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ABSTRACT

Let M be an arbitrary complex manifold and let L be a Hermitian holo-
morphic line bundle over M. We introduce the Berezin-Toeplitz quanti-
zation of the open set of M where the curvature on L is nondegenerate.
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the Berezin-Toeplitz quantization for semi-positive and big line bundles. CLASSIFICATION

53D50; 32A25; 47B35; 81510

1. Introduction and statement of the main results

The aim of the geometric quantization theory of Kostant and Souriau is to relate the classical
observables (smooth functions) on a phase space (a symplectic manifold) to the quantum
observables (bounded linear operators) on the quantum space (sections of a line bundle).
Berezin-Toeplitz quantization is a particularly efficient version of the geometric quantization
theory [2, 3, 14, 21, 22, 31]. Toeplitz operators and more generally Toeplitz structures were
introduced in geometric quantization by Berezin [3] and Boutet de Monvel-Guillemin [6].
We refer to [22, 26, 30] for reviews of Berezin-Toeplitz quantization.

The setting of Berezin-Toeplitz quantization on Kahler manifolds is the following. Let
(M, w,]) be a Kahler manifold of dim¢c M = n with Kéhler form w and complex structure
J. Let (L, h) be a holomorphic Hermitian line bundle on X, and let VX be the holomorphic
Hermitian connection on (L, k) with curvature Rf = (VF)2. We assume that (L, h, V1) is a
prequantum line bundle, i.e.,

o= ERL. (1.1)

27
Let gTM := w(-,]-) be the J-Riemannian metric on TM. The Riemannian volume form of
g™ is denoted by dv). On the space of smooth sections with compact support 65° (M, L%
we introduce the L?-scalar product associated to the metrics # and the Riemannian volume
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form dvy by
{s1,52) = /M {5100, 5200y dva(x) . (1.2)

The completion of 6° (M, LKy with respect to (1.2) is denoted as usual by L2(M, LF). We
denote by H ?2) (M, LF) the closed subspace of L2(M, L* consisting of holomorphic sections.
The Bergman projection is the orthogonal projection Py : L*(M, LK) — H?z) (M, L) . For a
bounded function f € € (M), set

T : LP(M, LYy — L*(M,L*),  Tj = Pef Pk, (1.3)

where the action of f is the pointwise multiplication by f. The map which associates to f €
€ *°(M) the family of bounded operators {Tf,k} on L*(M, L¥) is called the Berezin-Toeplitz
quantization. A Toeplitz operator is a sequence { Tk }xery of bounded linear endomorphisms of
L2(M, LK verifying Ty = P T P, such that there exist a sequence gy € €°°(M) such that
for any p > 0, there exists C, > 0 with || T} — Z§=O Ty, k’ellop <G kP! foranyk € N,
where || - llop denotes the operator norm on the space of bounded operators.

Assume now that (M, w, ]) is a compact Kihler manifold. Then Bordemann et al. [5] and
Schlichenmaier [29] (using the analysis of Toeplitz structures of Boutet de Monvel-Guillemin
[6]), Charles [7] (inspired by semiclassical analysis of Boutet de Monvel-Guillemin [6]) and
Ma-Marinescu [25] (using the expansion of the Bergman kernel [9, 24]) showed that the
composition of two Toeplitz operators is a Toeplitz operator, in the sense that for any f,g €
€°°(M), the product Tf, Ty, x has an asymptotic expansion

oo
Tk Tk = Z TCP(f,g),k KP4+ Ok™) (1.4)

p=0
where C, are bidifferential operators of order < 2, satisfying Co(f,g) = fg and Ci(f,g) —
Ci(g.f) = -1 {f,g}.-Here{ -, - } is the Poisson bracket on (M, 27 w). We deduce from (1.4),

-1

k
In [24, 25] Ma-Marinescu extended the Berezin-Toeplitz quantization to symplectic man-
ifolds and orbifolds by using as quantum space the kernel of the Dirac operator acting on
powers of the prequantum line bundle twisted with an arbitrary vector bundle with arbitrary
metric on manifolds. Recently, Charles [8] introduced a semiclassical approach for symplectic
manifolds inspired from the Boutet de Monvel-Guillemin theory [6].

In this paper, we extend the Berezin-Toeplitz quantization in several directions. Firstly,
we consider an arbitrary Hermitian manifold (M, ®,]) endowed with arbitrary Hermitian
holomorphic line bundle (L, h) and we quantize the open set M(0) where the curvature of
(L, h) is positive. Since there are no holomorphic L? sections in general, we use as quantum

[Tr k> Tg,kl = Tif g1k + Ok™3). (1.5)

spaces the spectral spaces of the Kodaira Laplacian D]((O) on L*(M, LF), corresponding to
energy less than kN, N > 1 fixed, decaying to 0 polynomially in k, as k — oo. Secondly,
we consider the same construction for the Kodaira Laplacian D,iq) acting on (0, g)-forms.
In this case, we quantize the open set M(q) where the curvature of (L, h) is nondegenerate
and has exactly g negative eigenvalues (and hence n — g positive ones). Quantization using
(0, g)-forms was introduced in [24, Section 8.2] for bundles with mixed curvature of signature
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(g,n — q) everywhere on a compact manifold. It was based on the asymptotic of Bergman
kernel developed in Ma and Marinescu [23].

The idea underlying the construction used in this paper comes from the local holomorphic
Morse inequalities [4, 11, 18, 24]. Roughly speaking, the harmonic (0, q)-forms with values in
L* tend to concentrate on M(q) as k — oc. More precisely, the semiclassical limit of the kernel
of the spectral projectors considered above was determined in [18, Theorem 1.1], see also
[18, Theorems 1.6 —1.10] for important particular cases. This is the main technical ingredient
used in this paper, which is in turn based on techniques of microlocal and semiclassical
analysis [13, 28], especially the stationary phase method of Melin-Sjostrand [28].

We now formulate the main results. We refer to Section 2 for some standard notations and
terminology used here. We are working in the following general setting:

(A) (M, ®,])is a Hermitian manifold of complex dimension n, where ® is a smooth positive
(1, 1)-form and ] is the complex structure. Moreover, (L, h) is a holomorphic Hermitian
line bundle over M, where h is the Hermitian fiber metricon L,and q € {0, 1, ..., n}.
(B) £, g € € (M) are smooth bounded functions.

Let g M(..) = ©(, ) be the Riemannian metric on TM 1nduced by ®andJandlet(-,-)
be the Hermitian metric on CTM := TM ®g C induced by g M. The Riemannian volume
form dvy of (M, ®) satisfies dvyy = ®"/n!. For every g = 0, 1,. . ., n, the Hermitian metric
(-,-)on TM®g C induces a Hermitian metric ( -, - ) on A%4(T*M) the bundle of (0, q) forms
of M.

We will denote by ¢ the local weights of the Hermitian metric h on L (see (2.1)). Let VL be
the holomorphic Hermitian connection on (L, k) with curvature RL = (V)2 We will identify
the curvature form RL with the Hermitian matrix RF € €°°(M, End(T°M)) satisfying for
every U,V € T;’OM, xeM,

(RE(x), UAV) = (R0 U, V). (1.6)

Let det RE(x) := p1(x) .. . pun(x), where {1j(x) }]’7:1, are the eigenvalues of RL with respect to
(-,-).Forje{0,1,...,n},let

M) = {x € M; RE(x) is nondegenerate and has exactly j negative eigenvalues}. (1.7)

We denote by W the subbundle of rank j of T""M|y ;) generated by the eigenvectors
corresponding to negative eigenvalues of RL. Then det W* = AW c A%(T*M)| M)
is a rank one sub-bundle. Here W " is the dual bundle of the complex conjugate bundle of W
and AJ/W ™ is the vector space of all finite sums of v1 A -+ AV}, v1,...,¥ € W™, We denote
by L.+ € End(A% (T*M)) the orthogonal projection from A% (T*M) onto det w*

For k > 0, let (LK, h*) be the kth tensor power of the line bundle (L, k). Let (-, - )k and
(+,-) denote the global L? inner products on ng(M L¥y and ng(M) induced by (-,-)
and K, respectively (see (2.2)). We denote by L )(M L¥) and L )(M) the completions of

8q(M, LKy and QO 1(M) with respectto (-, )rand (-,-), respectlvely.

Let Dl(cq) be the Kodaira Laplacian acting on (0, g)-forms with values in L, cf. (2.6). We
denote by the same symbol D]((q)
It is well-known that D(q)

[24, Proposition 3.1.2]). For a Borel set B C R let E(B) be the spectral projection of O,

the Gaffney extension of the Kodaira Laplacian, cf. (2.9).

D(q) is contained in R, (see

@

is self-adjoint and the spectrum of

corresponding to the set B, where E is the spectral measure of O kq) (see Davies [10, Section 2])
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and for A € R we set Ej = E((—oo, )»]) and
&M, L¥) = Range E; C Lo, (M, k. (1.8)

If A = 0, then & IM,LF) = KerD,(cq) =: UM, L¥) is the space of global harmonic sections.

@ .

The spectral projection of 00, is the orthogonal projection

(q) 2
P i L, g

Fix f € €°°(M) be a bounded function. Let A > 0. The Berezin-Toeplitz quantization for
é}q (M, LF) is the operator

(M, LYy > &M, 18 . (1.9)

@f . (q) (q) 2
Tk,x =Py of oPS L

o, q)(M,Lk) — &M, LF). (1.10)

Let Tg}g’f( -, -) be the Schwartz kernel of T,g)’f, see (2.13), (2.14). Since D,((q) is elliptic, we
have T{0Y (-, ) € €°(M x M, (¥ @ A%U(T*M)) K (L* ® AI(T*M))*).

Let Ak L2 0.9) (M & — L(o )(M LKy beak- dependent continuous operator with smooth
kernel Ag(x, y) and let Dy, D; € M be open trivializations with trivializing sections s and
s, respectively. In this paper, we will identify A; and Ak(x,y) on Dy x D; with the localized
operators Ay s and Ag c5(x, ), respectively (see (2.3)).

The first main result of this work is the following.

Theorem 1.1. Under the assumptions (A) and (B) let j € {0,1,...,n} and Dy,D; € M on
which L is trivial. Suppose that one of the following conditions is fulfilled:

(i) Do €M(j)andj#q,

(ii) Dy € M(g) and Dy ﬂ Dy =4.

Then, for every N > 1, m € N, there exists Cn,m > 0 independent of k such that

‘T(Q)fN(x’y) N k2n 2+2m (111)

Ecm (Do ><D1)
If Dy € M(q) there exists a symbol

by(x,y, k) € S"(1; D9 x Do, A®U(T*M) K (A%(T*M))*)

and a phase function ¥ € €°°(Dy x Dy) such that for every N > 1, m € N, there exists
CN,m > 0 independent of k such that

< Gk 342m, (1.12)

@)f kW (x,)
T ,y) — be(x, y, k
k=N (x )’) ¢ f(x Y ) &m(DoxDg)

where by(x, y, k) ~ Zfio by j(x, )K" in the sense of Definition 2.1 and

bro(x,x) = (2) " (x) |det RY(x) |1, 7+ (%), x € D, (1.13)
and

W (x,y) € € (Do x Do), ¥(x,y) =—¥(y,x),
(1.14)
dc>0: ImW¥ Zc\x—y\z V) =0 x=y.
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We collect more properties for the phase W in Theorem 3.3. The results says that, roughly
speaking, the Toeplitz kernel TIE?Z’_fN(-, -) acting on (0, g)-forms, decays rapidly as k — oo
outside M(q) and off-diagonal, and admits an asymptotic expansion on the set M(q).

Let £,m € N be fixed and choose N > 2(n + £ + 2m + 1). Then we deduce from (1.12)

that

¢
T (x) = Y by (o 0k + 0K in€™(Dy), Dy € M(g).  (L15)
r=0
Note that if M is compact complex manifold endowed with a positive line bundle L (i.e.,
M(0) = M) we have by [27, Theorem 0.1] for any ¢, m € N,

14
T (nx) = Y by (0K + O™ in €™ (M. (1.16)
r=0
Actually, in this case, due to the spectral gap of the Kodaira Laplacian [24, Theorem 1.5.5] we

have T;(;C) N = T;’(Q)O for k large enough, so (1.15) follows from (1.16). The expansion (1.15)

bears resemblance to the expansion of the Toeplitz kernels for functions f € €7 (M) (see [1,
(3.19)]), for arbitrary p € N. In (1.15) the upper bound for the order of expansion £ is due to
the size k=N of the spectral parameter, while in case of symbols of class €7 (M) is due to the
order of differentiability p.

It is interesting to note that Theorem 1.1 and the following results provide a generalization
of various expansions for Toeplitz operators in the case of an arbitrary complex manifold
endowed with a positive line bundle. In this case, we have simply M = M(0). Of course, in
such generality, the quantum spaces have to be spectral spaces éakq,N (M, LF).

The first three coefficients of the kernel expansions of Toeplitz operators and of their
composition for the quantization of a compact Kahler manifold with positive line bundle
were calculated by Ma-Marinescu [27] in the presence of a twisting vector bundle E and
later by Hsiao [17] for E = C. Both [17, 27] work with a general not necessarily Kéhler base
metric ® which might not be polarized, that is, ® # %RL in general. We will calculate the
top coefficients by, (x, x) and by (x, x) of the expansion (1.12) in Section 7. The coefficients
bro(x,x) and by 1 (x,x) were given in [7] for E = Cand ® = %RL. It is a remarkable
manifestation of universality, that the coefficients for the quantization with holomorphic
sections [17, 27] and for the quantization with spectral spaces used in this paper are given
by the same formulas. We refer to [32] for an interpretation in graph-theoretic terms of the
Toeplitz kernel expansion. The formulas from [27] play an essential role in the quantization
of the Mabuchi energy [15] and Laplace operator [20]. On the set where the curvature of L is
degenerate we have the following behavior.

Theorem 1.2. Under the general assumptions (A) and (B), set
Mgeg = {x e M; RL is degenerate at x € M} .

Then for every xo € Meg, € > 0, N > land everyj € {0,1,...,n}, there exist a neighborhood
U of xo and ko > 0, such that for all k > ko we have

‘TI?I)C{N(x,x)’ <ek", xeU. (1.17)
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We consider next the composition of two Berezin-Toeplitz quantizations. We have first the
following expansion of the kernels of Toeplitz operators.

Theorem 1.3. Under the assumptions (A) and (B) let j € {0,1,...,n} and Dy,D; € M on
which L is trivial. Suppose that one of the following conditions is fulfilled:

(i) Do € M()) andj_;é 9

(ii) Dy € M(q) and Dy m Dy = 0.

Then, for every N > 1, m € N, there exists Cy , > 0 independent of k such that

< Cyk3n=3+2m, (1.18)

(@f (9)8
‘(Tk’ka ° Tk’ka)(x’y) ¢™(DyoxD1)

If Dy € M(q) there exists a symbol
byg(x,y,k) € $"(1; Dy x Do, A®I(T*M) X (A™U(T*M))*)
such that for every N > 1, m € N, there exists Cnm >0 independent of k such that

Cauk®=242m (1.19)

IA

(T 0 TS o) = XSVl 3,

cm (D() ><D())

where by.o(x, y, k) ~ Zfio bf gj(% )K" in the sense of Definition 2.1 and

bt g0(x,x) = (Zn)fnf(x)g(x)| detRL(x)|IdetW*(x), x € Dy, (1.20)
and W (x,y) € €°°(Dy x Dy) is as in Theorem 1.1.

