Szegő Kernel Asymptotics on Complete Strictly Pseudoconvex CR Manifolds

Chin-Yu Hsiao ${ }^{1} \cdot$ George Marinescu 2,3 © \cdot Huan Wang ${ }^{4}$

Received: 3 October 2021 / Accepted: 9 June 2022 / Published online: 18 August 2022
© The Author(s) 2022

Abstract

We prove a Bochner-Kodaira-Nakano formula and establish Szegő kernel expansions on complete strictly pseudoconvex CR manifolds with transversal CR \mathbb{R}-action under certain natural geometric conditions. As a consequence we show that such manifolds are locally CR embeddable.

Keywords CR manifolds • Kohn Laplacian • Szegő kernel • Bochner-Kodaira-Nakano formula

Mathematics Subject Classification Primary: 32V20 • 32V30 • Secondary: 32W10, 32L20

[^0]George Marinescu partially supported by the DFG funded project SFB TRR 191 'Symplectic Structures in Geometry, Algebra and Dynamics’ (Project-ID 281071066-TRR 191).
Huan Wang thanks his friends and former colleagues for their help during the Coronavirus pandemic.

[^1]
1 Introduction

The first goal of this paper is to develop a differential geometric formalism on strictly pseudoconvex $C R$ manifolds with \mathbb{R}-action, analogous to the Kähler identities and Bochner-Kodaira-Nakano formula for Hermitian manifolds. We refine in this way Tanaka's formulas in the spirit of Demailly's general version of the latter formulas. This formalism leads to vanishing theorems and L^{2}-estimates for the $\bar{\partial}_{b}$-operator for complete CR manifolds.

The second goal is to generalize the result of Boutet de Monvel-Sjöstrand about the singularities of the Szegő kernel for complete strictly pseudoconvex CR manifolds with \mathbb{R}-action. This entails global and local embeddability theorems for CR manifolds with \mathbb{R}-action, including Sasakian manifolds. Moreover, by applying our result for the Grauert tube of a positive line bundle we obtain a new result about the expansion of the Bergman kernel on complete Kähler manifolds.

Let $\left(X, T^{(1,0)} X\right)$ be a CR manifold of dimension $2 n+1, n \geq 1$. The orthogonal projection $S^{(q)}: L_{0, q}^{2}(X) \rightarrow \operatorname{ker} \square_{b}^{(q)}$ onto $\operatorname{ker} \square_{b}^{(q)}$ is called the Szegó projection, while its distribution kernel $S^{(q)}(x, y)$ is called the Szegó kernel, where $\square_{b}^{(q)}$ denotes the Kohn Laplacian acting on $(0, q)$-forms. The study of the Szegő kernel is a classical subject in several complex variables and CR geometry. If X is compact strictly pseudoconvex and $\square_{b}^{(0)}$ has closed range, Boutet de Monvel-Sjöstrand [5] showed that $S^{(0)}(x, y)$ is a complex Fourier integral operator. The Boutet de Monvel-Sjöstrand description of the Szegő kernel had a profound impact in several complex variables, symplectic and contact geometry, geometric quantization, and Kähler geometry. These ideas also partly motivated the introduction of the recent direct approaches and their various extensions, see [23, 24].

However, almost all the results on Szegő kernel assumed that X is compact, while for non-compact complex manifolds the Bergman kernel asymptotics was comprehensively studied [18, 19, 23-25], and used in the several applications mentioned above. Note that for CR manifolds, besides the global embeddability question [4, 26], there is an important delicate specific issue, namely the local embeddability [1, 20, 22, 27], which will be treated here by the analysis of the Szegő kernel.

The Szegő kernel was used by Boutet de Monvel-Guillemin [6] to introduce the Toeplitz quantization on compact contact manifolds. In the same vein, the question of "quantization commutes with reduction" was studied on CR manifolds in the recent paper [17]. It is natural to extend these results to complete Sasakian manifolds.

Let us see some simple examples. Consider the hypersurface $Y:=\{z=$ $\left.\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} ; \operatorname{Im} z_{n}=f\left(z_{1}, \ldots, z_{n-1}\right)\right\}$, where $f \in \mathscr{C}^{\infty}\left(\mathbb{C}^{n-1}, \mathbb{R}\right)$. Then Y is a non-compact CR manifold carrying many smooth CR functions, but even in this simple example we do not know the behavior of the associated Szegő kernel. Another example is the Heisenberg manifold $\mathbb{H}=\mathbb{C}^{n} \times \mathbb{R}$ with CR structure $T^{(1,0)} \mathbb{H}:=\operatorname{span}\left\{\frac{\partial}{\partial z_{j}}+i \frac{\partial \phi}{\partial z_{j}}(z) \frac{\partial}{\partial x_{2 n+1}}: 1 \leq j \leq n\right\}$, where $\phi \in \mathscr{C}^{\infty}\left(\mathbb{C}^{n}, \mathbb{R}\right)$. Then, \mathbb{H} is also a non-compact CR manifold and the Szegő kernel has been studied when ϕ is quadratic (see [14]). However, for general ϕ there are fewer results. Both Y and \mathbb{H} are non-compact CR manifolds with transversal CR \mathbb{R}-action. Therefore, we think
that the study of the Szegő kernels on non-compact CR manifolds with transversal CR \mathbb{R}-action is a very natural and interesting question.

In [15], the first author obtained the Szegó kernel asymptotic expansion on the nondegenerate part of the Levi form under the assumption that Kohn Laplacian has closed range in L^{2}. The method in [15] works well for non-compact setting, but for general non-compact CR manifolds, the closed range property is not a natural assumption. In the Heisenberg case mentioned above, even for ϕ quadratic, $\square_{b}^{(0)}$ does not have closed range; however, the Szegő kernel still has an asymptotic expansion.

In this paper, we show that $\square_{b}^{(0)}$ has local closed range with respect to a spectral projection Q_{λ} (see Definition 4.12) under certain geometric conditions. Furthermore, combining this local closed range property with a detailed analysis, we establish Szegő kernel asymptotic expansions on non-compact strictly pseudoconvex complete CR manifolds with transversal $C R \mathbb{R}$-action under certain natural geometric conditions. To study the local closed range property, we establish a CR Bochner-Kodaira-Nakano formula analog to [9], see Theorem 3.3, which has its own interest. This is also a refinement of Tanaka's basic identities [28, Theorems 5.1, 5.2] in our context. We remark that the results in this paper hold both for transversal CR \mathbb{R}-action and S^{1} action.

We will work in the following setting. Let X be a connected smooth paracompact manifold of dimension $2 n+1, H X$ be a smooth sub-bundle of $T X$ of rank $2 n$, and J be a smooth complex structure on the fibers of $H X$. Let $T^{(1,0)} X$ be the complex subbundle of the complexification $\mathbb{C} H X$ of $H X$, which corresponds to the i eigenspace of J, that is, $T^{(1,0)} X=\{v-i J v: v \in H X\}$. We say that X is a CR manifold (of hypersurface type) if the formal integrability condition

$$
\begin{equation*}
\left[\mathscr{C}^{\infty}\left(X, T^{(1,0)} X\right), \mathscr{C}^{\infty}\left(X, T^{(1,0)} X\right)\right] \subset \mathscr{C}^{\infty}\left(X, T^{(1,0)} X\right) \tag{1.1}
\end{equation*}
$$

holds. The sub-bundle $H X$ is called Levi distribution and the annihilator $(H X)^{0} \subset$ $T^{*} X$ of $H X$ is called the characteristic bundle of the CR manifold X.

We will assume in the sequel that X is orientable. Since $H X$ is oriented by its complex structure, it follows that $(H X)^{0}$ is a real orientable line bundle, thus trivial. A global frame of $(H X)^{0}$, that is, a real non-vanishing 1-form $\omega_{0} \in \mathscr{C}^{\infty}\left(X, T^{*} X\right)$ such that $(H X)^{0}=\mathbb{R} \omega_{0}$, is called characteristic 1-form.

Given a characteristic 1-form ω_{0} on X the Levi form $\mathscr{L}^{\omega_{0}}$ is defined by

$$
\begin{equation*}
\mathscr{L}=\mathscr{L}_{x}^{\omega_{0}}(u, v)=\frac{1}{2} d \omega_{0}(u, J v), \quad \text { for } u, v \in H_{x} X \tag{1.2}
\end{equation*}
$$

We say that $(X, H X, J)$ is strictly pseudoconvex if there exists a characteristic 1-form ω_{0} the Levi form $\mathscr{L}_{x}^{\omega_{0}}$ is positive definite at every point $x \in X$. If $\mathscr{L}^{\omega_{0}}$ is positive definite, then $d \omega_{0}$ is symplectic on $H X$, thus ω_{0} is a contact form and $H X$ is a contact structure. Associated with a contact form ω_{0} one has the Reeb vector field $T=T^{\omega_{0}}$, uniquely defined by the equations

$$
\begin{equation*}
\omega_{0}(T)=1, \quad d \omega_{0}(T, \cdot)=0 \quad \text { on } X . \tag{1.3}
\end{equation*}
$$

Assumption $1.1\left(X, H X, J, \omega_{0}\right)$ is an orientable strictly pseudoconvex CR manifold of dimension $2 n+1, n \geq 1$, where $H X$ is the Levi distribution, J is the complex structure, and ω_{0} is a contact form. We assume that X is endowed with a smooth locally free \mathbb{R}-action preserving ω_{0} and J such that the infinitesimal generator of the \mathbb{R}-action is a Reeb vector field, denoted T.

We denote by $T^{(1,0)} X$ and $T^{(0,1)} X$ the bundles of tangent vectors of type (1,0) and $(0,1)$, respectively. By Assumption 1.1 the \mathbb{R}-action is CR and transversal (see (2.12) and (2.13)), hence we have a decomposition $\mathbb{C} T X=T^{(1,0)} X \oplus T^{(0,1)} X \oplus \mathbb{C} T$. The Levi form (1.2) induces a Hermitian metric, called the Levi (or Webster) metric,

$$
\begin{equation*}
\langle\cdot \mid \cdot\rangle_{\mathscr{L}}=g_{\mathscr{L}}:=\frac{1}{2} d \omega_{0}(\cdot, J \cdot)+\omega_{0}(\cdot) \omega_{0}(\cdot) \tag{1.4}
\end{equation*}
$$

on $T X$ and by extension on $\mathbb{C} T X$, with the following properties:

$$
\begin{equation*}
T^{(1,0)} X \perp T^{(0,1)} X, \quad T \perp\left(T^{(1,0)} X \oplus T^{(0,1)} X\right), \quad\langle T \mid T\rangle_{\mathscr{L}}=1 \tag{1.5}
\end{equation*}
$$

In Sect. 2.2, we observe that Assumption 1.1 implies that the contact metric manifold $\left(X, \omega_{0}, T, J, g_{\mathscr{L}}\right)$ is a Sasakian manifold. Conversely, every compact Sasakian manifold admits an \mathbb{R}-action as in Assumption 1.1.

Let $K_{X}^{*}:=\operatorname{det}\left(T^{(1,0)} X\right)$ and let $R_{\mathscr{L}}^{K_{X}^{*}}$ be the curvature of K_{X}^{*} induced by $\langle\cdot \mid \cdot\rangle_{\mathscr{L}}$ (see (2.26) and (4.31)).

