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ABSTRACT

Let M be an arbitrary complex manifold and let L be a Hermitian holo-
morphic line bundle overM. We introduce the Berezin–Toeplitz quanti-
zation of the open set ofMwhere the curvature on L is nondegenerate.
In particular, we quantize anymanifold admitting a positive line bundle.

The quantum spaces are the spectral spaces corresponding to
[
0, k−N

]
,

where N > 1 is �xed, of the Kodaira Laplace operator acting on forms

with values in tensor powers Lk . We establish the asymptotic expansion
of associated Toeplitz operators and their composition in the semiclas-
sical limit k → ∞ and we de�ne the corresponding star-product. If the
Kodaira Laplace operator has a certain spectral gap this method yields
quantization by means of harmonic forms. As applications, we obtain
the Berezin–Toeplitz quantization for semi-positive andbig line bundles.
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1. Introduction and statement of themain results

The aim of the geometric quantization theory of Kostant and Souriau is to relate the classical

observables (smooth functions) on a phase space (a symplectic manifold) to the quantum

observables (bounded linear operators) on the quantum space (sections of a line bundle).

Berezin–Toeplitz quantization is a particularly e�cient version of the geometric quantization

theory [2, 3, 14, 21, 22, 31]. Toeplitz operators and more generally Toeplitz structures were

introduced in geometric quantization by Berezin [3] and Boutet de Monvel–Guillemin [6].

We refer to [22, 26, 30] for reviews of Berezin–Toeplitz quantization.

The setting of Berezin–Toeplitz quantization on Kähler manifolds is the following. Let

(M,ω, J) be a Kähler manifold of dimCM = n with Kähler form ω and complex structure

J. Let (L, h) be a holomorphic Hermitian line bundle on X, and let ∇L be the holomorphic

Hermitian connection on (L, h) with curvature RL = (∇L)2. We assume that (L, h,∇L) is a

prequantum line bundle, i.e.,

ω =
√

−1

2π
RL. (1.1)

Let gTM := ω(·, J·) be the J-Riemannian metric on TM. The Riemannian volume form of

gTM is denoted by dvM . On the space of smooth sections with compact support C ∞
0 (M, Lk)

we introduce the L2-scalar product associated to the metrics h and the Riemannian volume

CONTACT George Marinescu gmarines@math.uni-koeln.de Mathematisches Institut, Universität zu Köln, Weyertal
86-90, Köln 50931, Germany; Institute of Mathematics ‘Simion Stoilow’, Romanian Academy, Bucharest, Romania.
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896 C.-Y. HSIAO AND G. MARINESCU

form dvM by

〈
s1, s2

〉
=
∫

M

〈
s1(x), s2(x)

〉
hk
dvM(x) . (1.2)

The completion of C ∞
0 (M, Lk) with respect to (1.2) is denoted as usual by L2(M, Lk). We

denote by H0
(2)(M, Lk) the closed subspace of L2(M, Lk) consisting of holomorphic sections.

The Bergman projection is the orthogonal projection Pk : L2(M, Lk) → H0
(2)(M, Lk) . For a

bounded function f ∈ C ∞(M), set

Tf , k : L
2(M, Lk) −→ L2(M, Lk) , Tf , k = Pk f Pk , (1.3)

where the action of f is the pointwise multiplication by f . The map which associates to f ∈
C ∞(M) the family of bounded operators {Tf , k} on L2(M, Lk) is called the Berezin–Toeplitz

quantization. A Toeplitz operator is a sequence {Tk}k∈N of bounded linear endomorphisms of

L2(M, Lk) verifying Tk = Pk Tk Pk , such that there exist a sequence gℓ ∈ C ∞(M) such that

for any p > 0, there exists Cp > 0 with ‖Tk −
∑p

ℓ=0 Tgℓ, k k
−ℓ‖op 6 Cp k−p−1 for any k ∈ N,

where ‖ · ‖op denotes the operator norm on the space of bounded operators.

Assume now that (M,ω, J) is a compact Kähler manifold. Then Bordemann et al. [5] and

Schlichenmaier [29] (using the analysis of Toeplitz structures of Boutet deMonvel–Guillemin

[6]), Charles [7] (inspired by semiclassical analysis of Boutet de Monvel–Guillemin [6]) and

Ma–Marinescu [25] (using the expansion of the Bergman kernel [9, 24]) showed that the

composition of two Toeplitz operators is a Toeplitz operator, in the sense that for any f , g ∈
C ∞(M), the product Tf , k Tg, k has an asymptotic expansion

Tf , k Tg, k =
∞∑

p=0

TCp(f , g),k k
−p + O(k−∞) (1.4)

where Cp are bidi�erential operators of order 6 2r, satisfying C0(f , g) = fg and C1(f , g) −
C1(g, f ) =

√
−1 {f , g}. Here { · , · } is the Poisson bracket on (M, 2πω).We deduce from (1.4),

[Tf , k ,Tg, k] =
√

−1

k
T{f ,g}, k + O(k−2) . (1.5)

In [24, 25] Ma–Marinescu extended the Berezin–Toeplitz quantization to symplectic man-

ifolds and orbifolds by using as quantum space the kernel of the Dirac operator acting on

powers of the prequantum line bundle twisted with an arbitrary vector bundle with arbitrary

metric onmanifolds. Recently, Charles [8] introduced a semiclassical approach for symplectic

manifolds inspired from the Boutet de Monvel–Guillemin theory [6].

In this paper, we extend the Berezin–Toeplitz quantization in several directions. Firstly,

we consider an arbitrary Hermitian manifold (M,2, J) endowed with arbitrary Hermitian

holomorphic line bundle (L, h) and we quantize the open set M(0) where the curvature of

(L, h) is positive. Since there are no holomorphic L2 sections in general, we use as quantum

spaces the spectral spaces of the Kodaira Laplacian 2
(0)
k on L2(M, Lk), corresponding to

energy less than k−N , N > 1 �xed, decaying to 0 polynomially in k, as k → ∞. Secondly,

we consider the same construction for the Kodaira Laplacian 2
(q)
k acting on (0, q)-forms.

In this case, we quantize the open set M(q) where the curvature of (L, h) is nondegenerate

and has exactly q negative eigenvalues (and hence n − q positive ones). Quantization using

(0, q)-formswas introduced in [24, Section 8.2] for bundles withmixed curvature of signature
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 897

(q, n − q) everywhere on a compact manifold. It was based on the asymptotic of Bergman

kernel developed in Ma and Marinescu [23].

The idea underlying the construction used in this paper comes from the local holomorphic

Morse inequalities [4, 11, 18, 24]. Roughly speaking, the harmonic (0, q)-forms with values in

Lk tend to concentrate onM(q) as k → ∞.More precisely, the semiclassical limit of the kernel

of the spectral projectors considered above was determined in [18, Theorem 1.1], see also

[18, Theorems 1.6 –1.10] for important particular cases. This is the main technical ingredient

used in this paper, which is in turn based on techniques of microlocal and semiclassical

analysis [13, 28], especially the stationary phase method of Melin–Sjöstrand [28].

We now formulate the main results. We refer to Section 2 for some standard notations and

terminology used here. We are working in the following general setting:

(A) (M,2, J) is a Hermitian manifold of complex dimension n, where2 is a smooth positive

(1, 1)-form and J is the complex structure. Moreover, (L, h) is a holomorphic Hermitian

line bundle overM, where h is the Hermitian �ber metric on L, and q ∈ {0, 1, . . . , n}.
(B) f , g ∈ C ∞(M) are smooth bounded functions.

Let gTM2 (·, ·) = 2(·, J·) be the Riemannianmetric on TM induced by2 and J and let 〈 · , · 〉
be the Hermitian metric on CTM := TM ⊗R C induced by gTM2 . The Riemannian volume

form dvM of (M,2) satis�es dvM = 2n/n! . For every q = 0, 1, . . . , n, the Hermitian metric

〈 · , · 〉 onTM⊗RC induces aHermitianmetric 〈 · , · 〉 on30,q(T∗M) the bundle of (0, q) forms

ofM.

We will denote by φ the local weights of the Hermitian metric h on L (see (2.1)). Let∇L be

the holomorphicHermitian connection on (L, h)with curvatureRL = (∇L)2.Wewill identify

the curvature form RL with the Hermitian matrix ṘL ∈ C ∞(M, End(T1,0M)) satisfying for

every U,V ∈ T1,0
x M, x ∈ M,

〈RL(x) , U ∧ V 〉 = 〈 ṘL(x)U,V 〉. (1.6)

Let det ṘL(x) := µ1(x) . . . µn(x), where {µj(x)}nj=1, are the eigenvalues of Ṙ
L with respect to

〈 · , · 〉. For j ∈ {0, 1, . . . , n}, let
M(j) =

{
x ∈ M; ṘL(x) is nondegenerate and has exactly j negative eigenvalues

}
. (1.7)

We denote by W the subbundle of rank j of T1,0M|M(j) generated by the eigenvectors

corresponding to negative eigenvalues of ṘL. Then detW
∗
:= 3jW

∗ ⊂ 30,j(T∗M)|M(j)

is a rank one sub-bundle. HereW
∗
is the dual bundle of the complex conjugate bundle ofW

and 3jW
∗
is the vector space of all �nite sums of v1 ∧ · · · ∧ vj, v1, . . . , vj ∈ W

∗
. We denote

by IdetW ∗ ∈ End(30,j(T∗M)) the orthogonal projection from 30,j(T∗M) onto detW
∗
.

For k > 0, let (Lk, hk) be the kth tensor power of the line bundle (L, h). Let ( · , · )k and
( · , · ) denote the global L2 inner products on �

0,q
0 (M, Lk) and �

0,q
0 (M) induced by 〈 · , · 〉

and hk, respectively (see (2.2)). We denote by L2
(0,q)(M, Lk) and L2

(0,q)(M) the completions of

�
0,q
0 (M, Lk) and �

0,q
0 (M) with respect to ( · , · )k and ( · , · ), respectively.

Let 2
(q)
k be the Kodaira Laplacian acting on (0, q)–forms with values in Lk, cf. (2.6). We

denote by the same symbol 2
(q)
k the Ga�ney extension of the Kodaira Laplacian, cf. (2.9).

It is well-known that 2
(q)
k is self-adjoint and the spectrum of 2

(q)
k is contained in R+ (see

[24, Proposition 3.1.2]). For a Borel set B ⊂ R let E(B) be the spectral projection of 2
(q)
k

corresponding to the set B, where E is the spectral measure of2
(q)
k (see Davies [10, Section 2])
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898 C.-Y. HSIAO AND G. MARINESCU

and for λ ∈ R we set Eλ = E
(
(−∞, λ]

)
and

E
q
λ (M, Lk) = RangeEλ ⊂ L2(0,q)(M, Lk) . (1.8)

If λ = 0, then E
q
0 (M, Lk) = Ker2

(q)
k =: H q(M, Lk) is the space of global harmonic sections.

The spectral projection of 2
(q)
k is the orthogonal projection

P
(q)
k,λ : L2(0,q)(M, Lk) → E

q
λ (M, Lk) . (1.9)

Fix f ∈ C ∞(M) be a bounded function. Let λ ≥ 0. The Berezin–Toeplitz quantization for

E
q
λ (M, Lk) is the operator

T
(q),f
k,λ := P

(q)
k,λ ◦ f ◦ P

(q)
k,λ : L2(0,q)(M, Lk) → E

q
λ (M, Lk). (1.10)

Let T
(q),f
k,λ ( · , ·) be the Schwartz kernel of T(q),f

k,λ , see (2.13), (2.14). Since 2
(q)
k is elliptic, we

have T
(q),f
k,λ ( · , · ) ∈ C ∞(M × M, (Lk ⊗ 30,q(T∗M)) ⊠ (Lk ⊗ 30,q(T∗M))∗

)
.

LetAk : L
2
(0,q)(M, Lk) → L2

(0,q)(M, Lk) be a k-dependent continuous operator with smooth

kernel Ak(x, y) and let D0,D1 ⋐ M be open trivializations with trivializing sections s and

ŝ, respectively. In this paper, we will identify Ak and Ak(x, y) on D0 × D1 with the localized

operators Ak,s,̂s and Ak,s,̂s(x, y), respectively (see (2.3)).

The �rst main result of this work is the following.

Theorem 1.1. Under the assumptions (A) and (B) let j ∈ {0, 1, . . . , n} and D0,D1 ⋐ M on

which L is trivial. Suppose that one of the following conditions is ful�lled:

(i) D0 ⋐ M(j) and j 6= q,

(ii) D0 ⋐ M(q) and D0
⋂

D1 = ∅.
Then, for every N > 1, m ∈ N, there exists CN,m > 0 independent of k such that

∣∣∣T(q),f

k,k−N (x, y)
∣∣∣
Cm(D0×D1)

≤ CN,mk
2n−N

2 +2m. (1.11)

If D0 ⋐ M(q) there exists a symbol

bf (x, y, k) ∈ Sn(1;D0 × D0,3
0,q(T∗M) ⊠ (30,q(T∗M))∗)

and a phase function 9 ∈ C ∞(D0 × D0) such that for every N > 1, m ∈ N, there exists

C̃N,m > 0 independent of k such that
∣∣∣T(q),f

k,k−N (x, y) − eik9(x,y)bf (x, y, k)
∣∣∣
Cm(D0×D0)

≤ C̃N,mk
2n−N

2 +2m, (1.12)

where bf (x, y, k) ∼
∑∞

j=0 bf ,j(x, y)k
n−j in the sense of De�nition 2.1 and

bf ,0(x, x) = (2π)−nf (x)
∣∣det ṘL(x)

∣∣IdetW ∗(x), x ∈ D0, (1.13)

and

9(x, y) ∈ C
∞(D0 × D0), 9(x, y) = −9(y, x) ,

(1.14)

∃ c > 0 : Im9 ≥ c
∣∣x − y

∣∣2 , 9(x, y) = 0 ⇔ x = y .
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 899

We collect more properties for the phase 9 in Theorem 3.3. The results says that, roughly

speaking, the Toeplitz kernel T
(q),f

k,k−N (·, ·) acting on (0, q)-forms, decays rapidly as k → ∞
outsideM(q) and o�-diagonal, and admits an asymptotic expansion on the setM(q).

Let ℓ,m ∈ N be �xed and choose N ≥ 2(n + ℓ + 2m + 1). Then we deduce from (1.12)

that

T
(q),f

k,k−N (x, x) =
ℓ∑

r=0

bf ,r(x, x)k
n−r + O(kn−ℓ−1) in C

m(D0),D0 ⋐ M(q). (1.15)

Note that if M is compact complex manifold endowed with a positive line bundle L (i.e.,

M(0) = M) we have by [27, Theorem 0.1] for any ℓ,m ∈ N,

T
(0),f
k,0 (x, x) =

ℓ∑

r=0

bf ,r(x, x)k
n−r + O(kn−ℓ−1) in C

m(M). (1.16)

Actually, in this case, due to the spectral gap of the Kodaira Laplacian [24, Theorem 1.5.5] we

have T
(0)

f ,k,k−N = T
(0)
f ,k,0 for k large enough, so (1.15) follows from (1.16). The expansion (1.15)

bears resemblance to the expansion of the Toeplitz kernels for functions f ∈ C p(M) (see [1,

(3.19)]), for arbitrary p ∈ N. In (1.15) the upper bound for the order of expansion ℓ is due to

the size k−N of the spectral parameter, while in case of symbols of class C p(M) is due to the

order of di�erentiability p.

It is interesting to note that Theorem 1.1 and the following results provide a generalization

of various expansions for Toeplitz operators in the case of an arbitrary complex manifold

endowed with a positive line bundle. In this case, we have simply M = M(0). Of course, in

such generality, the quantum spaces have to be spectral spaces E
q

k−N (M, Lk).

The �rst three coe�cients of the kernel expansions of Toeplitz operators and of their

composition for the quantization of a compact Kähler manifold with positive line bundle

were calculated by Ma–Marinescu [27] in the presence of a twisting vector bundle E and

later by Hsiao [17] for E = C. Both [17, 27] work with a general not necessarily Kähler base

metric 2 which might not be polarized, that is, 2 6=
√

−1
2π RL in general. We will calculate the

top coe�cients bf ,1(x, x) and bf ,2(x, x) of the expansion (1.12) in Section 7. The coe�cients

bf ,0(x, x) and bf ,1(x, x) were given in [7] for E = C and 2 =
√

−1
2π RL. It is a remarkable

manifestation of universality, that the coe�cients for the quantization with holomorphic

sections [17, 27] and for the quantization with spectral spaces used in this paper are given

by the same formulas. We refer to [32] for an interpretation in graph-theoretic terms of the

Toeplitz kernel expansion. The formulas from [27] play an essential role in the quantization

of the Mabuchi energy [15] and Laplace operator [20]. On the set where the curvature of L is

degenerate we have the following behavior.

Theorem 1.2. Under the general assumptions (A) and (B), set

Mdeg =
{
x ∈ M; ṘL is degenerate at x ∈ M

}
.

Then for every x0 ∈ Mdeg, ε > 0, N > 1 and every j ∈ {0, 1, . . . , n}, there exist a neighborhood
U of x0 and k0 > 0, such that for all k ≥ k0 we have

∣∣∣T(j),f

k,k−N (x, x)
∣∣∣ ≤ εkn, x ∈ U. (1.17)
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900 C.-Y. HSIAO AND G. MARINESCU

We consider next the composition of two Berezin–Toeplitz quantizations.We have �rst the

following expansion of the kernels of Toeplitz operators.

Theorem 1.3. Under the assumptions (A) and (B) let j ∈ {0, 1, . . . , n} and D0,D1 ⋐ M on

which L is trivial. Suppose that one of the following conditions is ful�lled:

(i) D0 ⋐ M(j) and j 6= q,

(ii) D0 ⋐ M(q) and D0
⋂

D1 = ∅.
Then, for every N > 1, m ∈ N, there exists CN,m > 0 independent of k such that

∣∣∣
(
T

(q),f

k,k−N ◦ T
(q),g

k,k−N

)
(x, y)

∣∣∣
Cm(D0×D1)

≤ CN,mk
3n−N

2 +2m. (1.18)

If D0 ⋐ M(q) there exists a symbol

bf ,g(x, y, k) ∈ Sn(1;D0 × D0,3
0,q(T∗M) ⊠ (30,q(T∗M))∗)

such that for every N > 1, m ∈ N, there exists C̃N,m > 0 independent of k such that
∣∣∣
(
T

(q),f

k,k−N ◦ T
(q),g

k,k−N

)
(x, y) − eik9(x,y)bf ,g(x, y, k)

∣∣∣
Cm(D0×D0)

≤ C̃N,mk
3n−N

2 +2m, (1.19)

where bf ,g(x, y, k) ∼
∑∞

j=0 bf ,g,j(x, y)k
n−j in the sense of De�nition 2.1 and

bf ,g,0(x, x) = (2π)−nf (x)g(x)
∣∣ det ṘL(x)

∣∣IdetW ∗(x), x ∈ D0, (1.20)

and 9(x, y) ∈ C ∞(D0 × D0) is as in Theorem 1.1.