It should be noticed that Theorem 1.3 holds for any Hermitian manifold M, not necessarily

compact. Note that the estimates in Theorem 1.3 involve the power =y +2m compared to
k21=2+2m in Theorem 1.1. We will explain why there are different exponents 3xn and 2n in
the proof of Theorem 6.1.

We will calculate the top coefficients by,1 (x, ), by 2 (x, x) and by 1(x, x), by g2 (x, x) of the
expansions (1.12) and (1.19) in Section 7 (see Theorems 7.1 and 7.4).

We come now to the asymptotic expansion of the composition of two Toeplitz operators
in the operator norm. Let A : L*(M, LKy — L2(M, LF) be k-dependent continuous operator.
We say that Ay = O(K™ + k™) as k — 00, locally in the L? operator norm if for any y, x1 €
©s° (M), there exists C > 0 independent of k such that || x Axx1 lop = C(K™ + k™), for k

large, where |- llop denotes the L? operator norm. We also denote by (-, |- ), the Hermitian
metric on T*M ®g C induced by w := gRL.

Theorem 1.4. Under the assumptions (A) and (B) suppose moreover that f,g € € °° (M) have
compact support in M(0). Then for every N > 1, there exist functions Cy(f,g) € 65°(M(0)),

T(O)’f T(O)’g

p €N, such that for any £ € N the product T, "\ T,

has the asymptotic expansion
0).f (0) - 0),Cp(f>8) N
3 B > 8) 1 — —f{— N
Toano Tt =) Ton © kP + 0 +K"72), k— oo, (121)
p=0

locally in the L* operator norm. Moreover,

1
G0 =rf, G0 = _wa’ 08 )w> (1.22)
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and therefore the commutator of two Toeplitz operators satisfies
©Of 0, V=l ofg) - Y
[Tl 1% ] = Y=l + 00 + k3, k> o, (1.23)
where {f, g} is the Poisson bracket on (M(0), 27 w).

We will give formulas for the coefficients C(f, g), j = 0,1, 3, in Corollary 7.5. They have
the same form as those in the expansion of the Toeplitz operators acting on spaces of holo-
morphic sections, see [17, (1.29)], [27, (0.20)]. Formula (1.23) represents the semiclassical
correspondence principle between classical and quantum observables. Theorem 1.4 allows us
to introduce a star-product on the set where a line positive is positive, see Remark 6.5.

As an application of Theorems 1.1 and 1.2, we obtain:

Theorem 1.5. Assume (A) and (B) are fulfilled and let N > 2n. Then
T,ﬁ?k)fN (x, %) = k"(2m) 7" |det RE ()| f(0) Iy, 3+ (%) + OK" 1), k — o0, (1.24)
locally uniformly on M(q), for every D € M, there exists Cp > 0 independent of k such that

‘T,i‘fk){N (x,%)| < Cok", Vx € D, (1.25)

and if 1) denotes the characteristic function of M(q), we have the pointwise convergence:

Jlim KT () = ) 7"F () [det REGO| Lrig) ()] g (1), x € M. (1.26)

Since L§ X (Lﬁg)* = C, we can identify T,E)qk)’f(x, x) to an element of End(Ag’q(T*M). Then
M5 xr— T (%) € End(AT!(T*M)) (1.27)

is a smooth section of End(A%4(T*M)). Let Tr T]((’q; ’f(x, x) denote the trace of T,E?k)’f(x, x) with
respect to (-, ). When M is compact, we define

TrTqux)’f = / TrT;iqf’f(x,x)dVM(x). (1.28)
: "y :

For A = 0, we set T,iq)’f = T(q)’f T,Eq)’f(x,y) = T,ifg’f(x,y), Tr T,Eq)’f(x, x) :=Tr T,E,qo)’f(x, x),

k0 >
Tr 7 = T 7Y,
From (1.24)-(1.26), we get Weyl’s formula for Berezin-Toeplitz quantization.

Theorem 1.6. Assume (A) and (B) are fulfilled and let N > 2n. If M is compact, then
Tr T, = K'2n) ™" / F(0)]det RE ()| dvag(x) + oK™y, k — o0. (1.29)
’ M(g)

From Theorem 1.6 we deduce the following (see Section 8).

Theorem 1.7. Under assumptions (A) and (B) suppose that M is compact and M(q — 1) = 0,
M(g+1) = 0. Then

Jlim KT (6, 0) — @) ()| det RE ()| i) (9T i+ ()| = 0in Ly o (M) (1.30)
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In particular,

Tr T,iq)’f = k”(Zn)”/

f(x)|detRL(x)\ dvpr(x) + o(k") ask — oo. (1.31)
M(q)

Lets consider ¢ = 0 and f = 1in (1.31). If M(1) = @, we obtain dim H*(M, L¥) =
K'Qm)™" fM(O) |detRL(x)| dvpr(x) + o(k™) as k — oo. Therefore, dim HO(M, LK) ~ k" as
k — oo, provided M(0) # ¢ and M(1) = . This is a form of Demuailly’s criterion for a
line bundle to be big, which answers the Grauert-Riemenschneider conjecture, see [11], [24,
Theorem 2.2.27].

We wish now to link the quantization scheme, we proposed above by using spectral
spaces éakq, « (M, L¥) to the more traditional quantization using holomorphic sections (or, more

generally, harmonic forms). For this purpose we need the notion of O(k~") small spectral gap
property introduced in [18, Definition 1.5]:

Definition 1.8. Let D C M. We say that Dl({q) has O(k=N) small spectral gap on D if there exist
constants Cp > 0, N € N, kg € N, such that forall k > kg and u € Qg’q(D, L¥), we have

o= piu], = cor[oiru]

Let Dg,D; C M be open sets and Ak, Cy : Qg’q(Dl) — Q%4(Dy) be k-dependent
continuous operators with smooth kernels Ax(x, y), Ck(x, y) € €>°(Dy x D1, A*1(T*M)) X
(A%9(T*M))*). We write Ay = Cx  mod O(k~°) locally uniformly on Do x D; or Ag(x, y) =
Ck(x,y) mod O(k~*°) locally uniformly on Dy x Dj if

029} (Ax(x,y) — Cilx, )| = OG™)

uniformly on every compact set in Dy x Dy, for all o, 8 € N3" and every N > 1.
The following result describes the asymptotics of the kernels of Toeplitz operators corre-
sponding to harmonic forms in the case of small spectral gap.

Theorem 1.9. Under the assumptions (A) and (B) let j € {0,1,...,n} and Dy,D; € M on
which L is trivial. Suppose that one of the following conditions is fulfilled:

(i) Do € M(j) andj # g,

(i) Dy € M(g), D]((q) has an O(k™N) small spectral gap on Dy and Dy D; = 9.

Then

Tliq)’f(x,y) =0 mod O(k™) locally uniformly on Dy x Dy,
(Tliq)’f o T}Eq),g) (x,¥) =0 mod O(k™) locally uniformly on Dy x D;.

Assume that Dy € M(q) and D,(cq) has an O(k~N) small spectral gap on Dy. Then,

T,Eq)’f(x,y) = eikw(x’y)bf(x,y, k) mod O(k™) locally uniformly on Dy x Dy,
(T,(Cq)’f ) T}Eq),g) (x,y) = kY ) bre(x, k) mod O(k™) locally uniformly on Dy x Dy,

where by (x,, k), by, (x,y,k) € S"(1; Dy x Do, A®(T*M)) K (A%1(T*M))*) are as in (1.12)
and (1.19), respectively, and W (x, y) € €°°(Dy x Dy) is as in Theorem 1.1.
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There are several geometric situations when there exists a spectral gap. For example, if
L is a positive line bundle on a compact manifold M, or more generally, if L is uniformly
positive on a complete manifold (M, ®) with V—1RK and 90 bounded below, then the
Kodaira Laplacian D,(CO) has a “large" spectral gap on M, that is, there exists a constant C > 0
such that for all k we have inf{A € Spec(D]((O)); A # 0} > Ck, (see [24, Theorem 1.5.5],
[24, Theorem 6.1.1, (6.1.8)]). Therefore, we can recover from Theorem 1.9 results about
quantization of noncompact manifolds, such as [24, Theorem 7.5.1], [25, Theorem 5.3],
[26, Theorem 2.30].

In this paper, as applications of Theorem 1.9, we establish Berezin-Toeplitz quantization
for semipositive and big line bundles. We assume now that (M, ®) is compact and we set

Herm(L) = {singular Hermitian metrics on L} ,
M(L) = {h € Herm(L); h is smooth outside a proper analytic set

and the curvature current of h is strictly positive} .

Note that by Siu’s criterion [24, Theorem 2.2.27], L is big under the hypotheses of Theorem
1.10 below. By [24, Lemma 2.3.6], M(L) # . Set

M’ = {p e M; 3h € M(L) with h smooth near p} . (1.32)

Theorem 1.10. Let (M, ®) be a compact Hermitian manifold. Let (L, h) — M be a Hermitian
holomorphic line bundle with smooth Hermitian metric h having semipositive curvature and
with M(0) # O. Let f,g € €°°(M) and let Dy € M(0) (| M’ be an open set on which L is
trivial. Then

TIEO)’f(x,y) = eik‘y(x’y)bf(x,y, k) mod O(k™) locally uniformly on Dy x Dy,

(TIEO)’f ) T]io)’g) (x,y) = kY ) brg(x, k) mod O(k™) locally uniformly on Dy x Dy,

where bf(x,y,k), by g(x,y,k) € S"(1;Dg x Do) are as in (1.12) and (1.19), respectively, and
W (x,y) € €°°(Dy x Dy) is as in Theorem 1.1.

Let us consider a singular Hermitian holomorphic line bundle (L,h) — M (see e.g.,
[24, Definition 2.3.1]). We assume that h is smooth outside a proper analytic set ¥ and the
curvature current of  is strictly positive. The metric h induces singular Hermitian metrics
hK on L¥. We denote by .# (h*) the Nadel multiplier ideal sheaf associated to k¥ and by
HO(M, Lk ® .7 (h*)) c H°(M, L¥) the space of global sections of the sheaf (LX) @ . (H¥) (see
(2.12)), where HO(M, LF) := {u € €° (M, LF); 9u = 0}. We denote by (-, - )i the natural
inner products on € (M, Lk @ 7 (1)) induced by h and the volume form dv; on M (see
(2.11) and see also (2.10) for the precise meaning of €"*° (M, Lk ® Z(H5))). The (multiplier
ideal) Bergman kernel of HO(M, L%).7 (HX)) is the orthogonal projection

Py PO LY — HOM, 1 ® S (). (133)
Let f € €°°(M). The multiplier ideal Berezin-Toeplitz operator is

0), 0 0
T = P, of o PO, . 12(M, I} - HOM,IF ® .7 () (1.34)
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where we denote by f the multiplication operator on L?(M, LX) by f. Let T,ﬁo}f (x,y) be the
distribution kernel of Ty . Note that Ty (x,y) € €°((M\E) x (M\E), (L)* & L¥).

Theorem 1.11. Let (L, h) be a singular Hermitian holomorphic line bundle over a compact
Hermitian manifold (M, ®). We assume that h is smooth outside a proper analytic set ¥ and
the curvature current of h is strictly positive. Let f,g € € °°(M). Let Dy C M\X be an open set
on which L is trivial. Then

T;?}f(x,y) = eikq'(x’y)bf(x,y, k) mod O(k™) locally uniformly on Dy x Dy,

(T,S);f o T](Cf)}g) (x,y) = kY ) bre(x, k) mod O(k™) locally uniformly on Dy x Dy,

where bf(x,y,k), by g(x,y,k) € S"(1;Dg x Do) are as in (1.12) and (1.19), respectively, and
W (x,y) € €°°(Dy x Dy) is as in Theorem 1.1.

The paper is organized as follows. In Section 2, we collect terminology, definitions and
statements we use throughout. In Sections 3 and 4 prove the off-diagonal decay for the kernels

P](ch_N(-, -) and T,iqk)’_fNC, -). In Section 5, we establish the full asymptotic of the Berezin-

Toeplitz kernels T,Eqk)lfw(u -) and prove Theorem 1.1. Section 6 is devoted to the expansion
of the composition of two Toeplitz operators and contains the proof of Theorems 1.3, 1.4,
and 1.9-1.11. In Section 7, we calculate the leading coeflicients of the various expansions we

established. Finally, in Section 8, we prove Theorems 1.2 and 1.7.

2. Preliminaries

Some standard notations. We denote by N = {0, 1,2,...} the set of natural numbers and
by R the set of real numbers. We use the standard notations w*, 9% for multi-indices o =
(@1, &) € N™, w e C™, 0y = (dy,,...,s,)-

Let Q2 be a ¢*° paracompact manifold equipped with a smooth density of integration. We
let TQ2 and T*Q2 denote the tangent bundle of 2 and the cotangent bundle of 2, respectively.
The complexified tangent bundle of 2 and the complexified cotangent bundle of & will be
denoted by CTQ := TQ ®gr C and CT*Q := T*Q ®r C, respectively. We write (-, -) to
denote the pointwise duality between T2 and T*Q2. We extend (-, - ) bilinearly to (T2 @r
C) x (T*Q2 ®r C).

Let E be a € vector bundle over 2. We write E* to denote the dual bundle of E. The fiber
of Eatx € Q will be denoted by E,. We denote by End (E) the vector bundle over 2 with fiber
End(E), = End(Ey) over x € L.

Let F be a vector bundle over another 6> paracompact manifold €. We introduce the
vector bundle FX E* = 7§ (F) ® 7} (E*) over Q' x 2, where 7} and 7, are the projections of
Q' x Q on the first and second factor (see [24, p. 337]). The fiber of FIKIE* over (x, y) € Q' xQ
consists of the linear maps from Ej, to Fj.

Let Y C € be an open set and take any L? inner product on 6°(Y, E). By using this L
inner product, in this paper, we will consider a distribution section of E over Y is a continuous
linear form on 6° (Y, E). From now on, the spaces distribution sections of E over Y will be
denoted by Z'(Y, E). Let & (Y, E) be the subspace of 7’ (Y, E) whose elements have compact
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support in Y. For m € R, we let H" (Y, E) denote the Sobolev space of order m of sections of
E over Y. Put
Hm

loc

(Y,E) = {ue Z'(Y,E); pu € H"(Y,E), ¢ € 65°(Y)},
Hp (Y, E) = H' (Y,E) N &' (Y, E).

Let M be a complex manifold of dimension n. We always assume that M is paracompact.
Let T°M and T!M denote the holomorphic tangent bundle of M and the antiholomorphic
tangent bundle of M, respectively. Let A°(T*M) be the holomorphic cotangent bundle of
M and let A®!(T*M) be the antiholomorphic cotangent bundle of M. For p,q € N, let
APA(T*M) = AP(AYO(T*M)) @ A9(A%(T*M)) be the bundle of (p, g) forms of M.