More generally, we consider an arbitrary \mathbb{R}-invariant Hermitian metric $g=g_{X}=$ $\langle\cdot \mid \cdot\rangle_{g}=\langle\cdot \mid \cdot\rangle$ on $\mathbb{C} T X$ such that (1.5) holds. Given such a metric we will denote by Θ_{X} its fundamental (1, 1)-form given by $\Theta_{X}(a, \bar{b})=\sqrt{-1}\langle a \mid b\rangle_{g}$ for $a, b \in T^{(1,0)} X$. Let $d v_{X}$ be the volume form induced by the \mathbb{R}-invariant metric g_{X} as in (1.5). Let $(\cdot \mid \cdot)$ be the L^{2} inner product on the space of smooth compactly supported functions $\mathscr{C}_{c}^{\infty}(X)$ with respect to $d v_{X}$. We denote by $L^{2}\left(X, d v_{X}\right)$ the completion of $\mathscr{C}_{c}^{\infty}(X)$ with respect to $(\cdot \mid \cdot)$.

We denote by $\bar{\partial}_{b}$ the tangential Cauchy-Riemann operator (see Definition 2.3). The Szegő projection is the orthogonal projection with respect to $(\cdot \mid \cdot)$,

$$
\begin{equation*}
S^{(0)}: L^{2}\left(X, d v_{X}\right) \rightarrow \operatorname{ker} \bar{\partial}_{b} \cap L^{2}\left(X, d v_{X}\right) \tag{1.6}
\end{equation*}
$$

on the space of square-integrable CR functions on X. The distribution kernel $S^{(0)}(x, y) \in \mathscr{D}^{\prime}(X \times X)$ of the Szegő projection is called the Szegő kernel. The main result of this article is as follows:

Theorem 1.2 Let $\left(X, H X, J, \omega_{0}\right)$ be an orientable strictly pseudoconvex CR manifold of dimension $2 n+1, n \geq 1$, with an \mathbb{R}-action on X as in Assumption 1.1. Let g_{X} be an \mathbb{R}-invariant metric as in (1.5) and let Θ_{X} be its fundamental form. Assume that the Levi metric $g_{\mathscr{L}}$ is complete and there is $C>0$ such that

$$
\begin{equation*}
\sqrt{-1} R_{\mathscr{L}}^{K_{X}^{*}} \geq-2 C \sqrt{-1} \mathscr{L}, \quad(2 \sqrt{-1} \mathscr{L})^{n} \wedge \omega_{0} \geq C \Theta_{X}^{n} \wedge \omega_{0} \tag{1.7}
\end{equation*}
$$

Then the Szegó projection is a Fourier integral operator with complex phase, that is, for any local coordinate patch $\left(D, x=\left(x_{1}, \ldots, x_{2 n+1}\right)\right)$ with $D \Subset X$, we have

$$
\begin{equation*}
S^{(0)}(x, y)-\int_{0}^{\infty} e^{i \varphi(x, y) t} s(x, y, t) d t \in \mathscr{C}^{\infty}(D \times D) \tag{1.8}
\end{equation*}
$$

where the phase function $\varphi \in \mathscr{C}^{\infty}(D \times D)$ satisfies

$$
\begin{align*}
& \varphi \in \mathscr{C}^{\infty}(D \times D), \quad \operatorname{Im} \varphi(x, y) \geq 0 \\
& \varphi(x, x)=0, \quad \varphi(x, y) \neq 0 \text { if } x \neq y \\
& \left.d_{x} \varphi(x, y)\right|_{x=y}=\omega_{0}(x),\left.\quad d_{y} \varphi(x, y)\right|_{x=y}=-\omega_{0}(x) \tag{1.9}\\
& \varphi(x, y)=-\bar{\varphi}(y, x)
\end{align*}
$$

and $s(x, y, t) \in S_{\mathrm{cl}}^{n}\left(D \times D \times \mathbb{R}_{+}\right)$is a symbol of order n with asymptotic expansion $s(x, y, t)=\sum_{j=0}^{\infty} s_{j}(x, y) t^{n-j}$ whose leading term $s_{0}(x, y)$ satisfies

$$
\begin{equation*}
s_{0}(x, x)=\frac{1}{2} \pi^{-n-1}\left|\operatorname{det} \mathscr{L}_{x}\right|, \text { for all } x \in D \tag{1.10}
\end{equation*}
$$

where $\operatorname{det} \mathscr{L}_{x}$ is the determinant of \mathscr{L}_{x} with respect to $g_{X}, c f . ~(4.73)$.
We will show in Lemma 2.7 that $R_{\mathscr{L}}^{K_{X}^{*}}=\operatorname{Ric}_{\mathscr{L}}$ where $\operatorname{Ric}_{\mathscr{L}} \in \Omega^{1,1}(X)$ is the pseudohermitian Ricci form with respect to the pseudohermitian structure ω_{0} (see (2.10)). We refer to Definition 2.1 for the definition of the symbol space $S_{\mathrm{cl}}^{n}(D \times D \times$ \mathbb{R}_{+}) and to [19, Theorems 3.3, 4.4] for more properties for the phase φ in (1.8).

Examples for the situation described in Theorem 1.2 are given by Galois coverings of compact strictly pseudoconvex CR manifolds (Examples 4.5, 5.3), circle bundles of positive line bundles over complete Kähler manifolds (Example 4.6), and, as mentioned before, the Heisenberg group (Sect. 5).

If we work with $(n, 0)$-forms we can drop some of the hypotheses of Theorem 1.2.
Theorem 1.3 Let $\left(X, H X, J, \omega_{0}\right)$ be an orientable strictly pseudoconvex CR manifold of dimension $2 n+1, n \geq 1$, with an \mathbb{R}-action on X as in Assumption 1.1. Assume that the Levi metric $g_{\mathscr{L}}$ is complete. Then the Szegő projection $S^{(n, 0)}: L_{n, 0}^{2}(X) \rightarrow$ $\operatorname{ker} \bar{\partial}_{b} \subset L_{n, 0}^{2}(X)$ is a Fourier integral operator with complex phase, that is, for any local coordinate patch $\left(D, x=\left(x_{1}, \ldots, x_{2 n+1}\right)\right)$ with $D \Subset X$, the Szegö kernel has the form (1.8) with respect to the trivialization of K_{X} given by $d z_{1} \wedge \ldots \wedge d z_{n}$.

The equivariant Kodaira embedding theorems for Sasakian manifolds were obtained in [13, 16]. From Theorem 1.2, we obtain a Boutet de Monvel type embedding theorem [4] for complete Sasakian manifolds as follows, which is a generalization of the embedding theorem for compact Sasakian manifolds [26].
Corollary 1.4 In the situation of Theorem 1.2 the space of $L^{2} C R$ functions separate points and give local coordinates on X. In particular, for any compact set of $K \subset X$ there exists a positive integer N and $C R$ functions $f_{1}, \ldots, f_{N} \in L^{2}(X) \cap \mathscr{C}^{\infty}(X)$ such that $\left(f_{1}, \ldots, f_{N}\right)$ is an embedding of K in \mathbb{C}^{N}.

As a consequence of Theorem 1.3 we obtain the following:
Corollary 1.5 In the situation of Theorem 1.3 the space of $L^{2} C R(n, 0)$-forms separate points and give local coordinates on X. Thus, X is locally $C R$ embeddable in an Euclidean space. In particular, every Sasakian manifold with complete Levi metric $g_{\mathscr{L}}$ is locally CR embeddable by global CR ($n, 0$)-forms.

The question arises if one can extend these results for general strictly pseudoconvex CR manifolds (without Assumption 1.1 about the existence of an \mathbb{R}-action). An analytic property that we use is that the spectral projections Q_{λ} of the operator $\sqrt{-1} T$ (see 4.7) commute to $\bar{\partial}_{b}$. Beyond that it is not clear what would be general geometric or analytic conditions that would imply that the Szegó projector is a Fourier integral operator.

We now apply our main result to complex manifolds. Let (L, h^{L}) be a holomorphic line bundle over a Hermitian manifold $\left(M, \Theta_{M}\right)$, where h^{L} denotes a Hermitian metric on L and Θ_{M} is a positive $(1,1)$ form on M. For every $k \in \mathbb{N}$, let $\left(L^{k}, h^{L^{k}}\right)$ be the k-th power of $\left(L, h^{L}\right)$. The positive $(1,1)$ form Θ_{M} and $h^{L^{k}}$ induces a L^{2} inner product $(\cdot \mid \cdot)_{\Theta_{M}}$ on $\left.\Omega_{c}^{0, q}\left(M, L^{k}\right)\right)$. Let $L_{0, q}^{2}\left(M, L^{k}\right)$ be the completion of $\Omega_{c}^{0, q}\left(M, L^{k}\right)$ with respect to $(\cdot \mid \cdot)_{\Theta_{M}}$. We write $L^{2}\left(M, L^{k}\right):=L_{0,0}^{2}\left(M, L^{k}\right)$. Let

$$
H_{(2)}^{0}\left(M, L^{k}\right)=\operatorname{ker} \bar{\partial}_{k}:=\left\{u \in L^{2}\left(M, L^{k}\right) ; \bar{\partial} u=0\right\}
$$

be the space of holomorphic square-integrable sections of L^{k}. Let $\left\{f_{j}^{k}\right\}_{j=1}^{d_{k}}$ be an orthonormal basis for $H_{(2)}^{0}\left(M, L^{k}\right)$ with respect to $(\cdot \mid \cdot)_{\Theta_{M}}$, where $d_{k} \in \mathbb{N} \cup\{\infty\}$. The Bergman kernel of L^{k} is

$$
\begin{equation*}
P_{k}(x, y):=\sum_{j=1}^{d_{k}} f_{j}^{k}(x) \otimes f_{j}^{k}(y)^{*} \in \mathscr{C}^{\infty}\left(X \times X, L^{k} \boxtimes\left(L^{k}\right)^{*}\right) . \tag{1.11}
\end{equation*}
$$

Let s be a local holomorphic frame of L defined on an open set $D \Subset M,|s|_{h}^{2}=e^{-2 \phi}$, $\phi \in \mathscr{C}^{\infty}(D, \mathbb{R})$. On D, we write $f_{j}^{k}=\tilde{f}_{j}^{k} s^{\otimes k}, \tilde{f}_{j}^{k} \in \mathscr{C}^{\infty}(D), j=1, \ldots, d_{k}$. The localized Bergman kernel on D is given by

$$
\begin{equation*}
P_{k, s}(x, y):=\sum_{j=1}^{d_{k}} e^{-k \phi(x)} \tilde{f}_{j}^{k}(x) \overline{\tilde{f}_{j}^{k}(y)} e^{-k \phi(y)} \in \mathscr{C}^{\infty}(D \times D) \tag{1.12}
\end{equation*}
$$

Let R^{L} be the Chern curvature of L induced by h^{L}. Assume that $\omega=\sqrt{-1} R^{L}$ is positive. Let $K_{M}^{*}:=\operatorname{det}\left(T^{(1,0)} M\right)$ and let $R_{\omega}^{K_{M}^{*}}$ be the curvature of K_{M}^{*} induced by ω. Applying Theorem 1.2 to the circle bundle of $\left(L, h^{L}\right)$, we get the following:

Theorem 1.6 Let $\left(L, h^{L}\right)$ be a Hermitian holomorphic line bundle over a Hermitian manifold $\left(M, \Theta_{M}\right)$ of dimension n. We assume that $\omega=\sqrt{-1} R^{L}$ defines a complete

