 (U N M), equation (4-30) means that, for every g € Q(c)’q(U N M), we have

(OPNDu | )y = (u+ F;u| g)u. (4-32)
Proof of Theorem 4.5. Let u € Dom0@. Then, 0@y € L%O )(M) C LIOC(U NM,T*%9M’). Let

g€ Qg’q(U N M). From (4-27) and (4-28), we have
(N(Q)D(Q)u | 9m = ((N(Q))* —H(q))D(q)u | ©)m
= @Du | NDg)p — (HODu | g)us. (4-33)
Since u € Dom 0@ and by (4-5), (4-6), N@ g € Dom 0@, we can integrate by parts and get
ODu | N D)y = @ |OPNDg)pr = @ | (I + F D) =+ (FO) ' ul 9. (4-34)
where F@ is as in (4-7) and (F ©)* is the formal adjoint of F @, From (4-33) and (4-34), we have
(NOTDu | gy = (u+ (FO)Yu - HODPu | ). (4-35)

From (4-35), we get (4-29) with F{9) = (F@)* — H(q)m}‘”.
Let u € QO4(U N M) and let g € QY9 (U N M). From (4-27), (4-28), (4-29), and since N@ is
properly supported on U N M, we have

EONDu | g = (NDu | TP = (| (V) T
(u | (N(‘I) + H(q))D(q)g)M (u | g_|_ F(Q)g+ H(q)D(q)g)M
=+ (F{)*u+ (HDDD)u | g). (4-36)

where (F(‘I))* and (H(Q)D(CI))* are the formal adjoints of F(q) and H@ Dj(cq) respectively. From (4-36).
we get (4-30) with F(q) (F(q))* + (H(q)D(‘I))* O

From Theorems 4.3 and 4.5, we get the main result of this section about the local parametrix of the
d-Neumann Laplacian.
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Theorem 4.7. Let U be an open set of M’ with U N X # &. Suppose that the Levi form is nondegenerate
of constant signature (n—,ny) on U N X. Let q # n—. We can find properly supported continuous
operators on U N M

ND:HS (UNM,T*M'y - HSTYWUNM, T*IM’) foreveryseZ

loc

such that (4-5), (4-6), (4-23), (4-28), (4-29) and (4-30) hold.

5. Microlocal Hodge decomposition in the critical degree

In this section we will construct a local parametrix of N@ of the d-Neumann Laplacian acting on
(0, g)-forms and a local approximate Bergman operator 1@ in the critical degree g = n_.

We briefly recall the global situation [Folland and Kohn 1972, (3.1.7)—(3.1.19)]. Assume that Z(g —1)
and Z(q + 1) hold everywhere on X (but Z(g) does not necessarily hold). Then (0@ is bounded
away from zero on (Ker O0@)L, so 0@ has closed range in L2 and one can define a bounded operator
N@ . [2(M, T*%4M") — Dom 0@ (the 9-Neumann operator) such that

u=030"NDy +JINDy + BDy, weLl?>M T**M),
BONW — N@p@) — 0, NOOW —gWDN@D =7 _ @ oy DomD(q),
B@ =71 _3dN@De* _5*NE@tDG  on Dom d N Dom 9%,
BD(Dom §* N Q%4(M)) c DomOY N Q%9 (M).

(5-1)

If the Levi form is nondegenerate of signature (n—,n4) on an open set D C X, then Z(g) holds on D if
and only if ¢ £ n_. We will give in this section a (micro-)local version of the above global results in the
critical degree ¢ = n—, in which case the Neumann operator will be a local parametrix of the d-Neumann
operator and the Bergman projection B@ will be replaced by an approximate Bergman projection IT(4).

5.1. The parametrix and the approximate Bergman operator. We recall the following lemma about
integration by parts.

Lemma 5.1 [Folland and Kohn 1972, p. 13]. Forall f € Q%4(M), g € Q%9+t (M), we have

(g10/)m =05 | Sm+((0p) g | v)x. (5-2)

Let D be a local coordinate patch of X with local coordinates x = (x1,...,X2,—1). Then, X :=
(X1,...,Xx2n—1, p) are local coordinates of M’ defined in an open set U of M’ with U N X = D. Until
further notice, we work on U.

Lemma 5.2. Let u € Q%9(U N M). Assume that (9p)*yu|p = 0. Then,
(@p)™*yd5ulp =0. (5-3)
Proof. Let g € Qg’q_z(U N M). From (5-2), we have

@Fu | 0g)m = ((07)*u | ©)m + ((9p) yju [ ye)x = ((9p)*ydju | yQ)x. (5-4)
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On the other hand, from (5-2) again, we have
0=(u|dg)m = @Fu|dg)m + () *yu | ydg)x = (Ofu | 0g)m (5-5)
since (Z_Jp)/\’*yu|p = 0. From (5-4) and (5-5), we conclude that
((@p)"*yd5u | yg)x =0,
Since g is arbitrary, (5p)’\’*y5;u|p =0. O

We now assume that the Levi form is nondegenerate of constant signature (n—,n4) on D =U N X. Let
g =n_.Let N@tD and N~ be local parametrices of the -Neumann Laplacian as in Theorem 4.7.
We define, for every s € Z,

ND:HS (UNM, T** M) - HS (UNM,T*M’),

. N@ =05 (N@TD)25 + a(NU~Y)?57. -0
AU NM):={ueQ®UnM): (p) *yulp =0} =Domd* N Q*(U N M). (5-7)

We define
0@ =1 -9sN@TVG—GNEDGE: A%(U N M) — Q%4(U N M). (5-8)

We show in Theorem 5.3 below that the operators N@ and 1@ provide a rough version of the microlocal
Hodge decomposition. By (5-9) the operator N@ satisfies the first 9-Neumann condition. However,
by (5-10), the second d-Neumann condition is satisfied only modulo a smoothing operator (analogously
for 1@ by (5-12)). In the sequel we will modify these operators in order to obtain operators N @) (the
parametrix of the d-Neumann Laplacian) and 1@ (the approximate Bergman projector) which satisfy
exactly the 9-Neumann condition (see Theorems 5.9, 5.11, 5.23).

Theorem 5.3. With the assumptions and notation above, let ¢ = n_. We have

@) *yNDyu =0 foreveryu € Q%9(U N M), (5-9)
@0p)M*ydN Du = HPu  for everyu € Q¥4(U N M), (5-10)

0Dy e A% U NM) foreveryu e A% (U N M), (5-11)

0p) *ydl@Du = H\Du  for everyu € A%1(U N M), (5-12)
D}q)ﬁ(Q)u + 0Dy =u+ H3(q)u for everyu € A%(U N M), (5-13)
MDu=HDu  foreveryu e A% U N M)NQY4(U N M), (5-14)

3 0@u=HPu  foreveryu e A%(UNM)N Q24U N M), (5-15)

where Hj(q), j =1,....5, are properly supported on U N M and
H® =0mod ¢®°((UxU)N (X x M), j=12,
H® =0 mod ¢°((U xU)N (M x M), j=3.4.5.
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Proof. From (4-5), (4-6), Lemma 5.2 and the definitions of N@, TI@, we get (5-9) and (5-11). Let
u € Q%4(U N M). From (4-30) and (5-6), we have

(0p)"*ydN Dy
= (3p)*yd 5;(N(q+1))25u
_ anAx, @D ar(@H1)N27,, A Ak ax a7 (@+1)127
= (9p)™ Ty (N )7 0u —(3p)™"ydr (N )~ 0u
= @)y + BTN gy — @)y 5 a(N D)2y
= @)™y Fy O N D gy + (3p)M*yN @Dy — (@p) M ydrd(N D20, (5-16)
where FZ(‘I D =0 mod ¢ (U xU)N(M x M)) is as in (4-30). Again, from (4-5), (4-6) and Lemma 5.2,
we see that
(0p)*yN 4t DGu|p =0,
@)y AN D)2 5u|p = 0.

From this observation, (5-16) and noticing that
(0p)*yFATD N@+DG = 0 mod (U x U) N (X x M),
we get (5-10). We now prove (5-12). From (5-8), we have
FA@ = §— 533 N@HD;

=5 -0 FIN@TD 4G5 GN@TD)

= —Fz(qH)E_)—i—{_i; IN@+TDG, (5-17)
where F{4V is as in (4-30). Let u € A%9(U N M). From (5-17), we have

I Dy = —F+ VG + 55 N @D ju, (5-18)

From (4-6) and (5-3), we see that (E_ip)’\’*yf_); E_JN(‘1+1)E_)M|D = 0. From this observation and (5-18), we
get (5-12).
Let u € A% (U N M). From (4-30), (5-6) and (5-8), we have
O N @y = 08 (55 (V)25 + 5N @~D)257 u
= 33O (N @25y + GO (N @D)255
=I5+ YN D5y 4 51 + F7V)N @ DG
= FEN@ Dy 4 AN DG 4 5 FITO NGOGy 1 G NGy

= (I - Dy + (@3 FIN@DG L GV N @Dty (5-19)
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where _
FTD =0 mod €%°((U x U) N (M x M)),

F{™D =0 mod ¢%°((U x U) N (M x M))
are as in (4-30). It is clear that
0 FIHDN@HDG 4§D NG@ DG = 0 mod ¢ (U x U) N (M x M)).

From this observation and (5-19), we get (5-13).
Letu € A% (U N M) N QYU N M), from (4-29), (4-30), (5-6) and (5-8), we have

E_);l:[(q)u = 5;74 - 5} (E_);N(q+1)f_)u - éN(q_l)é;u)
= 5;14 - E_); E_)N(q_l)é;u
=du—(OF " -5 N V55
= 5;74 —(I+ Fz(q_l))é;u +9 E_);N(q_l)f_);u
=—F " Vou+ 505NV,
For every g € A% (UNM)N Qg’q(U N M), from (4-6), (4-30) and (5-3), we have
@) *yddpN U Vag = BT y(@f T —F YN Va}g
= @)y + FT V)35 g — (@p)*yd5 N V% g
= (9p)""yFy 1 Vorg.
Thus,
@p)"*yd TN @D =0 mod (U x U) N (X x M)).

