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Abstract On a relatively compact strictly pseudoconvex domain with smooth 
boundary in a complex manifold of dimension . n we consider a Toeplitz operator 
.TR with symbol a Reeb-like vector field. R near the boundary. We show that the ker-
nel of a weighted spectral projection .χ(k−1TR), where . χ is a cut-off function with 
compact support in the positive real line, is a semi-classical Fourier integral operator 
with complex phase, hence admits a full asymptotic expansion as .k → +∞. More  
precisely, the restriction to the diagonal .χ(k−1TR)(x, x) decays at the rate . O(k−∞)

in the interior and has an asymptotic expansion on the boundary with leading term 
of order.kn+1 expressed in terms of the Levi form and the pairing of the contact form 
with the vector field . R. 

Keywords Bergman projector · Szegö projector · Toeplitz operator ·
Semi-classical Fourier intergral operator 

1 Introduction 

Since the introduction of the Bergman kernel in [ 1], and the subsequent groundbreak-
ing work by Hörmander [ 9], Fefferman [ 7], and Boutet de Monvel and Sjöstrand [ 4], 
the study of the Bergman kernel has been a central subject in several complex vari-
ables and complex geometry. 

Let .M be a relatively compact strictly pseudoconvex domain with smooth 
boundary in a complex manifold.M ' and let.B : L2(M) → H 0

(2)(M) be the Bergman 
projection, that is, the orthogonal projection from the space of square-integrable func-
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tions.L2(M) onto the space of.L2 holomorphic functions on. M . The Bergman kernel 
.B(x, y) is the Schwartz kernel of. B. Fefferman [ 7] obtained the complete asymptotic 
expansion of the diagonal Bergman kernel .B(x, x) at the boundary. Subsequently, 
Boutet de Monvel-Sjöstrand [ 4] described the singularity of the full Bergman kernel 
.B(x, y) by showing that it is a Fourier integral operator with complex phase. They 
also obtained in [ 4] a full asymptotic expansion for the Szegő projection on a strictly 
pseudoconvex CR manifold. All the results mentioned above are about microlocal 
behavior of the Szegő and Bergman kernels. Some of these results were recently 
extended to weakly pseudoconvex domains of finite type in .C2 in [ 16]. The struc-
ture of the Szegő projector also plays an important role in the quantization of CR 
manifolds [ 15]. 

On the other hand, semi-classical analysis plays an important role in modern 
complex geometry. For example, we can study many important problems in complex 
geometry by using semi-classical Bergman kernel asymptotics [ 5, 11, 12, 17]. There-
fore, we believe that it is important to study classical several complex variables from 
semi-classical viewpoint. To this end, it is important to have semiclassical versions 
of the Boutet de Monvel-Sjöstrand’s and Fefferman’s results on strictly pseudocon-
vex CR manifolds and on complex manifolds with strictly pseudoconvex boundary. 
Recently, we obtained jointly with Herrmann and Shen [ 8] a semi-classical version of 
the Boutet de Monvel and Sjöstrand’s result on a strictly peudoconvex CR manifold 
and as applications, we established Kodaira type embedding theorem and Tian type 
theorem on a strictly pseudoconvex CR manifold. 

It is natural to establish similar results as in [ 8] for complex manifolds with 
boundary. In this paper, we consider the operator .χk(TR) constructed by functional 
calculus, where .χk(λ) = χ(k−1λ) is a rescaled cut-off function .χ with compact 
support in the positive real line, .k ∈ R+ is a semi-classical parameter, and .TR is the 
Toeplitz operator on the domain.M associated with a first-order differential operator 
given by a Reeb-like vector field from in the neighborhood of . X . We show that 
.χk(TR) admits a full asymptotic expansion as.k → +∞. This result can be seen as a 
semi-classical version of the Boutet de Monvel-Sjöstrand’s and Fefferman’s results 
on complex manifolds with boundary. 

We now formulate our main result. We refer the reader to Section 2 for the notations 
used here. Let.(M ', J ) be a complex manifold of dimension. n with complex structure 
. J . We fix a Hermitian metric .Θ on .M ' and let .gTM ' = Θ (·, J ·) be the Riemannian 
metric on.T M ' associated to.Θ and let.dvM ' be its volume form. We denote by. ⟨ · | · ⟩
the pointwise Hermitian product induced by .gTM '

on the fibers of .CT M ' and by 
duality on .CT ∗M '. 

Let .M be a relatively compact open subset in .M ' with smooth boundary. We 
set .X = ∂M . We assume throughout the paper that .M is strictly pseudoconvex. Let 
.ρ ∈ C∞(M ',R) be a defining function of .M (cf. (20)), let .Lx = Lx (ρ) be the the 
Levi form associated to . ρ at .x ∈ X (cf. (23)) and let .det(Lx ) be the determinant of 
the Levi form (cf. (24)). We consider the 1-form .ω0 = −dρ ◦ J = i(∂ρ − ∂ρ) and 
we fix the contact form.ω0|T X = 2i∂ρ|T X = −2i∂ρ|T X on .X (cf. (21)–(23)). 

Let.( · | · )M ,.( · | · )M ' be the.L2 inner products on.C∞(M),.C∞
c (M ') induced by the 

given Hermitian metric .⟨ · | ·⟩ respectively (see (28)). Let .L2(M) be the completion
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of .C∞(M) with respect to .( · | · )M . Let  .H 0(M) := {
u ∈ C∞(M); ∂u = 0

}
, where 

.∂ : C∞(M ') → Ω0,1(M ') denotes the standard Cauchy-Riemann operator on .M '. 
Let .H 0

(2)(M) be the completion of .H 0(M) with respect to .( · | ·, )M . 
We denote by .∇ρ the gradient of .ρ with respect to the Riemannian metric 

.gTM '
. We consider the vector field .T = α J

(∇ρ
) + Z on .M ', where .α ∈ C∞(M '), 

.a|X > 0, and .Z ∈ C∞(M ', T M '), .Z |X ∈ C∞(X, HX), cf.  (25)–(26). Let .R be a 
formally selfadjoint first order partial differential operator on .M ', given near .X by 
.R = 1

2 ((−iT ) + (−iT )∗). 
Since .M is strictly pseudoconvex we have by [ 4, 7] that the Bergman projection 

maps the space .C∞(M) of smooth functions up to the boundary into itself, . B :
C∞(M) → C∞(M). Let  

. TR := BRB : C∞(M) → C∞(M).