It should be noticed that Theorem 1.3 holds for anyHermitianmanifoldM, not necessarily

compact. Note that the estimates in Theorem 1.3 involve the power k3n−
N
2 +2m compared to

k2n−
N
2 +2m in Theorem 1.1. We will explain why there are di�erent exponents 3n and 2n in

the proof of Theorem 6.1.

We will calculate the top coe�cients bf ,1(x, x), bf ,2(x, x) and bf ,g,1(x, x), bf ,g,2(x, x) of the

expansions (1.12) and (1.19) in Section 7 (see Theorems 7.1 and 7.4).

We come now to the asymptotic expansion of the composition of two Toeplitz operators

in the operator norm. Let Ak : L
2(M, Lk) → L2(M, Lk) be k-dependent continuous operator.

We say that Ak = O(km + km1) as k → ∞, locally in the L2 operator norm if for any χ ,χ1 ∈
C ∞
0 (M), there exists C > 0 independent of k such that ‖χAkχ1‖op ≤ C(km + km1), for k

large, where ‖·‖op denotes the L2 operator norm. We also denote by 〈 · , | · 〉ω the Hermitian

metric on T∗M ⊗R C induced by ω :=
√

−1
2π RL.

Theorem 1.4. Under the assumptions (A) and (B) suppose moreover that f , g ∈ C ∞(M) have

compact support in M(0). Then for every N > 1, there exist functions Cp(f , g) ∈ C ∞
0 (M(0)),

p ∈ N, such that for any ℓ ∈ N the product T
(0),f

k,k−N T
(0),g

k,k−N has the asymptotic expansion

T
(0),f

k,k−N ◦ T
(0),g

k,k−N =
ℓ∑

p=0

T
(0),Cp(f , g)

k,k−N k−p + O(k−ℓ−1 + k3n−
N
2 ), k → ∞, (1.21)

locally in the L2 operator norm. Moreover,

C0(f , g) = fg , C1(f , g) = − 1

2π
〈 ∂f , ∂g 〉ω , (1.22)

D
ow

nl
oa

de
d 

by
 [

86
.1

25
.4

5.
1]

 a
t 0

9:
36

 0
8 

A
ug

us
t 2

01
7 



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 901

and therefore the commutator of two Toeplitz operators satis�es

[
T

(0),f

k,k−N ,T
(0),g

k,k−N

]
=

√
−1

k
T

(0),{f ,g}
k,k−N + O(k−2 + k3n−

N
2 ), k → ∞, (1.23)

where {f , g} is the Poisson bracket on (M(0), 2πω).

We will give formulas for the coe�cients Cj(f , g), j = 0, 1, 3, in Corollary 7.5. They have

the same form as those in the expansion of the Toeplitz operators acting on spaces of holo-

morphic sections, see [17, (1.29)], [27, (0.20)]. Formula (1.23) represents the semiclassical

correspondence principle between classical and quantum observables. Theorem 1.4 allows us

to introduce a star-product on the set where a line positive is positive, see Remark 6.5.

As an application of Theorems 1.1 and 1.2, we obtain:

Theorem 1.5. Assume (A) and (B) are ful�lled and let N > 2n. Then

T
(q),f

k,k−N (x, x) = kn(2π)−n
∣∣det ṘL(x)

∣∣ f (x)IdetW ∗(x) + O(kn−1) , k → ∞, (1.24)

locally uniformly on M(q), for every D ⋐ M, there exists CD > 0 independent of k such that
∣∣∣T(q),f

k,k−N (x, x)
∣∣∣ ≤ CDk

n, ∀x ∈ D, (1.25)

and if 1M(q) denotes the characteristic function of M(q), we have the pointwise convergence:

lim
k→∞

k−nT
(q),f

k,k−N (x, x) = (2π)−nf (x)
∣∣det ṘL(x)

∣∣1M(q)(x)IdetW ∗(x), x ∈ M. (1.26)

Since Lkx ⊠ (Lkx)
∗ ∼= C, we can identify T

(q),f
k,λ (x, x) to an element of End(3

0,q
x (T∗M). Then

M ∋ x 7−→ T
(q),f
k,λ (x, x) ∈ End(3

0,q
x (T∗M)) (1.27)

is a smooth section of End(30,q(T∗M)). Let TrT
(q),f
k,λ (x, x) denote the trace of T

(q),f
k,λ (x, x)with

respect to 〈 · , · 〉. WhenM is compact, we de�ne

TrT
(q),f
k,λ :=

∫

M
TrT

(q),f
k,λ (x, x)dvM(x). (1.28)

For λ = 0, we set T
(q),f
k := T

(q),f
k,0 , T

(q),f
k (x, y) := T

(q),f
k,0 (x, y), TrT

(q),f
k (x, x) := TrT

(q),f
k,0 (x, x),

TrT
(q),f
k := TrT

(q),f
k,0 .

From (1.24)–(1.26), we get Weyl’s formula for Berezin–Toeplitz quantization.

Theorem 1.6. Assume (A) and (B) are ful�lled and let N > 2n. If M is compact, then

TrT
(q),f

k,k−N = kn(2π)−n

∫

M(q)
f (x)

∣∣det ṘL(x)
∣∣ dvM(x) + o(kn) , k → ∞. (1.29)

From Theorem 1.6 we deduce the following (see Section 8).

Theorem 1.7. Under assumptions (A) and (B) suppose that M is compact and M(q − 1) = ∅,
M(q + 1) = ∅. Then

lim
k→∞

∣∣∣k−nT
(q),f
k (x, x) − (2π)−nf (x)

∣∣det ṘL(x)
∣∣1M(q)(x)IdetW ∗(x)

∣∣∣ = 0in L1(0,q)(M). (1.30)

D
ow

nl
oa

de
d 

by
 [

86
.1

25
.4

5.
1]

 a
t 0

9:
36

 0
8 

A
ug

us
t 2

01
7 



902 C.-Y. HSIAO AND G. MARINESCU

In particular,

TrT
(q),f
k = kn(2π)−n

∫

M(q)
f (x)

∣∣det ṘL(x)
∣∣ dvM(x) + o(kn) as k → ∞. (1.31)

Let’s consider q = 0 and f ≡ 1 in (1.31). If M(1) = ∅, we obtain dimH0(M, Lk) =
kn(2π)−n

∫
M(0)

∣∣det ṘL(x)
∣∣ dvM(x) + o(kn) as k → ∞. Therefore, dimH0(M, Lk) ∼ kn as

k → ∞, provided M(0) 6= ∅ and M(1) = ∅. This is a form of Demailly’s criterion for a

line bundle to be big, which answers the Grauert–Riemenschneider conjecture, see [11], [24,

Theorem 2.2.27].

We wish now to link the quantization scheme, we proposed above by using spectral

spacesE
q

k−N (M, Lk) to themore traditional quantization using holomorphic sections (or,more

generally, harmonic forms). For this purpose we need the notion ofO(k−N) small spectral gap

property introduced in [18, De�nition 1.5]:

De�nition 1.8. LetD ⊂ M. We say that2
(q)
k hasO(k−N) small spectral gap on D if there exist

constants CD > 0, N ∈ N, k0 ∈ N, such that for all k ≥ k0 and u ∈ �
0,q
0 (D, Lk), we have

∥∥∥(I − P
(q)
k,0)u

∥∥∥
k

≤ CD kN
∥∥∥2(q)

k u
∥∥∥
k
.

Let D0,D1 ⊂ M be open sets and Ak,Ck : �
0,q
0 (D1) → �0,q(D0) be k-dependent

continuous operators with smooth kernels Ak(x, y),Ck(x, y) ∈ C ∞(D0 × D1,3
0,q(T∗M)) ⊠

(30,q(T∗M))∗).WewriteAk ≡ Ck mod O(k−∞) locally uniformly onD0×D1 orAk(x, y) ≡
Ck(x, y) mod O(k−∞) locally uniformly on D0 × D1 if

∣∣∣∂α
x ∂

β
y (Ak(x, y) − Ck(x, y))

∣∣∣ = O(k−N)

uniformly on every compact set in D0 × D1, for all α,β ∈ N
2n
0 and every N > 1.

The following result describes the asymptotics of the kernels of Toeplitz operators corre-

sponding to harmonic forms in the case of small spectral gap.

Theorem 1.9. Under the assumptions (A) and (B) let j ∈ {0, 1, . . . , n} and D0,D1 ⋐ M on

which L is trivial. Suppose that one of the following conditions is ful�lled:

(i) D0 ⋐ M(j) and j 6= q,

(ii) D0 ⋐ M(q), 2
(q)
k has an O(k−N) small spectral gap on D0 and D0

⋂
D1 = ∅.

Then

T
(q),f
k (x, y) ≡ 0 mod O(k−∞) locally uniformly on D0 × D1,

(T
(q),f
k ◦ T

(q),g
k )(x, y) ≡ 0 mod O(k−∞) locally uniformly on D0 × D1.

Assume that D0 ⋐ M(q) and 2
(q)
k has an O(k−N) small spectral gap on D0. Then,

T
(q),f
k (x, y) ≡ eik9(x,y)bf (x, y, k) mod O(k−∞) locally uniformly on D0 × D0,

(T
(q),f
k ◦ T

(q),g
k )(x, y) ≡ eik9(x,y)bf ,g(x, y, k) mod O(k−∞) locally uniformly on D0 × D0,

where bf (x, y, k), bf ,g(x, y, k) ∈ Sn(1;D0 × D0,3
0,q(T∗M)) ⊠ (30,q(T∗M))∗

)
are as in (1.12)

and (1.19), respectively, and 9(x, y) ∈ C ∞(D0 × D0) is as in Theorem 1.1.
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 903

There are several geometric situations when there exists a spectral gap. For example, if

L is a positive line bundle on a compact manifold M, or more generally, if L is uniformly

positive on a complete manifold (M,2) with
√

−1RK
∗
M and ∂2 bounded below, then the

Kodaira Laplacian 2
(0)
k has a “large" spectral gap onM, that is, there exists a constant C > 0

such that for all k we have inf{λ ∈ Spec(2
(0)
k ); λ 6= 0} ≥ Ck , (see [24, Theorem 1.5.5],

[24, Theorem 6.1.1, (6.1.8)]). Therefore, we can recover from Theorem 1.9 results about

quantization of noncompact manifolds, such as [24, Theorem 7.5.1], [25, Theorem 5.3],

[26, Theorem 2.30].

In this paper, as applications of Theorem 1.9, we establish Berezin–Toeplitz quantization

for semipositive and big line bundles. We assume now that (M,2) is compact and we set

Herm(L) =
{
singular Hermitian metrics on L

}
,

M(L) =
{
h ∈ Herm(L); h is smooth outside a proper analytic set

and the curvature current of h is strictly positive
}
.

Note that by Siu’s criterion [24, Theorem 2.2.27], L is big under the hypotheses of Theorem

1.10 below. By [24, Lemma 2.3.6],M(L) 6= ∅. Set
M′ :=

{
p ∈ M ; ∃ h ∈ M(L) with h smooth near p

}
. (1.32)

Theorem 1.10. Let (M,2) be a compact Hermitian manifold. Let (L, h) → M be a Hermitian

holomorphic line bundle with smooth Hermitian metric h having semipositive curvature and

with M(0) 6= ∅. Let f , g ∈ C ∞(M) and let D0 ⋐ M(0)
⋂

M′ be an open set on which L is

trivial. Then

T
(0),f
k (x, y) ≡ eik9(x,y)bf (x, y, k) mod O(k−∞) locally uniformly on D0 × D0,

(T
(0),f
k ◦ T

(0),g
k )(x, y) ≡ eik9(x,y)bf ,g(x, y, k) mod O(k−∞) locally uniformly on D0 × D0,

where bf (x, y, k), bf ,g(x, y, k) ∈ Sn(1;D0 × D0) are as in (1.12) and (1.19), respectively, and

9(x, y) ∈ C ∞(D0 × D0) is as in Theorem 1.1.

Let us consider a singular Hermitian holomorphic line bundle (L, h) → M (see e.g.,

[24, De�nition 2.3.1]). We assume that h is smooth outside a proper analytic set 6 and the

curvature current of h is strictly positive. The metric h induces singular Hermitian metrics

hk on Lk. We denote by I (hk) the Nadel multiplier ideal sheaf associated to hk and by

H0(M, Lk⊗I (hk)) ⊂ H0(M, Lk) the space of global sections of the sheafO(Lk)⊗I (hk) (see

(2.12)), where H0(M, Lk) :=
{
u ∈ C ∞(M, Lk); ∂ku = 0

}
. We denote by ( · , · )k the natural

inner products on C ∞(M, Lk ⊗ I (hk)) induced by h and the volume form dvM on M (see

(2.11) and see also (2.10) for the precise meaning of C ∞(M, Lk ⊗ I (hk)) ). The (multiplier

ideal) Bergman kernel of H0(M, Lk)I (hk)) is the orthogonal projection

P
(0)
k,I : L2(M, Lk) → H0(M, Lk ⊗ I (hk)). (1.33)

Let f ∈ C ∞(M). The multiplier ideal Berezin–Toeplitz operator is

T
(0),f
k,I := P

(0)
k,I ◦ f ◦ P

(0)
k,I : L2(M, Lk) → H0(M, Lk ⊗ I (hk)) (1.34)
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904 C.-Y. HSIAO AND G. MARINESCU

where we denote by f the multiplication operator on L2(M, Lk) by f . Let T
(0),f
k,I (x, y) be the

distribution kernel of T
(0),f
k,I . Note that T

(0),f
k,I (x, y) ∈ C ∞((M\6) × (M\6), (Lk)∗ ⊠ Lk).

Theorem 1.11. Let (L, h) be a singular Hermitian holomorphic line bundle over a compact

Hermitian manifold (M,2). We assume that h is smooth outside a proper analytic set 6 and

the curvature current of h is strictly positive. Let f , g ∈ C ∞(M). Let D0 ⊂ M\6 be an open set

on which L is trivial. Then

T
(0),f
k,I (x, y) ≡ eik9(x,y)bf (x, y, k) mod O(k−∞) locally uniformly on D0 × D0,

(T
(0),f
k,I ◦ T

(0),g
k,I )(x, y) ≡ eik9(x,y)bf ,g(x, y, k) mod O(k−∞) locally uniformly on D0 × D0,

where bf (x, y, k), bf ,g(x, y, k) ∈ Sn(1;D0 × D0) are as in (1.12) and (1.19), respectively, and

9(x, y) ∈ C ∞(D0 × D0) is as in Theorem 1.1.

The paper is organized as follows. In Section 2, we collect terminology, de�nitions and

statements we use throughout. In Sections 3 and 4 prove the o�-diagonal decay for the kernels

P
(q)

k,k−N (·, ·) and T
(q),f

k,k−N (·, ·). In Section 5, we establish the full asymptotic of the Berezin–

Toeplitz kernels T
(q),f

k,k−N (·, ·) and prove Theorem 1.1. Section 6 is devoted to the expansion

of the composition of two Toeplitz operators and contains the proof of Theorems 1.3, 1.4,

and 1.9–1.11. In Section 7, we calculate the leading coe�cients of the various expansions we

established. Finally, in Section 8, we prove Theorems 1.2 and 1.7.

2. Preliminaries

Some standard notations. We denote by N = {0, 1, 2, . . .} the set of natural numbers and

by R the set of real numbers. We use the standard notations wα , ∂α
x for multi-indices α =

(α1, . . . ,αm) ∈ N
m, w ∈ C

m, ∂x = (∂x1 , . . . , ∂xm).

Let � be a C ∞ paracompact manifold equipped with a smooth density of integration. We

let T� and T∗� denote the tangent bundle of � and the cotangent bundle of �, respectively.

The complexi�ed tangent bundle of � and the complexi�ed cotangent bundle of � will be

denoted by CT� := T� ⊗R C and CT∗� := T∗� ⊗R C, respectively. We write 〈 · , · 〉 to
denote the pointwise duality between T� and T∗�. We extend 〈 · , · 〉 bilinearly to (T� ⊗R

C) × (T∗� ⊗R C).

Let E be aC ∞ vector bundle over�. We write E∗ to denote the dual bundle of E. The �ber
of E at x ∈ �will be denoted by Ex. We denote by End (E) the vector bundle over�with �ber

End(E)x = End(Ex) over x ∈ �.

Let F be a vector bundle over another C ∞ paracompact manifold �′. We introduce the

vector bundle F⊠E∗ = π∗
1 (F)⊗π∗

2 (E∗) over�′ ×�, where π1 and π2 are the projections of

�′×� on the �rst and second factor (see [24, p. 337]). The �ber of F⊠E∗ over (x, y) ∈ �′×�

consists of the linear maps from Ey to Fx.

Let Y ⊂ � be an open set and take any L2 inner product on C ∞
0 (Y ,E). By using this L2

inner product, in this paper, we will consider a distribution section of E overY is a continuous

linear form on C ∞
0 (Y ,E). From now on, the spaces distribution sections of E over Y will be

denoted byD ′(Y ,E). Let E ′(Y ,E) be the subspace ofD ′(Y ,E)whose elements have compact
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 905

support in Y . Form ∈ R, we letHm(Y ,E) denote the Sobolev space of orderm of sections of

E over Y . Put

Hm
loc (Y ,E) =

{
u ∈ D ′(Y ,E); ϕu ∈ Hm(Y ,E), ϕ ∈ C ∞

0 (Y)
}
,

Hm
comp (Y ,E) = Hm

loc(Y ,E) ∩ E ′(Y ,E) .

Let M be a complex manifold of dimension n. We always assume that M is paracompact.

Let T1,0M and T0,1M denote the holomorphic tangent bundle ofM and the antiholomorphic

tangent bundle of M, respectively. Let 31,0(T∗M) be the holomorphic cotangent bundle of

M and let 30,1(T∗M) be the antiholomorphic cotangent bundle of M. For p, q ∈ N, let

3p,q(T∗M) = 3p(31,0(T∗M)) ⊗ 3q(30,1(T∗M)) be the bundle of (p, q) forms ofM.

For an open set D ⊂ M we let �p,q(D) denote the space of smooth sections of 3p,q(T∗M)

over D and let �
0,q
0 (D) be the subspace of �0,q(D) whose elements have compact support

in D. Similarly, if E is a vector bundle over D, then we let �p,q(D,E) denote the space of

smooth sections of3p,q(T∗M)⊗E overD. Let�
p,q
0 (D,E) be the subspace of�p,q(D,E)whose

elements have compact support in D.

For a multi-index J = (j1, . . . , jq) ∈ {1, . . . , n}q we set |J| = q. We say that J is strictly

increasing if 1 6 j1 < j2 < · · · < jq 6 n. Let {e1, . . . , en} be a local frame for 30,1(T∗M) on

an open setD ⊂ M. For amulti-index J = (j1, . . . , jq) ∈ {1, . . . , n}q, we put eJ = ej1 ∧· · ·∧ejq .

Let E be a vector bundle over D and let f ∈ �0,q(D,E). f has the local representation

f |D =
∑

|J|=q

′
fJ(z)e

J ,

where
∑′

means that the summation is performed only over strictly increasing multi-indices

and fJ ∈ C ∞(D,E).