(5-20)

(5-21)

Let 84— = 0 mod #° (U x U) N (M x M)) be any smoothing properly supported extension of

(9p)N*yd E_);N(q_l). Put
eV =2y (p)psV : 2 (U N M, T M) - Q¥172(U N M),
where y € €2°((—¢,¢)), x =1 near 0 € R, for a sufficiently small constant £ > 0. We have
(8p)"*y@F N @D — @ D)ie = 0,
@p)"*yd (FNU™D =@~ V)dre =0
for every g € A9 (U NM)N Q(c)’q(U N M) and hence
(g;N(q—l) _ g(q—l))g}g € Dom 0@—2)

for every g € A%4(U N M) N QY4 (U N M). From (4-29), (4-30), (5-20) and (5-23), we have

PPN (@-1= 23 -1)7
Dy =—F 7 Vo%u+ 090N Do5u
= —Fz(q_l)é;u +9 ((:)j*fN(q_l) —8(q_1))5;u + E_)s(q_l)é;u

(5-22)

(5-23)

(5-24)
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= —F D5+ § (N0 - FA7)@EN @D — @ D)gey 4 5@ Dy
= —F 1 Vasu+ N @0 D gr N @D gry — jN @-20U @D ey
- 5F1(q_2)(5;N(q_1) - a(q_l))f_)}u + ée(q_l)é;u
= —F V5t + IN@D5r0U D N @ DGRy — gy @OUD e DGy
- 5F1(q_2)(5;N(‘1_1) - 8(‘1_1))5}5u + 58(4_1)5;14
= —FA V5 + 5N(‘1—2)5}(1_ + Féq_i))éjiu — NG D}‘I‘Z)s(il—”z‘);zf
—AFITP @ N — @)y 4 5@ Dy
(g—1) 5% a —2)a* (g—1) 3% a — @—2) (g—1) 7%
=—F " V05u+ N 2>af€2‘1 O~ oN“-2g §<q 1)8_fu ]
— 8F1(q_2)(8;N(‘1_1) — s(q_l))a;u + 88(‘1_1)8;14, (5-24 cont.)
where u € A%9(U N M) N Q(c)’q (U N M). Tt is clear that
@—Dax | aar(g—2)a* p(@—Dax _ 3a7(g—2)—(@—2) .(g—1) 3%
~FRI7V05 4+ AN 255 £V 0r — GN @O @D
—AFIP@NTD — @) 5% 4 5D 5% = 0 mod (U x U) N (M x M)).

From this observation and (5-24), we get (5-15). The proof of (5-14) is similar but simpler and therefore
we omit the details. O

From (5-14) and (5-15), we get
D}q)ﬁ@u = HDu forevery u € A%(U N M)NQYY (WU N M), (5-25)
where HG(Q) =0 mod ¢ (U xU)N (M x M)) and H6(q) is properly supported on U N M.
Lemma 5.4. With the assumptions and notation above, let ¢ = n_. We have
(N Du o)y = | NDvyp + | T Do)y

foreveryue LZUNM,T**M'), ve L2 (UNM,T*%9M’), where T'@ is properly supported on
UNM and T@D =0 mod ¢°°((U x U) N (M x M)).

Proof. Letu € L2(U N M, T*4M’), v € L2 (U N M,T*IM’). Let u; € QYU N M), v, €
Q2’q(U NM), j=1,2,...,such that u; — u in L2(U N M,T**M’) as j — oo and v; — v in
L2 (UNM,T**IM') as j — oo. From (5-6), we see that

(NDu | v)pr = lim (N Du; | vj)p. (5-26)
J—>+oo
We infer from (4-28) that for every j € N we have (ﬁ(q)uj lvi)m = (u; | (]\A/(q))*vj)M. From (4-23),

we see that (N@)* = N@ 4 F'@ on Q29U N M), where '@ = 0 mod ¢ (U x U) N (M x M))
and '@ is properly supported on U N M. From this observation, we conclude that

(]V(q)uj [vi)m = (u; | ]V(Q)vj)M + (u; | f‘(‘Z)vj)M for every j € N. (5-27)
From (5-26) and (5-27), the lemma follows. O
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Lemma 5.5. With the assumptions and notation used above, let ¢ = n_. Fix an open set W C U with W a
compact subset of U. There is a constant Cyy > 0 such that, for everyu € A% (U N M) N QS"’ wWnM),
ITDullar < Cyy lullas- (5-28)
Proof. Letu € A% (U N M) N Q24(W N M). From (5-13), we have
(ﬁ(q)u | ﬁ(q)u)M — (ﬁ(q)u | u)ar — (ﬁ(Q)u | (I — ﬁ(q))u)M
= (D [u)p — (ADu [ @PFD — H DY)y (5-29)
From (5-9) and (5-10), we can repeat the proof of Theorem 4.3 and deduce that there is a properly

supported operator N@ : /(U N M, T**4M') — Q%4(U N M) on U N M with N@ — N@ =
0 mod € ((U x U) N (M x M)) such that

N@g e DomO@W (5-30)
for every g € A9 (UNM)N Qg’q(W N M). From (5-11), (5-13), (5-14), (5-15), (5-29), (5-30), we have
(D | ADu)pr = ADu [u)yy — (Do | @PHD — H D))y

_ (ﬁ(q)u | u)M—(ﬁ(q)u | (D}Q)N(q)_HZE‘J))M)M +(ﬁ(q)u | D}Q)(N(q)_]’\}(q))u)M
= (19Dy | u)pr — (O Dy | IN@Dy)p — (5;15[@)14 | 3* N D),
+ (0Du | H{Pu)p + (A Du | O (VD — F D))y
= (A0Du )y — (HOu | 3N DPuypr — (HDu | 5*NDuypy
+ (H(q)u | Hzgq)“)M + (H(q)u | Dj(,q)(N(Q) —N(q))u)M
= (MDu | u)ps — (u | (HP)*IND + (HP)*5* N Dyu)y
+(0Du | H{Pu)p + ([[0Qu | DP ND — N D)y, (5-31)
where

HD HD HD =0 mod ¢ (U xU)N (M x M))

are as in (5-13), (5-14), (5-15), and (Hiq))* and (HS(Q))* are the formal adjoints of Hiq) and Hs(q),
respectively. Note that the operators

(Hiq))*f_)N(q) + (HS(Q))*(T)*N(q), H3(q)’ D}‘I)(N(q) — N@)
map LIZOC(U D M, T*%4 M) into itself continuously. From this observation and (5-31), we deduce that
there exists C > 0 such that
ITCullfy < CATDullalullae + ). weA*UNM)NQIWNM).  (5-32)
From (5-32), we get (5-28). O

As a comment regarding the proof of Lemma 5.5, one could try to use N@ directly, since IN@,
9* N@ are also bounded in Lﬁ)c. However, the range of N@ is not contained in Dom 0@, since
(E_)p)’\’*yﬁ @ and (E_ip)’\’*yéﬁ @) do not necessarily vanish on the boundary (we only know that they
are smoothing operators). Thus, we use the operator N @ which satisfies (5-30).
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Remark 5.6. Since N@~1 and N@+D are properly supported on U N M, M is properly supported on
U N M. Hence for every y € U N M), there are x; € ¢°(U N M), x2 € (U N M), such that

0@ yu = o,y for every u € A%4(U N M),
)(ﬁ(q)u = ﬁ(‘”)(lu for every u € A% (U N M).

By Lemma 5.5 we can extend @ to Lg(U N M,T*%4M') by density. More precisely, let u €
L2(UNM,T*%M’). Suppose that suppu C W, where W C U is an open set with W & U. Take any
sequence (u;); in A% (U N M)N Qg’q(W N M), with lim; s 4 oo |lu; —u||pr = 0. Since 0@ is properly
supported on U N M, we have

@y := lim T@Du; in L2UNM,T*%M). (5-33)
J—>+oo
By using that [T is properly supported on U N M, we extend 1@ to L2 (UNM,T**9M') and the

extensions
09 L2W0nM, T*%M") - L2(UNM, T** M),

. 2 Tr T*0.g g/ 2 Tr T*0,q g/ (5-34)
09 L2  UnNM, T*M"y - L2 (UNM, T*M")
are continuous.
Lemma 5.7. With the assumptions and notation above, let ¢ = n_. We have
([ Du | vy = (| TDv)y + | TP 0)y (5-35)

for everyu € L%(U NM,T*M"), v e Lﬁ)C(U NM,T*%9M"), where f‘fq) is a properly supported
continuous operator on U N\ M and f’fq) =0 mod ¢ (U xU)N (M x M)).

Proof. From (4-23), (4-28) and (5-8), we get (5-35) for u, v € A% (U N M)N QYU N M). By using a
density argument and noticing that 0@ is properly supported on U N M, we get (5-35). O

Theorem 5.8. We have

@Dy e Dom d*  forevery y e 6°(UNM), ue L2, (UNM,T**M"), (5-36)

loc

Dy = HOu  foreveryu e L2 (U N M, T*9M'), (5-37)
5;1:I(q)u = H5(q)u foreveryu e L3 (UNM,T*4 M), (5-38)
D}q)ﬁ(q)u + 0Dy =u+ H3(q)u for everyu € Q%4(U N M), (5-39)

where Hj(q) =0 mod (U xU)N(M x M)), j =3,4,5, are as in Theorem 5.3.

Proof. Letu € L2 (UN M,T*%4M’) and let y € €°(U N M). Since 0@ is properly sup-

loc

ported on U N M (see Remark 5.6), there is a y; € €2°(U N M) such that )(1:[(’1) = ﬁ(‘])){l on

L2.(U N M, T*IM’). Let g € Domd N L% (M). Letu; € A% (U N M) N QYU n M),

J=12,..., withlim; ;oo llu; — x1ul|psr = 0. Then,
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GIDu | dg)ar = (AD yyu | dg)y = lim (TDu; | dg)p
Jj—>+oo

= lim @09y | gy = lim (H u; |9y = (Hu |9y, (5-40)
J—>+oo Jj—>+oo
where Hs(q) =0 mod ¢®° (U xU) N (M x M)) is as in (5-15).
From (5-40), we deduce that Xﬁ(q)u € Dom 9*, we get (5-36) and we also get (5-38). The proof of
(5-37) is similar. We now prove (5-39).
Letu € Q%9(U NM)andlet g e Q(c)’q (UN M). Since @, N@ and H3(q) are properly supported
on U N M, there is a T € €°(U N M) such that

(( +H | g = (I + HP)ru | g)u.

Letu; € A% (U NM)NQLYUNM), j =1,2,..., with lim_, 4 oo |t — T]| 37 = 0. From (5-13)
and (5-41), we have

(5-41)

(OPRD L Dy | g)y = (OWND + [D)ru | g)y
=(N@Dry | D}q)g)M +(M97u | g)y
= lim (NDu; | 0P gy + ([ Du; | g)ur)

Jj—>+o0

= lim (@WND + 0Dy, |y = lim (I + H{P)u; | 9w
Jj—>+oo Jj—>+oo

— (I +HD)ru | @)y = (I + HO i | 9. (5-42)

Leth € QYY(U NM). Take hj € QPU(UNM), j =1,2,..., 50 that lim; _, 4 oo ||2; — k| ag = 0. From
(5-34) and (5-42), we have

((D}Q)]’\}(Q) + ﬁ(CZ))M | h)M = lim ((D}Q)]’\}(Q) + ﬁ(CI))M | h])M
Jj—>+o0
= lim (1 + HYu | hjyar = (T + HEyu | hyag. (5-43)
From (5-43), we get (5-39). O

The following result is the first version of the local approximate Hodge decomposition for the 9-
Neumann Laplacian in the critical degree ¢ = n_.