We extend .TR to .L2(M): 

.
TR : Dom(TR) ⊂ L2(M) → L2(M),

Dom(TR) = {
u ∈ L2(M); BRBu ∈ L2(M)

}
,

(1) 

where .BRBu is defined in the sense of distributions on . M . In Theorem 2, we will 
show that .TR is self-adjoint. We consider a function 

.χ ∈ C∞
c (R+,R), (2) 

and set for .k > 0, 
.χk ∈ C∞

c (R+,R), χk(λ) := χ(k−1λ). (3) 

We let 
. χk(TR) : L2(M) → L2(M), (4) 

be obtained by functional calculus of .TR and let .χk(TR)(· , ·) ∈ D '(M × M) be the 
distribution kernel of .χk(TR). We will show that .χk(TR)(· , ·) ∈ C∞(M × M) (cf. 
Corollary 2). We consider a function . χ with support in .(0,+∞) in order to avoid 
that the spectral operator.χk(TR) takes into account the zero eigenvalue of.TR , whose 
eigenspace contains the kernel of. B. With this choice the image of.χk(TR) is contained 
in .H 0

(2)(M). 
The main result of this paper is the following. 

Theorem 1 Let .M be a relatively compact strictly pseudoconvex domain with 
smooth boundary .X of a complex manifold .M ' of dimension . n. Let . TR : Dom(TR) ⊂
L2(M) → L2(M) be the Toeplitz operator (1) and let .χk(TR) be as in (4). Then the 
following assertion hold: 

(i) For any .τ, τ̂ ∈ C∞(M) with .supp τ ∩ supp τ̂ = ∅ we have 

.τχk(TR)τ̂ = O(k−∞) on M × M . (5)
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(ii) For any .τ ∈ C∞
c (M) we have 

.τχk(TR) = O(k−∞) on M × M . (6) 

(iii) For any .p ∈ X and any open local coordinate patch .U around . p in .M ' we 
have 

. χk(TR)(x, y) =
∫ +∞
0

eiktψ(x,y)b(x, y, t, k)dt + O(k−∞) on (U ×U ) ∩ (M × M),

(7) 
where .b(x, y, t, k) ∈ Sn+1

loc (1; ((U ×U ) ∩ (M × M)) × R+), 

. 

b(x, y, t, k) ∼
∞∑

j=0

b j (x, y, t)k
n+1− j in Sn+1

loc (1; ((U ×U ) ∩ (M × M)) × R+),

b j (x, y, t) ∈ C∞(((U ×U ) ∩ (M × M)) × R+), j = 0, 1, 2, . . . ,

b0(x, x, t) = 1

πn
det(Lx ) χ(tω0(T (x)))tn /≡ 0, x ∈ U ∩ X,

(8) 
and for some compact interval .I ⋐ R+, 

. suppt b(x, y, t, k), suppt b j (x, y, t) ⊂ I, j = 0, 1, 2, . . . , (9) 

and 

.

ψ(z, w) ∈ C∞((U ×U ) ∩ (M × M)), Imψ ≥ 0,

ψ(z, z) = 0, z ∈ U ∩ X,

Imψ(z, w) > 0 if (z, w) /∈ (U ×U ) ∩ (X × X),

dxψ(x, x) = −dyψ(x, x) = −2i∂ρ(x), x ∈ U ∩ X,

ψ|(U×U )∩(X×X) = ϕ−,

(10) 

where .ϕ− is a phase function as in (39), cf.  [13, Theorem 4.1]. Moreover, using the 
local coordinates .z = (x1, . . . , x2n−1, ρ) on .M ' near . p, where . x = (x1, . . . , x2n−1)

are local coordinates on .X near . p with .x(p) = 0, we have 

. ψ(z, w) = ψ(x, y) − iρ(z)(1 + f (z)) − iρ(w)(1 + f (w) ) + O(|(z, w)|3) near (p, p),
(11) 

where . f is smooth near . p and . f = O(|z|). 
The representation (7) shows that near the boundary .χk(TR) is a semi-classical 

Fourier integral operator with complex phase and canonical relation generated by the 
phase .ψ(x, y)t . The integral in (7) is a smooth kernel, since . t runs in the bounded 
interval . I . The  term.O(k−∞) denotes a .k-negligible smooth kernel (cf. (17)–(18)). 

The idea of the proof of Theorem 1 follows the strategy of [ 4, 10]. We express the 
Bergman projection in terms of the Poisson operator and a projector. S on a subspace 
of functions annihilated by a system of pseudo-differential operators simulating . ∂b.
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We can express in the same way a Toeplitz operator.TR in terms of a Toeplitz operator 
on the boundary. X , given by.TR = SRS. The operator. S is a Fourier integral operator 
having a structure similar to the Szegő projector cf. [ 3, 4, 8, 10] and we can apply 
the results obtained in [ 8] for the asymptotics of .χk(TR). 

As a consequence we have the following asymptotics of the kernel of .χk(TR) on 
the diagonal. 

Corollary 1 In the situation of Theorem 1 we have: 

.χk(TR)(z, z) = O(k−∞), as k → ∞ on M. (12) 

.χk(TR)(x, x) =
∞∑

j=0

b j (x)k
n+1− j in Sn+1

loc (1; X) on X, (13) 

where for .x ∈ X and with .b j (x, x, t) as in (8), 

.b j (x) =
∫ +∞

0
b j (x, x, t)dt, j ∈ N0, (14) 

with 

.b0(x) = 1

πn
det(Lx )

∫ +∞

0
χ(tω0(T (x)))tndt, (15) 

Moreover, there exist .C1,C2 > 0 such that for . k large enough . C1kn ≤ Tr χk(TR) ≤
C2kn. 

2 Preliminaries 

2.1 Notions from Microlocal and Semi-classical Analysis 

We shall use the following notations: .N = {1, 2, . . .}, .N0 = N ∪ {0}, . R is the set of 
real numbers, .R+ := {x ∈ R; x > 0}. 