For an open set D C M we let QP9(D) denote the space of smooth sections of AP4(T*M)
over D and let Qg’q (D) be the subspace of Q%9(D) whose elements have compact support
in D. Similarly, if E is a vector bundle over D, then we let Q2P9(D, E) denote the space of
smooth sections of A?4(T*M) ®E over D. Let Qg’q (D, E) be the subspace of 2P9(D, E) whose
elements have compact support in D.

For a multi-index ] = (j1,...,j;) € {1,...,n}? we set |J| = g. We say that ] is strictly
increasing if 1 <j; <j» <--- < j; < n. Let{ey,..., ey} bealocal frame for A% (T*M) on
anopen set D C M. For amulti-index] = (ji, . . . Jg) € {L,.. .,n}q,wepute] =gy A+ Nej,.
Let E be a vector bundle over D and let f € Q®4(D, E). f has the local representation

flp= Z/f](z)e],

l/1I=q

where ) means that the summation is performed only over strictly increasing multi-indices
and f; € €°°(D, E).

Metric data. Let (M, ©®) be a complex manifold of dimension #, where ® is a smooth positive
(1,1) form, which induces a Hermitian metric (-,-) on the holomorphic tangent bundle
T“OM. In local holomorphic coordinates z = (z, . . ., z,), if ® = /=1 Z}szl O kdzj A dz,
then ( d% | % ) = Ojkjk =1,...,n. We extend the Hermitian metric (-,-) to TM ®g C
in a natural way. The Hermitian metric (-,-) on TM ®g C induces a Hermitian metric on
APA(T*M) also denoted by (-, - ).

Let (L, h) be a Hermitian holomorphic line bundle over M, where the Hermitian metric on
L is denoted by h. Until further notice, we assume that 4 is smooth. Given a local holomorphic
frame s of L on an open subset D C M we define the associated local weight of h by

ls(o)[F = e 2@, ¢ € €°(D,R). 2.1)

Let RE = (VL)? be the Chern curvature of L, where VX is the Hermitian holomorphic
connection. Then RF|p = 209¢.

Let L*, k > 0, be the kth tensor power of the line bundle L. The Hermitian fiber metric
on L induces a Hermitian fiber metric on LF that we shall denote by K*. If s is a local
trivializing holomorphic section of L then s* is a local trivializing holomorphic section of
L¥. For p-q € N, the Hermitian metric (-,-) on AP4(T*M) and h* induce a Hermitian
metric on AP4(T* M) ® LK, denoted by (-, )y Fors € QPI(M, L¥), we denote the pointwise
norm |s(x)|}21k 1= (s(x), s(x)) k. We take dvyr = dvar(x) as the induced volume form on M.
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The L2-Hermitian inner products on the spaces Qg’q (M, L¥) and Qg’q (M) are given by

(s1,82)k = /M<sl(X),Sz(x)>hk dvp(x), s1,5 € QP L),

(fi.fo) = fM (i (%), () dvir(x), firfo € QB(M). (2.2)

ISl = (9% s € QIMLE, IfI> = (£.0), f e Qbla.
Let Ay : y (M, 5 — L oM L) be a k-dependent continuous operator with smooth
kernel Ak(x, y) Lets,’s be local tr1v1ahzmg holomorphic sections of L on Dy € M, D) € M,

respectively, |s|? =, ﬂi =e 2¢, where Dy, D, are open sets. The localized operator of
Ay on Dy x Dj is given by

Apsz: Q09(D1) — QY(Dy), u—s s~ ke k(4G P u), (2.3)

and let Ay 5(x, y) € € (Do x D1, A¥(T*M)) X (A%(T*M))*) be the distribution kernel
of Ak sz For s =7, Dy = Dy, we set

Aps = Apss,  Aks(6y) = Agss(x ). (2.4)

A self-adjoint extension of the Kodaira Laplacian. We denote by
o QU (M, LM — QO M, LRy, 3 O v, 1M — QO (M, LF) (2.5)

the Cauchy-Riemann operator acting on sections of L¥ and its formal adjoint with respect to
(- | )k respectively. Let

0\ =350y + 0z 9k : QPI(M, IF) - Q%(M, L¥) (2.6)

be the Kodaira Laplacian acting on (0,q)-forms with values in LK. We extend 9; to
Ly, (M, L¥) by

9 : Dom 3k C LYy, (M, L) — L, (M, L5, 2.7)

where Dom 3y := {u € L(o " (M, LF); 9pu € L(0 r+1)(M’L )}, where 9u is defined in the
sense of distributions. We also write

3, :Domdy C LYy,p (M, L% — LY (M, L) (2.8)

to denote the Hilbert space adjoint of d in the L2 space with respectto (-, - ). Let D,((q) denote
the Gaftney extension of the Kodaira Laplacian given by

Dom D(q) {s IS L(Oq)(M,Lk); s € Domgk N Domgf, gks € Domglj, 555 € Domgk} ,
(2.9)

and D(q)s = 5@: s+ 5: s for s € Dom D(q) By a result of Gaftney [24, Proposition 3.1.2],

Dl(f) is a positive self-adjoint operator. Note that if M is complete, the Kodaira Laplacian D(q)

is essentially self-adjoint [24, Corollary 3.3.4] and the Gaffney extension coincides with the
Friedrichs extension of D(q)
Consider a singular Hermltian metric & on a holomorphic line bundle L over M. If hg is a

smooth Hermitian metric on L then h = hye™2¢ for some function ¢ € Llloc (M, R). The Nadel
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multiplier ideal sheaf of h is defined by . (h) = .# (¢); the definition does not depend on the
choice of hg. Recall that the Nadel multiplier ideal sheaf .# (¢) C Oy is the ideal subsheaf of
germs of holomorphic functions f € @), such that |f|?e~2% is integrable with respect to the
Lebesgue measure in local coordinates near x for all x € M. Put

COM,L® I (h) = {s € €M, L); / || dva = / |8, €72 dvar < oo},
M M
(2.10)

where | - |, and | - |, denote the pointwise norms for sections induced by h and hy, respec-
tively. With the help of h and the volume form dvy; we define an L? inner product on
CC(M,L® . (h)):

(S,8) = / (S, 8V e ¥dvar, S8 € XM L® I (h)). (2.11)
M

The singular Hermitian metric 4 induces a singular Hermitian metric ik = hée_Zk‘” on Lk,
k > 0. We denote by ( -, - )¢ the natural inner products on ¢"*°(M, Lk ® 7 (h*)) defined as in
(2.11) and by L2(M, L¥) the completion of "> (M, L* ® .# (h*)) with respect to (-, - )x. The
space of global sections in the sheaf & (L") @ Z(h) is given by

H'WM, LF ® .7 (H"))

= {s € €M, L%); dys = 0, / |s|ik dvy = / |S|Z;(§ e 2k gy < oo} . (2.12)
M M

Schwartz kernel theorem and semiclassical Hormander symbol spaces. We recall here the
Schwartz kernel theorem [16, Theorems 5.2.1, 5.2.6], [24, Thorem B.2.7]. Let Q be a €*°
paracompact manifold equipped with a smooth density of integration. Let E and F be smooth
vector bundles over Q. Any distribution (“kernel”)

A(x,y) € 9'(2 x Q,FR E¥), (2.13)
defines a continuous operator
A:65°(QUE) — Z'(UF), (Au,v) == (A(x, ), v(x) ® u(y)), (2.14)

for any u € €5°(Q,E), v € 65°(K2, F). Conversely, any continuous linear operator A :
C5° (L E) — Z'(, F) is given by a distribution A(x, y) € 2’ (2 x Q, FXE*) as above, called
the Schwartz distribution kernel of A. Moreover, the following two statements are equivalent

(a) A is continuous: &' (R, E) — € (R, F), )1
(b) A(x,y) € €°°(Q2 x Q,F K E¥). 219
If A satisfies (a) or (b), we say that A is a smoothing operator. Furthermore, A is smoothing
if and only if A : Héomp (QLE) — HfotN(Q, F) is continuous, for all N > 0,s € R. Let
A,B: 65°(Q,E) — 2'(Q, F) be continuous operators. We write A = B or A(x, y) = B(x, )
if A — B is a smoothing operator.
We say that A is properly supported if the restrictions to Supp A(-, -) of the projections m;
and m, from Q x Q to the first and second factor are proper.
We say that A is smoothing away the diagonal if x1Ayx; is smoothing for all x1, x» €
Gy° (2) with Supp x1 N Supp x> = 9.
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We recall the definition of semiclassical Hormander symbol spaces [13, Chapter 8]:

Definition 2.1. Let U be an open set in RY. Let

S = S(U) = fa € (V) |V € NY : sup [0%a()| < oo},

xeU
Y1 U) = {(a(-,k))keN € (KOO(U)N |V € Ngf : sup sup |8°‘a(x, k)| < oo}
keNxeU
Form € R let

$"(1:U) = { (@t kDien € €2 ("a(, ) € "1 V) |

Hence (a(-, k)) € §™(1; U) if for every o € Ng], there exists C, > 0, such that |0%a(-, k)| <
Cok™ on W. Consider a sequence a; € ™ (1), j € N, where m; Ny —o0, and let a € §™(1).
We say that

oo
a(k) ~ Y aj(-k), inS™(1),
j=0
if for every £ € N we have a — Zf:o aj € §™+1(1) . For a given sequence a; as above, we

can always find such an asymptotic sum g, which is unique up to an element in S™>°(1) =
§7°(;U) == NyS™(1). We define $™(1;Y, E) in the natural way, where Y is a smooth
paracompact manifold and E is a vector bundle over Y.

3. Spectral kernel estimates away the diagonal

The goal of this section is to prove the off-diagonal decay for the kernel P(q) _n(-) of the
spectral projection P(q),N For this purpose, we introduce a localization of the projection.
Let s,’s be local tr1v1ahzmg holomorphic sections of L on Dy € M, D; € M, respectively,
|s|2 =e 2, ﬂz =e -2 , where Dy, D are open sets. We denote by P(q) N the localization

given by (2.3).
Let {e1, ez, ...,e,} and {wy, ws, ..., wy,} be orthonormal frames of A% (T*M) on Dy and
Dy, respectively. Then,
{ ¢ ]l =g, Jis strictly increasing}, { w5 |J] = g, Jis strictly increasing}
are orthonormal frames of A%4(T*M) on Dy and Dy, respectively. We write

PO = > PN el n o,
=lJI=q

(q) L] (3.1)
P A(x,y) € €°°(Dy x D),V |I| = |]| = g,1,] are strictly increasing,
in the sense that foreveryu = Y ‘uyw/ € Qo’q (Dy), we have
[Jl=q
! I,
PE =Y e / PN ey () dvm(y). (32)
Hl=lJ1=q

The goal of this section is to prove the following.
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Theorem 3.1. With the notations used above, we assume that Dy € M(j),j # q,j €
{0,1,...,n} or Dy € M(q) and Do (D1 = @. Then, for every N > 1, m € N, there exists
CN,m > 0 independent of k, such that for all strictly increasing I, ] with |I| = |]| = q,

(@,L] 2n—N42m
p ~(x, < Cnmk 2 .
k,kiN,s,S( ) €m (Do xDy) = “N,m
As preparation, we recall the next result, established in [18, Theorems 4.11 and 4.12]. The
localization Pl({qlz,N Jis defined as in (2.4).

Theorem 3.2. With the notations used above, assume that Dy € M(q). Then, for every N > 1,
m € N, there exists Cn,, > 0 independent of k such that

(C)) ikW (x,p) 3n—N-+2m
p x,y) —e Y b(x, v, k < Cn.mk ,
k,k_N,S( y) ( y ) ?fm(DoXDo) = “Nm

where

b(x, y,k) € S"(1;Dg x Do, A% (T*M) K (A% (T*M))*),

b(x,y,k) ~ > bj(x, )K" in 8" (1; Do x Do, A%I(T*M) B (A®(T*M))"),
j=0
bj(x,y) € €% (Do x Do, (A*(T*M) B (AM(T*M))"), j=0,1,2,...,
bo(x,x) = (2)7"| det RY (x) I, 77+ (x), ¥x € Dy,
and b(x, y, k) is properly supported and W (x, y) € €°>°(Dy x Dy) is as in Theorem 1.1.

Assume that Dy € M(j), j # q,j € {0,1,2,...,n}. Then, for every N > 1, m € N, there
exists CNm > 0 independent of k such that

(@ ~, _
‘ Pk,qk—N,s(x’ 9) < Cy kS N2m,

cm (Do XD())

The following properties of the phase function W follow also from [18, Theorem 3.8].

Theorem 3.3. With the assumptions and notations used in Theorem 1.1, for a given point p €
Dy, let x = z = (z1, . . ., z») be local holomorphic coordinates centered at p satisfying

Op) =v-1)_dzrdz,
j=1

(3.3)
$(2) = anxj |4i[* + 0(z), z near p, (i), C R\{0},
-
then we have near (0,0), J
W(z,w) = an: 4] |21 — wi|* + iixj(zjwj — zw) + 0z w)P). (3.4)

j=1 j=1
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Moreover, when q = 0, we have

glal+1Alg wP

pyreall 0= 4 01z wIN,

W(z,w) = i(¢(2) + p(w)) —2i Z a! B!

a,BeN,lal+|BI<N
(3.5)

forevery N € N.

Fix N > 1. Let { 81(x), £(X), ..., 84, (x)} be an orthonormal frame for &~ (M, L¥), where
d; € NU {o0}. On Dy, D1, we write

g = @F@, G = > Gy onDy, j=1,....dp
=
! (3.6)

g =F @G, e = > Fu@wW®onDy, j=1,....dx
i=q

It is not difficult to check that for every strictly increasing I, ], with |I| = |J| = g, we have

di
I N P
P(qu 1\{ sy = Zgj,f(x)e k"’(x)gj,](y)e ke ()
j=1
(3.7)
dy R
1] - PN
P]((qlz N, (X>)/) = Zgj,[(x)e k¢(X)gj,]()/)e kd)(y).
j=1

Lemma 3.4. Assume that Dy € M(j), j # q. Then, for every N > 1, m € N, there exists
CN,m > 0 independent of k such that for every strictly increasing I, ], with |I| = |J| = q,

‘P(q)U

kk— NSS(X,)’) = CN k2n 2+2m

"™ (Do xDy)

Proof. Fix I, ] are strictly increasing, |I| = |J| = ¢, andleta, B € Né”. By (3.7), we have

I
aaf PO o) < Z 3¢ @ (x)e o) \a’s @G [ 68
J_
In view of Theorem 3.2, we see that

dy,

2

j=1

2
0% (G (x)e M @)|" < C kP N+4al on Dy, (3.9)

where C, > 0 is a constant independent of k. Moreover, it is known (see [18, Theorem 4.3])
that

dy -
> \35 @J(y)e"‘d’(”)) < Cgk"+Bl on Dy, (3.10)
j=1

where Cg > 0 is a constant independent of k. From (3.8) to (3.10), the lemma follows. O
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Lemma 3.4 provides the proof of Theorem 3.1 in the case Dy € M(j), j # q. Now, we
assume that Dy € M(q). Fix p € Dy, Iy, Jo strictly increasing with |Iy| = [Jo| = ¢, and
o, B € N2 Put

82026 Nb(x, 3, k) = ey k) = S @D ag(xy e A @),
HI=l]l=q
oK D p(x, g, k) = VN d by = Y VD dy 0,y R ) A )T
I=1J1=q
(3.11)

where W (x, y) and b(x, y, k) are as in Theorem 3.2 and ar j (x, y, k), d j(x, y, k) € €°°(DyxDy),
for any I, J strictly increasing with |I| = |J| = q.