Theorem 5.9. With the assumptions and notation used above, let ¢ = n_. We can find properly supported
continuous operators on U N M,
ND:HS (UNM,T*M'y— HS (UNM,T**M’) foreverys€Z,
ne: 2 unM, 7*%M" - L2 (UNM, T** M)

loc

(5-44)

such that
N@D _ND =0mods™®((U xU)N (M x M)),

N o (5-45)
09 -9 =0 mod (U xU)N (M x M)),
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D}q)N(Q)u + 0Dy =u+ R(()q)u for everyu € Q%4(U N M),
D}Q)H(q)u = R@u foreveryu € L .(UNM),

) - (5-46)
MDDy = qu)u foreveryu e LE . (UNM,T** M),
E_J;H(q)u = qu)u foreveryu e LE . (UNM,T** M),
)V *yNDuy|p =0 foreveryu € Q%4 (U N M), (5.47)
1@y € Domd*  forevery y e €°(UNM), ue L2 (UNM,T*IM’),
D)V *yINDu|p =0 for everyu € Q%9 (U N M), (5.48)

(@p)N*yolIDu|p =0 foreveryu e L2 (UNM,T**IM’),
where R(q) 2'(UNM)— Q%(U N M) is a properly supported continuous operator on U N M with
R = 0 mod (U x U) N (M x M)), j =0,1,2,3.

Proof. We define, following (4-21), N(@ := N7(q) — 2)((,0)pf~ll(q), ne .= ﬁgq) — 2)((p)pﬁ2(m, where
H 1(q) is a smoothing extension of H l(q) from (5-10), and Flz(q) is a smoothing extension of Hz(q) from
(5-12). We show as in the proof of Theorem 4.3 that N @ and 1@ satisfy the 9-Neumann conditions
and by using Theorems 5.3 and 5.8 we conclude the result. O

From Lemmas 5.4 and 5.7, we get:

Theorem 5.10. With the assumptions and notation used above, let ¢ = n_. We have
(NDu o)y = | N Do)y + (| T Do)y, (5-49)
(M Qu [v)pr = (| TDv)y + | TP 0)y (5-50)

for every u € L2(U N M, T*%M'), v € L} (U N M, T*%9M’), where N@D agnd TTD are as in
Theorem 5.9, T @, qu) =0 mod ¢®°((U xU)N (M x M)), T'D and qu) are properly supported on
UNM.

Theorem 5.11. With the assumptions and notation used above, let ¢ =n_. Let N @ and 1D be as in
Theorem 5.9. Then we have on U N M, for every u € Dom 0@,

n@o@y =A@y, (5-51)
NDOOWy 4+ Dy =y + ADy, (5-52)

where A(()Q), A9 are properly supported on U N M and AgI), A@ =0 mod (U xU) N (M x M)).
Proof. Let u € Dom 0@ and let v € Q24 (U N M). From (5-46), (5-47), (5-48) and (5-50), we have
(MDODy | )y = (ODu | TTDv)p + (@ODuy | qu)v)M
= (u | ODPTI D)y + (@O@Du | T D)y
= (| R v)p + (O@u | T[T v)y
= (R + @) O | v)a, (5-53)
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where R@ , qu) are as in (5-46) and (5-50) respectively and (qu))* and (F(Q) )* are the formal
adjoints of qu) and qu) with respect to (- | - )as respectively. It is clear that (Riq )* + (qu))*DJ(,q) =
0 mod € ((U x U) N (M x M)). From this observation and (5-53), we get (5-51).

Let u € Dom O0@and let v € Qg’q(U N M). From (5-46), (5-47), (5-48), (5-49) and (5-50), we have

(NOODy4+TTDy | v)p = (@ODu | N Do)y +@ODPu | TDOv)pr+ | BP0 pr+(u | qu)v)M
= (u | D(q)N(q)v)M+((F(Q))*Dj(,q)u | )+ | TTDv)pr+(u | qu)v)M
= (u] (D(q)N(q)JFH(q))U)M+((F(q))*|:|](fq)u |0+ | T\v)
= (| R0+ (O TDu [)pg+u | T 0)yg
= ((RE+T)* + @ D) 0)u | v)ar, (5-54)

where R(()q), r@, qu) are as in (5-46), (5-49) and (5-50) respectively, (F(Q))* is the formal adjoint
of T'@ with respect to (- | -)as and (R(()q) + qu))* is the formal adjoint of R(()q) + qu) with respect
to (+| )p. It is clear that (N@)*0% = 0 mod ¥ (U x U) N (M x M)) and (Rg” + I{?)* =
0 mod € ((U x U) N (M x M)). From this observation and (5-54), we get (5-52). O

5.2. The distribution kernel of the approximate Bergman kernel. In this section, we will study the
distribution kernel of T1®@) and regularity properties of the operators I1@) and N (49). We will refine in
this way the Hodge decomposition from Theorem 5.9 in Theorem 5.23.

Let [- | -]x be the L2 inner product on H~/2(X, T*%4M’) given by

[u|vlx = (Pu| Pv)y, (5-55)
where P is the Poisson operator given by (3-4). Let P* : Q%4(M) — (X, T*%9 M’) be the adjoint
of P as defined in (3-9). Then,
P*P:¢®(X. T*™M') - ¢®(X. T*™ M)
is an injective continuous operator. Let
(P*P)™1:¢®(X. T*IM") - ¢ (X, T**I M)

be the inverse of P* P. It is well known that (ﬁ *p )~ is a classical pseudodifferential operator of order 1
on X (see [Boutet de Monvel 1971]).

Sections of 7*%9 M’ over X annihilated by (9p)”+* can be identified with sections of 7*%4 X, so they
are called tangential. We have

Ker(3p)* = {u € H™2(X, T*%M") : (9p)*u = 0} = H™2 (X, T*9X).
Let
0@ H=2(X, T*9 M) — Ker(3p)™* (5-56)

be the orthogonal projection with respect to [- | - ]x.
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Theorem 5.12 [Hsiao 2010, Part II, Lemma 3.3]. Q9 is a classical pseudodifferential operator of
order 0 with principal symbol 2(dp)"*(0p)”. Moreover,

1-0@ = (P*P)"'(3p) R, (5-57)
where R: € (X, T**I M) — ¢ (X, T*%9= M) is a classical pseudodifferential operator of order —1.

Letu e Qg’q(U N M). From Theorem 4.3, (5-8) and Theorem 5.9, we see that TT1Du € Qg’q(U NM)
and yTTI @Dy € ¢ (X, T*%4 M").

Theorem 5.13. Under the assumptions and notation used before we have, forq = n_,
M@y = Py Dy + Dy for everyu € Q29U N M), (5-58)
where €@ =0 mod (U x U) N (M x M)).
Proof. Letu € Qg’q(U N M). Since TT@ is properly supported on U N M,
N@y e Q%9U N M) c Q% (M).

From (3-8), we have
DOFPN@y + Pyn@y = @y, (5-59)

From (5-46) and ﬁ}q) — D}q) =0 mod ¢°°(M x M), we see that
DOTW N =0 mod ¢ (U x U) N (M x M)).
From this observation and (5-59), we get (5-58). O
From (5-59), we have
(P*P) ' P11 Dy = (P*P)' P*Pyl1 Dy 4 (P*P)~' P*c@Dy
=y Dy 4+ (P*P)" 1 P*c@Dy (5-60)
and

M@y = p(F* Py P*I Dy + £y (5-61)

for every u € QU4 (U N M), where &9 = —B(P*P)~1 P*¢@y = 0 mod ¢ (U x U) N (M x M)).
From (3-6) and (3-10), we see that P (ﬁ *IE’J)_1 P*T1@ is well-defined as a continuous operator

P(P*P)"'P*IID: L2UNM, T** M) - L2 (UNM,T** M.
From this observation, (5-61) and by using a density argument, we conclude that
N9 — p(P*P)"'P*ID =0 mod ¢ (U xU) N (M x M)). (5-62)

Similarly, from (3-6) and (3-10), we see that nep (ﬁ *p )~ P* is well-defined as a continuous operator

N@PP*PYyLP*: L2 (M, T*M') —» L2 (UNM,T**M").
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Lemma 5.14. Under the assumptions and notation used before we have, forq =n_,
ODpP*P)y ' P*—TI@ = 0 mod €°((U xU) N (M x M)).

Proof. Let u € Lfo q)(M) and let v € Q29(U N M). From (5-50) and (5-61), we have

(M Qu [ v)pr = (| IOy + | TP 0)y
= | PP*P) ' P*ITIDv)p + (u | 8§q)U)M + (u | qu)v)M
= (P(P*P)""P*u | TDv)pr + (u | 8§Q)U)M + (u | qu)v)M
= (MMDPP*P) ' P*u|v)y
—(P(P* Py~ P*u | D{?v)as + | e v)ag + | TP 0)yg
= MPPP*P) ' P*u|v)y
— (O P(P*P)y" Pru | o)y + (6 + T u [ v)y. (5-63)
where (qu))* and (qu) + qu))* are the formal adjoints of qu) and egq) + qu) respectively. Note that
Ty BB*P)y" P* (¢ + TD)* = 0 mod ™ (U x U) N (M x M)).
From this observation and (5-63), the lemma follows. O
Theorem 5.15. With the assumptions and notation used before, we have
09 —_n@po@P*P)"1P* =0 mod ¢ (U xU)N (M x M)), (5-64)
N9 — po@Dp*p)y~1 p*1@ =0 mod (U x U) N (M x M)). (5-65)

Proof Letu € L%O q)(M) and let v € Q¥9(U N M). From (5-50) and (5-58), we have

(MDP(I QD) P*P)" P*u|v)y
=(P(I = Q@O)P*P) ' P*u | TDv)py + (P(I — Q@) (P*B) 1 P*u | TPv)y
= (P = Q) P*P)"" P*u | Pyn@Du)y + (P(I = Q) (P*P) ' P*u| Do)y
+ (P = Q) (P*P)™ Pru| T\ v)u
=[(I = Q)P P)™ P*u | ymDuly + ((¢9)* P(1 = Q) (P*P)™ P*u | v)m
+ () P(1 = QD) (P*P)™ P*u | v)m, (5-66)
where (¢(4)* and (qu))* are the formal adjoints of £ and qu) respectively. From the second formula
of (5-47) and noticing that @ js properly silppoited on U N M, we get (3p)*yIT@v = 0; hence
yI @Dy e Ker(dp)™*. Thus, [(I — Q@DP)(P*P)~! P*u | yTI@v]y = 0. From this observation, (5-66)
and noticing that
DY B(1— Q@) (P*P)~ 1 P* (T D)* B(1—Q@)(P* P)~' P* =0 mod ¢ (U xU)N (M x M)).
we get
O9D P —QDYP*P) 'P*=0mod €®° (U xU) N (M x M)). (5-67)
From (5-67) and Lemma 5.14, we get (5-64).