Kähler metric on M. We assume moreover that there is $C>0$ such that

$$
\begin{equation*}
\sqrt{-1} R_{\omega}^{K_{M}^{*}} \geq-C \omega, \quad \omega^{n} \geq C \Theta_{M}^{n} \quad \text { on } M . \tag{1.13}
\end{equation*}
$$

Let s be a local holomorphic frame of L defined on an open set $D \Subset M$. Then,

$$
\begin{equation*}
P_{k, s}(x, y) \equiv e^{i k \Phi(x, y)} b(x, y, k) \quad \bmod O\left(k^{-\infty}\right) \text { on } D \tag{1.14}
\end{equation*}
$$

where $\Phi \in \mathscr{C}^{\infty}(D \times D)$, $\operatorname{Im} \Phi(x, y) \geq C|x-y|^{2}, C>0, \Phi(x, x)=0$, for every $x \in D$,

$$
\begin{equation*}
b(x, y, k) \in S_{\mathrm{loc}}^{n}(1 ; D \times D), \quad b(x, y, k) \sim \sum_{j=0}^{\infty} k^{n-j} b_{j}(x, y) \text { in } S_{\mathrm{loc}}^{n}(1 ; D \times D) \tag{1.15}
\end{equation*}
$$

$b_{j}(x, y) \in \mathscr{C}^{\infty}(D \times D), j=0,1, \ldots$, and

$$
b_{0}(x, x)=(2 \pi)^{-n} \frac{\omega^{n}(x)}{\Theta_{M}^{n}(x)}, \text { for every } x \in D
$$

In particular, there exist coefficients $\boldsymbol{b}_{r} \in \mathscr{C}^{\infty}(X), r \in \mathbb{N}_{0}$, such that for any open set U of X with \bar{U} compact, every $\ell \in \mathbb{N}_{0}$ and every $m \in \mathbb{N}$, there is a $C_{U, \ell, m}>0$ independent of k such that

$$
\begin{equation*}
\left\|P_{k}(x, x)-\sum_{r=0}^{m} \boldsymbol{b}_{r}(x) k^{n-r}\right\|_{\mathscr{C}^{\ell}(U)} \leq C_{U, \ell, m} k^{n-m-1} \tag{1.16}
\end{equation*}
$$

We refer the reader to Sect. 2 for the precise meaning of the notation $A_{k} \equiv B_{k}$ $\bmod O\left(k^{-\infty}\right)$ on D in (1.14), $S_{\text {loc }}^{n}(1 ; D \times D)$ and the asymptotic sums in (1.15) and (1.16).

For compact or certain complete Kähler-Einstein manifolds, the expansion (1.16) was obtained by Tian [29] for $m=0$ and $\ell=4$. For general m, ℓ, and compact manifolds, the existence of the expansion was first obtained in [8, 31]. In [23, Theorem 6.1.1] the expansion was generalized for complete Hermitian manifolds such that $R^{K_{M}^{*}}$ and $\partial \Theta_{M}$ are bounded below. Our conditions (1.13) are different from [23, Theorem 6.1.1], we replace the condition on $\partial \Theta_{M}$ by a condition on the volume form. The reason is that we use a local closed range condition instead of standard closed range or spectral gap condition.

This paper is organized as follows. In Sect. 2, we recall necessary notions of microlocal analysis, pseudohermitian geometry, and strictly pseudoconvex CR manifolds with transversal CR \mathbb{R}-actions. In Sect. 3, we prove the Bochner-Kodaira formula on CR manifolds with \mathbb{R}-action. Section 4 is devoted to the proof of the asymptotics of the Szegő kernel. In Sect. 5, we examine the Heisenberg group.

2 Preliminaries

We use the following notations through this article: $\mathbb{N}=\{1,2, \ldots\}$ is the set of natural numbers, $\mathbb{N}_{0}=\mathbb{N} \bigcup\{0\}, \mathbb{R}$ is the set of real numbers, $\overline{\mathbb{R}}_{+}=\{x \in \mathbb{R} ; x \geq 0\}$. For $m \in \mathbb{N}$, let $x=\left(x_{1}, \ldots, x_{m}\right)$ be coordinates of \mathbb{R}^{m}. For $n \in \mathbb{N}$, let $z=\left(z_{1}, \ldots, z_{n}\right)$, $z_{j}=x_{2 j-1}+\sqrt{-1} x_{2 j}, j=1, \ldots, n$, be coordinates of \mathbb{C}^{n}. We write

$$
\begin{align*}
& \frac{\partial}{\partial z_{j}}:=\frac{1}{2}\left(\frac{\partial}{\partial x_{2 j-1}}-\sqrt{-1} \frac{\partial}{\partial x_{2 j}}\right), \quad \frac{\partial}{\partial \bar{z}_{j}}:=\frac{1}{2}\left(\frac{\partial}{\partial x_{2 j-1}}+\sqrt{-1} \frac{\partial}{\partial x_{2 j}}\right), \tag{2.1}\\
& d z_{j}=d x_{2 j-1}+\sqrt{-1} d x_{2 j}, \quad d \bar{z}_{j}=d x_{2 j-1}-\sqrt{-1} d x_{2 j} . \tag{2.2}
\end{align*}
$$

2.1 Notions of Microlocal Analysis

Let X be a \mathscr{C}^{∞} paracompact manifold. We let $T X$ and $T^{*} X$ denote the tangent bundle of X and the cotangent bundle of X, respectively. The complexified tangent bundle of X and the complexified cotangent bundle of X are denoted by $\mathbb{C} T X$ and $\mathbb{C} T^{*} X$, respectively. Write $\langle\cdot, \cdot\rangle$ to denote the pointwise duality between $T X$ and $T^{*} X$. We extend $\langle\cdot, \cdot\rangle$ bilinearly to $\mathbb{C} T X \times \mathbb{C} T^{*} X$.

Let $D \subset X$ be an open set. The spaces of distributions of D and smooth functions of D will be denoted by $\mathscr{D}^{\prime}(D)$ and $\mathscr{C}^{\infty}(D)$, respectively. Let $\mathscr{E}^{\prime}(D)$ be the subspace of $\mathscr{D}^{\prime}(D)$ whose elements have compact support in D. Let $\mathscr{C}_{c}^{\infty}(D)$ be the subspace of $\mathscr{C}^{\infty}(D)$ whose elements have compact support in D. Let $A: \mathscr{C}_{c}^{\infty}(D) \rightarrow \mathscr{D}^{\prime}(D)$ be a continuous map. We write $A(x, y)$ to denote the distribution kernel of A. In this work, we will identify A with $A(x, y)$. The following two statements are equivalent:
(I) A is continuous: $\mathscr{E}^{\prime}(D) \rightarrow \mathscr{C}^{\infty}(D)$,
(II) $A(x, y) \in \mathscr{C}^{\infty}(D \times D)$.

If A satisfies (I) or (II), we say that A is smoothing on D. Let $A, B: \mathscr{C}_{c}^{\infty}(D) \rightarrow \mathscr{D}^{\prime}(D)$ be continuous operators. We write

$$
\begin{equation*}
A \equiv B(\text { on } D) \tag{2.3}
\end{equation*}
$$

if $A-B$ is a smoothing operator. We say that A is properly supported if the restrictions of the two projections $(x, y) \rightarrow x,(x, y) \rightarrow y$ to $\operatorname{Supp}(A(x, y))$ are proper.

For $m \in \mathbb{R}$, let $H^{m}(D)$ denote the Sobolev space of order m on D. Put

$$
\begin{aligned}
H_{\text {loc }}^{m}(D) & =\left\{u \in \mathscr{D}^{\prime}(D) ; \varphi u \in H^{m}(D), \forall \varphi \in \mathscr{C}_{c}^{\infty}(D)\right\}, \\
H_{\text {comp }}^{m}(D) & =H_{\text {loc }}^{m}(D) \cap \mathscr{E}^{\prime}(D) .
\end{aligned}
$$

Let D be an open coordinate patch of X with local coordinates x. We recall the following Hörmander symbol space.

Definition 2.1 For $m \in \mathbb{R}, S_{1,0}^{m}\left(D \times D \times \mathbb{R}_{+}\right)$is the space of all $a(x, y, t) \in \mathscr{C}^{\infty}(D \times$ $D \times \mathbb{R}_{+}$) such that for all compact $K \Subset D \times D$ and all $\alpha, \beta \in \mathbb{N}_{0}^{2 n+1}, \gamma \in \mathbb{N}_{0}$, there
is a constant $C_{\alpha, \beta, \gamma}>0$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{t}^{\gamma} a(x, y, t)\right| \leq C_{\alpha, \beta, \gamma}(1+|t|)^{m-|\gamma|}, \text { for all }(x, y, t) \in K \times \mathbb{R}_{+}, t \geq 1
$$

Put

$$
S^{-\infty}\left(D \times D \times \mathbb{R}_{+}\right):=\bigcap_{m \in \mathbb{R}} S_{1,0}^{m}\left(D \times D \times \mathbb{R}_{+}\right)
$$

Let $a_{j} \in S_{1,0}^{m_{j}}\left(D \times D \times \mathbb{R}_{+}\right), j \in \mathbb{N}_{0}$, with $m_{j} \searrow-\infty, j \rightarrow \infty$. Then there exists $a \in$ $S_{1,0}^{m_{0}}\left(D \times D \times \mathbb{R}_{+}\right)$, unique modulo $S^{-\infty}$, such that $a-\sum_{j=0}^{k-1} a_{j} \in S_{1,0}^{m_{k}}\left(D \times D \times \mathbb{R}_{+}\right)$ for $k \in \mathbb{N}$. If a and a_{j} have the properties above, we write

$$
a \sim \sum_{j=0}^{\infty} a_{j} \text { in } S_{1,0}^{m_{0}}\left(D \times D \times \mathbb{R}_{+}\right)
$$

The space $S_{\mathrm{cl}}^{m}\left(D \times D \times \mathbb{R}_{+}\right)$of classical symbols of order m is defined as the space of symbols $s(x, y, t) \in S^{m}\left(D \times D \times \mathbb{R}_{+}\right)$satisfying

$$
\begin{align*}
& s(x, y, t) \sim \sum_{j=0}^{\infty} s_{j}(x, y) t^{m-j} \text { in } S_{1,0}^{m}\left(D \times D \times \mathbb{R}_{+}\right), \tag{2.4}\\
& s_{j}(x, y) \in \mathscr{C}^{\infty}(D \times D), j \in \mathbb{N}_{0}
\end{align*}
$$

We explain now for the precise meaning of $A_{k} \equiv B_{k} \bmod O\left(k^{-\infty}\right)$ on D in (1.14), $S_{\mathrm{loc}}^{n}(1 ; D \times D)$ and the asymptotic sum in (1.15) (see also [18, Sect. 3.3]). A k-dependent smoothing operator $A_{k}: \Omega_{0}^{0, q}(D) \rightarrow \Omega^{0, q}(D)$ is called k negligible if the kernel $A_{k}(x, y)$ of A_{k} satisfies $\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} A_{k}(x, y)\right|=O\left(k^{-N}\right)$ uniformly on every compact set in $D \times D$, for all multi-indices α, β, and all $N \in \mathbb{N}$. Let $C_{k}: \Omega_{0}^{0, q}(D) \rightarrow \Omega^{0, q}(D)$ be another k-dependent smoothing operator. We write $A_{k} \equiv C_{k} \bmod O\left(k^{-\infty}\right)$ or $A_{k}(x, y) \equiv C_{k}(x, y) \bmod O\left(k^{-\infty}\right)$ if $A_{k}-C_{k}$ is $k-$ negligible.