Metric data. Let (M,2) be a complex manifold of dimension n, where2 is a smooth positive

(1, 1) form, which induces a Hermitian metric 〈 · , · 〉 on the holomorphic tangent bundle

T1,0M. In local holomorphic coordinates z = (z1, . . . , zn), if 2 =
√

−1
∑n

j,k=1 2j,kdzj ∧ dzk,

then 〈 ∂
∂zj

| ∂
∂zk

〉 = 2j,k, j, k = 1, . . . , n. We extend the Hermitian metric 〈 · , · 〉 to TM ⊗R C

in a natural way. The Hermitian metric 〈 · , · 〉 on TM ⊗R C induces a Hermitian metric on

3p,q(T∗M) also denoted by 〈 · , · 〉.
Let (L, h) be a Hermitian holomorphic line bundle overM, where the Hermitianmetric on

L is denoted by h. Until further notice, we assume that h is smooth. Given a local holomorphic

frame s of L on an open subset D ⊂ M we de�ne the associated local weight of h by

|s(x)|2h = e−2φ(x), φ ∈ C
∞(D,R). (2.1)

Let RL = (∇L)2 be the Chern curvature of L, where ∇L is the Hermitian holomorphic

connection. Then RL|D = 2∂∂φ.

Let Lk, k > 0, be the kth tensor power of the line bundle L. The Hermitian �ber metric

on L induces a Hermitian �ber metric on Lk that we shall denote by hk. If s is a local

trivializing holomorphic section of L then sk is a local trivializing holomorphic section of

Lk. For p, q ∈ N, the Hermitian metric 〈 · , · 〉 on 3p,q(T∗M) and hk induce a Hermitian

metric on3p,q(T∗M)⊗Lk, denoted by 〈 · , · 〉hk . For s ∈ �p,q(M, Lk), we denote the pointwise

norm |s(x)|2
hk

:= 〈s(x), s(x)〉hk . We take dvM = dvM(x) as the induced volume form on M.
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906 C.-Y. HSIAO AND G. MARINESCU

The L2–Hermitian inner products on the spaces �
p,q
0 (M, Lk) and �

p,q
0 (M) are given by

(s1, s2)k =
∫

M
〈s1(x), s2(x)〉hk dvM(x) , s1, s2 ∈ �

p,q
0 (M, Lk),

(f1, f2) =
∫

M
〈f1(x), f2(x)〉 dvM(x) , f1, f2 ∈ �

p,q
0 (M). (2.2)

‖s‖2k = (s, s)k, s ∈ �
p,q
0 (M, Lk), ‖f ‖2 := (f , f ), f ∈ �

p,q
0 (M).

Let Ak : L2
(0,q)(M, Lk) → L2

(0,q)(M, Lk) be a k-dependent continuous operator with smooth

kernel Ak(x, y). Let s, ŝ be local trivializing holomorphic sections of L on D0 ⋐ M, D1 ⋐ M,

respectively, |s|2h = e−2φ , |̂s|2h = e−2φ̂ , where D0, D1 are open sets. The localized operator of

Ak on D0 × D1 is given by

Ak,s,̂s : �
0,q
0 (D1) → �0,q(D0), u 7−→ s−ke−kφ(Ak̂s

kekφ̂u), (2.3)

and let Ak,s,̂s(x, y) ∈ C ∞(D0 × D1,3
0,q(T∗M)) ⊠ (30,q(T∗M))∗) be the distribution kernel

of Ak,s,̂s. For s = ŝ, D0 = D1, we set

Ak,s := Ak,s,s , Ak,s(x, y) := Ak,s,s(x, y). (2.4)

A self-adjoint extension of the Kodaira Laplacian.We denote by

∂k : �
0,r(M, Lk) → �0,r+1(M, Lk) , ∂

∗
k : �0,r+1(M, Lk) → �0,r(M, Lk) (2.5)

the Cauchy–Riemann operator acting on sections of Lk and its formal adjoint with respect to

( · | ·)k, respectively. Let

2
(q)
k := ∂k∂

∗
k + ∂

∗
k ∂k : �

0,q(M, Lk) → �0,q(M, Lk) (2.6)

be the Kodaira Laplacian acting on (0, q)–forms with values in Lk. We extend ∂k to

L2
(0,r)(M, Lk) by

∂k : Dom ∂k ⊂ L2(0,r)(M, Lk) → L2(0,r+1)(M, Lk) , (2.7)

where Dom ∂k := {u ∈ L2
(0,r)(M, Lk); ∂ku ∈ L2

(0,r+1)(M, Lk)}, where ∂ku is de�ned in the

sense of distributions. We also write

∂
∗
k : Dom ∂

∗
k ⊂ L2(0,r+1)(M, Lk) → L2(0,r)(M, Lk) (2.8)

to denote theHilbert space adjoint of ∂k in the L
2 space with respect to ( · , · )k. Let2(q)

k denote

the Ga�ney extension of the Kodaira Laplacian given by

Dom2
(q)
k =

{
s ∈ L2(0,q)(M, Lk); s ∈ Dom ∂k ∩ Dom ∂

∗
k , ∂ks ∈ Dom ∂

∗
k , ∂

∗
k s ∈ Dom ∂k

}
,

(2.9)

and 2
(q)
k s = ∂k∂

∗
k s + ∂

∗
k ∂ks for s ∈ Dom2

(q)
k . By a result of Ga�ney [24, Proposition 3.1.2],

2
(q)
k is a positive self-adjoint operator. Note that ifM is complete, the Kodaira Laplacian2

(q)
k

is essentially self-adjoint [24, Corollary 3.3.4] and the Ga�ney extension coincides with the

Friedrichs extension of 2
(q)
k .

Consider a singular Hermitian metric h on a holomorphic line bundle L overM. If h0 is a

smoothHermitianmetric on L then h = h0e
−2ϕ for some function ϕ ∈ L1loc(M,R). TheNadel
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 907

multiplier ideal sheaf of h is de�ned by I (h) = I (ϕ); the de�nition does not depend on the

choice of h0. Recall that the Nadel multiplier ideal sheaf I (ϕ) ⊂ OM is the ideal subsheaf of

germs of holomorphic functions f ∈ OM,x such that |f |2e−2ϕ is integrable with respect to the

Lebesgue measure in local coordinates near x for all x ∈ M. Put

C
∞(M, L ⊗ I (h)) :=

{
S ∈ C

∞(M, L);

∫

M

∣∣S
∣∣2
h
dvM =

∫

M

∣∣S
∣∣2
h0
e−2ϕ dvM < ∞

}
,

(2.10)

where | · |h and | · |h0 denote the pointwise norms for sections induced by h and h0, respec-

tively. With the help of h and the volume form dvM we de�ne an L2 inner product on

C ∞(M, L ⊗ I (h)):

(S, S′)h =
∫

M
〈S, S′〉h0 e−2ϕdvM , S, S′ ∈ C

∞(M, L ⊗ I (h)) . (2.11)

The singular Hermitian metric h induces a singular Hermitian metric hk = hk0e
−2kϕ on Lk,

k > 0. We denote by ( · , · )k the natural inner products onC ∞(M, Lk ⊗I (hk)) de�ned as in

(2.11) and by L2(M, Lk) the completion of C ∞(M, Lk ⊗ I (hk)) with respect to ( · , · )k. The
space of global sections in the sheaf O(Lk) ⊗ I (hk) is given by

H0(M, Lk ⊗ I (hk))

=
{
s ∈ C

∞(M, Lk); ∂ks = 0,

∫

M

∣∣s
∣∣2
hk
dvM =

∫

M

∣∣s
∣∣2
hk0
e−2kϕ dvM < ∞

}
. (2.12)

Schwartz kernel theorem and semiclassical Hörmander symbol spaces.We recall here the

Schwartz kernel theorem [16, Theorems 5.2.1, 5.2.6], [24, ThoremB.2.7]. Let � be a C ∞

paracompact manifold equipped with a smooth density of integration. Let E and F be smooth

vector bundles over �. Any distribution (“kernel”)

A(x, y) ∈ D
′(� × �, F ⊠ E∗), (2.13)

de�nes a continuous operator

A : C ∞
0 (�,E) → D

′(�, F) , 〈Au, v〉 := 〈A(x, y), v(x) ⊗ u(y)〉, (2.14)

for any u ∈ C ∞
0 (�,E), v ∈ C ∞

0 (�, F). Conversely, any continuous linear operator A :

C ∞
0 (�,E) → D ′(�, F) is given by a distributionA(x, y) ∈ D ′(�×�, F⊠E∗) as above, called

the Schwartz distribution kernel of A. Moreover, the following two statements are equivalent

(a) A is continuous: E ′(�,E) → C
∞(�, F),

(2.15)
(b) A(x, y) ∈ C

∞(� × �, F ⊠ E∗).

If A satis�es (a) or (b), we say that A is a smoothing operator. Furthermore, A is smoothing

if and only if A : Hs
comp (�,E) → Hs+N

loc (�, F) is continuous, for all N ≥ 0, s ∈ R. Let

A,B : C ∞
0 (�,E) → D ′(�, F) be continuous operators. We write A ≡ B or A(x, y) ≡ B(x, y)

if A − B is a smoothing operator.

We say that A is properly supported if the restrictions to SuppA(·, ·) of the projections π1

and π2 from � × � to the �rst and second factor are proper.

We say that A is smoothing away the diagonal if χ1Aχ2 is smoothing for all χ1,χ2 ∈
C ∞
0 (�) with Suppχ1 ∩ Suppχ2 = ∅.
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908 C.-Y. HSIAO AND G. MARINESCU

We recall the de�nition of semiclassical Hörmander symbol spaces [13, Chapter 8]:

De�nition 2.1. Let U be an open set in R
N . Let

S(1) = S(1;U) :=
{
a ∈ C

∞(U) | ∀α ∈ N
N
0 : sup

x∈U

∣∣∂αa(x)
∣∣ < ∞

}
,

S0(1;U) :=
{
(a(·, k))k∈N ∈ C

∞(U)N | ∀α ∈ N
N
0 : sup

k∈N
sup
x∈U

∣∣∂αa(x, k)
∣∣ < ∞

}
.

Form ∈ R let

Sm(1;U) =
{
(a(·, k))k∈N ∈ C

∞(U)N | (k−ma(·, k)) ∈ S0(1;U)
}
.

Hence (a(·, k)) ∈ Sm(1;U) if for every α ∈ N
N
0 , there exists Cα > 0, such that |∂αa(·, k)| ≤

Cαk
m onW. Consider a sequence aj ∈ Smj(1), j ∈ N, where mj ց −∞, and let a ∈ Sm0(1).

We say that

a(·, k) ∼
∞∑

j=0

aj(·, k), in Sm0(1),

if for every ℓ ∈ N we have a −
∑ℓ

j=0 aj ∈ Smℓ+1(1) . For a given sequence aj as above, we

can always �nd such an asymptotic sum a, which is unique up to an element in S−∞(1) =
S−∞(1;U) := ∩mS

m(1). We de�ne Sm(1;Y ,E) in the natural way, where Y is a smooth

paracompact manifold and E is a vector bundle over Y .

3. Spectral kernel estimates away the diagonal

The goal of this section is to prove the o�-diagonal decay for the kernel P
(q)

k,k−N (·, ·) of the
spectral projection P

(q)

k,k−N . For this purpose, we introduce a localization of the projection.

Let s, ŝ be local trivializing holomorphic sections of L on D0 ⋐ M, D1 ⋐ M, respectively,

|s|2h = e−2φ , |̂s|2h = e−2φ̂ , where D0, D1 are open sets. We denote by P
(q)

k,k−N ,s,̂s
the localization

given by (2.3).

Let {e1, e2, . . . , en} and {w1,w2, . . . ,wn} be orthonormal frames of 30,1(T∗M) on D0 and

D1, respectively. Then,
{
eJ ; |J| = q, J is strictly increasing

}
,
{
wJ ; |J| = q, J is strictly increasing

}

are orthonormal frames of 30,q(T∗M) on D0 and D1, respectively. We write

P
(q)

k,k−N ,s,̂s
(x, y) =

∑

|I|=|J|=q

′
P

(q),I,J

k,k−N ,s,̂s
(x, y)eI(x) ∧ (wJ(y))†,

(3.1)
P

(q),I,J

k,k−N ,s,̂s
(x, y) ∈ C

∞(D0 × D1), ∀ |I| = |J| = q, I, J are strictly increasing,

in the sense that for every u =
∑

|J|=q

′uJwJ ∈ �
0,q
0 (D1), we have

(P
(q)

k,k−N ,s,̂s
u)(x) =

∑

|I|=|J|=q

′
eI(x) ⊗

∫
P

(q),I,J

k,k−N ,s,̂s
(x, y)uJ(y)dvM(y). (3.2)

The goal of this section is to prove the following.
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 909

Theorem 3.1. With the notations used above, we assume that D0 ⋐ M(j), j 6= q, j ∈
{0, 1, . . . , n} or D0 ⋐ M(q) and D0

⋂
D1 = ∅. Then, for every N > 1, m ∈ N, there exists

CN,m > 0 independent of k, such that for all strictly increasing I, J with |I| = |J| = q,
∣∣∣P(q),I,J

k,k−N ,s,̂s
(x, y)

∣∣∣
Cm(D0×D1)

≤ CN,mk
2n−N

2 +2m.

As preparation, we recall the next result, established in [18, Theorems 4.11 and 4.12]. The

localization P
(q)

k,k−N ,s
is de�ned as in (2.4).

Theorem 3.2. With the notations used above, assume that D0 ⋐ M(q). Then, for every N > 1,

m ∈ N, there exists CN,m > 0 independent of k such that
∣∣∣P(q)

k,k−N ,s
(x, y) − eik9(x,y)b(x, y, k)

∣∣∣
Cm(D0×D0)

≤ CN,mk
3n−N+2m,

where

b(x, y, k) ∈ Sn(1;D0 × D0,3
0,q(T∗M) ⊠ (30,q(T∗M))∗),

b(x, y, k) ∼
∞∑

j=0

bj(x, y)k
n−j in Sn(1;D0 × D0,3

0,q(T∗M) ⊠ (30,q(T∗M))∗),

bj(x, y) ∈ C
∞(D0 × D0, (3

0,q(T∗M) ⊠ (30,q(T∗M))∗), j = 0, 1, 2, . . . ,

b0(x, x) = (2π)−n
∣∣ det ṘL(x)

∣∣IdetW ∗(x), ∀x ∈ D0,

and b(x, y, k) is properly supported and 9(x, y) ∈ C ∞(D0 × D0) is as in Theorem 1.1.

Assume that D0 ⋐ M(j), j 6= q, j ∈ {0, 1, 2, . . . , n}. Then, for every N > 1, m ∈ N, there

exists C̃N,m > 0 independent of k such that
∣∣∣P(q)

k,k−N ,s
(x, y)

∣∣∣
Cm(D0×D0)

≤ C̃N,mk
3n−N+2m.

The following properties of the phase function 9 follow also from [18, Theorem 3.8].

Theorem 3.3. With the assumptions and notations used in Theorem 1.1, for a given point p ∈
D0, let x = z = (z1, . . . , zn) be local holomorphic coordinates centered at p satisfying

2(p) =
√

−1

n∑

j=1

dzj ∧ dzj ,

(3.3)

φ(z) =
n∑

j=1

λj
∣∣zj
∣∣2 + O(|z|3) , z near p , {λj}nj=1 ⊂ R\{0} ,

then we have near (0, 0),

9(z,w) = i

n∑

j=1

∣∣λj
∣∣ ∣∣zj − wj

∣∣2 + i

n∑

j=1

λj(zjwj − zjwj) + O(|(z,w)|3). (3.4)
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910 C.-Y. HSIAO AND G. MARINESCU

Moreover, when q = 0, we have

9(z,w) = i
(
φ(z) + φ(w)

)
− 2i

∑

α,β∈N,|α|+|β|≤N

∂ |α|+|β|φ

∂zα∂zβ
(0)

zα

α!
wβ

β! + O(|(z,w)|N+1),

(3.5)

for every N ∈ N.

FixN > 1. Let
{
g1(x), g2(x), . . . , gdk(x)

}
be an orthonormal frame for Ek−N (M, Lk), where

dk ∈ N ∪ {∞}. On D0, D1, we write

gj(x) = sk(x)̃gj(x), g̃j(x) =
∑

|J|=q

′
g̃j,J(x)e

J(x) on D0, j = 1, . . . , dk,

(3.6)

gj(x) = ŝk(x)̂gj(x), ĝj(x) =
∑

|J|=q

′
ĝj,J(x)w

J(x) on D1, j = 1, . . . , dk.

It is not di�cult to check that for every strictly increasing I, J, with |I| = |J| = q, we have

P
(q),I,J

k,k−N ,s,̂s
(x, y) =

dk∑

j=1

g̃j,I(x)e
−kφ(x)ĝj,J(y)e

−kφ̂(y),

(3.7)

P
(q),I,J

k,k−N ,s
(x, y) =

dk∑

j=1

g̃j,I(x)e
−kφ(x)g̃j,J(y)e

−kφ̂(y).

Lemma 3.4. Assume that D0 ⋐ M(j), j 6= q. Then, for every N > 1, m ∈ N, there exists

CN,m > 0 independent of k such that for every strictly increasing I, J, with |I| = |J| = q,
∣∣∣P(q),I,J

k,k−N ,s,̂s
(x, y)

∣∣∣
Cm(D0×D1)

≤ CN,mk
2n−N

2 +2m.

Proof. Fix I, J are strictly increasing, |I| = |J| = q, and let α,β ∈ N
2n
0 . By (3.7), we have

∣∣∣∂α
x ∂

β
y P

(q),I,J

k,k−N ,s,̂s
(x, y)

∣∣∣ ≤

√√√√√
dk∑

j=1

∣∣∂α
x (̃gj,I(x)e−kφ(x))

∣∣2
√√√√√

dk∑

j=1

∣∣∣∂β
y (̂gj,J(y)e−kφ̂(y))

∣∣∣
2
. (3.8)

In view of Theorem 3.2, we see that

dk∑

j=1

∣∣∣∂α
x (̃gj,I(x)e

−kφ(x))

∣∣∣
2

≤ Cαk
3n−N+4|α|, on D0, (3.9)

where Cα > 0 is a constant independent of k. Moreover, it is known (see [18, Theorem 4.3])

that

dk∑

j=1

∣∣∣∂β
y (̂gj,J(y)e

−kφ̂(y))

∣∣∣
2

≤ Cβk
n+4|β| on D1, (3.10)

where Cβ > 0 is a constant independent of k. From (3.8) to (3.10), the lemma follows.
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 911

Lemma 3.4 provides the proof of Theorem 3.1 in the case D0 ⋐ M(j), j 6= q. Now, we

assume that D0 ⋐ M(q). Fix p ∈ D0, I0, J0 strictly increasing with |I0| = |J0| = q, and

α,β ∈ N
2n
0 . Put

∂α
x ∂α

y e
ik9(x,y)b(x, y, k) = eik9(x,y)a(x, y, k) =

∑

|I|=|J|=q

′
eik9(x,y)aI,J(x, y, k)e

I(x) ∧ (eJ(y))†,

∂α
y e

ik9(x,y)b(x, y, k) = eik9(x,y)d(x, y, k) =
∑

|I|=|J|=q

′
eik9(x,y)dI,J(x, y, k)e

I(x) ∧ (eJ(y))†,

(3.11)

where9(x, y) and b(x, y, k) are as inTheorem3.2 and aI,J(x, y, k), dI,J(x, y, k) ∈ C ∞(D0×D0),

for any I, J strictly increasing with |I| = |J| = q.