Lemma 3.5. Assume that ay,1,(p, p, k) < 0. Then, there exists Cy,g > 0 independent of k and
the point p such that

o, _N
s B 5.9 < Cogr I, vy e,

Proof. In view of Theorems 3.2 and (3.7), we see that

dy

2

=1

_ 2 o, Jo
0 G ()| = 00 PO ) < (020 PN (b, p) — s, )

< Cok3n N+l (3.12)
where C, > 0 is a constant independent of k and the point p. From (3.12), (3.8), and (3.10),

the lemma follows. O

Now, we assume that aj, 1, (p,p) > 0. Take x € 65°(R,[0,1]) so that x = 1if |x| < 1,
x = 0if |x| > 2. Put

2
1 . —
elk‘l/(XJ])X (M) Z/dI,IO(X)P, k)el(x) c Qg’q(DO))

Up(x) = ———xs
ar, 1, (P> P> k) IN=q

(3.13)
up(x) = ) (x) e D € QrU(Dy, LV,

where ¢ > 0 is a small constant and dy 1, (x, y) is as in (3.11). We need

Lemma 3.6. We have

that is, for every local trivializing holomorphic section sy of L on an open set W € M, |s |i =
e~2%1, we have
@
P k(%)
sfke_k‘f’1 ur(x) = sfke_k"> L ekl

@ mod O(k™%°) on W.
1P e il &
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Proof. Tt is known from [18, Theorems 3.11 and 3.12] that

2
X (@) 3 i Gy | dvan()

2
/ eiklll x) e—iklIJ () ‘

I|=
= aj, 1, (5,3, k) mod O(k™). " (3.14)
From (3.14), it is easy to see that
lukllk =1 mod O(k™°). (3.15)
Moreover, we have by [18, Theorem 3.11],
| OV =0 mod 0k, j=1.2..... (3.16)
From (3.16), we have
H g — P](C?,:_Nuk ’k < KN HDI(cq)“k Hk =0 mod O(k™). (3.17)
From (3.16) and semiclassical Gérding inequalities (see [18, Lemma4.1]), we obtain
U = P](:I]z_Nuk mod O(k~°). (3.18)
From (3.18), (3.15), the lemma follows. O

Lemma 3.7. With the notations and assumptions above, assume that for k large, dist (p, y) >
logk
\/E >
independent of K and the point p such that

c Vy € Di, where ¢ > 0 is a constant independent of k. Then, there exists Co.,g > 0

lo, Y
020f P (p.y)| < Copk™= 2 H20IHIED, vy € Dy,

Proof. Let us choose

(@
Pk,qk*Nuk
1= (3.19)
1P o thicll

in the orthonormal frame {g1 (%), £2(x), . . .» g4, (x)} of &-~n (M, L¥) (see (3.6)). From (3.11),
(3.13), and Lemma 3.6, it is not difficult to check that

2
dy @1,106"“7’)(1))‘ = ag, 1, (p,p) mod O(k™). (3.20)
From (3.10), (3.11), and Theorem 3.2, we conclude that
dy 5
PAL @j,loe_k¢)(P)‘ < [Nl (3.21)
j=2

where C > 0 is a constant independent of k and the point p. From (3.7), (3.10), and (3.21),
we have

o,
020y PO (p, y)) <

0 @) )| [of @i 00|

dy dy R 5
+ | 1@ O | Y|4 @re Do)
j=2

j=2
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< |0 @ie ™)) |8 @uine ™)

k2= Y20+ (3.22)

where C; > 0 is a constant independent of k and the point p. From Lemma 3.6 and noting
that ux(y) =0 mod O(k~) if dist (p, y) > clogk JE ,where ¢ > 0is a constant independent of
k, we conclude that

‘Bf @l,loe_k¢)(y)‘ =0 mod O(k™), Vy e D;.

From this observation and (3.22), the lemma follows. O

From Lemmas 3.4, 3.5, 3.7, Theorem 3.1 follows.
We can repeat the proof of Theorem 3.1 and conclude:

Theorem 3.8. Letsand s be local trivializing holomorphic sections of L on open sets Dy € M,
Dy € M, respectively, |S|i =e 2, mz = e~ 2%, Assume that Dy € M(j), j # q. Then

P,(cqss(x,y) =0 mod O(k™) locally uniformly on Dy x D;.

Assume now that Dy € M(q) and D,(j) has an O(k=N) small spectral gap on Dy. Suppose that
E() mﬁl = 0. Then,

P,(cqss(x,y) =0 mod O(k™®) locally uniformly on Dy x D;.

4. Berezin-Toeplitz kernel estimates away the diagonal

In this section, we prove the off-diagonal decay of the kernel Tliqk))—fN(" -) of the Berezin-
Toeplitz quantization (cf. (1.10)), where f € €°°(M) is as usual 2 bounded function and
N > 1. This yields one half of Theorem 1.1, i.e., (1.11).

We consider as before the localization of T]E?k){N(-,-) as follows. Let s, 5 be local
trivializing holomorphic sections of L on open sets Dy € M, Di € M, respectively,
ISIﬁ = 2, |’§]i = e 2 Let {e},ez,...,e,} and {wy,wa,...,w,} be orthonormal
frames of A% (T*M) on Dy and D;, respectively. Then, {e] ; ]l = g, J strictly increasing},
{w] ; |J| = g, ] strictly increasing} are orthonormal frames of A%1(T*M) on D, and Dy,
respectively. As in (3.1), we write

T = 3 TN e A Won', TOR e €Dy x D). (@41)

Hl=I71=q

Let {g]} and { } kl be orthonormal bases of éakq,N (M, LK), where dy € N U {00}. On Dy,
Dy, we write

g = @G, G = > G onDy, j=1,....dp
Jl=q

5i(0) =T W), Fx = Y W ®onDy, j=1,....d.
J1=q

(4.2)
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It is not difficult to check that for every strictly increasing I, ], |I| = |J| = ¢, we have

dy
L ~ _ = _ Y
TR ) = 3 Gue ™D (f8, 1 g)ibey (e ™ 00, (43)
j.l=1

Lemma 4.1. Assume that Dy € M(j), j # q. Then, for every N > 1 and m € N, there exists
CN,m > 0 independent of k such that for every I, J strictly increasing, |I| = |J| = q, we have

‘ T(q)f)l»]

n—Y42
kk—N s?(xJ/) < CN,mk " 2+ m-

"™ (Do xDy)
Proof. Fixa, B € Ng”, Io, Jo strictly increasing with [Iy| = |Jo| = g, and (xp, y0) € Dy X D;.
Take {gl,gz, .. .,gdk} and {81,82, .. .,8dk} so that

" PR ) 2
02 @) o) = Y [0 Gaoe ™ x0)|

j=1

(4.4)
- ~ 2 d" - ~ 2
G 00| =2 |8 Gae ™ 00| -
j=1
This is always possible, see [18, Proposition 4.5]. From (4.3) and (4.4), we see that

(028 T (x0, 70) = 82 @™ ) (x0) (£6110)k3) Bripe ™) 0).  (45)

In view of Theorems 3.2 and (3.10), we see that

2
o @1,Ioe_k¢)(x0)‘ < ¢, k3 N+ilel

o (4.6)
‘3}3(51,]067@)(}/0)‘ < Cgk" T8I,

where C; > 0, Cg > 0 are constants independent of k and the points xq and yg. From (4.5)
and (4.6), the lemma follows. O

Now, we assume that Dy € M(q). Fix Dy € 130 € M(q) and take 7(x) € 65° (130), T=1
on Dy.

Lemma 4.2. With the assumptions and notations above, for every N > 1 and m € N, there
exists CNm > 0 independent of k such that

(q@),(1=0)f.LI.] m—Niom
T, = 8 < Cn ok 2 ,
| kk=N,ss (x,) €M (DoxDy) — N,m

for every strictly increasing multi-indices I, ], |I| = |J| = q.

Proof. Fixa, B € N%", [Io| = [Jol = g, o, Jo are strictly increasing and (p, y9) € Doy x Dj.
Take {81,82, .. .,(Sdk} so that

dy
o P VINL
‘3f(51,]0€_k¢)(y0)‘ = Z‘ayﬂ(fsj,]oe_k‘ﬁ)()/o) . (4.7)
=1
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Assume that aj, 1, (p, p, k) < 0, where arj(x, y,k) is as in (3.11). From (3.12) and (3.10), we
have

(@),(1=1)f Io,]
acaf T\ PR, yo)‘

dy. o R
= > 0 @ne ) P) (1 — 1)f811)kd) Brpe ) (30
j=1

dx L
= C |3 [0 @uoe @) | Grine ™) )
=1

< Ca)ﬂ(k3n—N+4|a\kn+4|ﬂ\)% _ Ca)ﬂkzn—§+2|a|+2|ﬂ\) (4.8)

where Cy,g > 0, C > 0 are constants independent of k and the points p, yo.
Now, we assume that ay, 1, (p, p, k) > 0. We define now uy is asin (3.13) and g; asin (3.19).

Since g1 = ux mod O(k™™) and ur(x) = 0 mod O(k™) if dist (x,p) > c%, where

¢ > 0is a constant independent of k, we conclude that

0 Grine M) (P (1 = 1)f81 1)k Brrpe ) (0)| =0 mod OK™™).  (4.9)

From (3.21) and (3.10), we have

dy o R
> 08 @) (1 = 1)f 81 1 g kd) Brre ) (yo)
j=2

di
2 = _ -
<G | Y [ Gue ) @ |9 Gre )00
=2
< Ea’ﬁ (k3n—N+4la|kn+4|ﬂ|)% _ Ea’ﬁkzn—§+z\a|+z|ﬂ|, (4.10)
where C; > 0, Ea,,g > 0 are constants independent of k and the points p, y9. From (4.9) and
(4.10), we obtain

s(1=1)f.lo, - _N
02 T 2 (p,y0) | = Co k=2 +2e 218, (4.11)

where ax,,g > 0 is a constant independent of k and the points p, y.
From (4.8) and (4.11), the lemma follows. O

Lemma 4.3. With the assumptions and notations above, assume that Dy (| D1 = (. Then, for
every N > 1 and m € N, there exists Cy,, > 0 independent of k such that

@f1 2=y +2m
T, (x, = Cnmk™ 277,
K.k N,s,s( 7 €m(DoxDy) o

for every I, J strictly increasing, |I| = |J| = q.
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Proof. Fixa,pB € N%”, [Io| = [Jol = g, Io, Jo are strictly increasing and (p, y9) € Doy x Dj.
Take {81,82, - ,84,} so that

dy
—~ 2 —~ -~ 2
8 Guiue ™00 =3 |8 Gise 00| - (412)
j=1

Assume that aj, 1, (p, p, k) < 0, where arj(x, y, k) is as in (3.11). We can repeat the procedure
in the proof of Lemma 4.2 and conclude that

Y TkkNss

agaﬁT(Q)»ffJoJo(p,yo)‘ < Ca’ﬂan—%+2|a\+2|/3|, (4.13)

where Cy,g > 0 is a constant independent of k and the points p and yy. Now, we assume that
ar,.1, (p> p> k) > 0. Let g; be as in (3.19), where uy is as in (3.13). From Lemma 3.6 and (3.13),
we have

2
1 . —
Te M0 =~ V@) (—|x 8P| ) Z/dl,lo (%, p,k)el(x) mod O(k™°),

Var,1, (P> p> k) 1=
dy @l,loe_k¢)(P) = /a1, (p-p, k) mod O(k™).

From (4.14), it is straightforward to see that for every N € N, there exists Cy > 0 independent
of k and the points p and yy such that

0 e )P (f81 180k Grne ™ ) 30|

2
< [ emvin, ('pr'> > dito e 1201 [0 dvng ()

Tl=q
2
;X € Suppx(—|x_p| ) S 50}

(4.14)

/ ~ oy = -~
x Y sup {\51,I<x>e"¢<x>af @1y ) (o)

&
Hl=q
+Cnk™N. (4.15)
From (3.11), we can check that
2
Z/ |dp1, (%, p, k)| < Cok™1, Vx € Supp x (@) , (4.16)
Tl=q

where C, > 0 is a constant independent of k and the point p. F rom (4.16) and (3.4), it is
not-difficult to check that

2

X — /

/ e HmWEp) y (%) > duyp | 1T )] [f ()] dvm(x) < Cok®!,  (417)
=g

where Cyp > 0 is a constant independent of k and the point p. Moreover, from Theorem 3.1,

we see that
¢ N —kp(x) o8B m .~k |x_ |2 2n—Y 4218
Z sup }81,1(x)e 9y (150" ")(y0)|; x € Supp x < Cgk™™ 2 ,
=g

(4.18)



Downloaded by [86.125.45.1] at 09:36 08 August 2017

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS . 917

where Cg > 0 is a constant independent of k and the points p, yo. From (4.15), (4.17), and
(4.18), we conclude that

o~ " N
0% @ ) () (1181181 kdf Brjpe ) (10)| < Co ph?n= 7 H21I42181, (4.19)

where Cy g > 0 is a constant independent of k and the points p, y.
From (3.21) and (3.10), we have

dy L
> 08 @ ) () (81 18)k0) Brioe™ ) (o)
=2

dy R
<G | Y10 Gue )@ [8f Grioe ™ (r0)
j=2

< ’éa)ﬂ (k3n—N+4|a\kn+4|ﬂ\)% _ ’éa’ﬂan—%-i-Zlal—}-Zlﬂl’ (4.20)

where C; > 0, ax,,g > 0 are constants independent of k and the point p. From (4.19) and
(4.20), the lemma follows. O

From Lemmas 4.1-4.3 we deduce:

Theorem 4.4. Let s, s be local trivializing holomorphic sections of L on Dy € M and Dy € M,
respectively. Assume that Dy € M(j), j # q or Dy € M(q) and Do (D1 = 9. Then, for every
m € N, N > 1, there exists Cn,» > 0 independent of k such that

@f wn—N4om
Ty < Cnmk™ 2 .
k.k N,s,s( 7) Em(DoxDy) o

Theorem 4.4 implies immediately one half of Theorem 1.1, more precisely (1.11).
We can repeat the proof of Theorem 4.4 and deduce:

Theorem 4.5. Let s, s be local trivializing holomorphic sections of L on Dy € M and D, € M,
respectively. Assume that Dy € M(j), j # q. Then,

T,Ei),éf(x,y) =0 mod O(k™®) locally uniformly on Dy x D;.
Assume that Dy € M(q) and D]((q) has O(k™N) small spectral gap on Dy. Suppose that
Do (D1 = 9. Then,
T,E,qsg(x,y) =0 mod O(k™) locally uniformly on Dy x Dj.
Let’s explain why in Theorem 4.5, we have “= 0 mod O(k™°)”. Recall that Theorem 4.4
is based on Theorem 3.2 which says that if Dy € M(q), then, for every N > 1, m € N, there
exists Cn,» > 0 independent of k such that

(@) ik (x,y) 3n—N+2m
p x,y) — e b(x,y, k < Cn.mk , 4.21
k,k’N,s( )’) ( y ) @mDoxDy) — N,m ( )
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and if Dy € M(j),j # ¢,j € {0,1,2,...,n}, then, for every N > 1, m € N, there exists
CN,m > 0 independent of k such that

< Cy gk N+2m, (4.22)

(C)]
p X,
| R Ty

The estimates < k3" ~N*+27 in (4.21) and (4.22) imply that we have the estimate < = +am
in Theorem 4.4. Now, we consider the Bergman kernel. As in Theorem 3.2, assume that Dy €

M(q) and D]((q) has O(k~N) small spectral gap on Dy, then
P,(fs) (x,y) — eikw(x’y)b(x,y, k) =0 mod O(k~*°) on Dy x Dy. (4.23)
Moreover, if Dy € M(j),j # q,j € {0,1,2,...,n}, then
P](fs)(x,y) =0 mod O(k™*) on Dy x Dy, (4.24)

by Theorems 4.12 and 4.14 in [27]. From (4.23) and (4.24), we can repeat the proof of
Theorem 4.4 and deduce that in Theorem 4.5, we actually have “= 0 mod O(k=*°)”.