We recall the definition of semi-classical Hörmander symbol spaces:
Definition 2.2 Let U be an open set in \mathbb{R}^{N}. Let $S(1 ; U)=S(1)$ be the set of $a \in$ $\mathscr{C}^{\infty}(U)$ such that for every $\alpha \in \mathbb{N}_{0}^{N}$, there exists $C_{\alpha}>0$, such that $\left|\partial_{x}^{\alpha} a(x)\right| \leq C_{\alpha}$ on U. If $a=a(x, k)$ depends on $k \in(1, \infty)$, we say that $a(x, k) \in S_{\text {loc }}(1)$ if $\chi(x) a(x, k)$ is uniformly bounded in $S(1)$ when k varies in $(1, \infty)$, for any $\chi \in \mathscr{C}_{0}^{\infty}(U)$. For $m \in \mathbb{R}$, we put $S_{\text {loc }}^{m}(1)=k^{m} S_{\text {loc }}$ (1). If $a_{j} \in S_{\text {loc }}^{m_{j}}(1), m_{j} \searrow-\infty$, we say that $a \sim \sum_{j=0}^{\infty} a_{j}$ in $S_{\text {loc }}^{m_{0}}(1)$ if $a-\sum_{j=0}^{N_{0}} a_{j} \in S_{\text {loc }}^{m_{N_{0}+1}}$ (1) for every N_{0}. From this, we form $S_{\text {loc }}^{m}(1 ; Y, E)$ in the natural way, where Y is a smooth paracompact manifold and E is a vector bundle over Y.

Let X be an orientable paracompact smooth manifold of dimension $2 n+1$ with $n \geq 1$. The Levi form (1.2) of X at $x \in X$ induces a Hermitian quadratic form on $T_{x}^{(1,0)} X$ by

$$
\begin{equation*}
\mathscr{L}_{x}(u, \bar{v})=\frac{1}{2 i} d \omega_{0}(u, \bar{v}), \quad \text { for } u, v \in T_{x}^{(1,0)} X . \tag{2.5}
\end{equation*}
$$

Let $g^{\mathbb{C} T X}$ be a Hermitian metric on $\mathbb{C} T X$ such that the decomposition $\mathbb{C} T X=$ $T^{(1,0)} X \oplus T^{(0,1)} X \oplus \mathbb{C} T$ is orthogonal. For $u, v \in \mathbb{C} T X$ we denote by $\langle u \mid v\rangle=\langle u \mid v\rangle_{g}$ the inner product given by $g^{\mathbb{C} T X}$ and for $u \in \mathbb{C} T X$, we write $|u|_{g}^{2}:=\langle u \mid u\rangle_{g}$. Given such a metric we will denote by Θ_{X} its fundamental (1,1)-form given by $\Theta_{X}(a, \bar{b})=\sqrt{-1}\langle a \mid b\rangle_{g}$ for $a, b \in T^{(1,0)} X$.

For $p, q \in \mathbb{N}_{0}$, define $T^{(p, q)} X:=\left(\Lambda^{p} T^{(1,0)} X\right) \wedge\left(\Lambda^{q} T^{(0,1)} X\right)$ and let $T^{\bullet} \cdot \bullet X=$ $\bigoplus_{p, q \in \mathbb{N}_{0}} T^{(p, q)} X$. For $u \in \mathbb{C} T X$ and $\phi \in \mathbb{C} T^{*} X$, the pointwise duality is defined by $\langle u, \phi\rangle:=\phi(u)$. Let $T^{*(1,0)} X \subset \mathbb{C} T^{*} X$ be the dual bundle of $T^{(1,0)} X$ and $T^{*(0,1)} X \subset \mathbb{C} T^{*} X$ be the dual bundle of $T^{(0,1)} X$. For $p, q \in \mathbb{N}_{0}$, the bundle of (p, q) forms is denoted by $T^{*(p, q)} X:=\left(\Lambda^{p} T^{*(1,0)} X\right) \wedge\left(\Lambda^{q} T^{*(0,1)} X\right)$ and let $T^{* \bullet, \bullet} X:=\oplus_{p, q \in \mathbb{N}_{0}} T^{*(p, q)} X$. The induced Hermitian inner product on $T^{\bullet \bullet} X$ and $T^{* \bullet, \bullet} X$ by $\langle\cdot \mid \cdot\rangle$ are still denoted by $\langle\cdot \mid \cdot\rangle$. The Hermitian norms are still denoted by $|\cdot|$. Let $\Omega^{p, q}(X):=\mathscr{C}^{\infty}\left(X, T^{*(p, q)} X\right)$ be the space of smooth (p, q)-forms on X and $\Omega^{\bullet \bullet}(X):=\bigoplus_{p, q \in \mathbb{N}_{0}} \Omega^{p, q}(X)$. Let $\mathscr{C}^{\infty}(X):=\Omega^{0,0}(X)$.
Definition 2.3 Let $\pi^{p, q}: \Lambda^{p+q} \mathbb{C} T^{*} X \longrightarrow T^{*(p, q)} X$ be the natural projection for $p, q \in \mathbb{N}_{0}, p+q \geq 1$. The tangential (resp. anti-tangential) Cauchy-Riemann operator is given by

$$
\begin{align*}
& \bar{\partial}_{b}:=\pi^{p, q+1} \circ d: \Omega^{p, q}(X) \longrightarrow \Omega^{p, q+1}(X), \\
& \partial_{b}:=\pi^{p+1, q} \circ d: \Omega^{p, q}(X) \longrightarrow \Omega^{p+1, q}(X) . \tag{2.6}
\end{align*}
$$

Let $D \subset X$ be an open set. Let $\Omega_{c}^{p, q}(D)$ be the space of smooth (p, q)-forms on D with compact support in D. Let $\Omega_{c}^{\bullet \bullet \bullet}(D):=\bigoplus_{p, q \in \mathbb{N}_{0}} \Omega_{c}^{p, q}(D)$. We write $\mathscr{C}_{c}^{\infty}(D):=\Omega_{c}^{0,0}(D)$. Let $(\cdot \mid \cdot)$ be the L^{2} inner product on $\Omega_{c}^{\bullet \bullet}(X)$ induced by $\langle\cdot \mid \cdot\rangle$. Note that

$$
\begin{equation*}
(u \mid v):=\int_{X}\langle u(x) \mid v(x)\rangle d v_{X}(x), \quad u, v \in \Omega_{c}^{\bullet, \bullet}(X) \tag{2.7}
\end{equation*}
$$

where $d v_{X}:=\left(\Theta_{X}^{n} / n!\right) \wedge \omega_{0}$ is the volume form induced by the Hermitian metric Θ_{X} on X. Let $L_{p, q}^{2}(X)$ be the completion of $\Omega_{c}^{p, q}(X)$ with respect to $(\cdot \mid \cdot)$. Let $L_{\bullet, \bullet}^{2}(X):=\bigoplus_{p, q \in \mathbb{N}_{0}} L_{p, q}^{2}(X)$. We write $L^{2}(X):=L_{0,0}^{2}(X)$. We denote by $\|u\|^{2}:=$ $(u \mid u)$ the L^{2}-norm on X. Let $\bar{\partial}_{b}^{*}$ and ∂_{b}^{*} be the formal adjoints of $\bar{\partial}_{b}$ and ∂_{b} with respect to $(\cdot \mid \cdot)$, respectively. Let $\square_{b}:=\bar{\partial}_{b} \bar{\partial}_{b}^{*}+\bar{\partial}_{b}^{*} \bar{\partial}_{b}$ be the Kohn Laplacian on $\Omega^{\bullet \bullet}(X)$. Let $\bar{\square}_{b}:=\partial_{b} \partial_{b}^{*}+\partial_{b}^{*} \partial_{b}$ be the anti-Kohn Laplacian on $\Omega^{\bullet \bullet}(X)$. We still denoted by $\bar{\partial}_{b}$ the maximal extension and by $\bar{\partial}_{b}^{*}$ the Hilbert space adjoint with respect to the L^{2}-inner product on X. We also denote by

$$
\begin{equation*}
\square_{b}=\bar{\partial}_{b} \bar{\partial}_{b}^{*}+\bar{\partial}_{b}^{*} \bar{\partial}_{b}: \operatorname{Dom} \square_{b} \subset L_{\bullet, \bullet}^{2}(X) \rightarrow L_{\bullet, \bullet}^{2}(X) \tag{2.8}
\end{equation*}
$$

the Gaffney extension of the Kohn Laplacian with the domain

$$
\begin{equation*}
\operatorname{Dom} \square_{b}=\left\{u \in L_{\bullet, \bullet}^{2}(X): u \in \operatorname{Dom} \bar{\partial}_{b} \cap \operatorname{Dom} \bar{\partial}_{b}^{*}, \bar{\partial}_{b} u \in \operatorname{Dom} \bar{\partial}_{b}^{*}, \bar{\partial}_{b}^{*} u \in \operatorname{Dom} \bar{\partial}_{b}\right\} . \tag{2.9}
\end{equation*}
$$

By a result of Gaffney, \square_{b} is a self-adjoint operator (see e.g., [23, Proposition 3.1.2]).

2.2 Pseudohermitian Geometry

The following is well known:
Proposition 2.4 [28, Proposition 3.1] Let $\left(X, H X, J, \omega_{0}\right)$ be an orientable strictly pseudoconvex CR manifold. Then there exists a unique affine connection, called Tanaka-Webster connection,

$$
\nabla:=\nabla^{\omega_{0}}: \mathscr{C}^{\infty}(X, T X) \rightarrow \mathscr{C}^{\infty}\left(X, T^{*} X \otimes T X\right)
$$

such that
(I) $\nabla_{U} \mathscr{C}^{\infty}(X, H X) \subset \mathscr{C}^{\infty}(X, H X)$ for $U \in \mathscr{C}^{\infty}(X, T X)$.
(II) $\nabla T=\nabla J=\nabla d \omega_{0}=0$.
(III) The torsion T_{∇} of ∇ satisfies: $T_{\nabla}(U, V)=d \omega_{0}(U, V) T, T_{\nabla}(T, J U)=$ $-J T_{\nabla}(T, U), U, V \in \mathscr{C}^{\infty}(X, H X)$.

Recall that $\nabla J \in \mathscr{C}^{\infty}\left(X, T^{*} X \otimes \mathscr{L}(H X, H X)\right), \nabla d \omega_{0} \in \mathscr{C}^{\infty}\left(T^{*} X \otimes\right.$ $\left.\Lambda^{2}\left(\mathbb{C} T^{*} X\right)\right)$ are defined by $\left(\nabla_{U} J\right) W=\nabla_{U}(J W)-J \nabla_{U} W$ and $\nabla_{U} d \omega_{0}(W, V)=$ $U d \omega_{0}(W, V)-d \omega_{0}\left(\nabla_{U} W, V\right)-d \omega_{0}\left(W, \nabla_{U} V\right)$ for $U \in \mathscr{C}^{\infty}(X, T X), W, V \in$ $\mathscr{C}^{\infty}(X, H X)$. Moreover, $\nabla J=0$ and $\nabla d \omega_{0}=0$ imply that the Tanaka-Webster connection is compatible with the Levi metric. By definition, the torsion of ∇ is given by $T_{\nabla}(W, U)=\nabla_{W} U-\nabla_{U} W-[W, U]$ for $U, V \in \mathscr{C}^{\infty}(X, T X)$ and $\tau(T, U)$ for $U \in \mathscr{C}^{\infty}(X, H X)$ is called pseudohermitian torsion.