THE SPECTRAL AND BERGMAN PROJECTIONS ON COMPLEX MANIFOLDS WITH BOUNDARY 451

Letu € L2(M) and let v € QS"J (U N'M). From (5-50), we have
(P = Q@) (P*P)"' P*IDu | v)y
= (I = Q) P*P)" P*1Du | P*o)x
= (I~ QW) (P*P)" P Du | (P*P)(P*P)™' P*v)y
=[(I = Q) (P*P)"' P Du | (P*P)~' P*ulx
=[(P*P)y P*IDu | (I — Q) (P*P)~ P*o]x
= (MDu | P(1 - Q@) (P*P)" P*o)y
= @ |TTDP(I - QD) (P*P) " Pro)y + (u | T\ P(I = QO)(P*P) ' Pro)y.  (5-68)
From (5-68) and (5-67), we deduce that
P —0D)P*P) 'P*IID =0 mod ¢ (U xU) N (M x M).
From this observation and (5-62), we get (5-65). O
We can now prove the following regularity property for n@,
Theorem 5.16. With the assumptions and notation used before, 1@ can be continuously extended to
n@:H (UNM, T*M'y > HSW(UNM, T*IM')  foreverys € Z,

loc
N9 HSWUNM, T**M') > H' U NM, T** M) foreverys € Z. (-69)
Proof. Letu € Qg’q(U N M). From (5-64), we see that
M@y =119 P Q@D P*P) ' Py +yDy, (5-70)
where y@ : Q24U N M) — 2/ (U N M, T*%9M’) is a continuous operator with
y@ =0 mod (U xU)N (M x M)).
From Theorem 4.3, (5-8), Theorem 5.9 and noticing that

POWDP*P) ' P*uec A% U NM),
we conclude that
N@y = (1 —=3N@TDG—INT VG5 P Q@ (P* P)~' Pru+y{u, (5-71)
where yl(q) QP UNM)— 2'(UNM,T*4M’) is a continuous operator with

D = 0 mod € ((U x U) N (M x M)).
From (5-71),
NV HIUNM. T M) - HFNU O M. T*M") forevery s € Z.
N@D qHSUNM, T*M') » HST' U NM, T*™M') forevery s € Z
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are continuous and note that QS"J (UNM)isdense in HS(U N M, T*%4M’) for every s € Z, and thus
we get (5-69). O

The reason why in the proof of Theorem 5.16 we do not use n@ directly is the following: In (5-8),
@ js just defined on the space A%9 (U NM). Ifu € Qg’q(U N M), we cannot define 1@y by using
(5-8) since in general

(I — 5}2N(q+1)5 - 5N(‘1_1)5}"§)u ¢ Dom 0@,

We extend 1 to leoc(U N M, T*%9M’) by density and we have (5-71) for the relation between IT(4)
and (5-8).

5.3. Reduction to the analysis on the boundary. In order to refine the approximate Hodge decomposition
of Theorem 5.9 and show that T1@) is a Fourier integral operator we will bring in an approximate Szegd
projector on the boundary, which is a Fourier integral operator, and link it to T1? by means of the
Poisson operator. The approximate Szegd projector appears in the microlocal Hodge decomposition of the
boundary Laplacian D(q), which is a perturbation of the Kohn Laplacian.

We recall the operators P g and IZI/(;]) introduced in [Hsiao 2010, Part II, Chapter 5]. Recall that Q(‘”l)

is given by (5-56). The operator 5,3 is defined by
dg = QUTDYHP : Q% (X) — QO1t1(X) (5-72)

and it is obtained by taking the 3 derivative of the extension of a form to the interior by the Poisson
operator and then taking the projection on the space of the tangential forms to the boundary. It is a
classical pseudodifferential operator of order 1 which is a perturbation of the ap operator by a zeroth-order
operator. It has the advantage that it involves directly the Poisson operator. Let

3, 1 QP (X) > Q4(X) (5-73)

be the formal adjoint of 53 with respect to [- | -]x, that is, [éﬂf | hl = [f | égh]x, f e Q%(X),
h e Q%9+1(X). Then 8:; is a classical pseudodifferential operator of order 1 and we have

5E=yf§;ﬁ on Q%4(X)forg=1,...,n—1; (5-74)
see [Hsiao 2010, Part II, Chapter 5]. Set
0§ =81, 0p + 0 0 : 2/ (X. T**9X) > 2/ (X, T**4X). (5-75)

It was shown in [Hsiao 2010, Part II, Chapter 5] that Dl(gq) is a classical pseudodifferential operator of
order 2 and the characteristic manifold of Dl(gq) is given by ¥ = Xt U X7, where =1, ¥ are as in
(3-12). Roughly speaking, forms annihilated by D'(Bq) on the boundary are microlocally boundary Values
of harmonic forms. M_ore precisely, if Sg is the orthogonal projection onto the kernel of Dg), then P Sg
is in the kernel of the d-Neumann Laplacian up to a smoothing operator. If S is the orthogonal projection
onto the kernel of Déq) (the Szegd projector), then P'S does not have this property.

Let D be a local coordinate patch of X with local coordinates x = (x1, ..., X25—1) and we assume the

Levi form is nondegenerate of constant signature (n—,n4+)on D. Let H € Lal (D, T*%4 X R(T*09X)*)
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be a properly supported pseudodifferential operator of order —1 on D such that
H-P*P=0 onD. (5-76)

The following microlocal Hodge decomposition for ng) was established in [Hsiao 2010, Part II, Theo-
rem 6.15].

Theorem 5.17. With the assumptions and notation above, let ¢ = n_. Then there exist properly supported

operators
Ae LT (D, T*1 X ® (T**1Xx)*),
222
S_,S; el (D, T*9X R (T**1x)*)
2°2
such that
WF'(S_(x,y)) = diag(ZtT NT*D) x (Tt NT*D)), 577
WF (84 (x,y)) Cdiag((S™NT*D)x (S~ NT*D))
and
AOY +S_+8y =1, (5-78)
3o At e
dpS-=0, dpS_=0, (5-79)
S_=8T=52, (5-80)
S+=0 ifqg#ng, (5-81)
where
ST:=20@D(P*P)~1S*(3p) *(3p) H : Q24 (D) — Q%9(X), (5-82)

H is given by (5-76) and S* is the formal adjoint of S— with respect to (- | -)x. Moreover, the kernel
S_(x, y) satisfies

m .
S_(x,y)= / =M g (x, v, 1) dt,
0

with
a(x,y.1) € ST (D x D x(0,00), T** X R(T**1X)*),
o . (5-83)
a(x,y.0)~ Y aj(x. )" in SGH(D x D x (0,00), T*IX R (T*%9X)*)
j=0
and
aop(x,x) = 271r” |det Lx|tx,n_ foreveryx € D, (5-84)

where aj(x,y) € €°(D x D; T*%4X R (T**4X)*), j =0,1,..., and the phase function ¢_ is the
same as the phase function appearing in the description of the singularities of the Szegd kernels for
lower-energy forms in [Hsiao and Marinescu 2017, Theorems 3.3, 3.4]. In particular, we have

p—(x,y) €€ (X x X), Ime_(x,y)>0, (5-85)

o—(x,x) =0, @_(x,y)#0 ifx#y, (5-86)
dyp— #0, dyp_#0 where Imgp_ =0, (5-87)
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dx‘ﬂ—(x7y)|x=y =—- y‘P—(x7Y)|x=y = wo(x), (5-88)
P—(x,y) =—@—(y, x). (5-89)

We have denoted by WF(S(x, y)) the wave front set in the sense of Hérmander of the distributions
S4(x,y) and

WF'(S1(x, ) :={(x,&,y,m) € T*X xT*X : (x,&,y,—n) € WE(Sx(x, ))}.

The leading coefficient ao(x, x) from (5-83) was obtained in [Hsiao 2010, Part II, Proposition 6.17].

We come back to our situation. In view of Lemmas 4.1, 4.2 and Theorem 5.12, we see that
Q@ (P*P)~'P* is smoothing away the diagonal. Hence, there is a continuous operator L@ :
Q%4(U N M) — Q%4(D) such that

L@ — 0@ P*P)~'p* =0 mod ¢°((U x U) N (X x M)) (5-90)

and L@ is properly supported on U N M, that is, for every y € EX(U N M), there is a T € €2°(D) such
that L@ y = ¢ L@ on Qg’q(U ﬂ_]\?) and, for every 71 € €2°(D), thereisa y1 € €2°(U N M) such that
1 LD =L@y, on 92’4 (U N M). We can extend L@ to a continuous operator

L@ Q% UnM)—Q%D), LD:Q%UnM)—Q%(D).
From Theorem 5.15, we have
09— pLOND =0 mod ¢°((U xU) N (M x M)). (5-91)
Lemma 5.18. With the notation and assumptions above, we have
S+ LD =0 mod (U xU)N (X x M)), (5-92)
where S+ is as in Theorem 5.17.

Proof. Since WF'(S1.(x, y)) C diag((S~NT*D)x (S~ NT*D)) and by Theorem 3.2 the operator J¢)
is elliptic near X7, there is a classical pseudodifferential operator E@ € L31(D, T*%4X K (T*%4X)*)
such that

Sy —SLE@O@W =0, (5-93)
From (5-46) and (5-91), we deduce that

0@ D@D =0 mod #°((U x U) N (X x M)). (5-94)
From (5-93) and (5-94), we get (5-92). O

Theorem 5.19. With the notation and assumptions above, we have
S_ LD - L@@ =0 mod (U x U) N (X x M)), (5-95)
PS_LOWND -9 =0 mod ¢®° (U x U) N (M x M)), (5-96)
OPps_L@D 1D =0 mod ¢°(U xU)N (M x M)). (5-97)
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Proof. From (5-46) and (5-91), we see that
O LOTI@ =0 mod (U x U) N (X x M)). (5-98)
From (5-78), (5-92) and (5-98), we have
L@@ — (Angq) +S_+S)LDT@
= S_LOTOD mod (U xU)N (X x M))
and we get (5-95). From (5-95) and (5-91), we get (5-96). We now prove (5-97). Put
y(q) =D - pron@ . Qg,Q(U NM)— Q% (M),
y .= PP — H :Q29(D) - Q%(X),
p@ .= st —s_: Q% (D) - Q% (X),
YD .= L@ _ 9@ (F* )y~ p*: Q04U N M) — Q%9 (X),
y3(q) — S L@@ _@n@ . Q%4 (U N M) - Q%(D),
where ST is given by (5-82). From (5-80), (5-90), (5-91) and (5-95), we see that
y@ =0 mod ¢ (U xU)N (M x M)),
S0 = 0 mod (U x U) N (X x M)),