5. Asymptotic expansion of Berezin-Toeplitz quantization

In this section, we will establish the full asymptotic expansion for the kernel of the
Toeplitz kernel T]i?k)’,fN(-, -) corresponding to lower energy forms. This leads to the proof of
Theorem 1.1.

Let s be a local trivializing holomorphic section of L on an open set D € M, |s|,21 = e 2,
Fix N > 1. We assume that D € M(q). Put

Sk(x,y) = X b(x, y, k), (5.1)

where W (x, y) and b(x, y, k) are as in Theorem 3.2. Fix an open set Dy € D and t € 6;°(D)
with T = 1 on Dy. Put

Ry(x,y) = / (P (52) = Skx )T @f Py (2 ))dvu (). (5.2)
Let {e1, ey, .., e,} be an orthonormal frame of A%!(T*M) on D. Then,

{ 5 |J| = q,] is strictly increasing}

is an orthonormal frame of A%9(T*M) on D. As in (3.1), we write

Riwy = Y R @y A @on',

1=Ti=q
Sy = Y Sapd@a@ont= 3 My ke ) A @)
1=TT1=q 1=T=q
PO = Y PO (ope ) a @) (5.3)
1=TT1=q

It is easy to see that for every |I| = |J| = g, I, ] are strictly increasing, we have

RV ey =3 / P 2 - K@t @f @PIY @ydvnz). (5.4)
IKl=q
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Take { 81(x),£2(x),...,g4, (x)} and {81(x), 82(%), ... 84, (x)} be orthonormal frames for
& (M, L¥), where di, € N U {oo}. On D, we write

g =S @F@, T = > Fu@d@onD, j=1,....d
=g
(5.5)
8i(x) = sF(0)8;(x), §i(x) = Z S onD, j=1,...,d
=

Lemma 5.1. With the assumptions and notations above, for every N > 1 and m € N, there
exists Cnn > 0 independent of k such that

|Ri(x, < Crk?"= 342,

y)|<€m(D><D)
Proof. Fix (p, y0) € D x D, strictly increasing I, Jo, [Io| = |Jo]l = ¢,and o, 8 € N(Z)”. Assume
that aj, 1, (p, p, k) < 0, where ayj(x, y, k) is as in (3.11). In view of the proof of Lemma 3.5, we
see that

X7y T kkN,s

9Y aaP(q),Io,Io (P)P)‘ + ’alo,lo (p,p)’ < Cak3n—N+4|a|, (5.6)

where C,, > 0 is a constant independent of k and the point p. It is not difficult to see that for
every |I| = |J| = g, I, ] are strictly increasing, we have

dy
Ry =) / (Zg,f(x)e—k‘l’(")gj?(z)e—k'f’@ —sng(x,z))z(z)f(z)
j=1

IKl=q

d o
x (D Bk @e @5, (e 0 vy (2), (5.7)
{=1

Take {gl,gz, .. .,gdk} and {81,82, .. .,Sdk} so that
- :
j=1 ’

0 @rre ) (p)

2
o @,zoe‘k‘b)(p)\ = 0202PD  (p.p) =

(5.8)

~ 2 ~ 2
o Biane ™ 00)| = a0l P 0.30) = [of Bripe™ 00|

dy
j=1
From (5.8) and (5.7), we get

02 R oy = Y / (853‘ @une ) PTx@e ™ @ — 325K (p, z))r(z)f(z)

|K|=q

x 81k(2)e @08 G 10 ) (o) dva (2). (5.9)



Downloaded by [86.125.45.1] at 09:36 08 August 2017

920 e C.-Y. HSIAO AND G. MARINESCU

From (5.6), (5.8), and (3.10), we have

> f (8 Gaoe ™ PRk @O @f @81.620f G ™) 0)e ™ Dv (2)
IKl=q

NON! v —
< c\/ 0202 PV (p, p) (81 (511,67 (30)

< Ca’ﬁk%n—%-‘rmalk%—i-zlﬂl _ Ca,ﬂan—%—&—ZlaH—Zlﬂ\’ (5.10)

where C > 0, Cy,g > 0 are constants independent of k and the points p and yy.
It is known by [18, Theorem 3.11] that

l 2
> / 02505 .2 1@ e Odvag(2) = iy (. p. k) mod O,

IKl=q
(5.11)
From (5.11) and (5.6), we obtain
!/ ~ ~
> / 32825 (p, )7 (@)f (D)B1k (D) @8] (611,67 ) (o) dvua (2)
IKl=q
< ’éa’ﬁkzn—§+2|a|+2|ﬂ|, (5.12)

where E‘a,ﬁ > 0 is a constant independent of k and the points p and y,. From (5.12), (5.10),
and (5.9), we deduce that

82 0J R (p, yo) | < Ca gk~ 2 +2lel42181, (5.13)

where /C\a,ﬂ > 0 is a constant independent of k and the points p and yy.

Now, we assume that ay, 1, (p,p,k) > 0. Take g1 = (PI(Cq]z,Nuk)/luklhk, where uy is as in
(3.13). From Theorem 3.2 and Lemma 3.6, we can check that for every N > 0, thereis Cy > 0
independent of k and the point p such that

/ ~T T o > p—
> (35? @uie ) (P)gLk(R)e —8x8£°K(p,z)> <Cyk™N, VzeD  (5.14)
IKl=q

and

dy

2

j=2

2
oy @,Ioe_k"’)(p)‘ < CukPnNHlel] (5.15)

where C, > 0 1is a constant independent of k and the point p. Take {51, 82, .. >5dk} so that

~ 2
o Brive ) 00)| = a0 PR (o, 30). (5.16)
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From (5.7), (5.14), (5.15), (5.16), and (3.10), we have

di
00 RE (o) = C | [0 G ) ) |34 Gripe ™) 00| + Ok ™
=2

< Ca’ﬁan—%-i-Zla\-i-Zlﬂl +CnkY, (5.17)
for every N > 0, where C, Cy, Cy,g > 0 are independent of k and the points p and y,. From
(5.17) and (5.13), the lemma follows. O

Put
Ri(x,y) = / Sk DT@f @ (P @) = @) )dvu (). (5.18)

We can repeat the proof of Lemma 5.1 and conclude:

Lemma 5.2. With the assumptions and notations above, for every N > 1 and m € N, there
exists CN,,, > 0 independent of k such that

~ ~ _N
iRk(x,y)L@pm(DXD) < CN,me" 2+2m.

Lemma 5.3. We have
f k(. 2T (R)f (2)Sk (2 Y)dvp(2) = €YD br(x,,k)  mod O(k™>)

locally uniformly on Dx D, where by (x, y, k) ~ 32 bri(x, Yk inS"(1; DxD, A%(T*M))X

(A% (T*M))*), bro(x,x) = (2m)7"f(x) |det RL(x)| Ly (%), for any x € Dy.

Proof. From the stationary phase formula of Melin-Sjdstrand [28], there is a complex phase
function W, (x,y) € €°°(D x D) with ¥;(x,x) = 0, Im W (x,y) > ¢ |x —y|2 on D x D, for
some ¢ > 0, such that for every bounded function f € ¢*°(M), we have

/ k(% 2)T(f (2)Sk(z Y)dva(2) = eF 1D br(x, 3, k) mod Ok™) (5.19)

locally uniformly on D x D, where

o0
by, 3, k) ~ Y by (6 )K" in §"(1;D x D, A%(T*M)) K (A(T*M))*),
j=0

with by; € €>(D x D, A®4(T*M)) K (A% (T*M))*), j € N. Moreover, for all x € Dy
we have by o(x, x) = (27)""f(x) {det RE (x)‘ Lo (). Basically, here we used the fact that
composition of complex Fourier integral operators is still a complex Fourier integral operator.

Take f = 1. Fix D" € {r = 1}. We claim that

/Sk(x, 2)T(2)Sk(z, y)dva(z) = eik\y(x’y)b(x,y, k) mod Ok™) (5.20)
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locally uniformly on D’ x D', where
e .
b(x, y, k) ~ Z bj(x, )K" in §"(1; D' x D', A®(T*M) B (A*4(T*M))*),

j=0

with bj € € (D' x D, A%(T*M) X (A%(T*M))*), j € N. The Sk constructed in [18] is
called approximated Szego kernel. Sy satisfies

SkoSk =S mod Ok™) onD (5.21)
(see [18, Theorems 3.11 and 3.12]). Relation (5.21) says that

/ Sk (%, 2)Sk (2, Y)dvar(z) = Sk(x, y) = XYV b(x, y,k)  mod O(k™) (5.22)

locally uniformly on D x D. Since S is properly supported (see the discussion after (2.15) for
the meaning of properly supported), the integral (5.22) is well-defined. Now,

/ Sk(x,2)T(2) Sk (2, y)dvm (2) = / Sk(x, 2)Sk (2, y)dvm (2)

- /Sk(x, 2)(1 — 1(2))Sk(z, y)dvm (2). (5.23)

Note that Sx(x,y) = O(k™®) if Ix — y| > ¢, for some ¢ > 0. From this observation, we
conclude that for (x,y) € D' x D’ (recall that D’ € {t = 1})

/Sk(x, 2)(1 — 7(2))Sk(2, y)dvim (2)

= / Sk, 2)(1 — 1(2))Sk(z,y)dvm(z) =0 mod O(k™) (5.24)
z¢D'

locally uniformly on D’ x D'. From (5.22), (5.23), and (5.24), we get (5.20).
We claim that

W (x,y) — Wi (x, y) vanishes to infinite order on diag (D’ x D). (5.25)

Note that W (x,x) = Wi(x,x) = 0. We assume that there are g, Sy € N(Z)”, lag| 4+ [Bol = 1
and (xg,x9) € D' x D/, such that

920pf (‘lll(x, y) — ‘P(x,)/)) | o) 7 05

(5.26)
020] (W1057) = W (.9 Iy = 0, Vo B € N3, Il + 181 < leol + I
From (5.19) and (5.20), we have
k(W1 (o) =¥ g (%9, k) — b(x, y, k) = e KYCDE(x,y) on D' x D, (5.27)

where Fy = 0 mod O(k™°) locally uniformly on D’ x D'. From (5.26), it is easy to see that

lim k~"~1g%0/P (e"’“%("’”—\“("’”)?}l (x,9,K) — b(x, , k)) | xo,x0)

k—o00

= 0200 (W (x,9) = W106.)) s P10 (o 50) # 0. (5.28)
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It is obviously that
lim k"~ agoa) (e—fkw’y)z:k(x, y)) ooy = O. (5.29)

From (5.27) to (5.29), we get a contradiction. The claim follows. Since 7 is arbitrary, ¥ and
W are independent of 7, we conclude that W (x, y) — W(x, y) vanishes to infinite order on
D x D. Thus, we can replace ¥; by W in (5.19). The lemma follows. L]

From Lemmas 5.1-5.3 and Lemma 4.2, we obtain the following.

Theorem 5.4. With the notations above, let s be local trivializing holomorphic section of L on
Dy € M. Assume that Dy € M(q). Then, for every N > 1, m € N, there exists CNm > 0
independent of k such that

= 2n—Y4om
Cn k"~ 2712m,

‘T,i?ZLfN,S (%) — XN be(x,y, k) N,

IA

Em (Do ><D0)

where

by(x, y, k) € §"(1; D x Do, AY(T*M)) K (A®(T*M))*),

0
by (x, y, k) ~ Z by j(6 y)k" 7 in §"(1; Dy x Do, A%U(T*M)) K (A®(T*M))*),  (5.30)

j=0
bro(x,x) = (2m) "f(x)| det R*(x) |1, 7+ (), Vx € Dy,
and WV is as in Theorem 3.2.
Proof of Theorem 1.1. From Theorems 4.4 and 5.4, Theorem 1.1 follows. O

6. Asymptotics of the composition of Toeplitz operators

In this section, we establish the expansion of the composition of two Toeplitz operators and
prove Theorems 1.3, 1.4, 1.9, 1.10, and 1.11.
Let f,g € €°°(M) be bounded. For A > 0, put

@DSfg . p@f @8 . 72 k q k
Tk)/\ = Tk,x o Tk,A .L(O’q)(M,L ) — @“’A (M, L")

@fg . r@fg
and set T, = Tk,o .