In the following, we will use the Einstein summation convention. Let $\left\{Z_{\alpha}\right\}_{\alpha=1}^{n}$ be a local frame of $T^{(1,0)} X$ and $\left\{\theta^{\alpha}\right\}_{\alpha=1}^{n}$ be the dual frame of $\left\{Z_{\alpha}\right\}_{\alpha=1}^{n}$. We use the notations $Z_{\bar{\alpha}}:=\overline{Z_{\alpha}}$ and $\theta^{\bar{\alpha}}=\overline{\theta^{\alpha}}$. Write

$$
\nabla Z_{\alpha}=\omega_{\alpha}^{\beta} \otimes Z_{\beta}, \nabla Z_{\bar{\alpha}}=\omega_{\bar{\alpha}}^{\bar{\beta}} \otimes Z_{\bar{\beta}}, \text { and recall that } \nabla T=0
$$

We call ω_{α}^{β} the connection 1-form of Tanaka-Webster connection with respect to the frame $\left\{Z_{\alpha}\right\}_{\alpha=1}^{n}$. We denote by Θ_{α}^{β} the Tanaka-Webster curvature 2-form. Then,

$$
\Theta_{\alpha}^{\beta}=d \omega_{\alpha}^{\beta}-\omega_{\alpha}^{\gamma} \wedge \omega_{\gamma}^{\beta} .
$$

By direct computation, we also have

$$
\Theta_{\alpha}^{\beta}=R_{\alpha j \bar{k}}^{\beta} \theta^{j} \wedge \theta^{\bar{k}}+A_{\alpha j k}^{\beta} \theta^{j} \wedge \theta^{k}+B_{\alpha j k}^{\beta} \theta^{\bar{j}} \wedge \theta^{\bar{k}}+C_{0} \wedge \omega_{0},
$$

where C_{0} is a 1-form. The term $R_{\alpha j \bar{k}}^{\beta}$ is called the pseudohermitian curvature tensor and the form

$$
\begin{equation*}
\operatorname{Ric} \mathscr{L}:=R_{\alpha \bar{k}} \theta^{\alpha} \wedge \theta^{\bar{k}}, \quad R_{\alpha \bar{k}}:=\sum_{j=1}^{n} R_{\alpha j \bar{k}}^{j} \tag{2.10}
\end{equation*}
$$

is called pseudohermitian Ricci form.

2.3 Strictly Pseudoconvex CR Manifolds with \mathbb{R}-Action

Let $\left(X, T^{(1,0)} X\right)$ be a CR manifold of $\operatorname{dim} X=2 n+1$. Let $r: \mathbb{R} \times X \rightarrow X$, $r(x)=r \circ x$ for $r \in \mathbb{R}$, be an \mathbb{R}-action on X, see [13]. Let \widehat{T} be the infinitesimal generator of the \mathbb{R}-action:

$$
\begin{equation*}
(\widehat{T} u)(x):=\left.\frac{\partial}{\partial r}(u(r \circ x))\right|_{r=0}, \quad u \in \mathscr{C}^{\infty}(X) \tag{2.11}
\end{equation*}
$$

Definition 2.5 The \mathbb{R}-action is called locally free if $\widehat{T}(x) \neq 0$ at every $x \in X$.
By Assumption 1.1 we have
The \mathbb{R}-action is Cauchy-Riemann $(\mathrm{CR}):\left[\widehat{T}, \mathscr{C}^{\infty}\left(X, T^{(1,0)} X\right)\right] \subset \mathscr{C}^{\infty}\left(X, T^{(1,0)} X\right)$.
The \mathbb{R}-action is transversal : $\mathbb{C} T_{x} X=T_{x}^{1,0} X \oplus T_{x}^{0,1} X \oplus \mathbb{C} \widehat{T}(x)$ at every $x \in X$.

Note that (2.12) implies that $L_{\widehat{T}}$ preserves $H X$ and $\left[L_{\widehat{T}}, J\right]=0$. Since $H X=\operatorname{ker} \omega_{0}$ we have for $U \in \mathscr{C}^{\infty}(X, H X)$,

$$
\begin{aligned}
& \left(L_{\widehat{T}} \omega_{0}\right)(U)=\widehat{T}\left(\omega_{0}(U)\right)-\omega_{0}\left(L_{\widehat{T}} U\right)=0 \\
& \left(L_{\widehat{T}} \omega_{0}\right)(\widehat{T})=\widehat{T}\left(\omega_{0}(\widehat{T})\right)-\omega_{0}\left(L_{\widehat{T}} \widehat{T}\right)=\widehat{T}\left(\omega_{0}(\widehat{T})\right)
\end{aligned}
$$

We pose $f=\omega_{0}(\widehat{T})$ and $\omega_{1}=f^{-1} \omega_{0}$. Then $L_{\widehat{T}} \omega_{1}=0$ and $\omega_{1}(\widehat{T})=1$ since $\left(L_{\widehat{T}} \omega_{1}\right)(U)=0$ and $\left(L_{\widehat{T}} \omega_{1}\right)(\widehat{T})=\widehat{T}\left(\omega_{1}(\widehat{T})\right)=\widehat{T}(1)=0$. This also implies ${ }^{\iota} \widehat{T} d \omega_{1}=0$. We have thus

$$
\iota_{\widehat{T}} \omega_{1}=1, \quad \iota_{\widehat{T}} d \omega_{1}=0, \quad L_{\widehat{T}} J=0
$$

We can therefore assume up to rescaling ω_{0} by a smooth function that the infinitesimal generator of the \mathbb{R}-action is a Reeb vector field $T=\widehat{T}$. This motivates the equality of the infinitesimal generator to the Reeb field in Assumption 1.1.

By [28, Lemma 3.2 (3)]) we have $2 J \tau U=\left(L_{T} J\right) U$ for any $U \in H X$, hence the pseudohermitian torsion τ vanishes, which means that the contact metric manifold $\left(X, \omega_{0}, T, J, g_{\mathscr{L}}\right)$ is a Sasakian manifold. Conversely, there exists a natural transversal CR \mathbb{R}-action on any compact Sasakian manifold. Recall that compact Sasakian manifolds can be classified in three categories based on the properties of the Reeb
foliation consisting of the orbits of the Reeb field (see [7, Definition 6.1.25]). If the orbits of the Reeb field are all closed, then the Reeb field T generates a locally free, isometric S^{1}-action thus also an \mathbb{R}-action on $\left(X, g_{\mathscr{L}}\right)$. In this case the Reeb foliation is called quasi-regular (and regular if the action is free). If the Reeb foliation is not quasi-regular, it is said to be irregular. In this case, T generates a transversal CR \mathbb{R}-action on X.

We use the local coordinates of Baouendi-Rothschild-Trevès (BRT charts) [3, Sect. 1], [19, Theorem 6.5] extensively as follows:

Theorem 2.6 (BRT charts) For each point $x \in X$, there exists a coordinate neighborhood $D=U \times \mathcal{I}$ with coordinates $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$ centered at 0 , where $U=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:|z|<\epsilon\right\}$ and $\mathcal{I}=\left\{x_{2 n+1} \in \mathbb{R}:\left|x_{2 n+1}\right|<\epsilon_{0}\right\}$, $\epsilon, \epsilon_{0}>0, z=\left(z_{1}, \ldots, z_{n}\right)$ and $z_{j}=x_{2 j-1}+\sqrt{-1} x_{2 j}, j=1, \ldots, n$, such that

$$
\begin{equation*}
T=\frac{\partial}{\partial x_{2 n+1}} \text { on } D \tag{2.14}
\end{equation*}
$$

and there exists $\phi \in \mathscr{C}^{\infty}(U, \mathbb{R})$ independent of $x_{2 n+1}$ satisfying that

$$
\begin{equation*}
\left\{Z_{j}:=\frac{\partial}{\partial z_{j}}+i \frac{\partial \phi}{\partial z_{j}}(z) \frac{\partial}{\partial x_{2 n+1}}\right\}_{j=1}^{n} \tag{2.15}
\end{equation*}
$$

is a frame of $T^{(1,0)} D$, and $\left\{d z_{j}\right\}_{j=1}^{n} \subset T^{*(1,0)} D$ is the dual frame.
Let $D=U \times \mathcal{I}$ be a BRT chart. Let $f \in \mathscr{C}^{\infty}(D)$ and $u \in \Omega^{p, q}(D)$ with $u=$ $\sum_{I, J} u_{I J} d z_{I} \wedge d \bar{z}_{J}$ with ordered sets I, J and $u_{I J} \in \mathscr{C}^{\infty}(D)$, for all I, J. We have

$$
\begin{align*}
& d f=\sum_{j=1}^{n} Z_{j}(f) d z_{j}+\sum_{j=1}^{n} \bar{Z}_{j}(f) d \bar{z}_{j}+T(f) \omega_{0}, \tag{2.16}\\
& \partial_{b} f=\sum_{j=1}^{n} Z_{j}(f) d z_{j}, \quad \bar{\partial}_{b} f=\sum_{j=1}^{n} \bar{Z}_{j}(f) d \bar{z}_{j}, \tag{2.17}\\
& \partial_{b} u=\sum_{I, J}\left(\partial_{b} u_{I J}\right) \wedge d z_{I} \wedge d \bar{z}_{J}, \quad \bar{\partial}_{b} u=\sum_{I, J}\left(\bar{\partial}_{b} u_{I J}\right) \wedge d z_{I} \wedge d \bar{z}_{J} . \tag{2.18}
\end{align*}
$$

For $u \in \Omega^{p, q}(X)$, let $\mathcal{L}_{T} u$ be the Lie derivative of u in the direction of T. For simplicity, we write $T u$ to denote $\mathcal{L}_{T} u$. Since the \mathbb{R}-action is $\mathrm{CR}, T u \in \Omega^{p, q}(X)$. On a BRT chart D, for $u \in \Omega^{p, q}(D), u=\sum_{I, J} u_{I J} d z_{I} \wedge d \bar{z}_{J}$, we have $T u=\sum_{I, J}\left(T u_{I J}\right) \wedge d z_{I} \wedge d \bar{z}_{J}$ on D.