@ o (5-99)
Y31 =0 mod ¢°((U xU) N (X x M)),
yl(q) =0, yéq) =0.
Let
Dy*: Q% (M) - Q% (U N M)
be the formal adjoint of @ with respect to (- | -)as and let
(0)* . Q%4 (X) — Q%4(U N M)
be the formal adjoint of yz(q) with respect to (- |-)ar and (- | - )y, that is,
(yz(q)u |v)x = (u | (yéq))*v)M for every u € Q29 (U N M), v e Q%9(X).
It is obvious that
YD) =0, ¥9)* =0 mod ¢ (U x U) N (M x X)). (5-100)

Letu,v e Qg’q(U N M). From (5-50), it is straightforward to check that
(H(q)ﬁS_L(q)u | v)ar
= (PS_LDu | TTDv)ps + (PS_LDu | TDv)y,
=(PS_L@u| PLOTIDv)py + (PS_LDu | yDv)py + (PS_LDu | qu)v)M
— (S_L(Q)u | HL(q)H(q)U)X + (S_L(q)u | )/éq)L(q)H(q)v)X
+ (PS_L@Dy | yDv)yy + (PS_LDu | TDv)y  (5-101)
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— [L(Q)u | SiL(CI)H(q)v]X + (S_L(q)u | y(gCI)L(CI)H(!I)U)X
+ (PS_L@Dy |y D)y + (PS_L Dy | qu)v)M
— [L(CI)“ | S_L(q)H(q)v]X +[L(£1)u | VI(Q)L(Q)H(Q)U]X_l_(S_L(CI)u | )/(gq)L(q)H(q)v)X
+ (PS_L@Dy |y D)y + (PS_L Dy | qu)v)M
=[0@P*P) 1 P*u | S_LDOTI D]y + [),2('1)” | S_LLDOTT@Dy)y + [LDy | Vl(q)L(q)H(q)U]X
+(S_L@y | yéq)L(q)H(q)v)X + (PS_L@u | yDy)pr + (PS_LDu | qu)v M
=|PS_LDOTIDy),, + (ﬁyz(q)u | PS_LOTDy)p + (PLDu | ﬁyl(q)L(q)H(q)v)M
+(PS_LDu | B(P*P)y 1y P L@@y )y + (PS_LDu | yDv)py + (PS_LPu | TPv)
0 1
= | PLOTIDv)pr + | By Py + (| (S0 B*BS_L@OTI@ )y,
T (u | (L@Dy* P~ ﬁyfq)L(q)H(q)v Y+ (| (L(q))*Sfyéq)L(q)H(q)v Ny
+ (u | (LY (S (P y Do)y + (u | (L) (S)* (P T v )y
= | TDv)a = @ yPv)ar + | Py v)p + (| (50) P PS_LOTTOv)y
+(u| (L(q))*ﬁ*ﬁyl(‘I)L(q)H((I)v Yar + (u | (L(q))*Sjyé‘I)L(q)H(Q)U M
+ | (LD (S (P y Do )ar + (u | (LD)*(S2)*(P)*T{”v)a. (5-101 cont)
where (L@)* : Q%4(D) — Q%4(U N M) is the formal adjoint of L@ with respect to (- | -)as and
(- |-)x. We explain the third-to-last equality of (5-101). Since S_ L@ 1@y e Ker(dp)™*, we have
[Q@DP*P) ' P*u | S_LDPTIDv]x = [(P*P) ' P*u | S_LOTIDy]x. (5-102)

From (5-102), we get the third-to-last equality of (5-101).
Note that (L@)* is properly supported. From (5-101), we conclude that there is a continuous operator
@ . QYU NM)— QYU N M) with €@ =0 mod ¥°° (U x U) N (M x M)) such that

(MDPPS_LDy | v)pr = | TDPv)ps + (u | €Dv)py (5-103)
for every u, v € Qg’q(U N M). From (5-50) and (5-103), we get
(D PS_LDu|v)py = ([Du [ v)pr — () u | v)ar + (D) u | vy (5-104)

for every u,v € QY9(U N M), where (Ff‘”)*,(e(q))* QYU N M) > Q%U N M) are the
formal adjoints of qu) and £@ with respect to (- | -)ar respectively. Note that (FYI))*, (e(@)*

]

0 mod € ((U x U) N (M x M)). From this observation and (5-104), we get (5-97).
Theorem 5.20. With the notation and assumptions used above, we have
IPS_LD =0 mod ¢°((U xU) N (M x M)). (5-105)
Proof. From [Hsiao 2010, Part II, Proposition 6.18], we have
yoPS_=0. (5-106)

From (3-8), we have
D(q+l)ﬁj§4+1)5ﬁs_ + PydPS_=0dPs_. (5-107)
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Now,
D(q+1)ﬁ}q+l)5j53_ — D(q+1)(D}q+1) + K@tD)gps_
= pUTOWPs_ + DTV K@VGpS.
= pWtGOWPs — pUtVGK@Ps_ + pUtVK@tDGps
—_pUuthgg@pg 4 patDg@+Hgpg
=0 mod ¢ (U xU)N (M x X)). (5-108)
From (5-106), (5-107) and (5-108), we get (5-105). O
Let 8@ :=2pP((3p)*ydPS_LD): Q24 (U N M) — Q%4(M). By (5-105) we have
89 =0 mod € ((U x U) N (M x M)). (5-109)
Moreover, it is easy to check that
(PS_L@D — §@)y e DomO@ N QO9(M) foreveryu e Qg’q(U NnM). (5-110)

We come now to the crucial relation between the approximate Bergman and Szeg6 kernels via the
Poisson operator.

Theorem 5.21. With the notation and assumptions used above, we have
N@ - ps L@ =0 mod ¢ (U xU) N (M x M)). (5-111)
Proof. We first claim that
ODPPS_ LD _PS_L@D =0mod¢>® (U xU)N (M x M)). (5-112)
From (5-52) and (5-110), we have
NOOWPS_L@D _ 5@y, 4 M@DPS_LED _s5@D)y
= (PS_LYD — @y + NDPS_LD 5Dy (5-113)
for every u € Q27 (U N M), where AW =0 mod €°((U x U) N (M x M)) is as in (5-52). From (5-79),
(5-105) and (5-109), we have
N(q)D(q)(p'S_L(q) _ 8(‘1))u - N(q)D}q)(ﬁS_L(‘I) _ 5(q))u — qu)u (5-114)
for every u € QE4(U N M), where AP = 0 mod #°°((U x U) N (M x M)). From (5-109), (5-113)

and (5-114) we get the claim (5-112).

From (5-97) and (5-112), we get (5-111). O
Note that S_ € L(l)/2 1/2(D’ T*0-4 X )R (T*%4 X)*). From this observation and the classical result of
Calderon and Vaillancourt (see (2-2)), (3-6), (3-10) and (5-111), we can improve Theorem 5.16 as follows.

Theorem 5.22. With the notation used above, T19 can be continuously extended to
n@:H (UNM, T*M'y > HS (UNM,T**MM") foreveryseZ,

_ _ 5-115
N9 HSWUNM, T**M'y > HS(UNM,T**M’)  foreverys e Z. ( )
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5.4. Final version of the microlocal Hodge decomposition. We can now prove the our final version of
the approximate Hodge decomposition by constructing a parametrix N @ and an approximate Bergman
projector T1(?, which is a Fourier integral operator with complex phase.

Theorem 5.23. Let U be an open set of M’ with U N X # @. Suppose that the Levi form is nondegenerate
of constant signature (n—,n4+) on UNX. Let g =n_. There exist properly supported continuous operators
onUNM,

ND:HS (UNM,T*M'y - H (UNM,T*>M’) foreverys€Z,

— o _ 0 (5-116)
N9 HS (UMM, T**M") > HE (UNM, T**M")  foreverys €7,
such that 0 _
N@Dy e DomOD  for everyu € Q24 (U N M), 5-117)
B N9y e DomO@  for everyu € Q24U N M),
and on U N M, we have
D}Q)N(q)u—i-l'[(q)u =u+r(§q)u for everyu € Q%4(U N M),
N@OOWy 4 M@y =u+rfq)u for every u € Dom 0@,
AT @Dy = rz(q)u foreveryu e LE . (UNM,T*I M),
E_);H(q)u = r3(q)u foreveryu e L2 (UNM,T** M), (5-118)
n@g@y = ri’”u for every u € DomOd@,

D}q)H(q)u = rs(q)u for everyu € Q%4(U N M),
(M@)2y — M@y = réq)u for everyu € Q%4(U N M),

where r;q) is properly supported on U N M with r}q) =0 mod ¢ (U xU) N (M x M)) for every

j =0,...,6, and the distribution kernel ofH(q) satisfies

N9z, w)= /oo e PEW L (2w 1) dt mod €°((U x U) N (M x M)), (5-119)
with 0
bz, w, 1) € STo((U x U) N (M x M) x (0, 00), AGDIO0D),
o0
b(z,w,t) ~ Z bj(z, w)t"_j in Sﬁo((U xU) N (M x M) x (0, 00), Agol’fi)lléﬁ’q)), (5-120)
=0

with bo(z, z) given by (5-124) below. Moreover,
Pz, w) e (U xU)N(M xM)), Im¢=>0,
¢(z,2)=0, zeUNX, ¢z, w)#0 if (z,w) ¢diag((UxU)N (X x X)),
Im¢p(z,w)>0 if (z,w)¢ (U xU)N(X xX), (5-121)
¢(z,w) = —p(w, z),
dx¢p(x,y)|x=y = —2i0p(x) foreveryx e UNX,

d(z,w) €€ (U xU)N (M x M)) is as in [Hsiao 2010, Part II, Theorem 1.4] and ¢ (z, w) = ¢_(z, w)
ifz,weUNX,where p_ € ¢ (U xU)N (X x X)) is as in Theorem 5.17.
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Proof. Let N @ and T1@) be as in Theorem 5.9. From (5-47), (5-48) and noticing that N @) and 11
are properly supported on U N M, we get (5-117).

From (5-46), (5-51) and (5-52), we get the first six equations in (5-118). From the second and sixth
equations in (5-118), we have

ne =N@oWn@ 4 (9)2 = (M9)2 mod (U x U) N (M x M)).
We get (5-118). We now study distribution kernel of IT1(). From Theorem 5.21, we see that
N9 —PS_L@ =0mod ¢>®°((U xU)N (M x M)).

We just need to study distribution kernel of PS_L@, Letx = (x1,...,X2n—1) be local coordinates of X
and extend X1, ..., X2,—1 to real smooth functions in some neighborhood of X. We may assume that
z=(x,p)=(x1,...,X2n—1, p) are local coordinates of U. In view of Theorem 5.17, we have

+oo
S_(x,y) = / el =V g (e, y,t)dt.
0
We can repeat the proof of [Hsiao 2010, Part II, Proposition 7.6] and find a phase

(2, y) e (U xU)N (M x X))
such that

G(x,y) = ¢—(x, ), (dz)(x,x) = —wo(x) —idp(x) forall (x,y) € (UxU)N(X xX),

Imp(z, y) > 0if p # 0 and go(z, qSé) vanishes to infinite order at p = 0, where g¢ denotes the principal
symbol of D;q). We can repeat the procedure in the proof of [Hsiao 2010, Part II, Proposition 7.8] and
deduce that the distribution kernel of P S_ is of the form

o0 g ~ J—
PS_(z,y)= / P p(z, v, 1) dt mod X (U x U) N (M x X)),
0
b(z,y,1) € SEH(U x U) N (M x X)) x (0, +00), A GD10.0)
l;(x,y,t) =a(x,y,t) forall (x,y)e (UxU)N(X xX).