Theorem 6.1. Let s,’s be local trivializing holomorphic sections of L on Dy € M and Dy € M,
respectively, Isli =e 29, |’§]i = ¢72?, where Dy and Dy are open sets. Assume that Dy € M(j),
j# qorDy @ M(q) and Dy (D1 = . Then, for every m € N, N > 1, there exists Cnm > 0
independent of k such that

_N
Tli?k){;fg,s,?(x’ ¥) < Cnymk" ™22, (6.1)

¢m(DoxDy) —

Proof. The proof is similar to the proof of Theorem 4.4, so we will insist here on the
appearance of the exponent 3 in the power of k in (6.1), compared to 2# in the previous esti-
mates. The argument holds for any complex manifold, not necessarily compact. For simplicity,
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we only consider g = 0. Let s, s be local trivializing holomorphlc sections of Lon Dy € M and
Dl €M, respectively, |s|h =20 ﬂz =e =3 where Do and D1 are open sets. Fix Dy € DO,
D € Dl, Dy and D are open sets. Let 7 € Cfoo (Do) and T = 1 on Dy. We will first show that

how to estimate the kernel of Tliok) (1\1, Ofg (x,y) on Dy x D;. Take

{1, 0200, 0g, @}, {510,820, 84, ()}
be orthonormal frames for é" 0 (M, L¥), where dy € N U {oo}. On Do, we write oz](x) =

k(x)a](x),] =1,...,dr.On Dl, we write §;(x) = sk(x)S (x),j=1,...,dk. Foreveryy e Dl,
put

R di — ~
TSGR ) ) = 3 e (goe | apide (e ™ (). (62)
=1

Since Zd" |aj(x) ‘ik and Z]di ) |5j(x) |ik converge locally uniformly in C* topology, for fixed

¥, T(O) Gy (5K k$) (y) is a smooth section of L¥. It is easy to see that for every (x,y) €
D() X Dl,

dy N
TS o) = ) e Mg (1 = DPOTEENE )0 1)) -

(6.3)

When M is compact, dy is finite and di ~ k" and it is easy to estimate (6.3). When M is
noncompact, di could be infinite, so to estimate (6.3) we need a more detailed analysis. Now,
we fix p € Dy. From Theorem 3.2 and Lemma 3.6, we can find v, € é"kO_N (M, L¥) with

lville =1,

[l dng = 06) (6.4
M\Dy
and
PO o) = @] S Y. (65)
We take o7 = v and obtain from (6.5) that
dk
Ze—2k¢(p> |&j(p)|2 < N, (6.6)
j=2
Now,
PG () (1 = DPOTLEENE DD ) |
= |*9ap)| |15 e o) Ja-ofal,. ©67)
We claim that

H e ey < ke i
TV (., y) ke ) (y) ”k < k" locally uniformly on y € D;. (6.8)
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Fix yo € D;. We take {81(x),82(x), .. .,8dk(x)} ) thatgl(yo) # 0, Sj(yo) =0,j=2,3,...,dk.
Then,
_ d
0 =~ _ké
TS (6 y0) GR e ) (o) = D 0x) (81 | )by (o)™ 000, (6.9)
j=1
From (6.9), we can check that

HT(O)g(yO)H Z||a]||k|(g31|a,)k| ‘51@0)‘ —2k30)

_ - 2
i

Since g is a bounded function, ||P k i N(g81)|| i < C, for some constant C > 0 independent

of k. Moreover, e~ 2k$00) {81 (y0)| < k" locally uniformly on D;. From this observation and
(6.10), the estimate (6.8) follows. Relation (6.4) yields

|1 = o)far]|, = OG™). (6.11)
From (6.7), (6.8) , (6.11) and since |e_k¢’(p)&1 (p)| < k2, we conclude that
T 0G (o) ((1 = DHOTLEENE T DD () [ =06 (6.12)
From (6.6) and (6.8), we have

dy
Ze ko (). &i(p) (((1 - )T(O) DG GEE k¢)(}’) | o(- ))
i—2

dy dy N 2
= | X0 ge)* |3 |(( - DNOTLEENE )0 g0 ) |
\j:2 j=2
dy dk . 2
= | X e Ee | Y [(@-onOTRenE o a6)) |
= \ =
dy
= |20 G | P (@ = DPOTHE R Do
\ =2
< Ze—2k¢<z’>!a(p>| [ = opOTRS e ]|
j=2
< N, (6.13)

Note that here we still get the exponent 2#n — N. From (6.3), (6.12), and (6.13), we get

‘T(O) (1—- T)fg( ’),)‘ < KN locally uniformly on Dy x D;. (6.14)

k~Ns8



Downloaded by [86.125.45.1] at 09:36 08 August 2017

926 e C.-Y. HSIAO AND G. MARINESCU

Thus, to estimate T8 +(x,), we only need to estimate T8 (x,y). Let T € 65° (Dy)

kkNs kk—N,s3
and T = 1 on D;. We can repeat the procedure above and conclude that
)T(O)’Tf’(l_f)g(x,y) < KN locally uniformly on Dy x D;. (6.15)

kk—N,s3

Thus, to estimate Tliozflf I (x, ), we only need to estimate Tliok)j\]’[srsg (x, 7). We now explain how
. 0),tf,7 ~
to estimate T]EIS,T,\J,C;‘E (x, ). Take 71 (x) € €5°(Dy), 11 = 1 on Supp 7. We have
O)fitg _ mO)fitg | A0)Tfitg
Tk,k_N - Tk,k_N + Tk,k_N >
F(0),7f.7g (0) (0) 0) ~ _p0) 0),zf (0),7g
Tien ™ = PontfPntP gl v = Ty va Ty, (6.16)

HO1fEg _ pO) (0

0 ~ 0 0), 0),7
st O PO (1= )P0 g% = T (- )T

kkN T YkkN kkN-
. ~(0),7f,7g . .
The estimate of T]E k)jf\{ € isas compact case since

kk=N s kk=N ss kk=N s

TOE (0 gy = / 7Y 2@ T (2 ydvu(z)

and the integral is over some compact set of M. We only need to show how to estimate
j"(o)’ff 8 (x, ¥). Note that

kk—N,s5

4+(0),7f,T 0 0),1—11 ~ (0
TOfte PO NTfT N " EgPy) (6.17)

kk—N kk=N kk—N"

From (6.17), it is easy to see that
5(0),7f,7¢g
T g3 % 9)
dy

-y gj(x)e—kmx)g((y)e—ké(y)
jl=1
x / TN Tz )2 (g ()8 (1) T @) f DT @ e WO E gy (w)dvpy (2).
(6.18)

Now, fixxg € Dgandyy € D;. We take {1 (), 22(%), . . ., g, (x) } and {81 (%), 82(x), . . ., 84, () }
so that o (xg) # 0, &j(xg) =0,j=23,.. s 51()/()) # 0, 8]()/0) =0,j=23,.. s dy.
Thus,

5(0),7f,Tg
Tk,k*N 15,8

(x0, y0)
=& (xO)e—k‘ﬁ(xo)gl (yo)e—kfi;()’o)

X / T 8 @ w1 T (@)f T @e DM dyyy (1) dvyy (2).
(6.19)
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T(O)»l—fl

kk—N,s5

this observation and since |&; (xg)e *® ("0)31 (yo)e_kqg(y‘))l < k", we deduce that

From Lemma 4.2, we see that | (zw| < k2N locally uniformly on 130 X 131. From

5-(0).7f.1g 3n—N
Tk,k_N,S,§ ('xO)yO) 5 k " .

Here we get the power 3#. O
We have moreover:

Theorem 6.2. With the notations above, let s be local trivializing holomorphic section of L on
Dy € M. Assume that Dy € M(q). Then, for every N > 1, m € N, there exists Cnym > 0
independent of k such that
@)fg _ ik xy) o p3n—Y+4om
‘Tk’ka’s(x’y) ¢ bf’g(x,y’ k) ©"™ (Do x Do) < Chomk™2 ’

where

byg(x,y,k) € 8"(1; Dy x Do, A®U(T*M)) & (A™U(T*M))*),

o0
brg (2,9, k) ~ > " bfgi(x, y)k" 7 in §"(1; Dy x Do, A%(T*M)) & (A®(T*M))*),  (6.20)
j=0

by go(x.x) = 27) "f(x)g(x)| det R (x) I, 7+ (x), Vx € Dy,

and V is as in Theorem 3.2.

Proof. The proof of this theorem is similar to the proof of Theorem 5.4. We only give the
outline of the proof and for simplicity we consider only g = 0. Fix Dy C Dy € M(q) and
take 7(x) € €5° (50), 7 = 1 on Dy. We may assume that the section s defined on 50. We can
repeat the proof of Lemma 4.2 with minor changes and conclude that for every N > 1 and
m € N, there is Cy,, > 0 independent of k such that

‘T(O),(l—r)f,g < CN)mk3n—§+2m,

&m (D() ><D0) -

_N
< CN,mk3n 5 +2m'
€™ (Do xDy)

kk—Ns ()

(6.21)

(0)9T )(17‘[)
T T )

From (6.21), we only need to consider T](cok)’f,{’;g . Take 71(x) € 65° (INDO), 71 = 1l on Suppr.
We have n

0),zf,rg _ 7(0),tf,rg | 7(0),tf.rg
T - Tk,k*N + Tk,k*N >

kk—N
7(0),7f,Tg (0) (0) (0) (0) 0),7f (0),tg
Tin ™ = PontfPntP i wvtgP v = T va Ty (6.22)
0),tf.T 0 0 0 0 0),t 0),7
T = PO PO (1= )P0 rgP) = T (- o) TS

Let T (o), TN ™ (xy) € € (Do x Do, AY(T*M)) B (A%(T*M))*) be the

distribution kernels of S—ke—k¢§‘~£0k):_fg)fgskek¢ and s_ke_k‘f’/f]iok)’_t,{’rgskekd’, respectively. We
have ’ ’

(O)’ > ~(O)’ > A(O)’ >
T y) = T ) + Ter ). (6.23)
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We first consider Tliok) TAf, o (x, ). Take

{Oll(x), aZ(x)) e )adk(x)} > {51(?‘:), 8Z(x)a e >5dk(x)}
be orthonormal frames for (g’kO_N (M, LX), where di € N U {c0}. On 130, we write
aj(x) = L @F(x), §(0) =sF @), j=1,....dk

It is straightforward to check that

dk
Tliok) Thjfrrg( y) = Z aj(x)e” kT (y)) (e koW
Js=1
X / T;EOIEJN_STI (2, M)T(M)g(u)gs(u)f(z)f(z)aj_(z)e*kd)(u)fk¢(z) donr () dvag(2).

(6.24)

From Lemmas 4.2, (3.10), and (6.24), it is not difficult to see that for every N > 1and m € N,
there exists Cn,,, > 0 independent of k such that

(0),f, fg 3n—N +2m
T < 2 2
’ kk=N s %m(D «Do) CN,mk (6.25)
We now consider Tl(colz TZ{,[ 8 (x, y). We have
0 0 0
T (6 y) = / T (DT @ TS (& y)dvu (2). (6.26)

Put
Skf(xy) = eikw(x’)’)bf(x,y, k), Skg(x.y) = eikw(x’y)bg(x,y, k),

where W(x, y) is as in Theorem 3.2 and by (x, y, k), bg(x, . k) € S”(l;ﬁo X 50) are as in
Theorem 5.4. Put

Ar(xy) = / T (D@ T (@ y)dvu(2) f Sk (%, 2)71(2) Skg (2, Y dvaa (2).

From Theorem 5.4, it is straightforward to see that for every N > 1 and m € N, there exists
CN,m > 0 independent of k such that

| Ak(x, < Cmk®"™ 2 3+om, (6.27)

)/)|<W(D xDg) —
We claim that

[Skf(x, 2)11(2)Sk g (2, y)dvp (z) = eik\y(x’y)bf,g(x,y, k) mod O(k™™) (6.28)

locally uniformly on 130 X 150, where by ¢ (x, 3, k) € S”(I;BO X 130),

oo
brg(,7,6) ~ " bygi(x,y)k"7 in §"(1; Dy x Do),
j=0
with by, i € € (130 X 130), and by 4 0(x,x) = Qm) "t (x)?7 (x)f(x)g(x)| detRE(x)|,x € 130.
We use now the theory of complex Fourier integral operator, in particular the fact that
composition of complex Fourier integral operators is still a complex Fourier integral operator.
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Indeed, the complex stationary phase formula of Melin-Sjostrand [28] tells us that there is
a complex phase W (x,y) € € (130 X 130) with Im W (x,y) =~ ‘x —y 2, such that for
any Afgx, y)~: eikw("’y)a(x, ¥, k), C(ic, y) = eikq’("’y)c(x, y,k), where a(x,y,k), c(x,y,k) €
§"(1; Dy x Dy), and every x € 6;°(Dy), we have

/A(x, 2)x (2)B(z, y)dvp(z) = eikwl(x’y)h(x,y, k) mod Ok™) (6.29)
locally uniformly on 130 X 50, where h(x, y,k) € S”(l;ﬁo X l~)o),

o0
h(x,y,k) ~ > " hj(x, y)k" 7 in §"(1; Dy x Do)
j=0

and ho(x, x) = Q2m) " x (x)ap(x, x)co(x, x), x € l~)o, where ag and ¢y denote the leading terms
of a(x, y, k) and c(x, y, k), respectively. In the proof of Lemma 5.3, we proved that W (x,y) —
W, (x, y) vanishes to infinite order on x = y (see (5.25)). Thus, we can replace ¥, in (6.29) by
W and we get (6.28).

From (6.28), (6.27), (6.25), (6.23), and (6.21), the theorem follows. O

Proof of Theorem 1.3. Theorems 6.1 and 6.2 yield immediately Theorem 1.3. O

Proof of Theorem 1.9. This follows by using the asymptotics of the Bergman kernel proved
in [18, Theorem 1.6] in the case of an O(k~N) small spectral gap and adapting the proofs of
Theorems 1.1 and 1.3 to the current situation. O

Proof of Theorem 1.10. By [18, Theorem 8.2], we know that D](co) hasan O(k~V) small spectral
gap on every D € M’ N M(0). This observation and Theorem 1.9 yield Theorem 1.10.  [J

Proof of Theorem 1.11. M\ X is a noncompact complex manifold. Let D,((O) be the Gaffney
extension of Kodaira Laplacian on M\ X and let P,(COX/I\E be the associated Bergman projection.
By a result of Skoda (see [18, Lemma 7.2]), we know that

© _ pO
Py =P

s On M\X. (6.30)

Moreover, we know that D,(CO) has O(k™YN) small spectral gap on every D € M\X (see
[18, Theorem 9.1]). This observation, (6.30) and Theorem 1.9 imply Theorem 1.11. O

In the following, we will prove Theorem 1.4. Fix N > 1. Letf,g € 65°(D), D € M(0).
For simplicity, we may assume that L|p is trivial and let s be a local trivializing holomorphic
section of Lon D, |s|} = e72?. Take T € C3°(D) with T = 1 on Supp f U Supp g. Put

©)f (0, 0).f (0),
R = TN TS, — e T T . (6.31)

We can repeat the proof of Lemma 4.2 with minor changes and obtain:

Lemma 6.3. Let s, sy be local trivializing holomorphic sections of L on Dy € M and D, € M,
respectively, where Dy and D, are open sets. Then, for every m € N, there exists C,, > 0
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independent of k such that

3n—Y42
kan 2—',— m’

|Rk,sl,sz () €MDy xDy) =

where Ry, s, (x, ) denotes the distribution kernel of Ry, 5, := sl_ke_k¢1Rks'2‘ek¢’2.

T(O)’f 708 —tT(O)’f 708

N
o T pon N DN T = O(K*"=2) locally in the L? operator norm.

In particular,

Let br¢(x, y, k) € §"(1; D x D) be as in Theorem 1.3. Then

brg(x, . k) ~ Z bf,g,j(x,y)k”_j in $"(1; D x D).
j=0

Since f,g € 6;°(D), we can take by (x,y,k), by i(x,y) € €5°(D x D), j € N. Note that
bf ¢(x,y, k) and by ¢ i(x, y) have uniquely determined Taylor expansion at x = y. Consider

Br: LA(M, LFy — 12(M, L5
u > skekr / eikq}(x’y)bf,g(x,y, k)s_ke_k‘p(y)r(y)u(y)de(y).

In view of Theorem 1.3 and Lemma 6.3, we see that

By — Tg)k)’_f,\, T]i?,:’_gN = Ok n—% locally in the L? operator norm. (6.32)

Lemma 6.4. For any p € N there exist Cy(f,g) € 6;°(D) such that

oo
brg(x. k) ~ Z be, (g (63, kP in $*(1;D x D),
p=0
where b, 1,6 (x, y,k) € §"(1;D x D) for eachp € N.