Let .W be a smooth paracompact manifold. We let .TW and .T ∗W denote the 
tangent bundle of .W and the cotangent bundle of .W respectively. The complexified 
tangent bundle of .W and the complexified cotangent bundle of .W are be denoted by 
.CTW and.CT ∗W , respectively. Write.⟨ · , · ⟩ to denote the pointwise duality between 
.TW and .T ∗W . We extend .⟨ · , · ⟩ bilinearly to .CTW × CT ∗W . Let  .G be a smooth 
vector bundle over. W . The fiber of. G at.x ∈ W will be denoted by.Gx . Let.Y ⊂ W be 
an open set. From now on, the spaces of distributions of . Y and smooth functions of 
. Y will be denoted by .D '(Y ) and .C∞(Y ) respectively. Let .E '(Y ) be the subspace of 
.D '(Y )whose elements have compact support in. Y and let.C∞

c (Y ) be the subspace of 
.C∞(Y ) whose elements have compact support in . Y . For  .m ∈ R, let  .Hm(Y ) denote 
the Sobolev space of order .m of . Y . Put
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. Hm
loc (Y ) = {

u ∈ D '(Y ); ϕu ∈ Hm(Y ), for every ϕ ∈ C∞
c (Y )

}
,

Hm
comp (Y ) = Hm

loc(Y ) ∩ E '(Y ) .

If .A : C∞
c (W ) → D '(W ) is continuous, we write .A(x, y) to denote the distribu-

tion kernel of . A. The following two statements are equivalent 

1. . A is continuous: .E '(W ) → C∞(W ), 
2. .A(x, y) ∈ C∞(W × W ). 

If .A satisfies (1) or (2), we say that .A is smoothing on . W . Let  . A, B : C∞
c (W ) →

D '(W ) be continuous operators. We write 

.A ≡ B (on W × W ) (16) 

if .A − B is a smoothing operator on . W . 
Let.H(x, y) ∈ D '(W × W ). We write.H to denote the unique continuous operator 

.C∞
c (W ) → D '(W ) with distribution kernel .H(x, y). In this work, we identify . H

with .H(x, y). 
Let .D be an open set of a smooth manifold . X . For .0 ≤ ρ, δ ≤ 1, .m ∈ R, let  

. Lm
ρ,δ(D) , Lm

cl (D),

denote the space of pseudodifferential operators on .D of order .m type .(ρ, δ) and 
the space of classical pseudodifferential operators on .D of order .m respectively. 
Let .W ⊂ R

N be an open set. For .m ∈ R, .0 ≤ ρ, δ ≤ 1, let  .Smρ,δ(W × R
N1) be the 

Hörmander symbol space on.W × R
N1 of order. m and type.(ρ, δ). Let. Smcl (W × R

N1)

be the classical symbol space on .W × R
N1 of order . m. 

Let .W1 be an open set in .RN1 and let .W2 be an open set in .RN2 . A  .k-dependent 
continuous operator .Fk : C∞

c (W2) → D '(W1) is called.k-negligible on.W1 × W2 if, 
for . k large enough, .Fk is smoothing and, for any .K ⋐ W1 × W2, any multi-indices 
. α, . β and any .N ∈ N, there exists .CK ,α,β,N > 0 such that 

.

||∂α
x ∂β

y Fk(x, y)
|| ≤ CK ,α,β,Nk

−N on K , for k ≫ 1. (17) 

In that case we write 

.Fk(x, y) = O(k−∞) or Fk = O(k−∞) on W1 × W2. (18) 

If .Fk,Gk : C∞
c (W2) → D '(W1) are .k-dependent continuous operators, we write 

.Fk = Gk + O(k−∞) on .W1 × W2 or .Fk(x, y) = Gk(x, y) + O(k−∞) on . W1 × W2

if .Fk − Gk = O(k−∞) on .W1 × W2. 
Let .Ω1 and .Ω2 be smooth manifolds. Let .Fk,Gk : C∞(Ω2) → C∞(Ω1) be .k-

dependent smoothing operators. We write .Fk = Gk + O(k−∞) on .Ω1 × Ω2 if on 
every local coordinate patch .D of .Ω1 and local coordinate patch .D1 of .Ω2, . Fk =
Gk + O(k−∞) on .D × D1.



Semi-classical Spectral Asymptotics of Toeplitz Operators … 245

We recall the definition of the semi-classical symbol spaces. 

Definition 1 Let .W be an open set in .R
N . Let  

. 

S(1;W ) :=
{
a ∈ C∞(W ); for every α ∈ N

N
0 : sup

x∈W
||∂αa(x)

|| < ∞
}
,

S0loc (1;W ) :=
{
(a(·, k))k∈R; for all α ∈ N

N
0 , χ ∈ C∞

c (W ) : sup
k≥1

sup
x∈W

||∂α(χa(x, k))
|| < ∞

}
.

For .m ∈ R, let  

. Smloc(1) := Smloc(1;W ) =
{
(a(·, k))k∈R; (k−ma(·, k)) ∈ S0loc (1;W )

}
.

Hence.a(·, k) ∈ Smloc(1;W ) if for every.α ∈ N
N
0 and.χ ∈ C∞

c (W ), there exists. Cα > 0
independent of . k, such that .|∂α(χa(·, k))| ≤ Cαkm holds on . W . 

Consider a sequence.a j ∈ S
m j

loc (1),. j ∈ N0, where.m j ↘ −∞, and let.a ∈ Sm0
loc (1). 

We say that 

. a(·, k) ∼
∞∑

j=0

a j (·, k) in Sk0loc (1),

if for every .l ∈ N0, we have  .a − ∑l
j=0 a j ∈ Sml+1

loc (1) . For a given sequence .a j as 
above, we can always find such an asymptotic sum . a, which is unique up to an 
element in .S−∞

loc (1) = S−∞
loc (1;W ) := ∩mSmloc (1). 

Similarly, we can define .Smloc (1; Y ) in the standard way, where .Y is a smooth 
manifold. 

2.2 Set Up of Complex Manifolds with Smooth Boundary 

Let .(M ', J ) be a complex manifold of dimension . n, where .J : T M ' → T M ' is the 
complex structure of.M '. We fix a Hermitian metric. Θ on.M ' and let. gTM ' = Θ (·, J ·)
be the Riemannian metric on .T M ' associated to .Θ and let .dvM ' be its volume form. 
We denote by .⟨ · | · ⟩ the pointwise Hermitian product induced by .gTM '

on the fibers 
of the bundle.ᴧq(T ∗(0,1)M ') of.(0, q)-forms for every.q ∈ {0, . . . , n}. Let . Ω0,q(M ')
be the space of smooth .(0, q)-forms on .M ' and let .Ω0,q

c (M ') be the subspace of 
.Ω0,q(M ') whose elements have compact support in .M '. The  .L2 inner product on 
.Ω

0,q
c (M ') is given by 

.( α | β )M ' =
∫

M '
⟨α | β ⟩dvM ' . (19) 