Similarly, we can repeat the procedure above and deduce that
o0
PS_LD(z,w)= / ' PEW (2w 1) dt mod €° (U x U) N (M x M)), (5-122)
0

where ¢(z, w) € €° (U x U) N (M x M)) satisfies (5-121),

b(z,w, 1) € SH(U x U) N (M x M)) x (0, +00), A GD10.0))
Since
(P*P)y ' =2/Ax +¥°
and

0@ =2((3p) (x)* ((Bp) (x))" + W°
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for some elements W0 e Lgl (X, T*%9X K (T*%4X)*), we deduce as in [Hsiao 2010, Part II, (7.22)],
bo(x. x) = 4ag(x. x)((9p)(x))* (@) (x)". x €UNX,
where ag(x, x) is as in (5-84).
From Theorems 5.9, 5.10, 5.11, 5.22, (5-111) and (5-122), the theorem follows. O
The following result describes the phase function ¢ (see (5-119)) of the Fourier integral operator @,

Theorem 5.24 [Hsiao 2010, Part I, Theorem 1.4]. Under the assumptions and notation of Theorem 5.23,
fix p € U N X. We choose local holomorphic coordinates z = (z1,...,z,), zj = X2j—1 + iX2j,
j =1,...,n, vanishing at p such that the metric on TYOM’ is 27=1 dzj ® dzj at p and p(z) =
V2Imz, + Z;';i Ajlzj|? + O(|z|3), where Aj, j =1,...,n— 1, are the eigenvalues of L. We also

write w = (W1, ..., Wy), Wj = y2j—1+1y2j, j =1,...,n. Then, we can take ¢ (z, w) in (5-119) so that
2n—1
$(z,w) = _\/EXZn—l + \/EyZn—l —ip(z) (1 + Z ajxj + %QZnXZn)
2n—1 J=
—ip(w) (1 + Z ayj + %&2ny2n) +i Z|/\j||2j —w;|?
n—1 Jj=1 J=1
+ Y ik Gwj —zw)) + O(1(z, w)[) (5-123)
j=1

in some neighborhood of (p, p) in M" x M', where aj = %ijU(El}q))(p, —2idp(p)) for j =1,...,2n,
and O‘(D}Q)) denotes the principal symbol of Dj(pq).

The following result describes the restriction to the diagonal of the coefficient by from the expansion
of the symbol b(z, w, t) of TI'D; see (5-119), (5-120).

Theorem 5.25 [Hsiao 2010, Part II, Proposition 1.6]. Under the assumptions and notation of Theorem 5.23,
fix p € U N X. The coefficient bo(z, w) from (5-120) satisfies

bo(x,x) =2 ""|det Ly |Tx.n_ 0 (0p(x))V*(0p(x))"  foreveryx eUNX, (5-124)

where det Ly, Tx n_ are given by (1-9), (1-11) respectively and (0p(x))"* is given by (1-12).
6. Microlocal spectral theory for the 3-Neumann Laplacian

In this section, we will apply the approximate Hodge decomposition theorems for the 9-Neumann Laplacian

0@ from Sections 4 and 5 to study the singularities for the kernel Biq)z (x, y) near the nondegenerate

part of the Levi form. In particular, we give the proof of Theorem 1.1.
Until further notice, we fix A > 0. Since 0@ is bounded below by A > 0 on Ker Biql) there exists a
continuous operator
qu) : L%O,q) (M) —» DomO@
such that

@, p@ _ 2
O@AP + BE =1 on LY (M),

(6-1)
Aiq)D(q) + Biql) — 1 onDomO@,
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Let U be an open set of M’ with U N X # &. Suppose that the Levi form is nondegenerate of constant
signature (n—,n) on U N X. Until further notice, we let g = n_.

Theorem 6.1. Let g = n_. The operators

0BY) L2 (M)~ HE (UM, T*9H "), (6-2)
0*BY) : L2 (M) — HS.(UNM . T*M"), (6-3)
O@pW L2 (M)~ HE(UNM, T*M') (6-4)

are continuous for every s € N.

Proof. Letu € L2 (M, T**4M"). Since B4y e Dom0@, 3B W e L2 | (M). We claim that

9BYu € DomO@ Y, (6-5)

It is clear that E_)Biqzu € Dom d N Dom 0* and 52Biq£u = 0. Hence, éngu € Dom 0*. We only
need to show that 0* aB‘jju € Dom d. We have

0* 0BGy = 0@ B Dy —55*BDu. (6-6)

By spectral theory [Ma and Marinescu 2007, Theorem C.2.1], we see that D(Q)Biqgu € Dom 0@ and
hence 0@ Biqzu € Dom d. Note that 3%9* B(<q£u =0, 0 8*Biq£u € Domd. From this observation
and (6-6), we get (6-5). From (4-29), we have

N@DO@D5EDy =58 Dy 4 FITV58 D, (6-7)
where Fl(qH) =0 mod ¢ (U xU)N (M x M)) is as in (4-29). It is clear that
FUtG: L2 (UNM, T*M') — HE (UNM, T4+ M) (6-8)

is continuous for every s € Z. We have

ap@ 3 (@)
N@tDgEtDypl = N@tDIO@DBL  on LY (M). (6-9)
By spectral theory,
@ .72 2
O@BE - LE, (M) — L (M) (6-10)
is continuous. In view of Theorem 4.3, we see that
NUTDy: HE (UNM, T*IM") - HS (UNM,T**4 1)) (6-11)

is continuous for every s € Z. From (6-7), (6-8), (6-9), (6-10) and (6-11), we deduce that

0BY .12 (M) L2

0.0 2(UNM, T*%9H ) (6-12)

is continuous. We have

N(q+1)|3(q+1)5BiqA)u — N(q“)éD(‘I)Bg)u = N(qﬂ)éBiqA)D(q)BiqA)“-
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From this observation and (6-7), we have
N@VGE 0@ B Dy = §B Dy + F{PGB . (6-13)
From (6-8), (6-10), (6-12), (6-13) and since that
N@TD g (UNM, T* My > HSPYU N M, T M) (6-14)
is continuous for every s € Z, we deduce that

3B : L2 (M) — H(U N M. T4 M) (6-15)

is continuous. The continuity of (6-2) follows by induction. The proof of the continuity of (6-3) is
analogous, and that of (6-4) follows then immediately. O

Lemma 6.2. Let ¢ = n_. For every m € N, the operator Biqzé(ljj(,q_l))m : Qg’q_l(M) — L%O q)(M)

can be continuously extended to

@3@-Dym . 72 2
BSqAB(qu )" Ly go1y(M) = L oy (M). (6-16)
Proof. Letu € Qg’q_l(M), ve L%O q)(M). We have
(BLHOE ) u | v)p = (BL @Y u | vy = (u | §*(@ODY" BL v )y (6-17)
We have

16*@@y" B@v|3, < 9*(@@)y" BDv |3, + 9@y BE)v|3,
= ((D(q))mﬂB;q)?v | (D(q))mBg”)M < A2y 3, (6-18)

From (6-17), (6-18) and taking v = Biq)eé(lilj(cq_l))mu, it is straightforward to see that

= - 1
1B B@E Dy ular < A2 | ag. (6-19)
From (6-19) and noticing that 92’4‘1 (M) is dense in L%O q_l)(M ), the lemma follows. O
Theorem 6.3. (i) The operator Biqj d: Qg’q_l UnM)— L%O 2 (M) can be continuously extended to
BOY: H*(UNM. T*7 M") > L2 (M) foreverys € N, (6-20)

(ii) The operator Biq)e 5; : Q?’q-H UnNM)— L%O q)(M ) can be continuously extended to

Biq)aé; CH7S(U N M, T*%4t 10"y L%o q)(M) for every s € N. (6-21)
(iii) The operator Biq)e D}q) : Q(c)’q(U NM)— L%O q)(M ) can be continuously extended to
Bi‘? D}‘I) CHZS(UNM, T M) — L%o,q)(M) for every s € N. (6-22)



THE SPECTRAL AND BERGMAN PROJECTIONS ON COMPLEX MANIFOLDS WITH BOUNDARY 463

Proof. Letu € QS"H (U N M). From (4-30), we have

BAIOY NGy = BDju + BAIF V. (6-23)

where Fz(q_l) =0 on U N M. From Theorem 4.3, (6-16), (6-23) and since
NV HgSWUNM, T "My > HY (U N M, T*% M) (6-24)
is continuous for every s € Z, we deduce that Biqz d can be continuously extended to

B;qll)é . Hc_l(U N M’ T*O,q—lM/) N L%O’q)(M) (6-25)

From Lemma 6.2, we can repeat the proof of (6-25) and deduce that Bgﬂ E_)Dj(fq_l) can be continuously
extended to
BOOE™V  HINU N M. T4 M) — LY (M), (6-26)

From (6-23), (6-24) and (6-26), we deduce that Biql) d can be continuously extended to

BOY: HZ2(UNM. T* 7'M — L2 (M),
Continuing by induction we get (i). Item (ii) follows analogously and (iii) follows from (i) and (ii). O
‘We consider

0@ B90W : Q04U N M) — LY, , (M) C L2 (UNM. T*9M"),

0,9 loc
@D)?BY Q29U NM) — L% (M) C LA (UNM. T**M").
Theorem 6.4. We have
0@ B90Y =0 mod ¥*°((U x U) N (M x M), (6-27)
@D)2B) =0 mod ¥>°((U x U) N (M x M)). (6-28)

Proof. From (6-4) and (6-22), we have

D(Q)Biq))‘lj}g) : HC—S(U N M’ T*O,qM/) _ Hlf)c(U n M’ T*o’qM/)

for every s € N. This proves (6-27). Let u € L%o q)(M). Take u; € Qg’q(M), j=1,2,..., so that
lim; s 4 oo|lu; —ullpr = 0. Since (D(q))zBiqz is L2 continuous, we have

@923 = iirfw(u(q))ngu jin L2, (M), (6-29)
From the fact that u; € Dom 0@ for every j =1,2,..., we can check that
(D(q))nguj = D(Q)Bgﬂ(‘])uj = D(q)BgD}q)uj forevery j =1,2,.... (6-30)
From (6-29) and (6-30), we conclude that
@D BE =0@BHOE on Ly, , (M), (6-31)

From (6-27) and (6-31), we get (6-28). O
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Lemma 6.5. The operator B iq)a can be continuously extended to