Proof. Set
Co(f,8) = fg € Gy~ (D). (6.33)
From (1.20) and (1.13), we see that
bfg0(x, x) = bey(f,9.0(%, %), Vx € D. (6.34)
Note that b ¢0(x, y) and bc(f,¢),0(x, y) are holomorphic with respect to x and

bgo(x,y) = Ef,g,o(y, %), beyfr.g0(6y) = ECO(f,g),O(% X).

From this observation and (6.34), it is easy to see that by, 0 (x, ) — bcy(f,¢).0(%, y) vanishes to
infinite order on x = y. Thus, we can take bc,(f,)0(x, ¥) s0 that bcy(r,0),0(%, ¥) = bfgo(x,y)
and hence by ¢(x, y,k) — bcy(r.0) (%, 3, k) € $"~1(1,D x D). Consider the expansion

o
by o (%, 3, k) — beyr g (6 3, k) ~ Z aj(x,y)k”_l_j in $""1(1;D x D), (6.35)
j=0

where a;(x, y) € 65°(D), j € N. Set
C1(f,9)(x) = (2m)"ap(x, x)| det R ()| " € €5°(D). (6.36)
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From (1.13), we have bc,(1,4)0(x, x) = ao(x,x) and as in the discussion above, we can take
be,(f,9).0(% y) so that b, (7,¢),0(x, ¥) = ao(x, y) and hence

1
bf,g(X,)/a k) - bCo(f;g)(xJ/’ k) - Ebcqu,g)(x,)/, k) € Sn72(1>D X D)
Continuing inductively, the lemma follows. O
Proof of Theorem 1.4. Let a(x, y, k) € $"o(1,D x D), jo € N. Consider the operator
A LA(M, LMY — 12(M, 19

urs skt /eik‘p(x’y)a(x,y, k)s_ke_kd’(}’)r(y)u(y)de(y).
By [18, Theorem 3.11], we have

Ag = O(k™°) locally in the L? operator norm. (6.37)
For every p € N put

Bip : L*(M, LF) — L*(M, L)
u > skefbr / eik‘l’("’y)bcp(f,g) % 3, k)s e D e (yu@)dv ().

As in (6.32), we can check that forp = 0,1,2,.. .,

Bip — T]iok)ﬁl,’(f’g) = O(k3”7§) locally in the L? operator norm. (6.38)
Moreover, from (6.37) and Lemma 6.4, we have
L
B — ZBk,pk_P =0k locally in the L? operator norm, £ =0,1,2,.... (6.39)
p=0

From (6.32), (6.38), and (6.39) we conclude that

0)f (0),g (0), Cp(fg) — —0—1 3n—Y _
Teon Ty = ZTkkN P=Ok T +K2), £=0,1,2,...,

locally in the L? operator norm. Moreover, we have Co(f,g) = Co(g.f) = fg by (6.33). We
also have Ci(f,g) = —%( df | 9g ) by (7.36), so as in [27, (0.23)] we obtain

Ci(f.9) — Ci(g./) = vV—-1{f. g}, (6.40)
where {f, g} is the Poisson bracket of the functions f, ¢ with respect to the symplectic form
2w on M(0) (see also [25, (4.89)], [24, (7.4.3)]). Therefore (1.23) follows. O

Recall that the Poisson bracket { -, - } on (M, 27 ) is defined as follows. For f, g € €' (M),
let & be the Hamiltonian vector field generated by f, which is defined by 27w (§f,) = df.
Then

{f.g) =& (dg). (6.41)

Remark 6.5. Berezin introduced in his ground-breaking work [3] a star-product by using
Toeplitz operators. Formal star-products are known to exist on symplectic manifolds by
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De Wilde and Lecomte [12] and Fedosov [14]. The Berezin-Toeplitz star-product gives a
concrete geometric realization of such product. For compact Kahler manifold the Berezin-
Toeplitz star product was introduced in Karabegov and Schlichenmaier [19] and Schlichen-
maier [29]. For general compact symplectic manifolds this was realized in Ma and Marinescu
[24, 25] by using Toeplitz operators obtained by projecting on the kernel of the Dirac operator.
Due to Theorem 1.4, we can also define an associative star-product on the set M(0) where a
holomorphic line bundle L — M is positive, namely by setting for any f, g € 6;5°(M(0)),

fxg= Z Ci(f, 9" € € CO[[A]l. (6.42)

k=0

7. Calculation of the leading coefficients

In this section, we will give formulas for the top coeflicients of the expansion (1.13) in the
case g = 0, cf. Theorem 7.1. We introduce the geometric objects used in Theorem 7.1 below.
Consider the (1, 1)-form on M,
V=1
w = ~—R" (7.1)
21

On M(0) the (1,1)-form w is positive and induces a Riemannian metric ggM(-, ) =w(,]).
In local holomorphic coordinates z = (z1, . . ., z,), put

n
w=+—1 Z a)j,kdzj A dzy,

k=1

; (7.2)
0 =+-1 Z ®j,kdzj A dzk.
k=1
We notice that ©;; = (aizj | aiZk),wj,k = <3%, | 387k)w,j,k: 1,...,n Put
n .
h= (hj,k)j)kzl, hik = wijp jok=1,...,n, (7.3)

n

and h~1 = (hf’k)j)kzl,

w is given by

h~1 is the inverse matrix of . The complex Laplacian with respect to

n
92
Ay = (=2 Wk : 7.4
0= )ij_l T2 (7.4)

We notice that Wk = (dzj|dzk)w,jok =1,...,n. Put

Vi, = det (wj:k);,kzl >
; (7.5)
Vg := det (G)j’k)j,k:l
and set
r= AylogV,, 76)

= Aylog Ve.
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r is called the scalar curvature with respect to . Let R‘(l)et be the curvature of the canonical

line bundle Kj; = det A0(T*M) with respect to the real two form ©. We recall that
REY = 33 log Ve. (7.7)
Let VgM be the Levi-Civita connection on (M(0), g(EM ), R£M = (VgM )2 its curvature. Let

hbeasin (7.3). Putd = h~'9h = (Qj,k);'lkzl’ Oix € AY(T*M), j,k = 1,...,n.0 isthe Chern
connection matrix with respect to . Then,

R,M =90 = (86k) ;= (Rik) 5y € €M, AVN(T*M) ® End (THM)),
RI™M(U, V) € End (T""M), YU,V € T''M, (7.8)

n n
_ _ ) 9
RIMT, V)E = > (Rix|TAV) b &= Zgjg, U,V e TWM.
k=1 7 j=1 7

We denote by (-, - ), the pointwise Hermitian metrics induced by g'™ on AP4(T*M) ®
A™(T*M), p,gq,1,s € {0,1,...,n},and by | - |, the corresponding norms.
Set
n
RIM2 = > [(RIM (@ en)ec e )o|”
Jks,t=1

) (7.9)

where ey, . . ., e, is an orthonormal frame for T"*M with respect to (-, - ). It is straightfor-
. 2. . .
ward to see that the definition of ’RQT)M |w is independent of the choices of orthonormal frames.

Thus, |[RTM |i is globally defined. The Ricci curvature with respect to w is given by

n

Ricy = = D (R5M(-¢) - ¢j)o (7.10)
j=1
where ey, . . ., ey is an orthonormal frame for T*°M with respect to (-, - ),,. That is,

n
(Ricy |[UAV) ==Y (RX(U,¢)V|ej)ws U,V eETM®RC.
j=1

Ric,, is a global (1, 1) form.
Let

DY . (M, AY(T*M)) — €M, AY(T*M) @ AV (T*M)) (7.11)

be the (1,0) component of the Chern connection on A%(T*M) induced by (-, )e. Thatis,
in local coordinates z = (zy, . . ., z,), put

A= (aj,k)]’fk:1 » i = (dz |dzj)er jk=1,...,n,
and set
A=AT10A = (i) ey > ik € APU(TM), jik=1,....n. (7.12)
Then, for u = Z}Ll ujdzj € €°°(M, AYO(T*M)), we have

n n
DYy = Z duj @ dzj + Z ujat; ® dzi € €M, AV (T*M) ® AV (T*M)).
j=1 jk=1
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Theorem 7.1. With the assumptions and notations used in Theorem 1.1, the coefficients
by,1(x, x) and by (x, x) in the expansion (1.12) for ¢ = 0 have the following form: for every
X € D(),

VA DU
b1 (x,x) = (27) " (x) det RL(x)(Er = gr) )

. 1
+ 27)7" det RL(x)< _ anf) x), (7.13)

1 1 1
2 + @2

re — r
12872 3272 3272

1 —~
T gl

by (x,x) = (271) "f(x) det R- (x)(

1 .
967 ol |R1Cw|w
1
1672

2+L<Ric | R&Yy, + -—
872 @17e o 2472

_ ‘ det
87‘[2 © ]

REY[? ) () + 2m) 7" det RH2) (-5 (B =T+ %r)

4 ; ‘
9672

L det 1= . 1 2
— 3 (B0 | RE o + 5 (0 | Ricy o + mAwf)(x). (7.14)

The formulas given in Theorem 7.1 simplify if we assume that w = ©. In this case, we have
Vo = Vg and r = 7. See also [26, Section 2.7], [27, Remark 0.5], concerning the calculation
of the coefficients for an arbitrary underlying Hermitian metric ©.

Let g = 0 and let

Sk(x,y) = RV p(x, ¥, k)
be as in (5.1). Note that b(x, y, k) € S"(1;Dg x Dy),

o0
b(x,y,k) ~ Z bj(x,y)k”_j in $"*(1; Dy x Dy),
=0

where bj(x, y) € ¢*°(Dy x Dy),j € N, and by(x,x) = (271)_”| det RL(x)|. We have

/Sk(x, z,k)f (2)Sk(z, y, k)dvp (z) = eikw(x’”bf(x,y, k) mod Ok™) (7.15)
locally uniformly on Dy x Dy, where by(x, y, k) € §"(1; Dy x Do),
m .
by (x, k) ~ ) by,j(x,y)k" 7 in " (1; Dy x Dy), (7.16)
j=0

where by i(x,y) € 6Dy x Dy),j € N, and bof(x,x) = (2n)_"f(x)| detRL(x)|. In this
section, we will calculate by f(x, x) and by £ (x, x), x € Dy. Fix p € Dy. In a small neighborhood

of the point p there exist local coordinates z = (z1,...,2y) = x = (X1,...,X20), Zj = X2j—1 +
ixa,j=1,...,m, and a local frame s of L, |s|i = ¢72¢ 50 that
z(p) =0,

@ =Y Az + 12,

j=1
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|0l|+|l3\¢1
$1(2) = O(Iz))*), Za—a(O) =0 fora,feN" |a| <1lor Bl <1,

O(2) = «/—_IZdzj A dzj 4 O(|zl).
j=1
(7.17)

Until further notice, we work with this local coordinates x and we identify p with the point
x = z = 0. It is well-known (see [18, Section 4.5]) that for every N € N, we have

W(z,0) = ip(2) + O(z|N), W(0,2) = ip(z) + O(|z|Y). (7.18)
We have

/Sk(O,z,k)f(z)Sk(z,O,k)de(z)

- / kW OTY@M B0, 2, k)b(z, 0, k)f (2) Vo (2)dA(2) + 7% (7.19)
Dy

where dA(z) = 2"dx1dx; - - - dx2p, dvp(2) = Ve (2)dA(z) and

lim -£ =0, YN >0
im — =0, .
k—>ookN -

We notice that since b(z, w, k) is properly supported, we have
b(0,z,k) € €,°(Dy), b(z,0,k) € 65°(Do). (7.20)
We recall the stationary phase formula of Hormander (see [16, Theorem 7.7.5]).

Theorem 7.2. Let K C D be a compact set and N a positive integer. Ifu € ¢5°(K), F € € °°(D)
and ImF > 0 in D, Im F(0) = 0, F'(0) = 0, det F”(0) # 0, F' # 0 in K\ {0} then

—

. . kF” (0 2
‘ / D y(2) Ve (2)d(z) — 2" O det ( ( )> Zk‘JL u

j<N

< CckN Z sup I@,‘;‘u{, k>0, (7.21)
loe|<2N

where C is uniform when F runs in a relatively compact set of € °°(D), | Ncaeont
bound and

(x)‘ has a uniform

Lu= Y 223: i7127V(F"(0)~'D, D)" W‘:!@%. (7.22)
V—p=j2v=3u
Here
h(x) = F(x) — F(0) — %(F”(O)x, x) (7.23)

—idy)
and D = ( : )
—idyy,
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We now apply (7.21) to the integral in (7.19). Put
F(z) = ¥(0,2) + ¥(z,0).
From (7.17) and (7.18), we see that

n
F(z) =2i Y j|g]* +2ig1(2) + O(lzN), ¥N >0,

=1
(7.24)
h(z) = 2i¢1(2) + O(lzl™), YN =0,
where h is given by (7.23). Moreover, we can check that
1
kF"(0)\ 2 . _
det( > (, ) =k "2 A = ke (det RE(0)) ! (7.25)
i
and
n 2
7oy —1 ; 1 9
(F'(0)"'D,D) = irg, Do=) —— (7.26)
; )‘j 8Zj32j
=1

From (7.24), (7.26) and using that h = O(|z|*), it is not difficult to see that
Ay (91 Veb(0,2z,k)b(z, 0, k)f) (0)

Li(b(0,2,0)b(z,0,k)f) = Y > (-1F2

v—pu=j2v=4u V!M!
(7.27)
where L; is given by (7.22). We notice that
o0 ) o )
b(0,2,k) = > bj(0,2k" 7 mod O(k™™), b(z,0,k) = > bj(z,0)k"
j=0 j=0
mod O(k~°).
From this observation, (7.27) becomes:
Li(b(0, 2, k)b(z, 0, k)f)
JPSTEAY (1 Ve bs(0,2)bi(z,0)) (0
_ Z Z Z (—1)H2 0(¢1 ®,'ﬂ75'( 2)bi(z ))( )
V—pu=j2v>4p 0<s+t<N Vi
+O(k* N, (7.28)

forall N > 0. From (7.28), (7.25), (7.21), (7.19) and (7.15), we get
by (0,0,k) = (27)" (det RH(0)) "

N v
% an]( Z Z Z Z (—1)’“277” A0 (¢{Lv@fb5(0’ Z)bt(z) 0))(0))
j=0

viu!
0<m<jv—u=m22v>4u s+t=j—m s

+Oo®k"N"1), ¥vN > 0. (7.29)
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Combining (7.29) with (7.16), we obtain

Theorem 7.3. The coefficients by ; of the expansion (7.16) of by (x, y, k), are given by
by j(0,0) = (2)" (det R(0)) ™!