The corresponding.L2 space is denoted by.L2
0,q(M

'), and we set.L2(M ') = L2
0,0(M

'). 
Let .M be a relatively compact open subset of .M ' with smooth boundary. Hence 

.X := ∂M is a submanifold of .M ' of real dimension .2n − 1. We denote by .HX =
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T X  ∩ J (T X  ) the complex tangent bundle of . X . The triple .(X, HX, J ) forms a 
CR structure on .X and we set .T 1,0X := T 1,0M ' ∩ CT X , .T 0,1X := T 1,0X . Let . ρ ∈
C∞(M ',R) be a defining function of . X , that is, 

.M = {x ∈ M ' : ρ(x) < 0}, X = ∂M = {x ∈ M ' : ρ(x) = 0}, and dρ /= 0 on X . (20) 

From now on, we fix a defining function . ρ so that .|dρ| = 1 on . X . Define a real 
.1-form.ω0 on .M ' by 

.ω0 = −dρ ◦ J. (21) 

Hence 
.ω0 = i(∂ρ − ∂ρ), dω0 = 2i∂∂ρ. (22) 

The Levi form of . ρ is Hermitian symmetric map .Lx = Lx (ρ) given by 

. Lx : T 1,0
x X × T 1,0

x X → C, Lx (U, V ) = 1

2i
dω0(U, V ) = ∂∂ρ(U, V ), U, V ∈ T 1,0

x X.

(23) 

We assume that .M is a strictly pseudoconvex domain, that is, the Levi form 
.Lx is positive definite for every .x ∈ X . In this case the hyperplane field .HX is a 
contact structure on . X . Indeed, .HX = ker(ω0|T X ) and for every .u ∈ HX \ {0} we 
have .dω0(u, Ju) = 4L (U,U ) > 0, where .U = 1

2 (u − i Ju) ∈ T 1,0X . So  . dω0|HX

is symplectic, and hence .HX is a contact structure, with . ω0|T X = 2i∂ρ|T X =
−2i∂ρ|T X a contact form. 

We denote by .λ j (x), . j = 1, . . . , n − 1, the eigenvalues of .Lx with respect to 
.⟨ · | · ⟩ (note that .T 0,1X has rank.n − 1). The determinant of the Levi form is defined 
by 

. det(L )x := λ1(x) . . . λn−1(x). (24) 

Let .∇ρ be the gradient of . ρ with respect to the Riemannian metric .gTM '
. We  

define the vector field . T on .M ' by 

.T = α J
(∇ρ

) + Z ∈ C∞(M ', T M '), (25) 

where 

.α ∈ C∞(M '), α|X > 0, Z ∈ C∞(M ', T M '), Z |X ∈ C∞(X, HX). (26) 

The vector field .T does not vanish on a neighborhood of . X . Indeed, we have on . X
that .⟨J (∇ρ), Z⟩ = −⟨∇ρ, J Z⟩ = 0 hence .|T |2 = a2 + |Z |2 > 0. Note also that 

.ω0(T ) = −(dρ ◦ J )(α J (∇ρ) + Z) = αdρ(∇ρ) = α|∇ρ|2 = α on X, (27) 

since .|∇ρ| = |dρ| = 1 on . X .
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Let .U be an open set in .M '. Let  

. 

C∞(U ∩ M), D '(U ∩ M), C∞
c (U ∩ M), E '(U ∩ M),

Hs(U ∩ M), Hs
comp (U ∩ M), Hs

loc (U ∩ M),

(where . s ∈ R) denote the spaces of restrictions to .U ∩ M of elements in 

. 
C∞(U ∩ M '), D '(U ∩ M '), C∞(U ∩ M '), E '(U ∩ M '),
Hs(M '), Hs

comp (M '), Hs
loc (M

'),

respectively. Write 

. 

L2(U ∩ M) :=H 0(U ∩ M), L2
comp (U ∩ M) := H 0

comp (U ∩ M),

L2
loc (U ∩ M) := H 0

loc (U ∩ M).

Let.dvM ' be the volume form on.M ' induced by the Hermitian metric.⟨ · | · ⟩ on. CT M '
and and let .( · | · )M and .( · | · )M ' be the inner products on .C∞(M) and . C∞

c (M ')
defined by 

.

( f | h )M =
∫

M
f hdvM ' , f, h ∈ C∞(M),

( f | h )M ' =
∫

M '
f hdvM ' , f, h ∈ C∞

c (M ').
(28) 

Let.||·||M and.||·||M ' be the corresponding norms with respect to.( · | · )M and. ( · | · )M '

respectively. Let .L2(M) be the completion of .C∞(M) with respect to .( · | · )M . We  
extend .( · | · )M to .L2(M) in the standard way. For .q = 1, 2, . . . , n, let .Ω0,q(M ') be 
the space of smooth.(0, q) forms on.M ' and let.Ω0,q

c (M ') be the subspace of. Ω0,q(M ')
whose elements have compact support in.M '. As in  (28), let .( · | · )M ' be the.L2 inner 
product on .Ω

0,q
c (M ') induced by .dvM ' and .⟨ · | · ⟩. 

The boundary .X = ∂M is a compact CR manifold of dimension .2n − 1 with 
natural CR structure.T 1,0X := T 1,0M ' ∩ CT X . Let.T 0,1X := T 1,0X . The Hermitian 
metric on .CT M ' induces a Hermitian metric .⟨ · | · ⟩ on .CT X and let .( · | · )X be the 
.L2 inner product on .C∞(X) induced by .⟨ · | · ⟩. 

Let .U be an open set in .M '. Let  

. F1, F2 : C∞
c (U ∩ M) → D '(U ∩ M)

be continuous operators. Let .F1(x, y), F2(x, y) ∈ D '((U ×U ) ∩ (M × M)) be the 
distribution kernels of .F1 and .F2 respectively. We write 

.F1 ≡ F2 mod C∞((U ×U ) ∩ (M × M))



248 C.-Y. Hsiao and G. Marinescu

or .F1(x, y) ≡ F2(x, y) mod C∞((U ×U ) ∩ (M × M)) if . F1(x, y) = F2(x, y) +
r(x, y), where .r(x, y) ∈ C∞((U ×U ) ∩ (M × M)). 

Let .Fk,Gk : C∞
c (U ∩ M) → D '(U ∩ M) be .k-dependent continuous operators. 