BY  HIS(WUNM, T*M') > H S (UNM, T** M) (6-32)
for every s € N.
Proof. Letu € Qg’q(U N M). From (5-118), we have
BAODWN@y 4+ BT Dy = BDu + B r{Pu, (6-33)

where r(()q) =0 mod ¢ ((UxU)N(M xM)) is as in (5-118). From (5-116), (6-22) and (6-33) and noting
that Qg’q(U N M) is dense in H-S(U N M, T*%9M’) for every s € N, we deduce that Biqz — Bg)n(q)
can be continuously extended to

BY) - BOND  HIS(U N M. T**9M') — L2 (M) for every s € N. (6-34)
On the other hand, from (6-1) and (5-118), we have
n9y = (AELQ)D(Q) + B;q/l))H(CI)u
= APOW Dy + B9 @y
= qu)réwu + Bga)l'[(q)u (6-35)
for every u € Q¥4(U N M), where rS(Q) =0 mod ¢ (U xU) N (M x M)) is as in (5-118). From
(6-35), we conclude that [T@) — Biq)z 19 can be continuously extended to

n@ - p9nD : g5 N M. T**M") > L2 (M) forevery s € N. (6-36)

From (6-34) and (6-36), we deduce that ne — Biql) can be continuously extended to

n@ -9 HS(UNM. T*9M') — L2, (M) for every s € N. (6-37)
From (5-116) and (6-37), we get (6-32). O

Theorem 6.6. We have
0@ B =0 mod ¢°°((U x U) N (M x M)). (6-38)

Proof. By (6-28), @) := (D(q))zBiq)z is smoothing on U N M. Let u € 92’4 (U N M). From the second
equation in (5-118), we have

D(q)Biq,x)u — N((I)(D(Q))2BSIA)M + H(q)D(q)Biq)Bu _ ,.f‘I)D(fI) Bg”

= N@De@y + @ B9y —rP0@ B9y, (6-39)
where rfq), riq) are the smoothing operators from (5-118). From (6-32), we see that

r?0@WBY rPBY  HI(WUNM. T*IM') > HE(UNM. T M)
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are continuous for every s € N, and hence they are smoothing on U N M. From this observation and
(6-39), we get (6-38). O

We can now prove one of the main results of this work.

Theorem 6.7. Let U be an open set of M’ with U N X # &. Suppose that the Levi form is nondegenerate
of constant signature (n—,ny) on U N X. Let ¢ = n_ and fix A > 0. We have

BY) —TI@ =0 mod ¢ (U x U) N (M x M)),
where T1'D s as in Theorem 5.23.
Proof. From the second equation in (5-118), we have
N@OW BBy + @Dy = @Dy 1 B (6-40)

for every u € Q¥4 (U N M), where rl(q) =0 mod ¢ (U xU) N (M x M)) is as in (5-118). From
(5-116), (6-32), (6-38) and (6-40), we deduce that

BY @ B9 —: ¢@ =0 mod ¢ (U x U) N (M x M)). (6-41)
Similarly, from the first equation in (5-118), we have
BOOWNDy + BON Dy = BGu + BY) r{u (6-42)

for every u € Q(c)’q(U N M), where réq) =0 mod ¢®°((U xU) N (M x M)) is as in (5-118). Since
N@y € Dom 0@, we have

B;’QD}'])N@M — BgIA)D(q)N(q)u — D(q)B;qu(q)u
for every u € Q(c)’q(U N M). From this observation and (6-42), we deduce that
D@BONDy + BN Dy = B0y + B r{u (6-43)
for every u € QU9 (U N M). From (6-32), (6-38) and (6-43), we deduce that
BY) — BOTI@ = £{? = 0 mod 7 (U x U) N (M x M)). (6-44)

Letu € Qg’q(U N M). From (6-1), we have

n@g@ 4% + @Yy =@y onvnM, (6-45)
APO@N@y 4+ BON@Dy =Dy onUNM. (6-46)

From (5-118), we have
n@g@Ay =r@P 4P onUnx, (6-47)

APO@O@y = A9 Py onuUnNX, (6-48)
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where rAEQ) =0 mod (U xU) N (M x M)) and réq) =0 mod (U xU) N (M x M)) are as in
(5-118). From (6-47), (6-48) and (6-46), we deduce that

ne _ H(q)Biq)z — ”iq)qu),

(6-49)
n@ - pAn@ = 49
From (6-41), (6-44) and (6-49), we get
H(q) _ B(Q) — r(Q)A(Q) _E(q)’
N (6-50)

n@ _ B(<q/1) _ qu)rgq) _854).
From (6-50), we have B
(H(fl) _ Béqz)(H(Q) _ Bé‘]}?)
— (riCI)AaCI) _ 8(q))(AE{I)r§CI) _ 8§51))
= riq)(qu))zrgq) — riq)qu)egq) — E(Q)ASLQ)réq) + 8(q)8§q) on Qg’q(U NM). (6-51)
Note that réq) and rﬁw are properly supported on U N M and riq)(qu))zréq), riq)Aiq)egq), e(q)qu)réq),
el )sgq) are well-defined as continuous operators: Q04(U N M) — Q%4 (U N M). Now,

(AP HISUN ML T M) > HS(UN M. T** M) C L2, (M)

- L?O,q)(M) — H.(UNM, T*04 'y

is continuous for every s € N. Hence, riq)(Aiq))zrgq) =0 mod ¢ (U xU) N (M x M)). Similarly,
riq)Aiq)ggq), S(Q)AY)réq), 8(‘1)854) =0 mod ¢*((U xU)N(M x M)). From this observation and (6-51),
we get
(M@ — BYyM@ — BY)) =0 mod ¢ (U x U) N (M x M)). (6-52)
Now,
(@) @y _ 2 @ ) (@)y2
(H(LI) _ ng/l)(n(q) _ qu)t) — (H(Q)) iy (O ng/l _ ngkn(q) + (qul)

=0@ 4@ B9 4@ g4 4 D 4 )

=0@ - B 4D 4@ 4 £, (6-53)
where réq), @, 85‘1) =0 mod € (U xU)N(M x M)) are as in (5-118), (6-41) and (6-44) respectively.
From (6-52) and (6-53), the theorem follows. O

By using Theorem 4.7, we can repeat the proof of Theorem 6.7 with minor changes and deduce:

Theorem 6.8. Let U be an open set of M’ with U N X # &. Suppose that the Levi form is nondegenerate
of constant signature (n—,ny) on U N X. Let ¢ # n_. Fix A > 0. We have

BY =0 mod ¢ ((U x U) N (M x M)).

Proof of Theorem 1.1. This follows immediately from Theorems 5.23, 6.7 and 6.8. O

We remind the reader that the local closed range condition is given by Definition 1.4. The following is
our second main result.
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Theorem 6.9. Let U be an open set of M’ with U N X # &. Assume that the Levi form is nondegenerate
of constant signature (n—,ny) on U N X. Let ¢ = n_. Suppose that 0@ has local closed range in U.
Then the Bergman projection B\D satisfies

BD D =0 mod (U xU) N (M x M)),
where T1'D is as in Theorem 5.23.

Proof. Let W be any open set of U with WNU # @, W € U. Since IT@ is properly supported on U N M,
there is an open set W' C U with W/ N X # @, W' € U, such that 1Dy € Q%4 (W’ n M) N Dom 0@
for every u € Qg’q(W N M). Since 0@ has local closed range on U, there is a constant Cys > 0 such
that, for every u € Qg’q(W nM),

I(I — BOYMDu | pr < Cypr |[DDPTTDu||pg = [rPul|ps (6-54)

where ri is as in (5-118). Letu € H;S(W N M, T*%4M"). Letu; € QL4 (W N M), limj 001 = u in
H7S(WNM,T*%4M’). Since rs(q) is smoothing on U N M the sequence réq)uj is Cauchy, so by (6-54)
(H(q)—B(q)H(q))uj convergesin L2 (M), as j — oo. Thus, u is in the domain of IT@— B@ 1@ and

0,9)
(MDD — BDID)y L%O q)(M ). We conclude that TT9) — B@ 1@ can be extended continuously to

n@—p@nD : H-SUNM,T*M') - L (M) forevery s € N. (6-55)

From the first two equations in (5-118) we have, on U N X,
NPYp@y = NOgWpRW@W, 4 M@pW@W, - p@, 4 rl(CI)B(Q)u = L%O )(M)
9 ’q 9

6-56
BWT@Dy = @ N@Dy, 4 p@On@y, — p@, 4 B(Q)ré‘l)u’ u e QS,Q(U NnM), ( )

where r(gq), rfq) =0 mod ¢®°((U xU) N (M x M)) are as in (5-118). From (6-56), we conclude that
B@ —11@ B@ and B@ — B@T1@ can be extended continuously to

B@W-_m@B@W: L3 (M)~ Hi (UNM,T*>M') foreveryseN, (6-57)

B@—B@ON@ : HS(UNM. T*M') — L, (M) forevery s e N.  (6-58)
Form (6-55) and (6-58), we deduce that T19) — B can be extended continuously to
0@ —B@: HS(UNM, T**M’) — L§, ,(M) forevery s € N. (6-59)

Since TT@ : HS(UNM, T**4M") — HS(U N M, T**9M’) is continuous for every s € Z, we deduce
that B can be extended continuously to
BD HS(WUNM,T*M")— HS(UNM,T**M’) forevery s € N. (6-60)
From (6-60), we deduce that
rOB@ (RO B@ . S WU NM, T*IM') > HE (UNM,T*IM’) for every s € N,
(@)

where rl(q), réQ) are as in (5-118) and (réq))* is the formal adjoint of r,"” with respect to (- |-)as. Hence,

rDB@ (D)@ = 0 mod ¥ (U x U) N (M x M)). (6-61)
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By taking adjoint of (réq) )*B@D  we get
BDr{D =0 mod ¢ ((U x U) N (M x M)). (6-62)
From (6-56), (6-61) and (6-62), we get
N9 B@Dy — p@y =f(q)u onUNX foreveryu e L2 (M),

BOTM@y — @y = fz(q)u on U N X for every u € Q24(U N M),
where

P12 (M) - QU NM), % =0mod ¢ (U xU)N (M x M)),

H2:QMUNM)— L2 (M), £ =0mod (U x U) N (M x M)).
Taking adjoint in (6-59), we conclude that (IM@)* — B@ can be extended continuously to
(M@)* — BD : L3 (M) — H3.(UNM.T** M) foreverys €N, (6-64)
where (I1())* is the formal adjoint of I1?) with respect to (- | -)as. From (5-50), we see that
(MDy* = 1@ + qu)’
where qu) = 0 mod € (U x U) N (M x M)). From this observation and (6-64), we deduce that
1@ — B@ can be extended continuously to
n@ —p@ . L3 (M)~ H(UNM.T**M’) forevery s € N. (6-65)
From (6-59) and (6-65), we get
(M@ - B@yM@D - BDy: HS(UNM, T*IM'y - H (UNM,T*IM’)
is continuous for every s € N. Hence,
(M9 — B@yM@D — B@) =0 mod ¢®° (U x U) N (M x M)). (6-66)
On the other hand, we have
(H(CI) _B(CI))(H(CI) —B(q))u
- (H(q))ZM_H(q)B(q)M_B(q)n(q)u+(B(q))2u
=NDy—BDy—B@y+4 B@Dy4+ (NP2 -—1@)y+(BP-_101PBD)y+(B@_p@OO@)y
= H(q)u—B(q)u+réq)u—f1(q)u—f2(q)u for every u € Q(c)’q UNM), (6-67)

where r =0 mod €°° (U xU)N(M xM))isasin (5-118), 9 £ =0 mod #°° (U xU)N(M xM))
are as in (6-63). From (6-66) and (6-67), the theorem follows. O