X Z Z Z Z (_l)uz—mAz))(¢#V®ﬂ%(0,z)bt(z,0))(0)

viu!
0<m<jv—pu=m 2v>4u s+t=j—m s

(7.30)
forallj=0,1,....In particular,
bf0(0,0) = (27)"(det RX(0)) "' £(0) by (0,0)?, (7.31)

by 1(0,0) = (27)"(det RE(0)) ™! <2f(0)b0(0, 0)b1(0,0)

1 1
+ EAO(V@]%O(O, 2)bo(z,0))(0) — ZA%(d)l Vefbo(0,2)bo(z, 0))(0))
(7.32)

and

bf2(0,0) = (27)"(det R¥(0)) ™" <2f(0)b0(0, 0)b2(0,0) + £(0)b;(0,0)>
+ %AO(V@f(bO(O, 2b1(2,0) + b1(0,2)bo (2,0))) (0)
- iA%(qﬁl Vef (bo(0,2)b1(z,0) + b1(0,2)by(z,0)))(0)
+ %A%(V@fbo(o, 2)by(2,0))(0) — iAS(qslV@fbo(O, 2)by(2,0))(0)

+ lgizAg (¢2Ve bo(0, 2)bo (2, 0))(0)). (7.33)

In [18, Section 4.5], we determined all the derivatives of by(x, ¥), b1 (x, ), b2(x, y) at (0,0).
From this observation and Theorem 7.3, we can repeat the procedure in [17, Section 4] and
obtain Theorem 7.1. Since the calculation is the same, we omit the details.

Let D0 . €°WM, AY(T*M)) — E°WM, AY(T*M) ® AVO(T*M)) be the (1,0)
component of the Chern connection on A(T*M) induced by (-, )w (see the discussion
after (7.11)). From Theorem 7.1 and the proof of Theorem 1.3, we can repeat the proof of
[17, Theorem 1.5] and get the following (see also Ma—Marinescu [24] for another method).

Theorem 7.4. With the notations as in Theorem 1.3, let q = 0. Then, for bf g1, b ¢ in (1.19),
we have

. 1
bf g1 (%) = b1 (x) + (2m) ™" det RL(x)( = 5 (O | 8§>w) (), (7.34)
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brg(x) = b (x)

. 1 — 1 —
+ (Zn)_”detRL(x)<— m(ag/\ af | Ricy Yo + m(ag/\ 8f|R‘é)et)w

1 _ 1 — —— 1 _
+ 57 (980f 108)o + (9008 13f )0 — &T—2<D1’°af|D1’°ag>w

1 — — 1 _ 1
- m( 00f 1008 )w + @( f 108 ) (=7 + Er)>(x)- (7.35)

Corollary 7.5. The coefficients C (f, g) and Cy(f, g) of the expansion (1.21) of the composition

T(O),f o T(O),g

wion © Ty " of two Toeplitz operators are given by

1
Gi(f.9) = —g(afl 0% )w > (7.36)

1 _ I =
Co(f,g) = o (D0 Y08 ) + 5 (3g A Of IRG o (7.37)

Proof. Formula (7.36) follows from (7.34) and

bifg = big +bocirg = big + 2m) "(detRHCi(f,9),
see [17, (5.21)] or [27, (5.76)]. Formula (7.37) follows as in [17, Section 5.3]. ]

8. Behavior on the degenerate set and the Weyl law

In this section, we will prove Theorems 1.2 and 1.7. We recall first the following.

Theorem 8.1 ([18, Theorem 1.3]). Set
Mgeg = {x € M; RL is degenerate at x € M} .

Then for every xo € Mgeg, ¢ > 0, N > landeverym € {0,1,. .., n}, there exist a neighborhood
U of xo and ko > 0, such that for all k > ko we have

)P;’ZZN(x,x)‘ <ek", xeU. (8.1)

Proof of Theorem 1.2. Fix xo € Mgeg, € > 0and m € {0,1,...,n}. Let U be a small
neighborhood of xj as in Theorem 8.1. Let p be any point of U and let s be a local section
of L defined in a small open set D € U of p, |S|i = e 2. Fix |Ip| = |Jo| = ¢, Io, Jo are strictly
increasing. Take {oq(x),az (%) ..., 04, (x)} and { B1(x), B2(%), . .., Bay (x)} be orthonormal
frames for &~ (M, LK) so that

di
2 2
‘al,lo(P)e_k"’(P)) => ’Olj,lo(p)e_k‘b@)) ,
=1

‘EI,JO(P)e_ka)‘Z _ i ‘B},IO(P)e_k¢(p)‘2,
j=1
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where d; € N U {oo} and on D, we write

aj(x) = sk(x)&'j(x), aj(x) = Z/&'j,](x)e](x) onD, j=1,...,d,

[JI=q
Bi(x) = L0 Bi(x), Bi) =D By ®onD, j=1,...,d.
l/l=q
We have
dy
S 1o, ~ — ~ _
TR () = > Gty (p)e ™ P (FBe | By (pe™ 0P
je=1
= @11, (e P (fB1 | a1 kB, (p)e P (8.2)
From (8.2), it is not difficult to see that
TR )| < sup {[fC0]s ¥ € MY [P pup)| (8.3)
From (8.3) and (8.1), the theorem follows. O]

We now prove Theorem 1.7. We introduce some notations. For A > 0, put

P = EQ0,AD, &, (M, LF) := Rang E(10, A]).

Recall that E denotes the spectral measure of 09, Let P,qu

k ,+) be the Schwartz kernel

<M§A( ’

of P,(fg <p<i- The trace of P,(fg —u<i. (% X) is given by
(@) d @
1 — q
Tr Py (060) = ) (P (600 €0) [ € (),
j=1
where ej,, . . ., ¢, is a local orthonormal basis of A%4(T*M) with respect to (-, - ). Now, we

assume that M is compact. We need the following.

Lemma 8.2. There exists C > 0 independent of k such that

’T,@’f (60 = T (x, x)’ < Ckz\/ TeP L w@x), Vxe M. (8.4)

Proof. Let p be any point of M and let s be a local trivializing holomorphic section of L defined
in a small open set D € U of p, |s|? = e72?. Fix |Io| = [Jo| = g, Io, Jo are strictly increasing.
Take {oq(x),ozz(x),. .. ,ocmk(x)}, {ﬂl(x),ﬂz(x), .. .,,Bmk(x)} to be orthonormal frames for
(E’Oq (M, L¥) and

{Olmk-i-l(x)’ (ka+2(X), < 0gy (X)} > {ﬂmk-i-l(x)’ ,Bmk+2 (). ,Bdk (X)}

to be orthonormal frames for & 0q< (M, L¥) so that

u<k=N

PPN R v |2
‘OH,IO(P)f ¢(p)‘ => ‘aj,IO(P)37 ¢(p)‘ ,
=1

dy

2 2
j=m+1
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~ 2 &~ 2
Bun@e @0 =3 B e,

j=1
i
B @e P = 3" B e,
J=m+l

where d;, € NU {oo} and on D, we write

aj(x) = sk(x)&'j(x), aj(x) = Z/aj,](x)e](x) onD, j=1,...,d,
[JI=q

Bi(x) = sk(x),gj(x), ,Ej(x) = Z/,gj,](x)e](x) onD, j=1,...,dk.

lJl=q
We have

T]Eq)!f’IOJO (p’p)
= @15, (P)e P (fB1 |1 By, (pe P

10> ~ _ ~ .
= T7 (0, p) = Gt 11 (D) P (fB1 | 1 kB (e PP

— Gt 11 PV PP (f Bt | 1 By, (P)e 0P

—ay, (P)efkqb(p) (fBmp+1 121 kBmg+10 (P)efkd)(p)-

From (8.5), it is easy to see that

fIo, Do, 5
T,((q)f °]°(p,p) — Tli?k),fNO ]O(P’P)‘ < C1k2\/TrPl(fg<u§kN(p’p)’

where C; > 0 is a constant independent of k and the point p. The lemma follows.

(8.5)

O

Proof of Theorem 1.7. Since M(q—1) = #and M(q+1) = @, itis known [18, Corollary 1.4],

that for every N > 1,
dim &7 (M, L) = o(k™), dim &1 (M, LF) = o(k").
Moreover, it is easy to see that

dim &1

O<p<k—N
From (8.6) and (8.7), we have

M, LF) < dim &7 (M, LF) + dim &7 (M, LF).

/M \/TrPl(fg<MSk_N(x,x)de(x) < co/ /M TePd @D dvy()

- co\/ dim &7 (M, LF)

= o(k?),

(8.6)

(8.7)

(8.8)
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where Cy > 0 is a constant independent of k. From (8.8) and (8.4), we conclude that

lim k| T ) = T, (60| = 01in Ly, (). (8.9)

In view of Theorem 1.5, we see that

Jim. k—"Tlﬁ?,ij (6, %) — 7)™ |det R (x)| £ () Lpt(g) (0) Ly 7+ ()| = O (8.10)
in L%O,q) (M). From (8.9) and (8.10), the theorem follows. ]
Acknowledgment

We are grateful to the referee for several suggestions which led to the improvement of the presentation.

Funding

The first author was supported by Taiwan Ministry of Science of Technology project 104-2628-M-001-
003-MY2, the Golden-Jade fellowship of Kenda Foundation, Academia Sinica Career Development
Award, and partially funded through the Institutional Strategy of the University of Cologne within the
German Excellence Initiative. Second author partially supported by DFG funded projects SFB/TR 12,
MA 2469/2-2, SFB TRR 191.

References

[1] Barron, T., Ma, X., Marinescu, G., Pinsonnault, M. (2014). Semi-classical properties of Berezin-
Toeplitz operators with €% symbol. J. Math. Phys. 55:042108.

[2] Bayen, E, Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D. (1977). Deformation theory
and quantization. Part I, Lett. Math. Phys. 1:521-530; Part Il and 111, Ann. Phys. 1978, 111:61-110,
111-151.

[3] Berezin, FA. (1974). Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38:1116-1175.

[4] Bismut, J.-M. (1987). Demailly’s asymptotic Morse inequalities: A heat equation proof. J. Funct.
Anal. 72:263-278.

[5] Bordemann, M., Meinrenken, E., Schlichenmaier, M. (1994). Toeplitz quantization of Kahler
manifolds and gl(n), n — oo limits. Commun. Math. Phys. 165:281-296.

[6] Boutet de Monvel, L., Guillemin, V. (1981). The Spectral Theory of Toeplitz Operators. Annals of
Mathematics Studies, Vol. 99. Princeton, NJ: Princeton University Press.

[7] Charles, L. (2003). Berezin-Toeplitz operators, a semi-classical approach. Commun. Math. Phys.
239:1-28.

[8] Charles, L. (2016). Quantization of compact symplectic manifolds. J. Geom. Anal. 26:
2664-2710.

[9] Dai, X,, Liu, K., Ma, X. (2006). On the asymptotic expansion of Bergman kernel. J. Differ. Geom.
72:1-41; announced in C. R. Math. Acad. Sci. Paris 339:193-198.

[10] Davies, E.B. (1995). Spectral Theory and Differential Operators. Cambridge Studies in Advanced
Mathematics, Vol. 42. Cambridge: Cambridge University Press.

[11] Demailly, J.-P. (1985). Champs magnétiques et inegalités de Morse pour la d”-cohomologie. Ann.
Inst. Fourier (Grenoble) 35:189-229.

[12] De Wilde, M., Lecomte, P. (1983). Existence of star-products and of formal deformations of the
Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7:487-496.

[13] Dimassi, M., Sjostrand, J. (1999). Spectral Asymptotics in the Semi-classical Limit. London Mathe-
matical Society Lecture Note Series, Vol. 268. Cambridge: Cambridge University Press.

[14] Fedosov, B.V. (1996). Deformation Quantization and Index Theory. Mathematical Topics, Vol. 9.
Berlin: Akademie Verlag.



Downloaded by [86.125.45.1] at 09:36 08 August 2017

942 e C.-Y. HSIAO AND G. MARINESCU

(15]

(16]

(17]
(18]
(19]
(20]

(21]

(22]
(23]
(24]
(25]
(26]
(27]
(28]

(29]

(30]
(31]

(32]

Fine, J. (2012). Quantization and the Hessian of Mabuchi energy. Duke Math. ]. 161:
2753-2798.

Hoérmander, L. (2003). The Analysis of Linear Partial Differential Operators. I. Classics in Mathe-
matics. Berlin: Springer-Verlag, Distribution Theory and Fourier analysis, Reprint of the second
(1990) edition.

Hsiao, C.-Y. (2012). On the coefficients of the asymptotic expansion of the kernel of Berezin-
Toeplitz quantization. Ann. Glob. Anal. Geom. 42:207-245.

Hsiao, C.-Y., Marinescu, G. (2014). Asymptotics of spectral function of lower energy forms and
Bergman kernel of semi-positive and big line bundles. Commun. Anal. Geom. 22:1-108.
Karabegov, A.V.,, Schlichenmaier, M. (2001). Identification of Berezin-Toeplitz deformation quan-
tization. J. Reine Angew. Math. 540:49-76.

Keller, J., Meyer, J., Seyyedali, R. (2016). Quantization of the Laplacian operator on vector bundles,
1. Math. Ann. 366:865-907.

Kostant, B. (1970). Quantization and Unitary Representations. 1. Prequantization. Lectures in
Modern Analysis and Applications, III. Berlin: Springer, pp. 87-208. Lecture Notes in Mathe-
matics, Vol. 170.

Ma, X. (2010). Geometric Quantization on Kdihler and Symplectic Manifolds. International
Congress of Mathematicians, Vol. II. Hyderabad, India, August 19-27 2010, pp. 785-810.

Ma, X., Marinescu, G. (2006). The first coefficients of the asymptotic expansion of the Bergman
kernel of the Spin® Dirac operator. Int. J. Math. 17:737-759.

Ma, X., Marinescu, G. (2007). Holomorphic Morse Inequalities and Bergman Kernels. Progress in
Mathematics, Vol. 254. Basel: Birkhduser, p. 422.

Ma, X., Marinescu, G. (2008). Toeplitz operators on symplectic manifolds. J. Geom. Anal. 18:
565-611.

Ma, X., Marinescu, G. (2011). Berezin-Toeplitz Quantization and its kernel expansion. Trav. Math.
19:125-166.

Ma, X., Marinescu, G. (2012). Berezin-Toeplitz quatization on Kahler manifolds. J. Reine Angew.
Math. 662:1-56.

Melin, A., Sjostrand, J. (1975). Fourier integral operators with complex-valued phase functions.
Springer Lect. Notes Math. 459:120-223.

Schlichenmaier, M. (2000). Deformation quantization of compact Kahler manifolds by Berezin-
Toeplitz quantization. Conférence Moshé Flato 1999, Vol. II (Dijon), Mathematical Physics Studies,
Vol. 22. Dordrecht: Kluwer Academic Publications, pp. 289-306.

Schlichenmaier, M. (2010). Berezin-Toeplitz Quantization for Compact Kihler Manifolds.
A review of results. Adv. Math. Phys. 2010:Article ID 927280, 38 pages.

Souriau, J.-M. (1970). Structure des Systémes Dynamiques. Matrises de Mathématiques. Paris:
Dunod.

Xu, H. (2012). An explicit formula for the Berezin star product. Lett. Math. Phys. 101:239-264.



	1.  Introduction and statement of the main results
	2.  Preliminaries
	3.  Spectral kernel estimates away the diagonal
	4.  Berezin–Toeplitz kernel estimates away the diagonal
	5.  Asymptotic expansion of Berezin–Toeplitz quantization
	6.  Asymptotics of the composition of Toeplitz operators
	7.  Calculation of the leading coefficients
	8.  Behavior on the degenerate set and the Weyl law
	Acknowledgment
	Funding
	References