Lemma 3.5. Assume that aI0,I0(p, p, k) ≤ 0. Then, there exists Cα,β > 0 independent of k and

the point p such that
∣∣∣∂α

x ∂
β
y P

(q),I0,J0
k,k−N ,s,̂s

(p, y)
∣∣∣ ≤ Cα,βk

2n−N
2 +2|α|+2|β|, ∀y ∈ D1.

Proof. In view of Theorems 3.2 and (3.7), we see that

dk∑

j=1

∣∣∣∂α
x (̃gj,I0e

−kφ)(p))
∣∣∣
2

= ∂α
x ∂α

y P
(q),I0,I0
k,k−N ,s

(p, p) ≤
∣∣∣∂α

x ∂α
y P

(q),I0,I0
k,k−N ,s

(p, p) − aI0,I0(p, p)
∣∣∣

≤ Cαk
3n−N+4|α|, (3.12)

where Cα > 0 is a constant independent of k and the point p. From (3.12), (3.8), and (3.10),

the lemma follows.

Now, we assume that aI0,I0(p, p) > 0. Take χ ∈ C ∞
0 (R, [0, 1]) so that χ = 1 if |x| ≤ 1,

χ = 0 if |x| > 2. Put

ũk(x) = 1√
aI0,I0(p, p, k)

eik9(x,p)χ

(∣∣x − p
∣∣2

ε

)∑

|I|=q

′
dI,I0(x, p, k)e

I(x) ∈ �
0,q
0 (D0),

(3.13)
uk(x) = sk(x)̃uk(x)e

kφ(x) ∈ �
0,q
0 (D0, L

k),

where ε > 0 is a small constant and dI,I0(x, y) is as in (3.11). We need

Lemma 3.6. We have

uk(x) ≡
P

(q)

k,k−Nuk(x)

‖P(q)

k,k−Nuk‖k
mod O(k−∞) on M,

that is, for every local trivializing holomorphic section s1 of L on an open set W ⋐ M, |s1|2h =
e−2φ1 , we have

s−k
1 e−kφ1uk(x) ≡ s−k

1 e−kφ
P

(q)

k,k−Nuk(x)

‖P(q)

k,k−Nuk‖k
mod O(k−∞) on W.
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912 C.-Y. HSIAO AND G. MARINESCU

Proof. It is known from [18, Theorems 3.11 and 3.12] that

∫
eik9(x,y)e−ik9(x,y)

∣∣∣∣∣χ
(∣∣x − y

∣∣2

ε

)∣∣∣∣∣

2 ∑

|I|=q

′ ∣∣dI,I0(x, y)
∣∣2 dvM(x)

(3.14)
≡ aI0,I0(y, y, k) mod O(k−∞).

From (3.14), it is easy to see that

‖uk‖k ≡ 1 mod O(k−∞). (3.15)

Moreover, we have by [18, Theorem 3.11],∥∥∥(2(q)
k )juk

∥∥∥
k

≡ 0 mod O(k−∞), j = 1, 2, . . . . (3.16)

From (3.16), we have∥∥∥uk − P
(q)

k,k−Nuk

∥∥∥
k

≤ kN
∥∥∥2(q)

k uk

∥∥∥
k

≡ 0 mod O(k−∞). (3.17)

From (3.16) and semiclassical Gårding inequalities (see [18, Lemma 4.1]), we obtain

uk ≡ P
(q)

k,k−Nuk mod O(k−∞). (3.18)

From (3.18), (3.15), the lemma follows.

Lemma 3.7. With the notations and assumptions above, assume that for k large, dist (p, y) ≥
c
log k√

k
, ∀y ∈ D1, where c > 0 is a constant independent of k. Then, there exists Cα,β > 0

independent of K and the point p such that∣∣∣∂α
x ∂

β
y P

(q),I0,J0
k,k−N ,s,̂s

(p, y)
∣∣∣ ≤ Cα,βk

2n−N
2 +2(|α|+|β|), ∀y ∈ D1.

Proof. Let us choose

g1 =
P

(q)

k,k−Nuk

‖P(q)

k,k−Nuk‖k
(3.19)

in the orthonormal frame
{
g1(x), g2(x), . . . , gdk(x)

}
of Ek−N (M, Lk) (see (3.6)). From (3.11),

(3.13), and Lemma 3.6, it is not di�cult to check that
∣∣∣∂α

x (̃g1,I0e
−kφ)(p)

∣∣∣
2

≡ aI0,I0(p, p) mod O(k−∞). (3.20)

From (3.10), (3.11), and Theorem 3.2, we conclude that

dk∑

j=2

∣∣∣∂α
x (̃gj,I0e

−kφ)(p)
∣∣∣
2

≤ k3n−N+4|α|, (3.21)

where C > 0 is a constant independent of k and the point p. From (3.7), (3.10), and (3.21),

we have∣∣∣∂α
x ∂

β
y P

(q),I0,J0
k,k−N ,s,̂s

(p, y)
∣∣∣ ≤

∣∣∣∂α
x (̃g1,I0e

−kφ)(p)
∣∣∣
∣∣∣∂β

y (̂g1,J0e
−kφ̂)(y)

∣∣∣

+

√√√√√
dk∑

j=2

∣∣∂α
x (̃gj,I0e

−kφ)(p)
∣∣2
√√√√√

dk∑

j=2

∣∣∣∂β
y (̂gj,J0e

−kφ̂)(y)
∣∣∣
2
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 913

≤
∣∣∣∂α

x (̃g1,I0e
−kφ)(p)

∣∣∣
∣∣∣∂β

y (̂g1,J0e
−kφ̂)(y)

∣∣∣

+C1k
2n−N

2 +2(|α|+|β|), (3.22)

where C1 > 0 is a constant independent of k and the point p. From Lemma 3.6 and noting

that ũk(y) ≡ 0 mod O(k−∞) if dist (p, y) ≥ c
log k√

k
, where c > 0 is a constant independent of

k, we conclude that
∣∣∣∂β

y (̂g1,J0e
−kφ̂)(y)

∣∣∣ ≡ 0 mod O(k−∞), ∀y ∈ D1.

From this observation and (3.22), the lemma follows.

From Lemmas 3.4, 3.5, 3.7, Theorem 3.1 follows.

We can repeat the proof of Theorem 3.1 and conclude:

Theorem 3.8. Let s and ŝ be local trivializing holomorphic sections of L on open sets D0 ⋐ M,

D1 ⋐ M, respectively, |s|2h = e−2φ , |̂s|2h = e−2φ̂ . Assume that D0 ⋐ M(j), j 6= q. Then

P
(q)
k,s,̂s(x, y) ≡ 0 mod O(k−∞) locally uniformly on D0 × D1.

Assume now that D0 ⋐ M(q) and 2
(q)
k has an O(k−N) small spectral gap on D0. Suppose that

D0
⋂

D1 = ∅. Then,

P
(q)
k,s,̂s(x, y) ≡ 0 mod O(k−∞) locally uniformly on D0 × D1.

4. Berezin–Toeplitz kernel estimates away the diagonal

In this section, we prove the o�-diagonal decay of the kernel T
(q),f

k,k−N (·, ·) of the Berezin–

Toeplitz quantization (cf. (1.10)), where f ∈ C ∞(M) is as usual a bounded function and

N > 1. This yields one half of Theorem 1.1, i.e., (1.11).

We consider as before the localization of T
(q),f

k,k−N (·, ·) as follows. Let s, ŝ be local

trivializing holomorphic sections of L on open sets D0 ⋐ M, D1 ⋐ M, respectively,

|s|2h = e−2φ , |̂s|2h = e−2φ̂ . Let {e1, e2, . . . , en} and {w1,w2, . . . ,wn} be orthonormal

frames of 30,1(T∗M) on D0 and D1, respectively. Then,
{
eJ ; |J| = q, J strictly increasing

}
,{

wJ ; |J| = q, J strictly increasing
}
are orthonormal frames of 30,q(T∗M) on D0 and D1,

respectively. As in (3.1), we write

T
(q),f

k,k−N ,s,̂s
=

∑

|I|=|J|=q

′
T

(q),f ,I,J

k,k−N ,s,̂s
(x, y)eI(x) ∧ (wJ(y))†, T

(q),f ,I,J

k,k−N ,s,̂s
∈ C

∞(D0 × D1). (4.1)

Let
{
gj
}dk
j=1

and
{
δj
}dk
j=1

be orthonormal bases of E
q

k−N (M, Lk), where dk ∈ N ∪ {∞}. On D0,

D1, we write

gj(x) = sk(x)̃gj(x), g̃j(x) =
∑

|J|=q

′
g̃j,J(x)e

J(x) on D0, j = 1, . . . , dk,

(4.2)
δj(x) = ŝk(x)̂δj(x), δ̂j(x) =

∑

|J|=q

′̂
δj,J(x)w

J(x) on D1, j = 1, . . . , dk.
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914 C.-Y. HSIAO AND G. MARINESCU

It is not di�cult to check that for every strictly increasing I, J, |I| = |J| = q, we have

T
(q),f ,I,J

k,k−N ,s,̂s
(x, y) =

dk∑

j,ℓ=1

g̃j,I(x)e
−kφ(x)( f δℓ | gj )k δ̂ℓ,J(y)e

−kφ̂(y). (4.3)

Lemma 4.1. Assume that D0 ⋐ M(j), j 6= q. Then, for every N > 1 and m ∈ N, there exists

CN,m > 0 independent of k such that for every I, J strictly increasing, |I| = |J| = q, we have
∣∣∣T(q),f ,I,J

k,k−N ,s,̂s
(x, y)

∣∣∣
Cm(D0×D1)

≤ CN,mk
2n−N

2 +2m.

Proof. Fix α,β ∈ N
2n
0 , I0, J0 strictly increasing with |I0| = |J0| = q, and (x0, y0) ∈ D0 × D1.

Take
{
g1, g2, . . . , gdk

}
and

{
δ1, δ2, . . . , δdk

}
so that

∣∣∣∂α
x (̃g1,I0e

−kφ)(x0)
∣∣∣
2

=
dk∑

j=1

∣∣∣∂α
x (̃gj,I0e

−kφ)(x0)
∣∣∣
2
,

(4.4)
∣∣∣∂β

y (̂δ1,J0e
−kφ̂)(y0)

∣∣∣
2

=
dk∑

j=1

∣∣∣∂β
y (̂δj,J0e

−kφ̂)(y0)
∣∣∣
2
.

This is always possible, see [18, Proposition 4.5]. From (4.3) and (4.4), we see that

(∂α
x ∂

β
y T

(q),f ,I0,J0
k,k−N,s,̂s )(x0, y0) = ∂α

x (̃g1,I0e
−kφ)(x0)( f δ1 | g1 )k∂

β
y (̂δ1,J0e

−kφ̂)(y0). (4.5)

In view of Theorems 3.2 and (3.10), we see that
∣∣∣∂α

x (̃g1,I0e
−kφ)(x0)

∣∣∣
2

≤ Cαk
3n−N+4|α|,

(4.6)∣∣∣∂β
y (̂δ1,J0e

−kφ̂)(y0)
∣∣∣
2

≤ Cβk
n+4|β|,

where Cα > 0, Cβ > 0 are constants independent of k and the points x0 and y0. From (4.5)

and (4.6), the lemma follows.

Now, we assume that D0 ⋐ M(q). Fix D0 ⋐ D̃0 ⋐ M(q) and take τ(x) ∈ C ∞
0 (D̃0), τ = 1

on D0.

Lemma 4.2. With the assumptions and notations above, for every N > 1 and m ∈ N, there

exists CN,m > 0 independent of k such that
∣∣∣T(q),(1−τ)f ,I,J

k,k−N ,s,̂s
(x, y)

∣∣∣
Cm(D0×D1)

≤ CN,mk
2n−N

2 +2m,

for every strictly increasing multi-indices I, J, |I| = |J| = q.

Proof. Fix α,β ∈ N
2n
0 , |I0| = |J0| = q, I0, J0 are strictly increasing and (p, y0) ∈ D0 × D1.

Take
{
δ1, δ2, . . . , δdk

}
so that

∣∣∣∂β
y (̂δ1,J0e

−kφ̂)(y0)
∣∣∣
2

=
dk∑

j=1

∣∣∣∂β
y (̂δj,J0e

−kφ̂)(y0)
∣∣∣
2
. (4.7)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 915

Assume that aI0,I0(p, p, k) ≤ 0, where aI,J(x, y, k) is as in (3.11). From (3.12) and (3.10), we

have ∣∣∣∂α
x ∂

β
y T

(q),(1−τ)f ,I0,J0
k,k−N ,s,̂s

(p, y0)
∣∣∣

=

∣∣∣∣∣∣

dk∑

j=1

∂α
x (̃gj,I0e

−kφ)(p)( (1 − τ)f δ1 | gj )k∂β
y (̂δ1,J0e

−kφ̂)(y0)

∣∣∣∣∣∣

≤ C

√√√√√
dk∑

j=1

∣∣∂α
x (̃gj,I0e

−kφ)(p)
∣∣2
∣∣∣∂β

y (̂δ1,J0e
−kφ̂)(y0)

∣∣∣

≤ Cα,β(k3n−N+4|α|kn+4|β|)
1
2 = Cα,βk

2n−N
2 +2|α|+2|β|, (4.8)

where Cα,β > 0, C > 0 are constants independent of k and the points p, y0.

Now, we assume that aI0,I0(p, p, k) > 0. We de�ne now uk is as in (3.13) and g1 as in (3.19).

Since g1 ≡ uk mod O(k−∞) and uk(x) ≡ 0 mod O(k−∞) if dist (x, p) ≥ c
log k√

k
, where

c > 0 is a constant independent of k, we conclude that
∣∣∣∂α

x (̃g1,I0e
−kφ)(p)( (1 − τ)f δ1 | g1 )k∂

β
y (̂δ1,J0e

−kφ̂)(y0)
∣∣∣ ≡ 0 mod O(k−∞). (4.9)

From (3.21) and (3.10), we have
∣∣∣∣∣∣

dk∑

j=2

∂α
x (̃gj,I0e

−kφ)(p)( (1 − τ)f δ1 | gj )k∂β
y (̂δ1,Je

−kφ̂)(y0)

∣∣∣∣∣∣

≤ C1

√√√√√
dk∑

j=2

∣∣∂α
x (̃gj,I0e

−kφ)(p)
∣∣2
∣∣∣∂β

y (̂δ1,Je
−kφ̂)(y0)

∣∣∣

≤ C̃α,β(k3n−N+4|α|kn+4|β|)
1
2 = C̃α,βk

2n−N
2 +2|α|+2|β|, (4.10)

where C1 > 0, C̃α,β > 0 are constants independent of k and the points p, y0. From (4.9) and

(4.10), we obtain
∣∣∣∂α

x ∂
β
y T

(q),(1−τ)f ,I0,J0
k,k−N ,s,̂s

(p, y0)
∣∣∣ ≤ Ĉα,βk

2n−N
2 +2|α|+2|β|, (4.11)

where Ĉα,β > 0 is a constant independent of k and the points p, y0.

From (4.8) and (4.11), the lemma follows.

Lemma 4.3. With the assumptions and notations above, assume that D0
⋂

D1 = ∅. Then, for
every N > 1 and m ∈ N, there exists CN,m > 0 independent of k such that

∣∣∣T(q),τ f ,I,J

k,k−N ,s,̂s
(x, y)

∣∣∣
Cm(D0×D1)

≤ CN,mk
2n−N

2 +2m,

for every I, J strictly increasing, |I| = |J| = q.
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916 C.-Y. HSIAO AND G. MARINESCU

Proof. Fix α,β ∈ N
2n
0 , |I0| = |J0| = q, I0, J0 are strictly increasing and (p, y0) ∈ D0 × D1.

Take
{
δ1, δ2, · · · , δdk

}
so that

∣∣∣∂β
y (̂δ1,J0e

−kφ)(y0)
∣∣∣
2

=
dk∑

j=1

∣∣∣∂β
y (̂δj,J0e

−kφ̂)(y0)
∣∣∣
2
. (4.12)

Assume that aI0,I0(p, p, k) ≤ 0, where aI,J(x, y, k) is as in (3.11). We can repeat the procedure

in the proof of Lemma 4.2 and conclude that
∣∣∣∂α

x ∂
β
y T

(q),τ f ,I0,J0
k,k−N ,s,̂s

(p, y0)
∣∣∣ ≤ Cα,βk

2n−N
2 +2|α|+2|β|, (4.13)

where Cα,β > 0 is a constant independent of k and the points p and y0. Now, we assume that

aI0,I0(p, p, k) > 0. Let g1 be as in (3.19), where uk is as in (3.13). From Lemma 3.6 and (3.13),

we have

g̃1(x)e
−kφ(x) ≡ 1√

aI0,I0(p, p, k)
eik9(x,p) χ

(∣∣x − p
∣∣2

ε

)∑

|I|=q

′
dI,I0(x, p, k)e

I(x) mod O(k−∞),

(4.14)
∂α
x (̃g1,I0e

−kφ)(p) ≡
√
aI0,I0(p, p, k) mod O(k−∞).

From (4.14), it is straightforward to see that for everyN ∈ N, there existsCN > 0 independent

of k and the points p and y0 such that
∣∣∣∂α

x (̃g1,I0e
−kφ)(p)( τ f δ1 | g1 )k∂

β
y (̂δ1,J0e

−kφ̂)(y0)
∣∣∣

≤
∫

e−kIm9(x,p)χ

(∣∣x − p
∣∣2

ε

)∑

|I|=q

′ ∣∣dI,I0(x, p, k)
∣∣ |τ(x)|

∣∣f (x)
∣∣ dvM(x)

×
∑

|I|=q

′
sup

{∣∣∣̂δ1,I(x)e−kφ̂(x)∂
β
y (̂δ1,J0e

−kφ̂)(y0)
∣∣∣ ; x ∈ Suppχ

(∣∣x − p
∣∣2

ε

)
⋐ D̃0

}

+CNk
−N . (4.15)

From (3.11), we can check that

∑

|I|=q

′ ∣∣dI,I0(x, p, k)
∣∣ ≤ Cαk

n+|α|, ∀x ∈ Suppχ

(∣∣x − p
∣∣2

ε

)
, (4.16)

where Cα > 0 is a constant independent of k and the point p. F rom (4.16) and (3.4), it is

not-di�cult to check that
∫

e−kIm9(x,p)χ

(∣∣x − p
∣∣2

ε

)∑

|I|=q

′ ∣∣dI,I0(x, p, k)
∣∣ |τ(x)|

∣∣f (x)
∣∣ dvM(x) ≤ C0k

|α|, (4.17)

where C0 > 0 is a constant independent of k and the point p. Moreover, from Theorem 3.1,

we see that

∑

|I|=q

′
sup

{∣∣∣̂δ1,I(x)e−kφ̂(x)∂
β
y (̂δ1,J0e

−kφ̂)(y0)
∣∣∣ ; x ∈ Suppχ

(∣∣x − p
∣∣2

ε

)}
≤ Cβk

2n−N
2 +2|β|,

(4.18)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 917

where Cβ > 0 is a constant independent of k and the points p, y0. From (4.15), (4.17), and

(4.18), we conclude that
∣∣∣∂α

x (̃g1,I0e
−kφ)(p)( τ f δ1 | g1 )k∂

β
y (̂δ1,J0e

−kφ̂)(y0)
∣∣∣ ≤ Cα,βk

2n−N
2 +2|α|+2|β|, (4.19)

where Cα,β > 0 is a constant independent of k and the points p, y0.