The Levi form \mathscr{L} in a BRT chart $D \subset X$ has the form

$$
\begin{equation*}
\mathscr{L}=\left.\partial \bar{\partial} \phi\right|_{T^{(1,0)} X} . \tag{2.19}
\end{equation*}
$$

Indeed, the characteristic 1 -form ω_{0} and $d \omega_{0}$ on D are given by

$$
\begin{align*}
& \omega_{0}(x)=d x_{2 n+1}-i \sum_{j=1}^{n}\left(\frac{\partial \phi}{\partial z_{j}} d z_{j}-\frac{\partial \phi}{\partial \bar{z}_{j}} d \bar{z}_{j}\right), \tag{2.20}\\
& d \omega_{0}(x)=2 i \sum_{j, k=1}^{n} \frac{\partial^{2} \phi}{\partial z_{j} \partial \bar{z}_{k}} d z_{j} \wedge d \bar{z}_{k} .
\end{align*}
$$

From now on, we assume that Θ_{X} is \mathbb{R}-invariant. Let $D=U \times \mathcal{I}$ be a BRT chart. The (1,1) form $\Theta=\Theta_{U}$ on U is defined by, for $x=\left(z, x_{2 n+1}\right) \in D$,

$$
\begin{equation*}
\Theta(z):=\Theta_{X}(x) . \tag{2.21}
\end{equation*}
$$

Note that it is independent of $x_{2 n+1}$. More precisely,

$$
\begin{equation*}
\Theta(z)=\sqrt{-1} \sum_{j, k=1}^{n}\left\langle Z_{j} \mid Z_{k}\right\rangle(x) d z_{j} \wedge d \bar{z}_{k} . \tag{2.22}
\end{equation*}
$$

Note that for another BRT coordinates $D=\tilde{U} \times \tilde{\mathcal{I}}, y=\left(w, y_{2 n+1}\right)$, there exist biholomorphic map $H \in \mathscr{C}^{\infty}(U, \tilde{U})$ and $G \in \mathscr{C}^{\infty}(U, \mathbb{R})$ such that $H(z)=w$, for all $z \in U, y_{2 n+1}=x_{2 n+1}+G(z)$, for all $\left(z, x_{2 n+1}\right) \in U \times \mathcal{I}$ and $\tilde{U}=H(U)$, $\tilde{\mathcal{I}}=\mathcal{I}+G(U)$. We deduce that Θ is independent of the choice of BRT coordinates, i.e., $\Theta=\Theta_{U}=\Theta_{\widetilde{U}}$.

Until further notice, we work on a BRT chart $D=U \times \mathcal{I}$. For $p, q \in \mathbb{N}_{0}$, let $T^{*(p, q)} U$ be the bundle of (p, q) forms on U and let $T^{* \bullet, \bullet} U:=\oplus_{p, q \in \mathbb{N}_{0}} T^{*(p, q)} U$. For $p, q \in \mathbb{N}_{0}$, let $T^{(p, q)} U$ be the bundle of (p, q) vector fields on U and let $T^{\bullet \bullet \bullet} U:=$ $\oplus_{p, q \in \mathbb{N}_{0}} T^{(p, q)} U$. The (1,1) form Θ induces Hermitian metrics on $T^{\bullet \bullet \bullet} U$ and $T^{* \bullet, \bullet} U$. We shall use $\langle\cdot, \cdot\rangle_{h}$ to denote all the induced Hermitian metrics. The volume form on U induced by Θ is given by $d \lambda(z):=\Theta^{n} / n!$. Thus, the volume form $d v_{X}$ can be represented by

$$
\begin{equation*}
d v_{X}(x)=d \lambda(z) \wedge d x_{2 n+1} \text { on } D \tag{2.23}
\end{equation*}
$$

The L^{2}-inner product on $\Omega_{c}^{\bullet \bullet \bullet}(U)$ with respect to Θ is given by

$$
\begin{equation*}
\left\langle s_{1}, s_{2}\right\rangle_{L^{2}(U)}:=\int_{U}\left\langle s_{1}(z), s_{2}(z)\right\rangle_{h} d \lambda(z), \quad s_{1}, s_{2} \in \Omega_{c}^{\bullet \bullet \bullet}(U) \tag{2.24}
\end{equation*}
$$

Let $t \in \mathbb{R}$ be fixed. The L^{2}-inner product on $\Omega_{c}^{\bullet \bullet \bullet}(U)$ with respect to Θ and $e^{-2 t \phi(z)}$ is given by

$$
\begin{equation*}
\left\langle s_{1}, s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)}:=\int_{U}\left\langle s_{1}(z), s_{2}(z)\right\rangle_{h} e^{-2 t \phi(z)} d \lambda(z), \quad s_{1}, s_{2} \in \Omega_{c}^{\bullet \bullet \bullet}(U) \tag{2.25}
\end{equation*}
$$

The Chern curvature of $K_{U}^{*}:=\operatorname{det}\left(T^{(1,0)} U\right)$ with respect to Θ is given by

$$
R^{K_{U}^{*}}:=\bar{\partial} \partial \log \operatorname{det}\left(\left\langle\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial z_{k}}\right\rangle_{h}\right)_{j, k=1}^{n}, \quad R^{K_{U}^{*}} \in \Omega^{1,1}(U)
$$

On X, define $K_{X}^{*}:=\operatorname{det}\left(T^{(1,0)} X\right)$. Then, K_{X}^{*} is a CR line bundle over X. The Chern curvature $R^{K_{X}^{*}}$ of K_{X}^{*} with respect to Θ_{X} is defined as follows: On a BRT chart D, let

$$
\begin{equation*}
R^{K_{X}^{*}}:=\bar{\partial}_{b} \partial_{b} \log \operatorname{det}\left(\left\langle Z_{j} \mid Z_{k}\right\rangle\right)_{j, k=1}^{n} \tag{2.26}
\end{equation*}
$$

It is easy to see that $R^{K_{X}^{*}}$ is independent of the choice of BRT coordinates and hence $R^{K_{X}^{*}}$ is globally defined, i.e., $R^{K_{X}^{*}} \in \Omega^{1,1}(X)$.

Let $\left\{L_{j}\right\}_{j=1}^{n}$ be an \mathbb{R}-invariant orthonormal frame of $T^{(0,1)} D$ with the dual (orthonormal) frame $\left\{e_{j}\right\}_{j=1}^{n}$. Then $\left\{\bar{L}_{j}\right\}_{j=1}^{n}$ is an \mathbb{R}-invariant orthonormal frame of $T^{(1,0)} D$ with the dual (orthonormal) frame $\left\{\bar{e}_{j}\right\}_{j=1}^{n}$. Since Θ_{X} is \mathbb{R}-invariant, there exist $c_{j}^{k}=c_{j}^{k}(z), w_{j}^{k}=w_{j}^{k}(z) \in \mathscr{C}^{\infty}(U), j, k=1, \ldots, n$, satisfying $\sum_{k=1}^{n} c_{j}^{k} w_{k}^{l}=\delta_{j}^{l}$, for all $j, l=1, \ldots, n$, such that for $j=1, \ldots, n$,

$$
\begin{array}{ll}
\bar{L}_{j}=\sum_{k=1}^{n} \bar{c}_{j}^{k} Z_{k}, & \bar{e}_{j}=\bar{w}_{k}^{j} d z_{k}, \\
L_{j}=\sum_{k=1}^{n} c_{j}^{k} \bar{Z}_{k}, & e_{j}=w_{k}^{j} d \bar{z}_{k} . \tag{2.28}
\end{array}
$$

We can check that $\left\{w_{j}:=\sum_{k=1}^{n} \bar{c}_{j}^{k} \frac{\partial}{\partial z_{k}} ; j=1, \ldots, n\right\}$ and $\left\{\bar{w}_{j}:=\sum_{k=1}^{n} c_{j}^{k} \frac{\partial}{\partial \bar{z}_{k}} ; j=\right.$ $1, \ldots, n\}$ are orthonormal frames for $T^{(1,0)} U$ and $T^{(0,1)} U$ with respect to Θ, respectively, and $\left\{\bar{e}_{j} ; j=1, \ldots, n\right\},\left\{e_{j} ; j=1, \ldots, n\right\}$ are dual frames for $\left\{w_{j} ; j=\right.$ $1, \ldots, n\}$ and $\left\{\bar{w}_{j} ; j=1, \ldots, n\right\}$, respectively. We also write w^{j} and \bar{w}^{j} to denote \bar{e}_{j} and e_{j}, respectively, $j=1, \ldots, n$.

Lemma 2.7 We have

$$
\operatorname{Ric} \mathscr{L}=R_{\mathscr{L}}^{K_{X}^{*}}
$$

on X.
Proof Fix $p \in D$ and let $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$ be BRT local coordinates defined on an open set D of p with $x(p)=0$. We take $x=\left(x_{1}, \ldots, x_{2 n+1}\right)=\left(z_{1}, \ldots, z_{n}, x_{2 n+1}\right)$, $z_{j}=x_{2 j-1}+i x_{2 j}, j=1, \ldots, n$, so that

$$
\begin{equation*}
\phi(z)=\frac{1}{2} \sum_{j=1}^{n}\left|z_{j}\right|^{2}+O\left(|z|^{4}\right), \tag{2.29}
\end{equation*}
$$

where $\phi \in \mathscr{C}^{\infty}(D)$ is as in (2.15).
In the following, we will use Einstein summation convention. Write $\nabla_{Z_{i}} Z_{j}=$ $\Gamma_{i j}^{l} Z_{l}$, where ∇ denotes the Tanaka-Webster connection (see Proposition 2.4). From [28, Lemma 3.2],

$$
\begin{equation*}
d \omega_{0}\left(\nabla_{Z_{i}} Z_{j}, \bar{Z}_{k}\right)=Z_{i}\left(d \omega_{0}\left(Z_{j}, \bar{Z}_{k}\right)\right)-d \omega_{0}\left(Z_{j},\left[Z_{i}, \bar{Z}_{k}\right]_{T^{(0,1)} X}\right) \tag{2.30}
\end{equation*}
$$

Directly,

$$
\begin{gather*}
d \omega_{0}\left(\nabla_{Z_{i}} Z_{j}, \bar{Z}_{k}\right)=d \omega_{0}\left(\Gamma_{i j}^{l} Z_{l}, \bar{Z}_{k}\right)=2 i \Gamma_{i j}^{l} \frac{\partial^{2} \phi}{\partial z_{l} \partial \bar{z}_{k}}, \tag{2.31}\\
Z_{i}\left(d \omega_{0}\left(Z_{j}, \bar{Z}_{k}\right)\right)=2 i \frac{\partial^{3} \phi}{\partial z_{i} \partial z_{j} \partial \bar{z}_{k}} \tag{2.32}\\
{\left[Z_{i}, \bar{Z}_{k}\right]_{T^{(0,1)} X}=0}
\end{gather*}
$$

and hence

$$
\begin{equation*}
2 i \Gamma_{i j}^{l} \frac{\partial^{2} \phi}{\partial z_{l} \partial \bar{z}_{k}}=2 i \frac{\partial^{3} \phi}{\partial z_{i} \partial z_{j} \partial \bar{z}_{k}}, \tag{2.33}
\end{equation*}
$$

for all $i, j, l, k=1, \ldots, n$. Accordingly, by (2.29) and (2.33), we get that for all $i, j, k=1, \cdots, n$,

$$
\begin{equation*}
\Gamma_{i j}^{k}(0)=0 . \tag{2.34}
\end{equation*}
$$

Moreover, by taking $\frac{\partial}{\partial \bar{z}_{h}}$ both sides in (2.33), from (2.29) and (2.33), it is not difficult to check that

$$
\begin{equation*}
\frac{\partial \Gamma_{i j}^{k}}{\partial \bar{z}_{h}}(0)=2 \frac{\partial^{4} \phi}{\partial z_{i} \partial z_{j} \partial \bar{z}_{k} \partial \bar{z}_{h}}(0) \tag{2.35}
\end{equation*}
$$