7. Proof of Theorem 1.9

To prove Theorem 1.9, we need a result of [Takegoshi 1983], which is a generalization of [Kohn 1973].
Consider an open relatively compact subset Mg := {z € M’ : p(z) < 0} with smooth boundary X¢ of M.
We have the following (see [Takegoshi 1983, Section 3, Theorem NJ).
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Theorem 7.1. Let My be a pseudoconvex domain with smooth boundary X in a complex manifold M’
and let L be a holomorphic line bundle on M’ which is positive on a neighborhood of M. Then there exists
ko € [\J such that the following statement holds for every k € N, k > kg: Forevery f € L%o,l)(MO’ LK)
with d f = 0 on My there exists g € L>(Mo, L*) such that dg = f on My and

/ 817, dvpr < Ci / |f12, dome, (7-1)
M() MO

where C, > 0 is a constant independent of f and g and |- | nLk denotes the pointwise norm on
@Zzo T*%9 M’ @ L* induced by the given Hermitian metric (- |-) on CTM’ and h*.

Proof of (1-23). Let ko € N be as in Theorem 7.1. Let k > ko, k €N, and let U be any open set of X with
UNXy=2. Letu e 6°(UNM, L¥)NDom O and let f :=du € Q¥ (UNM. L¥) C L2 | (M. L),
From Theorem 7.1, we see that there is a g € L2(Mo, LX) c L2(M, L*) such that dg = du on My (hence

on M) and
[ 162 dvrg = Co [l o -2
M() MO

where Cj, > 0 is a constant independent of u and g. Since (I — B,EO))u is the solution of 5g =0uon M
of minimal L2 norm, we have

[ 10 = Oz dvser < [ [6l2, 0 dvae (-3)
From (7-2) and (7-3), we get
/ (1= B yul? i dopr < Cy / |9ul?,x dvpr. (7-4)
M Moy

Since du has compact support in U N M, we have

/M |5u|sz dvy = /M |5u|2Lk duy. (7-5)
0
From (7-4) and (7-5), we get

J 1= BOWE i dow < G [ [l dvne (7-6)
Since u € Dom I:I](CO), we can check that

1P i dvag = G By = G 57— B
0 0 0 0
=@ u =By < 102 ullell (7 = Bl (7-7)

Since (1-23) follows from (7-6) and (7-7), we are done. O

From Theorem 1.5, Remark 1.6 and Theorem 1.9, we immediately get (1-24).

8. S l-equivariant Bergman kernel asymptotics and embedding theorems

In this section, we assume that M’ admits a holomorphic Sl action €', 0 ¢ [0,2m), el? M — M’
x €M’ — e?ox € M. Recall that X o 1s an open connected component of X such that (1-26) holds and
we work with the following assumption.
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Assumption 8.1. For every x € X we have CTy(x) & Txl’OX @ T)?’IX = CT, X, and the S!-action
preserves the boundary X, that is, there exists a defining function p € ¥*°(M’,R) of X such that
p(e'? o x) = p(x) for every x € M’ and every 6 € [0, 27].
Theorem 8.2. Assume that M’ admits a holomorphic S'-action and Assumption 8.1 holds. Let X¢ be a
connected component of X such that (1-26) holds, let p € Xo and let U be an open set of p in M’ with
U N Xo # 2. Suppose that the Levi form is nondegenerate of constant signature (n—,n+) on U N X,
where n_ denotes the number of the negative eigenvalues of the Levi form on U N Xg. Fix A > 0. If
q # n—, then as m — 400,

BY)  =0mod O(m™=) onUNM. (8-1)

Letq=n_.Let Ny:={ge S':gop=p}=1{g0:=e,g1,...,8r} where e denotes the identify element
in S and gj # gy if j # L forevery j,€€{0,1,...,r}. We have

,
BY) (x.y)= Y ghte™P8eMpy (x, y,m) mod O(m™>) onUNM, (8-2)

a=0

where, foreverya =0,1,...,r,

b (x, y,m) € SE((U x Uy N (M x M), NGDI00),
ba(x, y.m) ~ 3320 o j (X, )m" ™ in SE((U x U) N (M x M), Agg\ 0P,
baj(x,y) € E®°((U x UY N (M x M), AGDNODy - j—0,1,...,
ba,0(x,x) =bo(x,x), bo(x,x) is given by (5-124),
and ¢(x,y) € €° (U xU)N (M x M)) is as in (1-17).

Proof. From (1-14) and (1-30), we can integrate by parts in 6 and get (8-1). We now prove (8-2). From
Theorem 6.7 and (5-111), it is straightforward to see that

Biq,x) =PS_ ;LD mod O(m™>®) onUNM, (8-4)

(8-3)

where S_ ,,, (x,y) = % ffn S_(x,e'%y)ei™m? 46 and S_(x, y) is as in Theorem 5.17. From Theorem 5.17,
we can repeat the proof of [Hsiao and Marinescu 2014, Theorem 3.12] with minor changes and deduce that

-
S_m(x,y)= Z g?eim‘p*(x’g“y)aa(x, y,m) mod O(m~*°) onUNX, (8-5)

a=0

where, for every o =0,1,...,7,

ag(x,y,m) e SETH(U xU) N (X x X), Al(‘g’,‘i)jl‘fﬁ’q)),

loc

aq(x, y,m) ~ 352 ag,; (x.y)m" 1= in SEZN((U x U) N (X x X), Ay DN09), 56

g, (x,y) € E°((U x U)N (M x M), NGDNOD) = —01,..,
ag,0(x, x) = ao(x, x),
where ag(x, x) is given by (5-84) and ¢_(x, y) € €*°((U x U)N (M x M)) is as in Theorem 5.17. From

(8-5), we can repeat the procedure in the proof of [Hsiao 2010, Part II, Proposition 7.8] and deduce that
the distribution kernel of P S_ ,, L@ is of the form (8-2). O
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By Theorem 1.5, we can repeat the proof of Theorem 8.2 and deduce:

Theorem 8.3. Assume that M’ admits a holomorphic S'-action and Assumption 8.1 holds. Let X be a
connected component of X such that (1-26) holds, let p € Xy and let U be an open set of p in M’ with
U N Xo # 2. Suppose that the Levi form is nondegenerate of constant signature (n—,n4) on U N X,
where n_ denotes the number of the negative eigenvalues of the Levi form on U N X¢. Suppose that 0@
has local closed range in U. If ¢ # n—_, then

BYW =0mod O(m™>®) onUNM. (8-7)
Letq=n_. Let Ny :={g € Sl:gop=pl={go:=e.g1....,8r} where e denotes the identify element
in St and gj # gy if j # L for every j, £ =0,1,...,r. We have
r
BW(x,y) = Z gheimP8a¥)p, (x, y,m) mod O(m~>) onUNM, (8-8)
a=0

where ¢(x, y) € €%°((U x U) N (M x M)) and by (x, y,m) € SE.(U x U) " (M x M), AGDN0.0)

loc
a=0,1,...,r,areas in Theorem 8.2.

Proof of Theorem 1.10. We now consider the case ¢ = 0. When Z(1) holds on X, it is well known (see
[Folland and Kohn 1972]) that 0© has L2 closed range. From this observation and Theorem 8.3, we
deduce Theorem 1.10. O

We will now prove Theorem 1.11 about the S !-equivariant embedding theorem.

Proof of Theorem 1.11. Fix mg € N. By using Theorem 1.10, we can repeat the proof of [Herrmann

et al. 2018, Theorem 1.2] with minor changes and conclude that we can find m; € N, ..., my € N, with
m; >mg, j =1,...,k, such that
DPy,my - Xo — C‘im is an embedding (8-9)

DPyymy UN M — C‘i’" 1S an immersion. (8-10)

.....

Fix x¢ € Xo. From (8-10), it is straightforward to see that there are S !-invariant open sets Q, € Wy, € U,
of x¢ in M’ such that

Oy mp - Uxg N M — €9 is injective. (8-11)

.....

Let
8xO = inf{|¢ml,“.’mk ()C) - ¢ml:"~amk(y)| X G QXO ﬂ XO, y E XO, y ¢ W_xO ﬂ XO}. (8'12)

From (8-9), we see that §y, > 0. Let V*° be a small S _invariant open set of Xo in M’ such that, for
every x € VX0 N M, x ¢ Uy,, there is a y € Xo, y ¢ Wx, N Xo, such that

Doy (X) = Py (0)] < 380 (8-13)



472 CHIN-YU HSIAO AND GEORGE MARINESCU

Assume that Xy = U;V=1(S2xj N Xo), N €N, and let
N

V:=Un (ﬂ V"-/) N (]@1 ij),

j=1

where Qy;, I{xf, J =1,..., N, are as above, and U is as in (8-10). From (8-10), we see that @y, m, :
V N M — C% is an immersion. We claim that @, m, : V N M — C% is injective. Let p,g € V N M,
p # q. We may assume that p € Qy, N M. If g e Uy, we see from (8-11) that @y, m, (p) #
Dy, ,....mi (). Assume that ¢ ¢ Uy, . From the discussion before (8-13), we see that there is yo € Xo,

yo & Wx, N Xo such that
1Py secmi (@) — Prmy.cmy (VO) | < %5,51. (8-14)

From (8-14) and (8-12), we have

|q)m1,...,mk (p) - q)ml,...,mk (Q)| = |q>m1,...,mk (p) - q)ml,...,mk (y0)| - |q)m1,...,mk (yO) - q)ml,...,mk (Q)l

> 8¢, — 26x, > 0.
Hence @y, ,...m; (P) # Pmy,....omi (@), 80 Ppmiy ... .m, s injective and the theorem follows. O
Proof of Theorem 1.12. We may assume that Xo = {x € M’ : p(x) = 0}. Consider the shell domain
M:={xeM :—¢<p(x) <0},

where & > 0 is a small constant. Then M is a complex manifold with smooth boundary X. Moreover, it is
easy to see that X is an open connected component of X and Z (1) holds on X. Hence, we can apply
Theorem 1.11 to get Theorem 1.12. ([
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