From (3.21) and (3.10), we have
∣∣∣∣∣∣

dk∑

j=2

∂α
x (̃gj,I0e

−kφ)(p)( τ f δ1 | gj )k∂β
y (̂δ1,J0e

−kφ̂)(y0)

∣∣∣∣∣∣

≤ C2

√√√√√
dk∑

j=2

∣∣∂α
x (̃gj,I0e

−kφ)(p)
∣∣2
∣∣∣∂β

y (̂δ1,J0e
−kφ̂)(y0)

∣∣∣

≤ Ĉα,β(k3n−N+4|α|kn+4|β|)
1
2 = Ĉα,βk

2n−N
2 +2|α|+2|β|, (4.20)

where C2 > 0, Ĉα,β > 0 are constants independent of k and the point p. From (4.19) and

(4.20), the lemma follows.

From Lemmas 4.1–4.3 we deduce:

Theorem 4.4. Let s, ŝ be local trivializing holomorphic sections of L on D0 ⋐ M and D1 ⋐ M,

respectively. Assume that D0 ⋐ M(j), j 6= q or D0 ⋐ M(q) and D0
⋂

D1 = ∅. Then, for every
m ∈ N, N > 1, there exists CN,m > 0 independent of k such that

∣∣∣T(q),f

k,k−N ,s,̂s
(x, y)

∣∣∣
Cm(D0×D1)

≤ CN,mk
2n−N

2 +2m.

Theorem 4.4 implies immediately one half of Theorem 1.1, more precisely (1.11).

We can repeat the proof of Theorem 4.4 and deduce:

Theorem 4.5. Let s, ŝ be local trivializing holomorphic sections of L on D0 ⋐ M and D1 ⋐ M,

respectively. Assume that D0 ⋐ M(j), j 6= q. Then,

T
(q),f
k,s,̂s (x, y) ≡ 0 mod O(k−∞) locally uniformly on D0 × D1.

Assume that D0 ⋐ M(q) and 2
(q)
k has O(k−N) small spectral gap on D0. Suppose that

D0
⋂

D1 = ∅. Then,

T
(q),f
k,s,̂s (x, y) ≡ 0 mod O(k−∞) locally uniformly on D0 × D1.

Let’s explain why in Theorem 4.5, we have “≡ 0 mod O(k−∞)”. Recall that Theorem 4.4

is based on Theorem 3.2 which says that if D0 ⋐ M(q), then, for every N > 1, m ∈ N, there

exists CN,m > 0 independent of k such that
∣∣∣P(q)

k,k−N ,s
(x, y) − eik9(x,y)b(x, y, k)

∣∣∣
Cm(D0×D0)

≤ CN,mk
3n−N+2m, (4.21)
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918 C.-Y. HSIAO AND G. MARINESCU

and if D0 ⋐ M(j), j 6= q, j ∈ {0, 1, 2, . . . , n}, then, for every N > 1, m ∈ N, there exists

C̃N,m > 0 independent of k such that
∣∣∣P(q)

k,k−N ,s
(x, y)

∣∣∣
Cm(D0×D0)

≤ C̃N,mk
3n−N+2m. (4.22)

The estimates. k3n−N+2m in (4.21) and (4.22) imply that we have the estimate. k2n−
N
2 +2m

in Theorem 4.4. Now, we consider the Bergman kernel. As in Theorem 3.2, assume thatD0 ⋐

M(q) and 2
(q)
k has O(k−N) small spectral gap on D0, then

P
(q)
k,s (x, y) − eik9(x,y)b(x, y, k) ≡ 0 mod O(k−∞) on D0 × D0. (4.23)

Moreover, if D0 ⋐ M(j), j 6= q, j ∈ {0, 1, 2, . . . , n}, then

P
(q)
k,s (x, y) ≡ 0 mod O(k−∞) on D0 × D0, (4.24)

by Theorems 4.12 and 4.14 in [27]. From (4.23) and (4.24), we can repeat the proof of

Theorem 4.4 and deduce that in Theorem 4.5, we actually have “≡ 0 mod O(k−∞)”.

5. Asymptotic expansion of Berezin–Toeplitz quantization

In this section, we will establish the full asymptotic expansion for the kernel of the

Toeplitz kernel T
(q),f

k,k−N (·, ·) corresponding to lower energy forms. This leads to the proof of

Theorem 1.1.

Let s be a local trivializing holomorphic section of L on an open set D ⋐ M, |s|2h = e−2φ .

Fix N > 1. We assume that D ⋐ M(q). Put

Sk(x, y) := eik9(x,y)b(x, y, k), (5.1)

where 9(x, y) and b(x, y, k) are as in Theorem 3.2. Fix an open set D0 ⋐ D and τ ∈ C ∞
0 (D)

with τ = 1 on D0. Put

Rk(x, y) =
∫

(P
(q)

k,k−N ,s
(x, z) − Sk(x, z))τ (z)f (z)P

(q)

k,k−N ,s
(z, y)dvM(z). (5.2)

Let {e1, e2, . . . , en} be an orthonormal frame of 30,1(T∗M) on D. Then,
{
eJ ; |J| = q, J is strictly increasing

}

is an orthonormal frame of 30,q(T∗M) on D. As in (3.1), we write

Rk(x, y) =
∑

|I|=|J|=q

′
RI,Jk (x, y)eI(x) ∧ (eJ(y))†,

Sk(x, y) =
∑

|I|=|J|=q

′
SI,Jk (x, y)eI(x) ∧ (eJ(y))† =

∑

|I|=|J|=q

′
eik9(x,y)bI,J(x, y, k)e

I(x) ∧ (eJ(y))†,

P
(q)

k,k−N ,s
(x, y) =

∑

|I|=|J|=q

′
P

(q),I,J

k,k−N ,s
(x, y)eI(x) ∧ (eJ(y))†. (5.3)

It is easy to see that for every |I| = |J| = q, I, J are strictly increasing, we have

RI,Jk (x, y) =
∑

|K|=q

′
∫

(P
(q),I,K

k,k−N ,s
(x, z) − SI,Kk (x, z))τ (z)f (z)P

(q),K,J

k,k−N ,s
(z, y)dvM(z). (5.4)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 919

Take
{
g1(x), g2(x), . . . , gdk(x)

}
and

{
δ1(x), δ2(x), . . . , δdk(x)

}
be orthonormal frames for

Ek−N (M, Lk), where dk ∈ N ∪ {∞}. On D, we write

gj(x) = sk(x)̃gj(x), g̃j(x) =
∑

|J|=q

′
g̃j,J(x)e

J(x) on D, j = 1, . . . , dk,

(5.5)

δj(x) = sk(x)̃δj(x), δ̃j(x) =
∑

|J|=q

′̃
δj,J(x)e

J(x) on D, j = 1, . . . , dk.

Lemma 5.1. With the assumptions and notations above, for every N > 1 and m ∈ N, there

exists CN,m > 0 independent of k such that

∣∣Rk(x, y)
∣∣
Cm(D×D)

≤ CN,mk
2n−N

2 +2m.

Proof. Fix (p, y0) ∈ D × D, strictly increasing I0, J0, |I0| = |J0| = q, and α,β ∈ N
2n
0 . Assume

that aI0,I0(p, p, k) ≤ 0, where aI,J(x, y, k) is as in (3.11). In view of the proof of Lemma 3.5, we

see that
∣∣∣∂α

x ∂α
y P

(q),I0,I0
k,k−N ,s

(p, p)
∣∣∣+

∣∣aI0,I0(p, p)
∣∣ ≤ Cαk

3n−N+4|α|, (5.6)

where Cα > 0 is a constant independent of k and the point p. It is not di�cult to see that for

every |I| = |J| = q, I, J are strictly increasing, we have

RI,Jk (x, y) =
∑

|K|=q

′
∫ ( dk∑

j=1

g̃j,I(x)e
−kφ(x)g̃j,K(z)e−kφ(z) − SI,Kk (x, z)

)
τ(z)f (z)

×
( dk∑

ℓ=1

δ̃ℓ,K(z)e−kφ(z)̃δℓ,J(y)e
−kφ(y)

)
dvM(z). (5.7)

Take
{
g1, g2, . . . , gdk

}
and

{
δ1, δ2, . . . , δdk

}
so that

dk∑

j=1

∣∣∣∂α
x (̃gj,I0e

−kφ)(p)
∣∣∣
2

= ∂α
x ∂α

y P
(q)

k,k−N ,s
(p, p) =

∣∣∣∂α
x (̃g1,I0e

−kφ)(p)
∣∣∣
2
,

(5.8)
dk∑

j=1

∣∣∣∂β
x (̃δj,J0e

−kφ)(y0)
∣∣∣
2

= ∂
β
x ∂

β
y P

(q)

k,k−N ,s
(y0, y0) =

∣∣∣∂β
x (̃δ1,J0e

−kφ)(y0)
∣∣∣
2
.

From (5.8) and (5.7), we get

∂α
x ∂

β
y R

I0,J0
k (p, y0) =

∑

|K|=q

′
∫ (

∂α
x (̃g1,I0e

−kφ)(p)̃g1,K(z)e−kφ(z) − ∂α
x S

I0,K
k (p, z)

)
τ(z)f (z)

× δ̃1,K(z)e−kφ(z)∂
β
y (̃δ1,J0e

−kφ)(y0)dvM(z). (5.9)
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920 C.-Y. HSIAO AND G. MARINESCU

From (5.6), (5.8), and (3.10), we have
∣∣∣∣∣∣
∑

|K|=q

′
∫ (

∂α
x (̃g1,I0e

−kφ)(p)̃g1,K(z)e−kφ(z)τ(z)f (z)̃δ1,K(z)∂
β
y (̃δ1,J0e

−kφ)(y0)e
−kφ(z)dvM(z)

∣∣∣∣∣∣

≤ C

√
∂α
x ∂α

y P
(q),I0,I0
k,k−N ,s

(p, p)
∣∣∣∂β

y (̃δ1,J0e
−kφ)(y0)

∣∣∣

≤ Cα,βk
3
2n−

N
2 +2|α|k

n
2+2|β| = Cα,βk

2n−N
2 +2|α|+2|β|, (5.10)

where C > 0, Cα,β > 0 are constants independent of k and the points p and y0.

It is known by [18, Theorem 3.11] that

∑

|K|=q

′
∫ ∣∣∣∂α

x S
I0,K
k (p, z)

∣∣∣
2
|τ(z)|2 e−2kφ(z)dvM(z) ≡ aI0,I0(p, p, k) mod O(k−∞).

(5.11)

From (5.11) and (5.6), we obtain
∣∣∣∣∣∣
∑

|K|=q

′
∫

∂α
x S

I0,K
k (p, z)τ (z)f (z)̃δ1,K(z)e−kφ(z)∂

β
y (̃δ1,J0e

−kφ)(y0)dvM(z)

∣∣∣∣∣∣

≤ C̃α,βk
2n−N

2 +2|α|+2|β|, (5.12)

where C̃α,β > 0 is a constant independent of k and the points p and y0. From (5.12), (5.10),

and (5.9), we deduce that
∣∣∣∂α

x ∂
β
y R

I0,J0
k (p, y0)

∣∣∣ ≤ Ĉα,βk
2n−N

2 +2|α|+2|β|, (5.13)

where Ĉα,β > 0 is a constant independent of k and the points p and y0.

Now, we assume that aI0,I0(p, p, k) > 0. Take g1 = (P
(q)

k,k−Nuk)/|uk|hk , where uk is as in
(3.13). FromTheorem 3.2 and Lemma 3.6, we can check that for everyN > 0, there isCN > 0

independent of k and the point p such that
∣∣∣∣∣∣
∑

|K|=q

′(
∂α
x (̃g1,I0e

−kφ)(p)̃g1,K(z)e−kφ(z) − ∂α
x S

I0,K
k (p, z)

)
∣∣∣∣∣∣
≤ CNk

−N , ∀z ∈ D (5.14)

and

dk∑

j=2

∣∣∣∂α
x (̃gj,I0e

−kφ)(p)
∣∣∣
2

≤ Cαk
3n−N+4|α|, (5.15)

where Cα > 0 is a constant independent of k and the point p. Take
{
δ1, δ2, . . . , δdk

}
so that

∣∣∣∂β
x (̃δ1,J0e

−kφ)(y0)
∣∣∣
2

= ∂
β
x ∂

β
y P

(q),J0,J0
k,k−N ,s

(y0, y0). (5.16)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 921

From (5.7), (5.14), (5.15), (5.16), and (3.10), we have

∣∣∣∂α
x ∂

β
y R

I0,J0
k (p, y0)

∣∣∣ ≤ C

√√√√√
dk∑

j=2

∣∣∂α
x (̃gj,I0e

−kφ)(p)
∣∣2
∣∣∣∂β

y (̃δ1,J0e
−kφ)(y0)

∣∣∣+ CNk
−N

≤ Cα,βk
2n−N

2 +2|α|+2|β| + CNk
−N , (5.17)

for every N > 0, where C,CN ,Cα,β > 0 are independent of k and the points p and y0. From

(5.17) and (5.13), the lemma follows.

Put

R̃k(x, y) =
∫

Sk(x, z)τ (z)f (z)
(
P

(q)

k,k−N ,s
(z, y) − Sk(z, y)

)
dvM(z). (5.18)

We can repeat the proof of Lemma 5.1 and conclude:

Lemma 5.2. With the assumptions and notations above, for every N > 1 and m ∈ N, there

exists C̃N,m > 0 independent of k such that

∣∣̃Rk(x, y)
∣∣
Cm(D×D)

≤ C̃N,mk
2n−N

2 +2m.

Lemma 5.3. We have
∫

Sk(x, z)τ (z)f (z)Sk(z, y)dvM(z) ≡ eik9(x,y)bf (x, y, k) mod O(k−∞)

locally uniformly onD×D,where bf (x, y, k) ∼
∑∞

j=0 bf ,j(x, y)k
n−j in Sn(1;D×D,30,q(T∗M))⊠

(30,q(T∗M))∗), bf ,0(x, x) = (2π)−nf (x)
∣∣det ṘL(x)

∣∣ IdetW ∗(x), for any x ∈ D0.

Proof. From the stationary phase formula of Melin–Sjöstrand [28], there is a complex phase

function 91(x, y) ∈ C ∞(D × D) with 91(x, x) = 0, Im91(x, y) ≥ c
∣∣x − y

∣∣2 on D × D, for

some c > 0, such that for every bounded function f ∈ C ∞(M), we have
∫

Sk(x, z)τ (z)f (z)Sk(z, y)dvM(z) ≡ eik91(x,y)̃bf (x, y, k) mod O(k−∞) (5.19)

locally uniformly on D × D, where

b̃f (x, y, k) ∼
∞∑

j=0

b̃f ,j(x, y)k
n−j in Sn(1;D × D,30,q(T∗M)) ⊠ (30,q(T∗M))∗),

with b̃f ,j ∈ C ∞(D × D,30,q(T∗M)) ⊠ (30,q(T∗M))∗), j ∈ N . Moreover, for all x ∈ D0

we have bf ,0(x, x) = (2π)−nf (x)
∣∣det ṘL(x)

∣∣ IdetW ∗(x). Basically, here we used the fact that

composition of complex Fourier integral operators is still a complex Fourier integral operator.

Take f = 1. Fix D′ ⋐ {τ = 1}. We claim that
∫

Sk(x, z)τ (z)Sk(z, y)dvM(z) ≡ eik9(x,y)b(x, y, k) mod O(k−∞) (5.20)
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922 C.-Y. HSIAO AND G. MARINESCU

locally uniformly on D′ × D′, where

b(x, y, k) ∼
∞∑

j=0

bj(x, y)k
n−j in Sn(1;D′ × D′,30,q(T∗M) ⊠ (30,q(T∗M))∗),

with bj ∈ C ∞(D′ × D′,30,q(T∗M) ⊠ (30,q(T∗M))∗), j ∈ N . The Sk constructed in [18] is

called approximated Szegö kernel. Sk satis�es

Sk ◦ Sk ≡ Sk mod O(k−∞) on D (5.21)

(see [18, Theorems 3.11 and 3.12]). Relation (5.21) says that
∫

Sk(x, z)Sk(z, y)dvM(z) ≡ Sk(x, y) = eik9(x,y)b(x, y, k) mod O(k−∞) (5.22)

locally uniformly onD×D. Since Sk is properly supported (see the discussion a�er (2.15) for

the meaning of properly supported), the integral (5.22) is well-de�ned. Now,
∫

Sk(x, z)τ (z)Sk(z, y)dvM(z) =
∫

Sk(x, z)Sk(z, y)dvM(z)

−
∫

Sk(x, z)(1 − τ(z))Sk(z, y)dvM(z). (5.23)

Note that Sk(x, y) = O(k−∞) if
∣∣x − y

∣∣ ≥ c, for some c > 0. From this observation, we

conclude that for (x, y) ∈ D′ × D′ (recall that D′ ⋐ {τ = 1})
∫

Sk(x, z)(1 − τ(z))Sk(z, y)dvM(z)

=
∫

z/∈D′
Sk(x, z)(1 − τ(z))Sk(z, y)dvM(z) ≡ 0 mod O(k−∞) (5.24)

locally uniformly on D′ × D′. From (5.22), (5.23), and (5.24), we get (5.20).

We claim that

9(x, y) − 91(x, y) vanishes to in�nite order on diag (D′ × D′). (5.25)

Note that 9(x, x) = 91(x, x) = 0. We assume that there are α0,β0 ∈ N
2n
0 , |α0| + |β0| ≥ 1

and (x0, x0) ∈ D′ × D′, such that

∂α0
x ∂

β0
y

(
91(x, y) − 9(x, y)

)
|(x0,x0) 6= 0,

(5.26)

∂α
x ∂

β
y

(
91(x, y) − 9(x, y)

)
|(x0,x0) = 0, ∀α,β ∈ N

2n
0 , |α| + |β| < |α0| + |β0| .

From (5.19) and (5.20), we have

eik(91(x,y)−9(x,y))̃b1(x, y, k) − b(x, y, k) = e−ik9(x,y)Fk(x, y) on D′ × D′, (5.27)

where Fk ≡ 0 mod O(k−∞) locally uniformly on D′ × D′. From (5.26), it is easy to see that

lim
k→∞

k−n−1∂α0
x ∂

β0
y

(
eik(91(x,y)−9(x,y))̃b1(x, y, k) − b(x, y, k)

)
|(x0,x0)

= i∂α0
x ∂

β0
y

(
9(x, y) − 91(x, y)

)
|(x0,x0 )̃b1,0(x0, x0) 6= 0. (5.28)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 923

It is obviously that

lim
k→∞

k−n−1∂α0
x ∂

β0
y

(
e−ik9(x,y)Fk(x, y)

)
|(x0,x0) = 0. (5.29)

From (5.27) to (5.29), we get a contradiction. The claim follows. Since τ is arbitrary, 9 and

91 are independent of τ , we conclude that 91(x, y) − 9(x, y) vanishes to in�nite order on

D × D. Thus, we can replace 91 by 9 in (5.19). The lemma follows.