Let.Fk(x, y),Gk(x, y) ∈ D '((U ×U ) ∩ (M × M)) be the distribution kernels of. Fk

and .Gk respectively. We write 

.Fk(x, y) ≡ Gk(x, y) mod O(k−∞) on (U ×U ) ∩ (M × M) (29) 

or.Fk ≡ Gk mod O(k−∞)on.(U ×U ) ∩ (M × M) if there is a. rk(x, y) ∈ C∞(U ×
U ) with .rk(x, y) = O(k−∞) on .U ×U such that 

. rk(x, y)|(U×U )∩(M×M) = Fk(x, y) − Gk(x, y), for k ≫ 1.

Let .m ∈ R. Let .U be an open set in .M '. Let  

.Smloc(1, (U ×U ) ∩ (M × M)) (30) 

denote the space of restrictions to .(U ×U ) ∩ (M × M) of elements in . Smloc(1,U ×
U ). Let  

. a j ∈ S
m j

loc (1, (U ×U ) ∩ (M × M)), j = 0, 1, 2, . . . ,

with.m j ↘ −∞,. j → ∞. Then there exists.a ∈ Sm0
loc(1, (U ×U ) ∩ (M × M)) such 

that for every .l ∈ N, 

. a −
l−1∑

j=0

a j ∈ Sml

loc(1, (U ×U ) ∩ (M × M)).

If . a and .a j have the properties above, we write 

. a ∼
∞∑

j=0

a j in Sm0
loc(1, (U ×U ) ∩ (M × M)).

3 The Toeplitz Operator . TR

Let .R be a first order partial differential operator on .M ' such that .R is formally 
self-adjoint with respect to .( · | · )M ' and near . X , 

.R = 1

2
((−iT ) + (−iT )∗), (31)
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where .T is given by (25) and .(−iT )∗ is the formal adjoint of .−iT with respect to 
.( · | · )M ' . Let.TR the Toeplitz operator introduced in (1). The goal of this section is to 
prove the following. 

Theorem 2 The operator .TR : Dom(TR) ⊂ L2(M) → L2(M) is self-adjoint. 

For the proof of the theorem 2 we need some preparation. Let 

. ∂
∗
f : Ω0,1(M ') → C∞(M ')

be the formal adjoint of. ∂ with respect to.( · | · )M ' , that is,.( ∂ f | h )M ' = ( f | ∂∗
f h )M ' , 

for any . f ∈ C∞
c (M '), .h ∈ Ω0,1(M '). Let  

. □ f = ∂
∗
f ∂ : C∞(M ') → C∞(M ')

denote the complex Laplace-Beltrami operator on functions. Let 

.P : C∞(X) → C∞(M) (32) 

be the Poisson operator associated to .□ f . The Poisson operator .P satisfies 

.
□ f Pu = 0, u ∈ C∞(X),

γ Pu = u, u ∈ C∞(X),
(33) 

where . γ denotes the operator of restriction to the boundary . X . It is known that . P
extends continuously 

. P : Hs(X) → Hs+ 1
2 (M), ∀s ∈ R

(see [ 2, Page 29]). Let 
. P∗ : D̂ '(M) → D '(X)

be the operator defined by 

. ( P∗u | v )X = ( u | Pv )M , u ∈ D̂ '(M), v ∈ C∞(X),

where .D̂ '(M) denotes the space of continuous linear maps from.C∞(M) to . C with 
respect to .( · | · )M . It is well-known  (see [  2, page 30]) that .P∗ is continuous . P∗ :
Hs(M) → Hs+ 1

2 (X) for every .s ∈ R and 

.P∗ : C∞(M) → C∞(X).
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It is well-known that the operator 

. P∗P : C∞(X) → C∞(X)

is a classical elliptic pseudodifferential operator of order .−1 and invertible since . P
is injective (see [ 2]). Moreover, the operator 

. (P∗P)−1 : C∞(X) → C∞(X)

is a classical elliptic pseudodifferential operator of order one. We define a new inner 
product on .H− 1

2 (X) as follows: 

.[ u | v ]X := ( Pu | Pv)M , u, v ∈ H− 1
2 (X). (34) 

For an operator. A on.H− 1
2 (X) we denote by.A† the formal adjoint of . A with respect 

to the inner product .[ · | · ]X . 
The next result shows that we can link the Bergman projection with a certain 

approximate projector on the boundary . X , which is a Fourier integral operator. 

Theorem 3 ([ 10]) There exists a continuous operator 

.S : C∞(X) → C∞(X), S ∈ L0
1
2 , 12

(X) (35) 

such that 
.B = PS(P∗P)−1P∗, on C∞(M), (36) 

with the following properties, 

.S† = S, S2 = S on D '(X), (37) 

and for any local coordinate patch .(D, x), we have 

.S(x, y) ≡
∫ ∞

0
eitϕ(x,y)s(x, y, t)dt on D × D, (38) 

where .ϕ = ϕ− ∈ C∞(D × D) is the phase function .ϕ− as in [13, Theorem 4.1] 
satisfying 

.

ϕ ∈ C∞(D × D), Im ϕ(x, y) ≥ 0,

ϕ(x, x) = 0, ϕ(x, y) /= 0 if x /= y,

dxϕ(x, y)
||
x=y = −dyϕ(x, y)

||
x=y = ω0(x),

ϕ(x, y) = −ϕ(y, x).

(39) 

and
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.

s(x, y, t) ∼
+∞∑

j=0

s j (x, y)t
n−1− j in Sn−1

1,0 (D × D × R+),

s j (x, y) ∈ C∞(D × D), j = 0, 1, . . . ,

s0(x, x) = 1

2πn
det(Lx ), for all x ∈ D0.

(40) 

Proof We recall here the construction from [ 10] for the convenience of the reader. 
In order to link the Bergman projection to a boundary operator we consider a version 
of the tangential Cauchy-Riemann operator.∂b on. X , denoted.∂β , expressed in terms 
of the Poisson extension operator, the. ∂ operator and the restriction to the boundary, 
namely 

. ∂β : Ω0,★(X) → Ω0,★ +1(X), ∂β = Qγ ∂P,

where.P is the Poisson operator, .γ : Ω0,★(M) → Ω0,★(X) is the restriction operator 
and.Q : H−1/2(X,ᴧ0,★T M ') → ker(∂ρ ∧ ·)∗ ⊂ H−1/2(X,ᴧ0,★T M ') is the orthog-
onal projection, cf. [ 10, (5.1), p. 103]. Note that .Q is the operator .T in [ 10, (3.6), 
p. 96] and .Q is the identity in degree zero. The operator .∂β is a classical pseudo-

differential operator of order one on . X , such that .∂β = ∂b + l.o.t. and .∂
2
β = 0. The  

corresponding Laplace operator (cf. [ 10, (5.6), p. 104]), 

. □(★)
β = ∂β ∂

†
β + ∂

†
β ∂β : Ω0,★(X) → Ω0,★(X)

is a classical pseudo-differential operator of order two on. X , with the same principal 
symbol and the same characteristic manifold as the Kohn Laplacian . □b = ∂b ∂

∗
b +

∂
∗
b ∂b, 

.∑ = {
(x, tω0(x)) ∈ T ∗X : x ∈ X, t ∈ R \ {0}} . (41) 

We have 

. ∑ = ∑+ ∪ ∑−, ∑+ := {(x, tω0(x)) ∈ T ∗X : x ∈ X, t > 0}, ∑− := ∑ \ ∑+.