It is clear that $\left\{d z_{j}\right\}_{j=1}^{n}$ and $\left\{d \bar{z}_{j}\right\}_{j=1}^{n}$ are the dual frames of $\left\{Z_{j}\right\}_{j=1}^{n}$ and $\left\{\bar{Z}_{j}\right\}_{j=1}^{n}$, respectively. Denote

$$
\nabla Z_{\alpha}=\omega_{\alpha}^{\beta} \otimes Z_{\beta}
$$

and we can check that the $(1,1)$ part of $d \omega_{\alpha}^{\beta}$ is

$$
\left.-\sum_{k, l=1}^{n}\left(\bar{Z}_{l} \Gamma_{k \alpha}^{\beta}\right)\right) d z_{k} \wedge d \bar{z}_{l}
$$

and the $(1,1)$ part of $\Theta_{\alpha}^{\beta}=d \omega_{\alpha}^{\beta}-\omega_{\alpha}^{\gamma} \wedge \omega_{\gamma}^{\beta}$ denoted by

$$
\sum_{k, l=1}^{n} R_{\alpha k \bar{l}}^{\beta} \theta^{k} \wedge \theta^{\bar{l}}
$$

equals the $(1,1)$ part of $d \omega_{\alpha}^{\beta}$. Hence, the pseudohermitian Ricci curvature tensor at origin is

$$
R_{\alpha \bar{l}}(0)=\sum_{k=\beta=1}^{n} R_{\alpha k \bar{l}}^{\beta}(0)=-\sum_{k=\beta=1}^{n} \frac{\partial \Gamma_{k \alpha}^{\beta}}{\partial \bar{z}_{l}}(0)=-2 \sum_{k=1}^{n} \frac{\partial^{4} \phi}{\partial z_{k} \partial \bar{z}_{k} \partial z_{\alpha} \partial \bar{z}_{l}}(0) .
$$

We get that

$$
\begin{equation*}
\operatorname{Ric} \mathscr{L}(0)=-2 \sum_{k=1}^{n} \frac{\partial^{4} \phi}{\partial z_{k} \partial \bar{z}_{k} \partial z_{\alpha} \partial \bar{z}_{l}}(0) d z_{\alpha} \wedge d \bar{z}_{l} . \tag{2.36}
\end{equation*}
$$

On the other hand, by directed computation, we can check that

$$
\begin{equation*}
R^{K_{X}^{*}}(0)=\bar{\partial}_{b} \partial_{b} \log \operatorname{det}\left(\left\langle Z_{j} \mid Z_{k}\right\rangle\right)_{j, k=1}^{n}(0)=-2 \sum_{k=1}^{n} \frac{\partial^{4} \phi}{\partial z_{k} \partial \bar{z}_{k} \partial z_{\alpha} \partial \bar{z}_{l}}(0) d z_{\alpha} \wedge d \bar{z}_{l} . \tag{2.37}
\end{equation*}
$$

From (2.36) and (2.37), the lemma follows.

3 Bochner-Kodaira Formula on CR Manifolds with \mathbb{R}-Action

In this section, we will prove the Bochner-Kodaira-Nakano for CR manifolds with transversal CR \mathbb{R}-action. They are refinements of Tanaka's basic identities [28, Theorems 5.1, 5.2] in our context. Namely, Tanaka's formulas hold for any strictly pseudoconvex manifold endowed with the Levi metric, while our formulas are specific to CR manifolds with \mathbb{R}-action endowed with arbitrary Hermitian metric Θ_{X}.

3.1 The Fourier Transform on BRT Charts

Let $D=U \times \mathcal{I}$ be a BRT chart. Let $f \in \mathscr{C}_{c}^{\infty}(D)$. We write $f=f(x)=f\left(z, x_{2 n+1}\right)$. For each fixed $x_{2 n+1} \in I, f\left(\cdot, x_{2 n+1}\right) \in \mathscr{C}_{c}^{\infty}(U)$. For each fixed $z \in U, f(z, \cdot) \in$ $\mathscr{C}_{c}^{\infty}(\mathcal{I})$. Let $p, q \in \mathbb{N}_{0}, u \in \Omega_{c}^{p, q}(D)$. We write $u=\sum_{I, J} u_{I J} d z_{I} \wedge d \bar{z}_{J} \in \Omega_{c}^{p, q}(D)$ and we always assume that the summation is performed only over increasingly ordered indices $I=i_{1}<i_{2}<\ldots<i_{p}, J=j_{1}<j_{2}<\ldots<j_{q}$, and $u_{I J} \in \mathscr{C}_{c}^{\infty}(D)$, for all $\{I, J\}$. For each fixed $z \in U, u_{I J}(z, \cdot) \in \mathscr{C}_{c}^{\infty}(\mathcal{I})$.

Definition 3.1 The Fourier transform of the function $f \in \mathscr{C}_{c}^{\infty}(D)$ with respect to $x_{2 n+1}$, denoted by \widehat{f}, is defined by

$$
\begin{equation*}
\widehat{f}(z, t):=\int_{-\infty}^{\infty} e^{-i t x_{2 n+1}} f\left(z, x_{2 n+1}\right) d x_{2 n+1} \in \mathscr{C}^{\infty}(U \times \mathbb{R}) \tag{3.1}
\end{equation*}
$$

The Fourier transform of the form $u=\sum_{I, J} u_{I J} d z_{I} \wedge d \bar{z}_{J} \in \Omega_{c}^{p, q}(D)$ with respect to $x_{2 n+1}$, denoted by \widehat{u}, is defined by

$$
\begin{equation*}
\widehat{u}(z, t)=\sum_{I, J} \widehat{u}_{I J}(z, t) d z_{I} \wedge d \bar{z}_{J} \in \Omega^{p, q}(U \times \mathbb{R}):=\mathscr{C}^{\infty}\left(U \times \mathbb{R}, T^{*(p, q)} U\right) \tag{3.2}
\end{equation*}
$$

Note that $\widehat{f} \in \mathscr{C}^{\infty}(U \times \mathbb{R})$ and $\widehat{f}(\cdot, t) \in \mathscr{C}_{c}^{\infty}(U)$ for every $t \in \mathbb{R}$. Similarly, $\widehat{u} \in \Omega^{p, q}(U \times \mathbb{R})$ and $\widehat{u}(\cdot, t) \in \Omega_{c}^{p, q}(U)$ for every $t \in \mathbb{R}$. From Parseval's formula, we have for $u, v \in \Omega_{c}^{p, q}(D)$,

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left\langle u\left(z, x_{2 n+1}\right) \mid v\left(z, x_{2 n+1}\right)\right\rangle d x_{2 n+1}=(1 / 2 \pi) \int_{-\infty}^{\infty}\langle\widehat{u}(z, t), \widehat{v}(z, t)\rangle_{h} d t, \tag{3.3}
\end{equation*}
$$

for every $z \in U$. By using integration by parts, we have for $u \in \Omega_{c}^{p, q}(D)$,

$$
\begin{equation*}
-\sqrt{-1} \widehat{T u}=t \widehat{u}, \quad \text {,i.e., } \quad-\sqrt{-1} \frac{\widehat{\partial u}}{\partial x_{2 n+1}}(z, t)=t \widehat{u}(z, t) . \tag{3.4}
\end{equation*}
$$

Let $t \in \mathbb{R}$ be fixed. Let $|(z, 1)|_{h}^{2}:=e^{-2 t \phi(z)}$ be the Hermitian metric on the trivial line bundle $U \times \mathbb{C}$ over U. The Chern connection of $\left(U \times \mathbb{C}, e^{-2 t \phi}\right)$ is given by

$$
\begin{equation*}
\nabla^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)}=\nabla^{1,0}+\nabla^{0,1}, \quad \nabla^{1,0}=\partial-2 t \partial \phi, \quad \nabla^{0,1}=\bar{\partial} . \tag{3.5}
\end{equation*}
$$

Indeed, $\nabla^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)}=d+h^{-1} \partial h=d+e^{2 t \phi} \partial\left(e^{-2 t \phi}\right)$. The curvature of $(U \times$ $\left.\mathbb{C}, e^{-2 t \phi}\right)$ is

$$
\begin{equation*}
R^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)}=\left(\nabla^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)}\right)^{2}=2 t \partial \bar{\partial} \phi \tag{3.6}
\end{equation*}
$$

We can identify $\partial \bar{\partial} \phi$ with Levi form \mathscr{L} and write $R^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)}=2 t \mathscr{L}$. Moreover, we will identify $\Omega^{\bullet \bullet}(U)$ and $\Omega_{c}^{\bullet \bullet}(U)$ with $\Omega^{\bullet \bullet \bullet}(U, U \times \mathbb{C})$ and $\Omega_{c}^{\bullet \bullet \bullet}(U, U \times \mathbb{C})$, respectively.

Proposition 3.2 Let $u, v \in \Omega_{c}^{\bullet \bullet \bullet}(D)$. We have

$$
\begin{align*}
& \widehat{\bar{\partial}_{b} u}=e^{-t \phi} \bar{\partial}\left(e^{t \phi} \widehat{u}\right) \quad \text { on } U \times \mathbb{R}, \tag{3.7}\\
& \widehat{\bar{\partial}_{b}^{*} v}=e^{-t \phi \bar{\partial}^{*}}\left(e^{t \phi} \widehat{v}\right) \text { on } U \times \mathbb{R}, \tag{3.8}\\
& \widehat{\partial_{b} u}=e^{-t \phi} \nabla^{1,0}\left(e^{t \phi} \widehat{u}\right) \quad \text { on } U \times \mathbb{R}, \tag{3.9}\\
& \widehat{\partial_{b}^{*} u}=e^{-t \phi} \nabla^{1,0 *}\left(e^{t \phi} \widehat{u}\right) \text { on } U \times \mathbb{R}, \tag{3.10}
\end{align*}
$$

where $\bar{\partial}^{*}, \nabla^{1,0 *}$ are the formal adjoints of $\bar{\partial}, \nabla^{1,0}$ with respect to $\langle\cdot, \cdot\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)}$, respectively, and $\bar{\partial}_{b}^{*}, \partial_{b}^{*}$ are the formal adjoints of $\bar{\partial}_{b}, \partial_{b}$ with respect to $(\cdot \mid \cdot)$, respectively.