From Lemmas 5.1–5.3 and Lemma 4.2, we obtain the following.

Theorem 5.4. With the notations above, let s be local trivializing holomorphic section of L on

D0 ⋐ M. Assume that D0 ⋐ M(q). Then, for every N > 1, m ∈ N, there exists C̃N,m > 0

independent of k such that
∣∣∣T(q),f

k,k−N ,s
(x, y) − eik9(x,y)bf (x, y, k)

∣∣∣
Cm(D0×D0)

≤ C̃N,mk
2n−N

2 +2m,

where

bf (x, y, k) ∈ Sn(1;D0 × D0,3
0,q(T∗M)) ⊠ (30,q(T∗M))∗),

bf (x, y, k) ∼
∞∑

j=0

bf ,j(x, y)k
n−j in Sn(1;D0 × D0,3

0,q(T∗M)) ⊠ (30,q(T∗M))∗), (5.30)

bf ,0(x, x) = (2π)−nf (x)
∣∣ det ṘL(x)

∣∣IdetW ∗(x), ∀x ∈ D0,

and 9 is as in Theorem 3.2.

Proof of Theorem 1.1. From Theorems 4.4 and 5.4, Theorem 1.1 follows.

6. Asymptotics of the composition of Toeplitz operators

In this section, we establish the expansion of the composition of two Toeplitz operators and

prove Theorems 1.3, 1.4, 1.9, 1.10, and 1.11.

Let f , g ∈ C ∞(M) be bounded. For λ ≥ 0, put

T
(q),f ,g
k,λ := T

(q),f
k,λ ◦ T

(q),g
k,λ : L2(0,q)(M, Lk) → E

q
λ (M, Lk)

and set T
(q),f ,g
k := T

(q),f ,g
k,0 .

Theorem 6.1. Let s, ŝ be local trivializing holomorphic sections of L on D0 ⋐ M and D1 ⋐ M,

respectively, |s|2h = e−2φ , |̂s|2h = e−2φ̂ , where D0 and D1 are open sets. Assume that D0 ⋐ M(j),

j 6= q or D0 ⋐ M(q) and D0
⋂

D1 = ∅. Then, for every m ∈ N, N > 1, there exists CN,m > 0

independent of k such that
∣∣∣T(q),f ,g

k,k−N ,s,̂s
(x, y)

∣∣∣
Cm(D0×D1)

≤ CN,mk
3n−N

2 +2m. (6.1)

Proof. The proof is similar to the proof of Theorem 4.4, so we will insist here on the

appearance of the exponent 3n in the power of k in (6.1), compared to 2n in the previous esti-

mates. The argument holds for any complex manifold, not necessarily compact. For simplicity,
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924 C.-Y. HSIAO AND G. MARINESCU

we only consider q = 0. Let s, ŝ be local trivializing holomorphic sections of L on D̃0 ⋐ M and

D̃1 ⋐ M, respectively, |s|2h = e−2φ , |̂s|2h = e−2φ̂ , where D̃0 and D̃1 are open sets. FixD0 ⋐ D̃0,

D1 ⋐ D̃1,D0 andD1 are open sets. Let τ ∈ C ∞
0 (D̃0) and τ = 1 onD0. We will �rst show that

how to estimate the kernel of T
(0),(1−τ)f ,g

k,k−N (x, y) on D0 × D1. Take

{
α1(x),α2(x), . . . ,αdk(x)

}
,
{
δ1(x), δ2(x), . . . , δdk(x)

}

be orthonormal frames for E 0
k−N (M, Lk), where dk ∈ N ∪ {∞}. On D̃0, we write αj(x) =

sk(x)̃αj(x), j = 1, . . . , dk. On D̃1, we write δj(x) = ŝk(x)δ̂j(x), j = 1, . . . , dk. For every y ∈ D̃1,

put

T
(0),g

k,k−N (x, y)(ŝ−ke−kφ̂)(y) :=
dk∑

j,ℓ=1

αj(x)( gδℓ | αj)kδ̂ℓ(y)e
−kφ̂(y). (6.2)

Since
∑dk

j=1

∣∣αj(x)
∣∣2
hk
and

∑dk
j=1

∣∣δj(x)
∣∣2
hk
converge locally uniformly in C∞ topology, for �xed

y, T
(0),g

k,k−N (·, y)(ŝ−ke−kφ̂)(y) is a smooth section of Lk. It is easy to see that for every (x, y) ∈
D0 × D1,

T
(0),(1−τ)f ,g

k,k−N ,s,ŝ
(x, y) =

dk∑

j=1

e−kφ(x)α̃j(x)
(
((1 − τ)f )(·)T(0),g

k,k−N )(·, y)(ŝ−ke−kφ̂)(y) | αj(·)
)
k
.

(6.3)

When M is compact, dk is �nite and dk ≈ kn and it is easy to estimate (6.3). When M is

noncompact, dk could be in�nite, so to estimate (6.3) we need a more detailed analysis. Now,

we �x p ∈ D0. From Theorem 3.2 and Lemma 3.6, we can �nd vk ∈ E 0
k−N (M, Lk) with

‖vk‖k = 1,
∫

M\D0

|vk|2hk dvM = O(k−∞) (6.4)

and ∣∣∣P(0)

k,k−N ,s
(p, p) −

∣∣vk(p)
∣∣2
hk

∣∣∣ . k3n−N . (6.5)

We take α1 = vk and obtain from (6.5) that

dk∑

j=2

e−2kφ(p)
∣∣̃αj(p)

∣∣2 . k3n−N . (6.6)

Now,
∣∣∣e−kφ(p)α̃1(p)

(
((1 − τ)f )(·)T(0),g

k,k−N )(·, y)(ŝ−ke−kφ̂)(y) | α1(·)
)
k

∣∣∣

≤
∣∣∣e−kφ(x)α̃1(p)

∣∣∣
∥∥∥T(0),g

k,k−N (·, y)(ŝ−ke−kφ̂)(y)
∥∥∥
k

∥∥(1 − τ)fα1

∥∥
k
. (6.7)

We claim that
∥∥∥T(0),g

k,k−N (·, y)(ŝ−ke−kφ̂)(y)
∥∥∥
2

k
. kn locally uniformly on y ∈ D1. (6.8)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 925

Fix y0 ∈ D1.We take
{
δ1(x), δ2(x), . . . , δdk(x)

}
so that δ̂1(y0) 6= 0, δ̂j(y0) = 0, j = 2, 3, . . . , dk.

Then,

T
(0),g

k,k−N (x, y0)(ŝ
−ke−kφ̂)(y0) =

dk∑

j=1

αj(x)( gδ1 | αj)kδ̂1(y0)e
−kφ̂(y0). (6.9)

From (6.9), we can check that

∥∥∥T(0),g

k,k−N (·, y0)
∥∥∥
2

k
=

dk∑

j=1

∥∥αj

∥∥2
k

∣∣( gδ1 | αj)k
∣∣2
∣∣∣̂δ1(y0)

∣∣∣
2
e−2kφ̂(y0)

=
∥∥∥P(0)

k,k−N (gδ1)
∥∥∥
2

k
e−2kφ̂(y0)

∣∣δ1(y0)
∣∣2 . (6.10)

Since g is a bounded function, ‖P(0)

k,k−N (gδ1)‖2k ≤ C, for some constant C > 0 independent

of k. Moreover, e−2kφ̂(y0)
∣∣δ1(y0)

∣∣2 . kn locally uniformly on D1. From this observation and

(6.10), the estimate (6.8) follows. Relation (6.4) yields
∥∥(1 − τ)fα1

∥∥
k

= O(k−∞). (6.11)

From (6.7), (6.8) , (6.11) and since
∣∣e−kφ(p)α̃1(p)

∣∣ . k
n
2 , we conclude that

∣∣∣e−kφ(p)α̃1(p)
(
((1 − τ)f )(·)T(0),g

k,k−N )(·, y)(ŝ−ke−kφ̂)(y) | α1(·)
)
k

∣∣∣ = O(k−∞). (6.12)

From (6.6) and (6.8), we have
∣∣∣∣∣∣

dk∑

j=2

e−kφ(p)α̃j(p)
(
((1 − τ)f )(·)T(0),g

k,k−N )(·, y)(ŝ−ke−kφ̂)(y) | αj(·)
)
k

∣∣∣∣∣∣

≤

√√√√√
dk∑

j=2

e−2kφ(p)
∣∣̃αj(p)

∣∣2
√√√√√

dk∑

j=2

∣∣∣
(
((1 − τ)f )(·)T(0),g

k,k−N )(·, y)(ŝ−ke−kφ̂)(y) | αj(·)
)
k

∣∣∣
2

≤

√√√√√
dk∑

j=2

e−2kφ(p)
∣∣̃αj(p)

∣∣2
√√√√√

dk∑

j=1

∣∣∣
(
((1 − τ)f )(·)T(0),g

k,k−N )(·, y)(ŝ−ke−kφ̂)(y) | αj(·)
)
k

∣∣∣
2

=

√√√√√
dk∑

j=2

e−2kφ(p)
∣∣̃αj(p)

∣∣2
∥∥∥P(0)

k,k−N (((1 − τ)f )(·)T(0),g

k,k−N )(·, y)(ŝ−ke−kφ̂)(y))
∥∥∥
k

≤

√√√√√
dk∑

j=2

e−2kφ(p)
∣∣̃αj(p)

∣∣2
∥∥∥((1 − τ)f )(·)T(0),g

k,k−N )(·, y)(ŝ−ke−kφ̂)(y)
∥∥∥
k

. k2n−N . (6.13)

Note that here we still get the exponent 2n − N. From (6.3), (6.12), and (6.13), we get
∣∣∣T(0),(1−τ)f ,g

k,k−N ,s,ŝ
(x, y)

∣∣∣ . k2n−N locally uniformly on D0 × D1. (6.14)
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926 C.-Y. HSIAO AND G. MARINESCU

Thus, to estimate T
(0),f ,g

k,k−N ,s,ŝ
(x, y), we only need to estimate T

(0),τ f ,g

k,k−N ,s,ŝ
(x, y). Let τ̂ ∈ C ∞

0 (D̃1)

and τ̂ = 1 on D1. We can repeat the procedure above and conclude that
∣∣∣T(0),τ f ,(1−τ̂ )g

k,k−N ,s,ŝ
(x, y)

∣∣∣ . k2n−N locally uniformly on D0 × D1. (6.15)

Thus, to estimateT
(0),f ,g

k,k−N ,s,ŝ
(x, y), we only need to estimateT

(0),τ f ,τ̂g

k,k−N ,s,ŝ
(x, y).We now explain how

to estimate T
(0),τ f ,τ̂g

k,k−N ,s,ŝ
(x, y). Take τ1(x) ∈ C ∞

0 (D̃0), τ1 = 1 on Supp τ . We have

T
(0),τ f ,τ̂g

k,k−N = T̃
(0),τ f ,τ̂g

k,k−N + T̂
(0),τ f ,τ̂g

k,k−N ,

T̃
(0),τ f ,τ̂g

k,k−N = P
(0)

k,k−N τ fP
(0)

k,k−N τ1P
(0)

k,k−N τ̂gP
(0)

k,k−N = T
(0),τ f

k,k−N τ1T
(0),τ̂g

k,k−N , (6.16)

T̂
(0),τ f ,τ̂g

k,k−N = P
(0)

k,k−N τ fP
(0)

k,k−N (1 − τ1)P
(0)

k,k−N τ̂gP
(0)

k,k−N = T
(0),τ f

k,k−N (1 − τ1)T
(0),τ̂g

k,k−N .

The estimate of T̃
(0),τ f ,τ̂g

k,k−N ,
is as compact case since

T̃
(0),τ f ,τ̂g

k,k−N ,s,ŝ
(x, y) =

∫
T

(0),τ f

k,k−N ,s,s
(x, z)τ1(z)T

(0),τ̂g

k,k−N ,s,ŝ
(z, y)dvM(z)

and the integral is over some compact set of M. We only need to show how to estimate

T̂
(0),τ f ,τ̂g

k,k−N ,s,ŝ
(x, y). Note that

T̂
(0),τ f ,τ̂g

k,k−N = P
(0)

k,k−N τ fT
(0),1−τ1
k,k−N τ̂gP

(0)

k,k−N . (6.17)

From (6.17), it is easy to see that

T̂
(0),τ f ,τ̂g

k,k−N ,s,ŝ
(x, y)

=
dk∑

j,ℓ=1

α̃j(x)e
−kφ(x)δ̂ℓ(y)e

−kφ̂(y)

×
∫

T
(0),1−τ1
k,k−N ,s,ŝ

(z, u)τ̂ (u)g(u)δ̂ℓ(u)τ (z)f (z)̃αj(z)e
−kφ̂(u)−kφ(z)dvM(u)dvM(z).

(6.18)

Now, �x x0 ∈ D0 and y0 ∈ D1.We take
{
α1(x),α2(x), . . . ,αdk(x)

}
and

{
δ1(x), δ2(x), . . . , δdk(x)

}

so that α̃1(x0) 6= 0, α̃j(x0) = 0, j = 2, 3, . . . , dk, δ̂1(y0) 6= 0, δ̂j(y0) = 0, j = 2, 3, . . . , dk.

Thus,

T̂
(0),τ f ,τ̂g

k,k−N ,s,ŝ
(x0, y0)

= α̃1(x0)e
−kφ(x0)δ̂1(y0)e

−kφ̂(y0)

×
∫

T
(0),1−τ1
k,k−N ,s,ŝ

(z, u)τ̂ (u)g(u)δ̂1(u)τ (z)f (z)̃α1(z)e
−kφ̂(u)−kφ(z)dvM(u)dvM(z).

(6.19)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 927

From Lemma 4.2, we see that |T(0),1−τ1
k,k−N ,s,ŝ

(z, u)| . k2n−N locally uniformly on D̃0 × D̃1. From

this observation and since |̃α1(x0)e
−kφ(x0 )̃δ1(y0)e

−kφ̂(y0)| . kn, we deduce that
∣∣∣T̂(0),τ f ,τ̂g

k,k−N ,s,ŝ
(x0, y0)

∣∣∣ . k3n−N .

Here we get the power 3n.

We have moreover:

Theorem 6.2. With the notations above, let s be local trivializing holomorphic section of L on

D0 ⋐ M. Assume that D0 ⋐ M(q). Then, for every N > 1, m ∈ N, there exists C̃N,m > 0

independent of k such that
∣∣∣T(q),f ,g

k,k−N ,s
(x, y) − eik9(x,y)bf ,g(x, y, k)

∣∣∣
Cm(D0×D0)

≤ C̃N,mk
3n−N

2 +2m,

where

bf ,g(x, y, k) ∈ Sn(1;D0 × D0,3
0,q(T∗M)) ⊠ (30,q(T∗M))∗),

bf ,g(x, y, k) ∼
∞∑

j=0

bf ,g,j(x, y)k
n−j in Sn(1;D0 × D0,3

0,q(T∗M)) ⊠ (30,q(T∗M))∗), (6.20)

bf ,g,0(x, x) = (2π)−nf (x)g(x)
∣∣ det ṘL(x)

∣∣IdetW ∗(x), ∀x ∈ D0,

and 9 is as in Theorem 3.2.

Proof. The proof of this theorem is similar to the proof of Theorem 5.4. We only give the

outline of the proof and for simplicity we consider only q = 0. Fix D0 ⊂ D̃0 ⋐ M(q) and

take τ(x) ∈ C ∞
0 (D̃0), τ = 1 on D0. We may assume that the section s de�ned on D̃0. We can

repeat the proof of Lemma 4.2 with minor changes and conclude that for every N > 1 and

m ∈ N, there is CN,m > 0 independent of k such that
∣∣∣T(0),(1−τ)f ,g

k,k−N ,s
(x, y)

∣∣∣
Cm(D0×D0)

≤ CN,mk
3n−N

2 +2m,

(6.21)∣∣∣T(0),τ f ,(1−τ)g

k,k−N ,s
(x, y)

∣∣∣
Cm(D0×D0)

≤ CN,mk
3n−N

2 +2m.

From (6.21), we only need to consider T
(0),τ f ,τg

k,k−N ,s
. Take τ1(x) ∈ C ∞

0 (D̃0), τ1 = 1 on Supp τ .

We have

T
(0),τ f ,τg

k,k−N = T̃
(0),τ f ,τg

k,k−N + T̂
(0),τ f ,τg

k,k−N ,

T̃
(0),τ f ,τg

k,k−N = P
(0)

k,k−N τ fP
(0)

k,k−N τ1P
(0)

k,k−N τgP
(0)

k,k−N = T
(0),τ f

k,k−N τ1T
(0),τg

k,k−N , (6.22)

T̂
(0),τ f ,τg

k,k−N = P
(0)

k,k−N τ fP
(0)

k,k−N (1 − τ1)P
(0)

k,k−N τgP
(0)

k,k−N = T
(0),τ f

k,k−N (1 − τ1)T
(0),τg

k,k−N .

Let T̃
(0),τ f ,τg

k,k−N,s (x, y), T̂
(0),τ f ,τg

k,k−N ,s
(x, y) ∈ C ∞(D̃0 × D̃0,3

0,q(T∗M)) ⊠ (30,q(T∗M))∗) be the

distribution kernels of s−ke−kφT̃
(0),τ f ,τg

k,k−N skekφ and s−ke−kφT̂
(0),τ f ,τg

k,k−N skekφ , respectively. We

have

T
(0),τ f ,τg

k,k−N ,s
(x, y) = T̃

(0),τ f ,τg

k,k−N ,s
(x, y) + T̂

(0),τ f ,τg

k,k−N ,s
(x, y). (6.23)
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928 C.-Y. HSIAO AND G. MARINESCU

We �rst consider T̂
(0),τ f ,τg

k,k−N ,s
(x, y). Take

{
α1(x),α2(x), . . . ,αdk(x)

}
,
{
δ1(x), δ2(x), . . . , δdk(x)

}

be orthonormal frames for E 0
k−N (M, Lk), where dk ∈ N ∪ {∞}. On D̃0, we write

αj(x) = sk(x)̃αj(x), δj(x) = sk(x)̃δj(x), j = 1, . . . , dk.

It is straightforward to check that

T̂
(0),τ f ,τg

k,k−N ,s
(x, y) =

dk∑

j,s=1

α̃j(x)e
−kφ(x)̃δs(y)e

−kφ(y)

×
∫

T
(0),1−τ1
k,k−N ,s

(z, u)τ (u)g(u)̃δs(u)τ (z)f (z)̃αj(z)e
−kφ(u)−kφ(z)dvM(u)dvM(z).