(42) 
Note that we use here a different sign convention than in [ 10], where .ω0 equals 
.dρ ◦ J (compare [ 10, (1.9), p. 84], (21)), thus we swap here the roles of .∑+ and. ∑−
compared to [ 10]. 

By Theorem [ 10, Theorem 6.15, p. 114] the operator .□(0)
β acting in degree . q = 0

(that is on functions) has a parametrix .A and an approximate projector . S (denoted 
.B− in [ 10]) such that 

.

A ∈ L−1
1
2 , 12

(X), S ∈ L0
1
2 , 12

(X),

A□(0)
β + S ≡ I, □(0)

β A + S ≡ I,

S2 ≡ S, S† ≡ S,

∂β S ≡ 0, ∂
†
β S ≡ 0.

(43)
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Morevover the wavefront set of the distribution kernel .S(·, ·) of . S is given by 

.WF(S(·, ·)) = {(x, ξ, x,−ξ) : (x, ξ) ∈ ∑+} . (44) 

In [ 10, (7.4), p. 120] the operator .PSQ(P∗P)−1P∗ is defined on .Ω0,q(M) and it is 
shown in [ 10, Proposition 7.5] that its kernel equals the Bergman kernel on .(0, q)-
forms up to a smooth form on .M × M . For  .q = 0 the operator .Q is the identity so 
we have .B = PS(P∗P)−1P∗ + F , where .F is smoothing. We set 

.S = S + (P∗P)−1P∗FP. (45) 

Then .S2 = S, .S† = S, and .B = PS(P∗P)−1P∗. We have thus obtained (36) and 
(37). The prpperties (38), (39) and (38) follow from the corresponding properties of 
. S. □

Remark 1 The operator. S is a Toeplitz structure on.∑+ in the sense of [ 3, Definition 
2.10]. 

Lemma 1 For any .u ∈ Dom(TR) there exists .u j ∈ C∞(M), . j = 1, 2, . . ., such that 
.lim j→+∞ u j = Bu in .L2(M) and .lim j→+∞ BRBu j = BRBu in .L2(M). 

Proof Let .u ∈ Dom(TR). We may assume that .u = Bu. Then, 

. u = P(P∗P)−1P∗u = PS(P∗P)−1P∗u.

From (36), we have 

.BRBu = PS(P∗P)−1P∗RPS(P∗P)−1P∗u = PSLS(P∗P)−1P∗u, (46) 

where .L = (P∗P)−1P∗RP . It is straightforward to check that .L ∈ L1
cl (X) and 

. σ 0
L(x, ω0(x)) /= 0

at every.x ∈ X , where.σ 0
L denotes the principal symbol of. L . Since. SLS(P∗P)−1P∗u

∈ H− 1
2 (X), we can repeat the proof of [ 8, Theorem 3.3] and deduce that 

.(P∗P)−1P∗u ∈ H
1
2 (X). Let  .v j ∈ C∞(X), . j = 1, 2, . . ., .v j → (P∗P)−1P∗u in 

.H
1
2 (X) as . j → +∞. Then, .u j := Pv j → P(P∗P)−1P∗u = u in .H 1(M) as . j →

+∞ and .BRBu j → BRBu in .L2(M) as . j → +∞. □

Proof (Proof of Theorem 2) Let  .T ∗
R : Dom(T ∗

R ) ⊂ L2(X) → L2(X) be the . L2

adjoint of .TR . Let .u ∈ Dom(TR). From Lemma 1, for every .v ∈ Dom(TR), we have  

.( u | Av )M = ( Bu | Av )M = lim
j→+∞( Bu j | BRBv j )M , (47) 

where .u j , v j ∈ C∞(M), . j = 1, 2, . . ., such that .lim j→+∞ u j = Bu in .L2(M), 
.lim j→+∞ v j = Bv in .L2(M), .lim j→+∞ BRBu j = BRBu in .L2(M) and .lim j→+∞
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BR  Bv j = BR  Bv in .L2(M). From  (47) and since .Rρ = 0 on . X , we can integrate 
by parts and deduce that 

. ( u | TRv )M = ( TRu | v )M , for every v ∈ Dom(TR).

Thus, .u ∈ Dom(T ∗
R ) and .T ∗

Ru = TRu. Let  .u ∈ Dom(T ∗
R ). Since . C∞(M) ⊂

Dom(TR), we deduce that there is a constant .C > 0 such that 

. |( u | BRBv )M | ≤ C ||v||M , for every v ∈ C∞(M).

Thus, .BRBu ∈ L2(M) and hence .u ∈ Dom(TR). □

4 Asymptotic Expansion of . χk(TR)

In this Section we will reduce the study of the Toeplitz operator .TR to the study of a 
Toeplitz operator.TR on the boundary.X and apply results from [ 8] in order to prove 
Theorem 1. The Toeplitz operator on the boundary is defined by 

.TR := SRS : C∞(X) → C∞(X), (48) 

where . S is as in Theorem 3 and 

.R := (P∗P)−1P∗RP ∈ L1
cl (X). (49) 

Note that by (46) we have  

.TR = P(SRS)(P∗P)−1P∗ = PTR(P∗P)−1P∗. (50) 

We extend .TR to .H− 1
2 (X): 

.

TR : Dom(TR) ⊂ H− 1
2 (X) → H− 1

2 (X),

Dom(TR) =
{
u ∈ H− 1

2 (X); SRSu ∈ H− 1
2 (X)

}
.