(6.24)

From Lemmas 4.2, (3.10), and (6.24), it is not di�cult to see that for everyN > 1 andm ∈ N,

there exists CN,m > 0 independent of k such that
∣∣∣T̂(0),τ f ,τg

k,k−N ,s
(x, y)

∣∣∣
Cm(D0×D0)

≤ CN,mk
3n−N

2 +2m. (6.25)

We now consider T̃
(0),τ f ,τg

k,k−N ,s
(x, y). We have

T̃
(0),τ f ,τg

k,k−N ,s
(x, y) =

∫
T

(0),τ f

k,k−N ,s
(x, z)τ1(z)T

(0),τg

k,k−N ,s
(z, y)dvM(z). (6.26)

Put

Sk,f (x, y) = eik9(x,y)bf (x, y, k), Sk,g(x, y) = eik9(x,y)bg(x, y, k),

where 9(x, y) is as in Theorem 3.2 and bf (x, y, k), bg(x, y, k) ∈ Sn(1; D̃0 × D̃0) are as in

Theorem 5.4. Put

Ak(x, y) =
∫

T
(0),τ f

k,k−N ,s
(x, z)τ1(z)T

(0),τg

k,k−N ,s
(z, y)dvM(z) −

∫
Sk,f (x, z)τ1(z)Sk,g(z, y)dvM(z).

From Theorem 5.4, it is straightforward to see that for every N > 1 and m ∈ N, there exists

CN,m > 0 independent of k such that
∣∣Ak(x, y)

∣∣
Cm(D0×D0)

≤ CN,mk
3n−N

2 +2m. (6.27)

We claim that∫
Sk,f (x, z)τ1(z)Sk,g(z, y)dvM(z) ≡ eik9(x,y)bf ,g(x, y, k) mod O(k−∞) (6.28)

locally uniformly on D̃0 × D̃0, where bf ,g(x, y, k) ∈ Sn(1; D̃0 × D̃0),

bf ,g(x, y, k) ∼
∞∑

j=0

bf ,g,j(x, y)k
n−j in Sn(1; D̃0 × D̃0),

with bf ,g,j ∈ C ∞(D̃0× D̃0), and bf ,g,0(x, x) = (2π)−nτ(x)2τ1(x)f (x)g(x)
∣∣ det ṘL(x)

∣∣, x ∈ D̃0.

We use now the theory of complex Fourier integral operator, in particular the fact that

composition of complex Fourier integral operators is still a complex Fourier integral operator.
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 929

Indeed, the complex stationary phase formula of Melin–Sjöstrand [28] tells us that there is

a complex phase 91(x, y) ∈ C ∞(D̃0 × D̃0) with Im91(x, y) ≈
∣∣x − y

∣∣2, such that for

any A(x, y) = eik9(x,y)a(x, y, k), C(x, y) = eik9(x,y)c(x, y, k), where a(x, y, k), c(x, y, k) ∈
Sn(1; D̃0 × D̃0), and every χ ∈ C ∞

0 (D̃0), we have
∫

A(x, z)χ(z)B(z, y)dvM(z) ≡ eik91(x,y)h(x, y, k) mod O(k−∞) (6.29)

locally uniformly on D̃0 × D̃0, where h(x, y, k) ∈ Sn(1; D̃0 × D̃0),

h(x, y, k) ∼
∞∑

j=0

hj(x, y)k
n−j in Sn(1; D̃0 × D̃0)

and h0(x, x) = (2π)−nχ(x)a0(x, x)c0(x, x), x ∈ D̃0, where a0 and c0 denote the leading terms

of a(x, y, k) and c(x, y, k), respectively. In the proof of Lemma 5.3, we proved that 9(x, y) −
91(x, y) vanishes to in�nite order on x = y (see (5.25)). Thus, we can replace 91 in (6.29) by

9 and we get (6.28).

From (6.28), (6.27), (6.25), (6.23), and (6.21), the theorem follows.

Proof of Theorem 1.3. Theorems 6.1 and 6.2 yield immediately Theorem 1.3.

Proof of Theorem 1.9. This follows by using the asymptotics of the Bergman kernel proved

in [18, Theorem 1.6] in the case of an O(k−N) small spectral gap and adapting the proofs of

Theorems 1.1 and 1.3 to the current situation.

Proof of Theorem 1.10. By [18, Theorem8.2], we know that2
(0)
k has anO(k−N) small spectral

gap on every D ⋐ M′ ∩ M(0). This observation and Theorem 1.9 yield Theorem 1.10.

Proof of Theorem 1.11. M\6 is a noncompact complex manifold. Let 2
(0)
k be the Ga�ney

extension of Kodaira Laplacian onM\6 and let P
(0)
k,M\6 be the associated Bergman projection.

By a result of Skoda (see [18, Lemma 7.2]), we know that

P
(0)
k,I = P

(0)
k,M\6 onM\6. (6.30)

Moreover, we know that 2
(0)
k has O(k−N) small spectral gap on every D ⋐ M\6 (see

[18, Theorem 9.1]). This observation, (6.30) and Theorem 1.9 imply Theorem 1.11.

In the following, we will prove Theorem 1.4. Fix N > 1. Let f , g ∈ C ∞
0 (D), D ⋐ M(0).

For simplicity, we may assume that L|D is trivial and let s be a local trivializing holomorphic

section of L on D, |s|2h = e−2φ . Take τ ∈ C∞
0 (D) with τ = 1 on Supp f ∪ Supp g. Put

Rk = T
(0),f

k,k−NT
(0),g

k,k−N − τT
(0),f

k,k−NT
(0),g

k,k−N τ . (6.31)

We can repeat the proof of Lemma 4.2 with minor changes and obtain:

Lemma 6.3. Let s1, s2 be local trivializing holomorphic sections of L on D1 ⋐ M and D2 ⋐ M,

respectively, where D1 and D2 are open sets. Then, for every m ∈ N, there exists Cm > 0
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930 C.-Y. HSIAO AND G. MARINESCU

independent of k such that
∣∣Rk,s1,s2(x, y)

∣∣
Cm(D1×D2)

≤ Cmk
3n−N

2 +2m,

where Rk,s1,s2(x, y) denotes the distribution kernel of Rk,s1,s2 := s−k
1 e−kφ1Rks

k
2e

kφ2 .

In particular, T
(0),f

k,k−NT
(0),g

k,k−N − τT
(0),f

k,k−NT
(0),g

k,k−N τ = O(k3n−
N
2 ) locally in the L2 operator norm.

Let bf ,g(x, y, k) ∈ Sn(1;D × D) be as in Theorem 1.3. Then

bf ,g(x, y, k) ∼
∞∑

j=0

bf ,g,j(x, y)k
n−j in Sn(1;D × D).

Since f , g ∈ C ∞
0 (D), we can take bf ,g(x, y, k), bf ,g,j(x, y) ∈ C ∞

0 (D × D), j ∈ N. Note that

bf ,g(x, y, k) and bf ,g,j(x, y) have uniquely determined Taylor expansion at x = y. Consider

Bk : L
2(M, Lk) → L2(M, Lk)

u 7→ skekφτ

∫
eik9(x,y)bf ,g(x, y, k)s

−ke−kφ(y)τ(y)u(y)dvM(y).

In view of Theorem 1.3 and Lemma 6.3, we see that

Bk − T
(0),f

k,k−NT
(0),g

k,k−N = O(k3n−
N
2 ) locally in the L2 operator norm. (6.32)

Lemma 6.4. For any p ∈ N there exist Cp(f , g) ∈ C ∞
0 (D) such that

bf ,g(x, y, k) ∼
∞∑

p=0

bCp(f ,g)(x, y, k)k
−p in Sn(1;D × D),

where bCp(f ,g)(x, y, k) ∈ Sn(1;D × D) for each p ∈ N.

Proof. Set

C0(f , g) = fg ∈ C
∞
0 (D). (6.33)

From (1.20) and (1.13), we see that

bf ,g,0(x, x) = bC0(f ,g),0(x, x), ∀x ∈ D. (6.34)

Note that bf ,g,0(x, y) and bC0(f ,g),0(x, y) are holomorphic with respect to x and

bf ,g,0(x, y) = bf ,g,0(y, x), bC0(f ,g),0(x, y) = bC0(f ,g),0(y, x).

From this observation and (6.34), it is easy to see that bf ,g,0(x, y) − bC0(f ,g),0(x, y) vanishes to

in�nite order on x = y. Thus, we can take bC0(f ,g),0(x, y) so that bC0(f ,g),0(x, y) = bf ,g,0(x, y)

and hence bf ,g(x, y, k) − bC0(f ,g)(x, y, k) ∈ Sn−1(1,D × D). Consider the expansion

bf ,g(x, y, k) − bC0(f ,g)(x, y, k) ∼
∞∑

j=0

aj(x, y)k
n−1−j in Sn−1(1;D × D), (6.35)

where aj(x, y) ∈ C ∞
0 (D), j ∈ N. Set

C1(f , g)(x) = (2π)na0(x, x)
∣∣ det ṘL(x)

∣∣−1 ∈ C
∞
0 (D). (6.36)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 931

From (1.13), we have bC1(f ,g),0(x, x) = a0(x, x) and as in the discussion above, we can take

bC1(f ,g),0(x, y) so that bC1(f ,g),0(x, y) = a0(x, y) and hence

bf ,g(x, y, k) − bC0(f ,g)(x, y, k) − 1

k
bC1(f ,g)(x, y, k) ∈ Sn−2(1,D × D).

Continuing inductively, the lemma follows.

Proof of Theorem 1.4. Let a(x, y, k) ∈ Sn−j0(1,D × D), j0 ∈ N. Consider the operator

Ak : L
2(M, Lk) → L2(M, Lk)

u 7→ skekφτ

∫
eik9(x,y)a(x, y, k)s−ke−kφ(y)τ(y)u(y)dvM(y).

By [18, Theorem 3.11], we have

Ak = O(k−j0) locally in the L2 operator norm. (6.37)

For every p ∈ N put

Bk,p : L
2(M, Lk) → L2(M, Lk)

u 7→ skekφτ

∫
eik9(x,y)bCp(f ,g)(x, y, k)s

−ke−kφ(y)τ(y)u(y)dvM(y).

As in (6.32), we can check that for p = 0, 1, 2, . . . ,

Bk,p − T
(0),Cp(f ,g)

k,k−N = O(k3n−
N
2 ) locally in the L2 operator norm. (6.38)

Moreover, from (6.37) and Lemma 6.4, we have

Bk −
ℓ∑

p=0

Bk,pk
−p = O(k−ℓ−1) locally in the L2 operator norm, ℓ = 0, 1, 2, . . . . (6.39)

From (6.32), (6.38), and (6.39), we conclude that

T
(0),f

k,k−NT
(0),g

k,k−N −
ℓ∑

p=0

T
(0),Cp(f ,g)

k,k−N k−p = O(k−ℓ−1 + k3n−
N
2 ), ℓ = 0, 1, 2, . . . ,

locally in the L2 operator norm. Moreover, we have C0(f , g) = C0(g, f ) = fg by (6.33). We

also have C1(f , g) = − 1
2π 〈 ∂f | ∂g 〉ω by (7.36), so as in [27, (0.23)] we obtain

C1(f , g) − C1(g, f ) =
√

−1{f , g}, (6.40)

where {f , g} is the Poisson bracket of the functions f , g with respect to the symplectic form

2πω onM(0) (see also [25, (4.89)], [24, (7.4.3)]). Therefore (1.23) follows.

Recall that the Poisson bracket { · , · } on (M, 2πω) is de�ned as follows. For f , g ∈ C ∞(M),

let ξf be the Hamiltonian vector �eld generated by f , which is de�ned by 2πω(ξf , ·) = df .

Then

{f , g} := ξf (dg). (6.41)

Remark 6.5. Berezin introduced in his ground-breaking work [3] a star-product by using

Toeplitz operators. Formal star-products are known to exist on symplectic manifolds by
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932 C.-Y. HSIAO AND G. MARINESCU

De Wilde and Lecomte [12] and Fedosov [14]. The Berezin–Toeplitz star-product gives a

concrete geometric realization of such product. For compact Kähler manifold the Berezin–

Toeplitz star product was introduced in Karabegov and Schlichenmaier [19] and Schlichen-

maier [29]. For general compact symplectic manifolds this was realized inMa andMarinescu

[24, 25] by using Toeplitz operators obtained by projecting on the kernel of theDirac operator.

Due to Theorem 1.4, we can also de�ne an associative star-product on the setM(0) where a

holomorphic line bundle L → M is positive, namely by setting for any f , g ∈ C ∞
0 (M(0)),

f ∗ g :=
∞∑

k=0

Ck(f , g)h̄
k ∈ C

∞(X)[[h̄]]. (6.42)

7. Calculation of the leading coe�cients

In this section, we will give formulas for the top coe�cients of the expansion (1.13) in the

case q = 0, cf. Theorem 7.1. We introduce the geometric objects used in Theorem 7.1 below.

Consider the (1, 1)-form onM,

ω :=
√

−1

2π
RL. (7.1)

OnM(0) the (1, 1)-form ω is positive and induces a Riemannian metric gTMω (·, ·) = ω(·, J·).
In local holomorphic coordinates z = (z1, . . . , zn), put

ω =
√

−1

n∑

j,k=1

ωj,kdzj ∧ dzk,

(7.2)

2 =
√

−1

n∑

j,k=1

2j,kdzj ∧ dzk.

We notice that 2j,k = 〈 ∂
∂zj

| ∂
∂zk

〉, ωj,k = 〈 ∂
∂zj

| ∂
∂zk

〉ω, j, k = 1, . . . , n. Put

h =
(
hj,k
)n
j,k=1

, hj,k = ωk,j, j, k = 1, . . . , n, (7.3)

and h−1 =
(
hj,k
)n
j,k=1

, h−1 is the inverse matrix of h. The complex Laplacian with respect to

ω is given by

△ω = (−2)

n∑

j,k=1

hj,k
∂2

∂zj∂zk
· (7.4)

We notice that hj,k = 〈 dzj | dzk 〉ω, j, k = 1, . . . , n. Put

Vω := det
(
ωj,k

)n
j,k=1

,
(7.5)

V2 := det
(
2j,k

)n
j,k=1

and set

r = △ω logVω,
(7.6)

r̂ = △ω logV2.
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 933

r is called the scalar curvature with respect to ω. Let Rdet2 be the curvature of the canonical

line bundle KM = det31,0(T∗M) with respect to the real two form 2. We recall that

Rdet2 = −∂∂ logV2. (7.7)

Let∇TM
ω be the Levi–Civita connection on (M(0), gTMω ), RTMω = (∇TM

ω )2 its curvature. Let

h be as in (7.3). Put θ = h−1∂h =
(
θj,k
)n
j,k=1

, θj,k ∈ 31,0(T∗M), j, k = 1, . . . , n. θ is the Chern

connection matrix with respect to ω. Then,

RTMω = ∂θ =
(
∂θj,k

)n
j,k=1

=
(
Rj,k

)n
j,k=1

∈ C
∞(M,31,1(T∗M) ⊗ End (T1,0M)),

RTMω (U,V) ∈ End (T1,0M), ∀U,V ∈ T1,0M, (7.8)

RTMω (U,V)ξ =
n∑

j,k=1

〈Rj,k |U ∧ V 〉 ξk
∂

∂zj
, ξ =

n∑

j=1

ξj
∂

∂zj
, U,V ∈ T1,0M.

We denote by 〈 · , · 〉ω the pointwise Hermitian metrics induced by gTMω on 3p,q(T∗M) ⊗
3r,s(T∗M), p, q, r, s ∈ {0, 1, . . . , n}, and by | · |ω the corresponding norms.

Set

∣∣RTMω

∣∣2
ω
:=

n∑

j,k,s,t=1

∣∣〈RTMω (ej, ek)es | et 〉ω
∣∣2 , (7.9)

where e1, . . . , en is an orthonormal frame for T1,0M with respect to 〈 · , · 〉ω. It is straightfor-
ward to see that the de�nition of

∣∣RTMω

∣∣2
ω
is independent of the choices of orthonormal frames.

Thus,
∣∣RTMω

∣∣2
ω
is globally de�ned. The Ricci curvature with respect to ω is given by

Ric ω := −
n∑

j=1

〈RTMω (·, ej) · | ej 〉ω, (7.10)

where e1, . . . , en is an orthonormal frame for T1,0M with respect to 〈 · , · 〉ω. That is,

〈Ric ω |U ∧ V 〉 = −
n∑

j=1

〈RTXω (U, ej)V | ej 〉ω, U,V ∈ TM ⊗R C.

Ric ω is a global (1, 1) form.

Let

D1,0 : C ∞(M,31,0(T∗M)) → C
∞(M,31,0(T∗M) ⊗ 31,0(T∗M)) (7.11)

be the (1, 0) component of the Chern connection on 31,0(T∗M) induced by 〈 · , · 〉ω. That is,
in local coordinates z = (z1, . . . , zn), put

A =
(
aj,k
)n
j,k=1

, aj,k = 〈 dzk | dzj 〉ω, j, k = 1, . . . , n,

and set

A = A−1∂A =
(
αj,k

)n
j,k=1

, αj,k ∈ 31,0(T∗M), j, k = 1, . . . , n. (7.12)

Then, for u =
∑n

j=1 ujdzj ∈ C ∞(M,31,0(T∗M)), we have

D1,0u =
n∑

j=1

∂uj ⊗ dzj +
n∑

j,k=1

ujαk,j ⊗ dzk ∈ C
∞(M,31,0(T∗M) ⊗ 31,0(T∗M)).
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934 C.-Y. HSIAO AND G. MARINESCU

Theorem 7.1. With the assumptions and notations used in Theorem 1.1, the coe�cients

bf ,1(x, x) and bf ,2(x, x) in the expansion (1.12) for q = 0 have the following form: for every

x ∈ D0,

bf ,1(x, x) = (2π)−nf (x) det ṘL(x)
( 1

4π
r̂ − 1

8π
r
)
(x)

+ (2π)−n det ṘL(x)
(

− 1

4π
△ωf

)
(x), (7.13)

bf ,2(x, x) = (2π)−nf (x) det ṘL(x)
( 1

128π2
r2 − 1

32π2
r̂r + 1

32π2
(̂r)2 − 1

32π2
△ω̂r

− 1

8π2

∣∣∣Rdet2

∣∣∣
2

ω
+ 1

8π2
〈Ric ω |Rdet2 〉ω + 1

96π2
△ωr − 1

24π2
|Ric ω|2ω

+ 1

96π2

∣∣RTXω

∣∣2
ω

)
(x) + (2π)−n det ṘL(z)

( 1

16π2
(△ωf )

(
− r̂ + 1

2
r
)

− 1

4π2
〈 ∂∂f |Rdet2 〉ω + 1

8π2
〈 ∂∂f |Ric ω 〉ω + 1

32π2
△2

ωf
)
(x). (7.14)

The formulas given in Theorem 7.1 simplify if we assume thatω = 2. In this case, we have

Vω = V2 and r = r̂. See also [26, Section 2.7], [27, Remark 0.5], concerning the calculation

of the coe�cients for an arbitrary underlying Hermitian metric 2.