(51) 

The operator. S is a Toeplitz structure (generalized Szegő projector) in the sense of [ 3, 
Definition 2.10]. Let.Im(S) be the image of. S in.L2(X). By [  3, Proposition 2.14] the 
spectrum of the operator.TR|Im(S) : Im(S) → Im(S) consists only of isolated eigen-
values of finite multiplicity, is bounded from below and has only .+∞ as a point of 
accumulation. We have .Spec(TR) \ {0} = Spec(TR|Im(S)) \ {0} and the restrictions 
to .R \ {0} of spectral measures of these operators coincide. We conclude that the 
operator .TR in (51) is self-adjoint with respect to .[ · | · ]X and its spectrum consists 
only of isolated eigenvalues, is bounded from below and has only .+∞ as a point of 
accumulation. Moreover, for every .λ ∈ Spec(TR), .λ /= 0, the eigenspace
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. Eλ = {u ∈ Dom(TR) : TRu = λu}

is a finite dimensional subspace of .C∞(X). 

Remark 2 The kernel of .TR contains the kernel of . S, so in order to avoid the zero 
eigenvalue we consider the operator .χk(TR) associated to a function. χ with support 
in .(0,+∞). In this way the image of .χk(TR) is contained in .Im(S). 

Lemma 2 For every .z ∈ C, .z /∈ R, we have 

.(z − TR)−1B = P(z − TR)−1S(P∗P)−1P∗. (52) 

Proof From (36) and (46) we have  

.(z − TR)B = P(z − SRS)(P∗P)−1P∗B = P(z − TR)S(P∗P)−1P∗. (53) 

From (53), we have 

. P(z − TR)−1(P∗P)−1P∗(z − TR)B = B.

Thus, 

. 

(z − TR)−1B = P(z − TR)−1(P∗P)−1P∗B

= P(z − TR)−1(P∗P)−1P∗PS(P∗P)−1P∗

= P(z − TR)−1S(P∗P)−1P∗.

The lemma follows. □

Lemma 3 We have 
.χk(TR) = Pχk(TR)(P∗P)−1P∗. (54) 

Proof From the Helffer-Sjöstrand formula [ 6, §8] and (52), we have 

. 

χk(TR) = 1

2π i

∫

C

∂χ̃k

∂z
(z)(z − TR)−1dzdz

= 1

2π i

∫

C

∂χ̃k

∂z
(z)P(z − TR)−1S(P∗P)−1P∗dzdz

= Pχk(TR)(P∗P)−1P∗,

where .χ̃k denotes an almost analytic extension of . χk . The lemma follows. □

Corollary 2 We have 
.χk(TR)(x, y) ∈ C∞(M × M). (55) 

Proof This follows from (54) and from the fact that .χk(TR) ∈ C∞(X × X). □

We need the following variant of [ 8, Theorem 1.1].
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Theorem 4 Let .(X, HX, J ) be an orientable compact strictly pseudoconvex 
Cauchy-Riemann manifold of dimension .2n − 1, .n ≥ 2. We consider: 

(a) A Riemannian metric .gT X compatible with . J , with volume form .dvX and the 
associated .L2-space .L2(X) = L2(X, dvX ). 

(b) A contact form .ω0 on .X such that the Levi form .L = 1
2dω0(·, J ·) is positive 

definite. We denote by .dvω0 = ω0 ∧ (dω0)
n−1. 

(c) An operator .S : C∞(X) → C∞(X), satisfying (35) and (37)- (40). 
(d) For a formally self-adjoint first order pseudodifferential operator . Q ∈ L1

cl(X)

we consider the Toeplitz operator .TQ = SQS : L2(X) → L2(X). 
Let.(D, x) be any coordinates patch and let.ϕ : D × D → C be the phase function 

satisfying (38) and (39). Then for any formally self-adjoint first order pseudodiffer-
ential operator .Q ∈ L1

cl(X) whose symbol .σQ satisfies .σQ(ω0) > 0 on . X, and for 
any .χ ∈ C∞

c ((0,+∞)), .χ /≡ 0, the Schwartz kernel of .χk(TQ), .χk(λ) := χ
(
k−1λ

)
, 

can be represented for . k large by 

.χk(TQ)(x, y) =
∫ +∞

0
eiktϕ(x,y)A(x, y, t, k)dt + O

(
k−∞)

on D × D, (56) 

where .A(x, y, t, k) ∈ Snloc(1; D × D × R+), 

.

A(x, y, t, k) ∼
+∞∑

j=0

A j (x, y, t)k
n− j in Sn+1

loc (1; D × D × R+),

A j (x, y, t) ∈ C∞(D × D × R+), j = 0, 1, 2, . . . ,

A0(x, x, t) = 1

2πn

dvω0

dvX
(x) χ(tσQ(ω0(x))) t

n−1 /≡ 0,

(57) 

and for some compact interval .I ⋐ R+, 

. suppt A(x, y, t, k), suppt A j (x, y, t) ⊂ I, j = 0, 1, 2, . . . . (58) 

Moreover, for any .τ1, τ2 ∈ C∞(X) such that .supp(τ1) ∩ supp(τ2) = ∅, we have 

.τ1χk(TP)τ2 = O
(
k−∞)

. (59) 

The proof of Theorem 4 is completely analogous to the proof of [ 8, Theorem 1.1] 
on account of the structure of . S as a Fourier integral operator given in Theorem 3. 

Proof (Proof of Theorem 1) We will apply Theorem 4 for .X = ∂M as in Theorem 
1. The metric.gT X in (a) is induced by the metric.gTM '

and the contact form.ω0 in (b) 
is given by (21)–(23). The operator . S in (c) is the operator constructed in Theorem 
3, which in particular fulfills (36). Moreover, we apply Theorem 4 for .Q = R given 
by (49). In this situation, we have
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.
dvω0

dvX
(x) = det(Lx ), σR(ω0) = ω0(T ). (60) 

By (26) and (27) we have .σR(ω0) = ω0(T ) > 0 on . X . 
We first prove (i). Let .τ, τ̂ ∈ C∞(M), .supp τ ∩ supp τ̂ = ∅. We have  

.

τχk(TR)τ̂

= τ Pχk(TR)(P∗P)−1P∗τ̂

= τ Pτ1χk(TR)τ̂1(P
∗P)−1P∗τ̂ + τ P(1 − τ1)χk(TR)τ̂1(P

∗P)−1P∗τ̂

+ τ Pχk(TR)(1 − τ̂1)(P
∗P)−1P∗τ̂ ,

(61) 

where .τ1, τ̂1 ∈ C∞(X), .supp τ1 ∩ supp τ̂1 = ∅, .supp τ ∩ supp(1 − τ1) = ∅, 

. supp(1 − τ̂1) ∩ supp τ̂ = ∅.