Let q = 0 and let

Sk(x, y) = eik9(x,y)b(x, y, k)

be as in (5.1). Note that b(x, y, k) ∈ Sn(1;D0 × D0),

b(x, y, k) ∼
∞∑

j=0

bj(x, y)k
n−j in Sn(1;D0 × D0),

where bj(x, y) ∈ C ∞(D0 × D0), j ∈ N, and b0(x, x) = (2π)−n
∣∣ det ṘL(x)

∣∣. We have
∫

Sk(x, z, k)f (z)Sk(z, y, k)dvM(z) ≡ eik9(x,y)bf (x, y, k) mod O(k−∞) (7.15)

locally uniformly on D0 × D0, where bf (x, y, k) ∈ Sn(1;D0 × D0),

bf (x, y, k) ∼
∞∑

j=0

bf ,j(x, y)k
n−j in Sn(1;D0 × D0), (7.16)

where bf ,j(x, y) ∈ C ∞(D0 × D0), j ∈ N , and b0,f (x, x) = (2π)−nf (x)
∣∣ det ṘL(x)

∣∣. In this

section, we will calculate b1,f (x, x) and b2,f (x, x), x ∈ D0. Fix p ∈ D0. In a small neighborhood

of the point p there exist local coordinates z = (z1, . . . , zn) = x = (x1, . . . , x2n), zj = x2j−1 +
ix2j, j = 1, . . . , n, and a local frame s of L, |s|2h = e−2φ so that

z(p) = 0,

φ(z) =
n∑

j=1

λj
∣∣zj
∣∣2 + φ1(z),
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 935

φ1(z) = O(|z|)4), ∂ |α|+|β|φ1

∂zα∂zβ
(0) = 0 for α,β ∈ N

n, |α| ≤ 1 or |β| ≤ 1 ,

2(z) =
√

−1

n∑

j=1

dzj ∧ dzj + O(|z|).

(7.17)

Until further notice, we work with this local coordinates x and we identify p with the point

x = z = 0. It is well-known (see [18, Section 4.5]) that for every N ∈ N, we have

9(z, 0) = iφ(z) + O(|z|N) , 9(0, z) = iφ(z) + O(|z|N). (7.18)

We have ∫
Sk(0, z, k)f (z)Sk(z, 0, k)dvM(z)

=
∫

D0

eik(9(0,z)+9(z,0))b(0, z, k)b(z, 0, k)f (z)V2(z)dλ(z) + rk, (7.19)

where dλ(z) = 2ndx1dx2 · · · dx2n, dvM(z) = V2(z)dλ(z) and

lim
k→∞

rk

kN
= 0, ∀N ≥ 0.

We notice that since b(z,w, k) is properly supported, we have

b(0, z, k) ∈ C
∞
0 (D0), b(z, 0, k) ∈ C

∞
0 (D0). (7.20)

We recall the stationary phase formula of Hörmander (see [16, Theorem 7.7.5]).

Theorem7.2. Let K ⊂ Dbe a compact set andN a positive integer. If u ∈ C ∞
0 (K), F ∈ C ∞(D)

and Im F ≥ 0 in D, Im F(0) = 0, F′(0) = 0, det F′′(0) 6= 0, F′ 6= 0 in K\ {0} then
∣∣∣∣∣∣

∫
eikF(z)u(z)V2(z)dλ(z) − 2neikF(0)det

(
kF′′(0)

2π i

)− 1
2 ∑

j<N

k−jLju

∣∣∣∣∣∣

≤ Ck−N
∑

|α|≤2N

sup
∣∣∂α

x u
∣∣, k > 0, (7.21)

where C is uniform when F runs in a relatively compact set of C ∞(D), |x|
|F′(x)| has a uniform

bound and

Lju =
∑

ν−µ=j

∑

2ν≥3µ

i−j2−ν〈F′′(0)−1D,D〉ν (hµV2u)(0)

ν!µ! . (7.22)

Here

h(x) = F(x) − F(0) − 1

2
〈F′′(0)x, x〉 (7.23)

and D =
( −i∂x1

...
−i∂x2n

)
.
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936 C.-Y. HSIAO AND G. MARINESCU

We now apply (7.21) to the integral in (7.19). Put

F(z) = 9(0, z) + 9(z, 0).

From (7.17) and (7.18), we see that

F(z) = 2i

n∑

j=1

λj
∣∣zj
∣∣2 + 2iφ1(z) + O(|z|N), ∀N ≥ 0,

(7.24)

h(z) = 2iφ1(z) + O(|z|N), ∀N ≥ 0,

where h is given by (7.23). Moreover, we can check that

det

(
kF′′(0)

2π i

)− 1
2

= k−nπn2−nλ−1
1 λ−1

2 · · · λ−1
n = k−nπn

(
det ṘL(0)

)−1
(7.25)

and

〈F′′(0)−1D,D〉 = i△0 , △0 =
n∑

j=1

1

λj

∂2

∂zj∂zj
· (7.26)

From (7.24), (7.26) and using that h = O(|z|4), it is not di�cult to see that

Lj(b(0, z, k)b(z, 0, k)f ) =
∑

ν−µ=j

∑

2ν≥4µ

(−1)µ2−j△ν
0

(
φ

µ
1 V2b(0, z, k)b(z, 0, k)f

)
(0)

ν!µ! ,

(7.27)

where Lj is given by (7.22). We notice that

b(0, z, k) ≡
∞∑

j=0

bj(0, z)k
n−j mod O(k−∞), b(z, 0, k) ≡

∞∑

j=0

bj(z, 0)k
n−j

mod O(k−∞).

From this observation, (7.27) becomes:

Lj
(
b(0, z, k)b(z, 0, k)f

)

=
∑

ν−µ=j

∑

2ν≥4µ

∑

0≤s+t≤N

(−1)µ2−j k
2n−s−t△ν

0

(
φ

µ
1 V2�s(0, z)bt(z, 0)

)
(0)

ν!µ!

+O(k2n−N−1), (7.28)

for all N ≥ 0. From (7.28), (7.25), (7.21), (7.19) and (7.15), we get

bf (0, 0, k) = (2π)n(det ṘL(0))−1

×
N∑

j=0

kn−j

( ∑

0≤m≤j

∑

ν−µ=m

∑

2ν≥4µ

∑

s+t=j−m

(−1)µ2−m△ν
0

(
φ

µ
1 V2�s(0, z)bt(z, 0)

)
(0)

ν!µ!

)

+ O(kn−N−1), ∀N ≥ 0. (7.29)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 937

Combining (7.29) with (7.16), we obtain

Theorem 7.3. The coe�cients bf ,j of the expansion (7.16) of bf (x, y, k), are given by

bf ,j(0, 0) = (2π)n(det ṘL(0))−1

×
∑

0≤m≤j

∑

ν−µ=m

∑

2ν≥4µ

∑

s+t=j−m

(−1)µ2−m△ν
0

(
φ

µ
1 V2�s(0, z)bt(z, 0)

)
(0)

ν!µ! ,

(7.30)

for all j = 0, 1, . . . . In particular,

bf ,0(0, 0) = (2π)n(det ṘL(0))−1f (0)b0(0, 0)
2, (7.31)

bf ,1(0, 0) = (2π)n(det ṘL(0))−1
(
2f (0)b0(0, 0)b1(0, 0)

+ 1

2
△0

(
V2�0(0, z)b0(z, 0)

)
(0) − 1

4
△2

0

(
φ1V2�0(0, z)b0(z, 0)

)
(0)
)

(7.32)

and

bf ,2(0, 0) = (2π)n(det ṘL(0))−1
(
2f (0)b0(0, 0)b2(0, 0) + f (0)b1(0, 0)

2

+ 1

2
△0

(
V2f (b0(0, z)b1(z, 0) + b1(0, z)b0(z, 0))

)
(0)

− 1

4
△2

0

(
φ1V2f (b0(0, z)b1(z, 0) + b1(0, z)b0(z, 0))

)
(0)

+ 1

8
△2

0

(
V2�0(0, z)b0(z, 0)

)
(0) − 1

24
△3

0

(
φ1V2�0(0, z)b0(z, 0)

)
(0)

+ 1

192
△4

0

(
φ2
1V2�0(0, z)b0(z, 0)

)
(0)
)
. (7.33)

In [18, Section 4.5], we determined all the derivatives of b0(x, y), b1(x, y), b2(x, y) at (0, 0).

From this observation and Theorem 7.3, we can repeat the procedure in [17, Section 4] and

obtain Theorem 7.1. Since the calculation is the same, we omit the details.

Let D1,0 : C ∞(M,31,0(T∗M)) → C ∞(M,31,0(T∗M) ⊗ 31,0(T∗M)) be the (1, 0)

component of the Chern connection on 31,0(T∗M) induced by 〈 · , · 〉ω (see the discussion

a�er (7.11)). From Theorem 7.1 and the proof of Theorem 1.3, we can repeat the proof of

[17, Theorem 1.5] and get the following (see also Ma–Marinescu [24] for another method).

Theorem 7.4. With the notations as in Theorem 1.3, let q = 0. Then, for bf ,g,1, bf ,g,2 in (1.19),

we have

bf ,g,1(x) = bfg,1(x) + (2π)−n det ṘL(x)
(

− 1

2π
〈 ∂f | ∂g 〉ω

)
(x), (7.34)
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938 C.-Y. HSIAO AND G. MARINESCU

bf ,g,2(x) = bfg,2(x)

+ (2π)−n det ṘL(x)
(

− 1

4π2
〈 ∂g ∧ ∂f |Ric ω 〉ω + 1

4π2
〈 ∂g ∧ ∂f |Rdet2 〉ω

+ 1

8π2
〈 ∂△ωf | ∂g 〉ω + 1

8π2
〈 ∂△ωg | ∂ f 〉ω − 1

8π2
〈D1,0∂f |D1,0∂g 〉ω

− 1

4π2
〈 ∂∂f | ∂∂g 〉ω + 1

8π2
〈 ∂f | ∂g 〉ω(−̂r + 1

2
r)
)
(x). (7.35)

Corollary 7.5. The coe�cients C1(f , g) and C2(f , g) of the expansion (1.21) of the composition

T
(0),f

k,k−N ◦ T
(0),g

k,k−N of two Toeplitz operators are given by

C1(f , g) = − 1

2π
〈 ∂f | ∂g 〉ω , (7.36)

C2(f , g) = 1

8π2
〈D1,0∂f |D1,0∂g 〉ω + 1

4π2
〈 ∂g ∧ ∂f |Rdet2 〉ω . (7.37)

Proof. Formula (7.36) follows from (7.34) and

b1,f ,g = b1,fg + b0,C1(f ,g) = b1,fg + (2π)−n(det ṘL)C1(f , g) ,

see [17, (5.21)] or [27, (5.76)]. Formula (7.37) follows as in [17, Section 5.3].

8. Behavior on the degenerate set and theWeyl law

In this section, we will prove Theorems 1.2 and 1.7. We recall �rst the following.

Theorem 8.1 ([18, Theorem 1.3]). Set

Mdeg =
{
x ∈ M; ṘL is degenerate at x ∈ M

}
.

Then for every x0 ∈ Mdeg, ε > 0, N > 1 and everym ∈ {0, 1, . . . , n}, there exist a neighborhood
U of x0 and k0 > 0, such that for all k ≥ k0 we have

∣∣∣P(m)

k,k−N (x, x)
∣∣∣ ≤ εkn, x ∈ U. (8.1)

Proof of Theorem 1.2. Fix x0 ∈ Mdeg, ε > 0 and m ∈ {0, 1, . . . , n}. Let U be a small

neighborhood of x0 as in Theorem 8.1. Let p be any point of U and let s be a local section

of L de�ned in a small open set D ⋐ U of p, |s|2h = e−2φ . Fix |I0| = |J0| = q, I0, J0 are strictly

increasing. Take
{
α1(x),α2(x), . . . ,αdk(x)

}
and

{
β1(x),β2(x), . . . ,βdk(x)

}
be orthonormal

frames for Ek−N (M, Lk) so that

∣∣∣̃α1,I0(p)e
−kφ(p)

∣∣∣
2

=
dk∑

j=1

∣∣∣̃αj,I0(p)e
−kφ(p)

∣∣∣
2
,

∣∣∣β̃1,J0(p)e
−kφ(p)

∣∣∣
2

=
dk∑

j=1

∣∣∣β̃j,J0(p)e
−kφ(p)

∣∣∣
2
,
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where dk ∈ N ∪ {∞} and on D, we write

αj(x) = sk(x)̃αj(x), α̃j(x) =
∑

|J|=q

′
α̃j,J(x)e

J(x) on D, j = 1, . . . , dk,

βj(x) = sk(x)β̃j(x), β̃j(x) =
∑

|J|=q

′
β̃j,J(x)e

J(x) on D, j = 1, . . . , dk.

We have

T
(q),f ,I0,J0
k,k−N (p, p) =

dk∑

j,ℓ=1

α̃j,I0(p)e
−kφ(p)( fβℓ | αj )kβ̃ℓ,J0(p)e

−kφ(p)

= α̃1,I0(p)e
−kφ(p)( fβ1 | α1 )kβ̃1,J0(p)e

−kφ(p). (8.2)

From (8.2), it is not di�cult to see that∣∣∣T(q),f ,I0,J0
k,k−N (p, p)

∣∣∣ ≤ sup
{∣∣f (x)

∣∣ ; x ∈ M
} ∣∣∣P(q)

k,k−N (p, p)
∣∣∣ . (8.3)

From (8.3) and (8.1), the theorem follows.

We now prove Theorem 1.7. We introduce some notations. For λ ≥ 0, put

P
(q)
k,0<µ≤λ

:= E(]0, λ]), E
q
0<µ≤λ(M, Lk) := RangE(]0, λ]).

Recall that E denotes the spectral measure of 2
(q)
k . Let P

(q)
k,0<µ≤λ

( · , ·) be the Schwartz kernel
of P

(q)
k,0<µ≤λ

. The trace of P
(q)
k,0<µ≤λ

(x, x) is given by

Tr P
(q)
k,0<µ≤λ

(x, x) :=
d∑

j=1

〈
P

(q)
k,0<µ≤λ

(x, x) eJj(x) | eJj(x)
〉
,

where eJ1 , . . . , eJd is a local orthonormal basis of 30,q(T∗M) with respect to 〈 · , · 〉. Now, we
assume thatM is compact. We need the following.

Lemma 8.2. There exists C > 0 independent of k such that

∣∣∣T(q),f
k (x, x) − T

(q),f

k,k−N (x, x)
∣∣∣ ≤ Ck

n
2

√
Tr P

(q)

k,0<µ≤k−N (x, x), ∀x ∈ M. (8.4)

Proof. Let p be any point ofM and let s be a local trivializing holomorphic section of L de�ned

in a small open set D ⋐ U of p, |s|2h = e−2φ . Fix |I0| = |J0| = q, I0, J0 are strictly increasing.

Take
{
α1(x),α2(x), . . . ,αmk

(x)
}
,
{
β1(x),β2(x), . . . ,βmk

(x)
}
to be orthonormal frames for

E
q
0 (M, Lk) and

{
αmk+1(x),αmk+2(x), . . . ,αdk(x)

}
,
{
βmk+1(x),βmk+2(x), . . . ,βdk(x)

}

to be orthonormal frames for E
q

0<µ≤k−N (M, Lk) so that

∣∣∣̃α1,I0(p)e
−kφ(p)

∣∣∣
2

=
mk∑

j=1

∣∣∣̃αj,I0(p)e
−kφ(p)

∣∣∣
2
,

∣∣∣̃αmk+1,I0(p)e
−kφ(p)

∣∣∣
2

=
dk∑

j=mk+1

∣∣∣̃αj,I0(p)e
−kφ(p)

∣∣∣
2
,

D
ow

nl
oa

de
d 

by
 [

86
.1

25
.4

5.
1]

 a
t 0

9:
36

 0
8 

A
ug

us
t 2

01
7 



940 C.-Y. HSIAO AND G. MARINESCU

∣∣∣β̃1,J0(p)e
−kφ(p)

∣∣∣
2

=
mk∑

j=1

∣∣∣β̃j,J0(p)e
−kφ(p)

∣∣∣
2
,

∣∣∣β̃mk+1,J0(p)e
−kφ(p)

∣∣∣
2

=
dk∑

j=mk+1

∣∣∣β̃j,J0(p)e
−kφ(p)

∣∣∣
2
,

where dk ∈ N ∪ {∞} and on D, we write

αj(x) = sk(x)̃αj(x), α̃j(x) =
∑

|J|=q

′
α̃j,J(x)e

J(x) on D, j = 1, . . . , dk,

βj(x) = sk(x)β̃j(x), β̃j(x) =
∑

|J|=q

′
β̃j,J(x)e

J(x) on D, j = 1, . . . , dk.

We have

T
(q),f ,I0,J0
k (p, p)

= α̃1,I0(p)e
−kφ(p)( fβ1 | α1 )kβ̃1,J0(p)e

−kφ(p)

= T
(q),f ,I0,J0
k,k−N (p, p) − α̃mk+1,I0(p)e

−kφ(p)( fβ1 | αmk+1 )kβ̃1,J0(p)e
−kφ(p)

− α̃mk+1,I0(p)e
−kφ(p)( fβmk+1 | αmk+1 )kβ̃mk+1,J0(p)e

−kφ(p)

− α̃1,I0(p)e
−kφ(p)( fβmk+1 | α1 )kβ̃mk+1,J0(p)e

−kφ(p). (8.5)

From (8.5), it is easy to see that

∣∣∣T(q),f ,I0,J0
k (p, p) − T

(q),f ,I0,J0
k,k−N (p, p)

∣∣∣ ≤ C1k
n
2

√
Tr P

(q)

k,0<µ≤k−N (p, p),

where C1 > 0 is a constant independent of k and the point p. The lemma follows.

Proof of Theorem 1.7. SinceM(q−1) = ∅ andM(q+1) = ∅, it is known [18, Corollary 1.4],
that for every N > 1,

dimE
q−1

k−N (M, Lk) = o(kn), dimE
q+1

k−N (M, Lk) = o(kn). (8.6)

Moreover, it is easy to see that

dimE
q

0<µ≤k−N (M, Lk) ≤ dimE
q−1

k−N (M, Lk) + dimE
q+1

k−N (M, Lk). (8.7)

From (8.6) and (8.7), we have

∫

M

√
TrP

(q)

k,0<µ≤k−N (x, x)dvM(x) ≤ C0

√∫

M
TrP

(q)

k,0<µ≤k−N (x, x)dvM(x)

= C0

√
dimE

q

0<µ≤k−N (M, Lk)

= o(k
n
2 ), (8.8)
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where C0 > 0 is a constant independent of k. From (8.8) and (8.4), we conclude that

lim
k→∞

k−n
∣∣∣T(q),f

k (x, x) − T
(q),f

k,k−N (x, x)
∣∣∣ = 0 in L1(0,q)(M). (8.9)

In view of Theorem 1.5, we see that

lim
k→∞

∣∣∣k−nT
(q),f

k,k−N (x, x) − (2π)−n
∣∣det ṘL(x)

∣∣ f (x)1M(q)(x)IdetW ∗(x)
∣∣∣ = 0 (8.10)

in L1
(0,q)(M). From (8.9) and (8.10), the theorem follows.
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