We apply now Theorem 4 for the operator .Q = R and we see that . τ1χk(TR)τ̂1 =
O(k−∞) and hence 

.τ Pτ1χk(TR)τ̂1(P
∗P)−1P∗τ̂ = O(k−∞) on M × M . (62) 

From [ 14, Lemma 4.1], we see that 

.(τ P(1 − τ1))(x, y) ∈ C∞(M × X), (63) 

where .(τ P(1 − τ1))(x, y) denotes the distribution kernel of 
.τ P(1 − τ1). From  (63), we can repeat the proof of [ 8, Theorem 4.6] with minor 
changes and deduce that 

.τ P(1 − τ1)χk(TR)τ̂1(P
∗P)−1P∗τ̂ = O(k−∞) on M × M . (64) 

Similarly, from [ 14, Lemma 4.2], we see that 

.((1 − τ̂1)(P
∗P)−1P∗τ̂ )(x, y) ∈ C∞(X × M), (65) 

where .((1 − τ̂1)(P∗P)−1P∗τ̂ )(x, y) denotes the distribution kernel of . (1 − τ̂1)

(P∗P)−1P∗τ̂ . From  (65), we can repeat the proof of [ 8, Theorem 4.6] with minor 
changes and deduce that 

.τ Pχk(TR)(1 − τ̂1)(P
∗P)−1P∗τ̂ = O(k−∞) on M × M . (66) 

From (61), (62), (64) and (66), we get (5). 
We prove now (ii) and (iii). Fix.p ∈ M . We first assume that.p /∈ X and let. U be an 

open set of . p with .U ∩ X = ∅. Let .τ ∈ C∞
c (U ). Since .(τ P)(x, y) ∈ C∞(M × X), 

we can repeat the proof of [ 8, Theorem 4.6] with minor changes and get
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.τ Pχk(TR)(P∗P)−1P∗ = O(k−∞) on M × M . (67) 

From (54) and (67), we get (6). 
Now, assume that .p ∈ X and let .U be an open local coordinate patch of . p in .M '. 

Let .D := U ∩ X . We can repeat the proof of [ 8, Theorem 1.1] (in the situation of 
Theorem 4) and deduce 

.χk(TR)(x, y) =
∫ +∞

0
eiktϕ(x,y)a(x, y, t, k)dt + O

(
k−∞)

on D × D, (68) 

where .a(x, y, t, k) ∈ Snloc(1; D × D × R+), 

. 

a(x, y, t, k) ∼
∞∑

j=0

a j (x, y, t)k
n− j in Snloc(1; D × D × R+),

a j (x, y, t) ∈ C∞(D × D × R+), j = 0, 1, 2, . . . ,

a0(x, x, t) = 1

2πn
det(Lx ) χ(tω0(T (x)))tn−1 /≡ 0,

and for some compact interval .I ⋐ R+, 

. suppt a(x, y, t, k), suppt a j (x, y, t) ⊂ I, j = 0, 1, 2, . . . .

From (68), we can repeat the WKB procedure in [10, Part II,Proposition 7.8, Theorem 
7.9] and get (7). □

Proof (Proof of Corollary 1) The asymptotics .χk(TR)(x, x) = O(k−∞), .k → ∞, 
on .M from (12) follow immediately from (6). Let .p ∈ X be fixed and con-
sider local coordinates near .p on .M ' of the form .z = (x1, . . . , x2n−1, ρ), where 
.x = (x1, . . . , x2n−1) are local coordinates on.X near . p with.x(p) = 0 and the phase 
function .ψ in (7) has the form (11). In this local chart we have near .(p, p), 

.iψ(z, z) = 2ρ(z)
(
1 + O(|z| ) + O(|z|3). (69) 

By (7) we have  

.χk(TP)(z, z) =
∞∑

j=0

kn+1− j
∫ +∞

0
eiktψ(z,z)b j (z, z, t) dt + O(k−∞) (70) 

Since .ψ(x, x) = 0 for .x ∈ X this yields the asymptotic expansion (13) with the 
coefficients (14). The expression (15) of.b0(x) follows from (8). We have. b0(x) > 0
for every.x ∈ X . Note also the exponential decay of the integrands in (70) for. z ∈ M
near . p due to (69) and on account of .ρ(z) < 0.
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The trace of the operator .χk(TP) is given by 

. Tr χk(TP) =
∫

M
χk(TP)(z, z) dvM '(z)

=
∫

{ρ<ε}
χk(TP)(z, z) dvM '(z) +

∫

{ε≤ρ<0}
χk(TP)(z, z) dvM '(z)

=: I1(k) + I2(k). (71) 

where .ε < 0 is chosen small enough. We have .I1(k) = O(k−∞) by (12). By using 
(69) and (70) and the fact that .2k

∫ 0
ε
e2kρdρ → 1 as .k → ∞, we obtain that there 

exist .C1,C2 > 0 such that .C1kn ≤ I2(k) ≤ C2kn for . k large enough. □

Remark 3 It is interesting to compare the result of Corollary 1 to the corresponding 
result regarding Toeplitz operators on the boundary .X (see also [ 8, Corollary 1.2]). 
By Theorem 4 we have for the operator .TR from (48), 

.χk(TR)(x, x) =
∞∑

j=0

A j (x)k
n− j in Sn+1

loc (1; X) on X, (72) 

where 

.A j (x) =
∫ +∞

0
A j (x, x, t)dt, j ∈ N0, (73) 

with .A j (x, x, t) as in (57), and 

.A0(x) = 1

2πn
det(Lx )

∫ +∞

0
χ(tω0(T (x)))tn−1dt. (74) 

Moreover, 

. Tr χk(TR) = kn

2πn

∫

X

∫ +∞

0
det(Lx )χ(tω0(x)) t

n−1dt + O(kn−1) . (75) 

We see that .χk(TR)(x, x) and .χk(TR)(x, x) have an asymptotic expansion on the 
boundary . X , the former with leading term of order .kn+1, the latter of order . kn . On  
the other hand both traces .Tr χk(TR) and .Tr χk(TR) have growth of order .kn as 
.k → +∞. 

Remark 4 If we do not normalize the definition function . ρ such that .|dρ| = 1, 
Theorem 1 holds with the same proof, but we need to take .ω0 = −J ◦ d(ρ/|dρ|). 
With this .ω0 the leading term.b0(x, x, t) has the same formula as in (8).
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