Proof Let $u=\sum_{I, J} u_{I J} d z_{I} \wedge d \bar{z}_{J} . \operatorname{By} \bar{\partial}_{b} u=\sum_{I, J} \sum_{j=1}^{n}\left(\frac{\partial u_{I J}}{\partial \bar{z}_{j}}-i \frac{\partial \phi}{\partial \bar{z}_{j}} \frac{\partial u_{I J}}{\partial x_{2 n+1}}\right) d \bar{z}_{j} \wedge$ $d z_{I} \wedge d \bar{z}_{J}$,

$$
\begin{align*}
\left(\widehat{\bar{\partial}_{b} u}\right)(z, t) & =\sum_{I, J} \sum_{j=1}^{n}\left(\frac{\partial \widehat{u}_{I J}}{\partial \bar{z}_{j}}(z, t)+t \frac{\partial \phi}{\partial \bar{z}_{j}}(z) \widehat{u}_{I J}(z, t)\right) d \bar{z}_{j} \wedge d z_{I} \wedge d \bar{z}_{J} \\
& =e^{-t \phi(z)} \bar{\partial}\left(e^{t \phi} \sum_{I, J} \widehat{u}_{I J} d z_{I} \wedge d \bar{z}_{J}\right)(z, t) \tag{3.11}\\
& =\left(e^{-t \phi} \bar{\partial}\left(e^{t \phi} \widehat{u}\right)\right)(z, t) .
\end{align*}
$$

Thus the first equality holds. From Parseval's formula,

$$
\begin{align*}
\left(\bar{\partial}_{b} u \mid v\right) & =\int_{D}\left\langle\bar{\partial}_{b} u \mid v\right\rangle d \lambda(z) d x_{2 n+1} \\
& =\int_{U}\left((2 \pi)^{-1} \int_{-\infty}^{\infty}\left\langle\widehat{\bar{\partial}_{b} u}(z, t), \widehat{v}(z, t)\right\rangle_{h} d t\right) d \lambda(z) \\
& =(2 \pi)^{-1} \int_{-\infty}^{\infty} \int_{U}\left\langle e^{-t \phi} \bar{\partial}\left(e^{t \phi} \widehat{u}\right), \widehat{v}\right\rangle_{h} d \lambda(z) d t \\
& =(2 \pi)^{-1} \int_{-\infty}^{\infty}\left\langle\bar{\partial}\left(e^{t \phi} \widehat{u}\right), e^{t \phi} \widehat{v}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)} d t \\
& =(2 \pi)^{-1} \int_{-\infty}^{\infty}\left\langle e^{t \phi} \widehat{u}, \bar{\partial}^{*}\left(e^{t \phi} \widehat{v}\right)\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)} d t \\
& =(2 \pi)^{-1} \int_{-\infty}^{\infty} \int_{U}\left\langle\widehat{u}, e^{-t \phi} \bar{\partial}^{*}\left(e^{t \phi} \widehat{v}\right)\right\rangle_{h} d \lambda(z) d t \tag{3.12}
\end{align*}
$$

Meanwhile, we have

$$
\begin{equation*}
\left(\bar{\partial}_{b} u \mid v\right)=\left(u \mid \bar{\partial}_{b}^{*} v\right)=(2 \pi)^{-1} \int_{-\infty}^{\infty} \int_{U}\left\langle\widehat{u}, \widehat{\partial_{b}^{*} v}\right\rangle_{h} d \lambda(z) d t . \tag{3.13}
\end{equation*}
$$

Thus the second equality holds. The proofs of the third and the fourth equalities are similar.

3.2 CR Bochner-Kodaira-Nakano Formula I

Analog to [23, (1.4.32)], we define the Lefschetz operator $\Theta_{X} \wedge \cdot$ on $\wedge^{\bullet \bullet}\left(T^{*} X\right)$ and its adjoint $\Lambda=i\left(\Theta_{X}\right)$ with respect to the Hermitian inner product $\langle\cdot \mid \cdot\rangle$ associated with Θ_{X}. The Hermitian torsion of Θ_{X} is defined by

$$
\begin{equation*}
\mathcal{T}:=\left[\Lambda, \partial_{b} \Theta_{X}\right] . \tag{3.14}
\end{equation*}
$$

Let $D=U \times \mathcal{I}$ be a BRT chart and let $\left\{\bar{L}_{j}\right\}_{j=1}^{n} \subset T^{(1,0)} D,\left\{\bar{e}_{j}\right\}_{j=1}^{n} \subset T^{*(1,0)} D$, $\left\{w_{j}\right\}_{j=1}^{n} \subset T^{(1,0)} U$ be as in the discussion after (2.26). We can check that

$$
\begin{equation*}
\Theta_{X} \wedge \cdot=\sqrt{-1} \bar{e}_{j} \wedge e_{j} \wedge \cdot, \quad \Lambda=-\sqrt{-1} i_{L_{j}} i_{\bar{L}_{j}} \quad \text { on } D \tag{3.15}
\end{equation*}
$$

Note that $i_{L_{j}}$ and $i_{\bar{L}_{j}}$ are the adjoints of $e_{j} \wedge$ and $\bar{e}_{j} \wedge$, respectively.
Since $\partial \Theta(z)=\partial_{b} \Theta_{X}(x)$ on D, and $\Theta \wedge \cdot=\sqrt{-1} \bar{e}_{j} \wedge e_{j} \wedge \cdot, \Lambda=-\sqrt{-1} i_{\bar{w}_{j}} i_{w_{j}}$ on U, see $[23,1.4 .32]$, we have $\mathcal{T}=\left[\Lambda, \partial_{b} \Theta\right]=[\Lambda, \partial \Theta]$ on $\Omega^{\bullet \bullet}(D)$, which is independent of $x_{2 n+1}$. We remark that \mathcal{T} is a differential operator of order zero. With respect to the Hermitian inner product $\langle\cdot \mid \cdot\rangle$ associated with Θ_{X}, we have the adjoint operator \mathcal{T}^{*}, the conjugate operator $\overline{\mathcal{T}}$ and the adjoint of the conjugate operator $\overline{\mathcal{T}}^{*}$ for \mathcal{T}.

Theorem 3.3 With the notations used above, we have on $\Omega^{\bullet \bullet}(X)$,

$$
\begin{equation*}
\square_{b}=\bar{\square}_{b}+[2 \sqrt{-1} \mathscr{L}, \Lambda](-\sqrt{-1} T)+\left(\partial_{b} \mathcal{T}^{*}+\mathcal{T}^{*} \partial_{b}\right)-\left(\bar{\partial}_{b} \overline{\mathcal{T}}^{*}+\overline{\mathcal{T}}^{*} \bar{\partial}_{b}\right) \tag{3.16}
\end{equation*}
$$

Proof Since the both side of (3.16) are globally defined, we can check (3.16) on a BRT chart. Now, we work on a BRT chart $D=U \times \mathcal{I}$. We will use the same notations as before. Let

$$
\begin{aligned}
& \square^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)}=\bar{\partial} \bar{\partial}^{*}+\bar{\partial}^{*} \bar{\partial}: \Omega_{c}^{\bullet, \bullet}(U) \rightarrow \Omega_{c}^{\bullet, \bullet}(U), \\
& \bar{\square}^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)}:=\nabla^{1,0 *} \nabla^{1,0}+\nabla^{1,0} \nabla^{1,0 *}: \Omega_{c}^{\bullet, \bullet}(U) \rightarrow \Omega_{c}^{\bullet \bullet}(U),
\end{aligned}
$$

where $\nabla^{1,0}$ is given by (3.5), $\bar{\partial}^{*}, \nabla^{1,0 *}$ are the formal adjoints of $\bar{\partial}, \nabla^{1,0}$ with respect to $\langle\cdot, \cdot\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)}$, respectively. From [23, (1.4.44)],

$$
\square^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)}=\bar{\square}^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)}+[2 \sqrt{-1} t \mathscr{L}, \Lambda]+\left(\nabla^{1,0} \mathcal{T}^{*}+\mathcal{T}^{*} \nabla^{1,0}\right)-\left(\bar{\partial} \overline{\mathcal{T}}^{*}+\overline{\mathcal{T}}^{*} \bar{\partial}\right)
$$

Let $u, v \in \Omega_{c}^{\bullet \bullet \bullet}(D)$. Let $s_{1}(z):=e^{t \phi(z)} \widehat{u}(z, t) \in \Omega^{\bullet \bullet}(U \times \mathbb{R}), s_{2}(z):=e^{t \phi(z)} \widehat{v}(z, t) \in$ $\Omega^{\bullet \bullet}(U \times \mathbb{R})$. Firstly, we have

$$
\begin{equation*}
(1 / 2 \pi) \int_{-\infty}^{\infty}\left\langle\square^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)} s_{1}, s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)} d t=\left(\bar{\partial}_{b} u \mid \bar{\partial}_{b} v\right)+\left(\bar{\partial}_{b}^{*} u \mid \bar{\partial}_{b}^{*} v\right) . \tag{3.17}
\end{equation*}
$$

In fact, from Proposition 3.2,

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left\langle\square^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)} s_{1}, s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)} d t \\
& =\int_{-\infty}^{\infty}\left(\left\langle\bar{\partial} s_{1}, \bar{\partial} s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)}+\left\langle\bar{\partial}^{*} s_{1}, \bar{\partial}^{*} s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)}\right) d t \\
& =\int_{-\infty}^{\infty}\left(\left\langle\widehat{\widehat{\partial_{b} u}}, \widehat{\left.\left.\widehat{\partial_{b}} v\right\rangle_{L^{2}(U)}+\left\langle\widehat{\hat{\partial}_{b}^{*} u}, \widehat{\partial_{b}^{*}} v\right\rangle_{L^{2}(U)}\right) d t}\right.\right. \\
& =2 \pi\left(\bar{\partial}_{b} u \mid \bar{\partial}_{b} v\right)+2 \pi\left(\bar{\partial}_{b}^{*} u \mid \bar{\partial}_{b}^{*} v\right) .
\end{aligned}
$$

Similarly, we have

$$
\begin{equation*}
(1 / 2 \pi) \int_{-\infty}^{\infty}\left\langle\bar{\square}^{\left(U \times \mathbb{C}, e^{-2 t \phi}\right)} s_{1}, s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)} d t=\left(\partial_{b} u \mid \partial_{b} v\right)+\left(\partial_{b}^{*} u \mid \partial_{b}^{*} v\right) . \tag{3.18}
\end{equation*}
$$

Thirdly, we have

$$
\begin{equation*}
(1 / 2 \pi) \int_{-\infty}^{\infty} t\left\langle[2 \sqrt{-1} \mathscr{L}, \Lambda] s_{1}, s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)} d t=([2 \sqrt{-1} \mathscr{L}, \Lambda](-\sqrt{-1} T) u \mid v) \tag{3.19}
\end{equation*}
$$

In fact, it follows from

$$
\begin{aligned}
& \int_{-\infty}^{\infty} t\left\langle[2 \sqrt{-1} \mathscr{L}, \Lambda] s_{1}, s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)} d t \\
& =\int_{-\infty}^{\infty}\langle t[2 \sqrt{-1} \mathscr{L}, \Lambda] \widehat{u}, \widehat{v}\rangle_{L^{2}(U)} d t \\
& =\int_{-\infty}^{\infty}\langle[2 \sqrt{-1} \mathscr{L}, \Lambda](-\sqrt{-1} T u), \widehat{v}\rangle_{L^{2}(U)} d t \\
& =2 \pi([2 \sqrt{-1} \mathscr{L}, \Lambda](-\sqrt{-1} T u) \mid v) .
\end{aligned}
$$

Fourthly, we consider the rest terms

$$
\begin{equation*}
\left\langle\left(\nabla^{1,0} \mathcal{T}^{*}+\mathcal{T}^{*} \nabla^{1,0}\right) s_{1}, s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)}, \quad\left\langle\left(\nabla^{0,1} \overline{\mathcal{T}}^{*}+\overline{\mathcal{T}}^{*} \nabla^{0,1}\right) s_{1}, s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)} \tag{3.20}
\end{equation*}
$$

By Proposition 3.2, we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left\langle\left(\nabla^{1,0} \mathcal{T}^{*}+\mathcal{T}^{*} \nabla^{1,0}\right) s_{1}, s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)} d t \\
& =\int_{-\infty}^{\infty}\left\langle\left(\nabla^{1,0} \mathcal{T}^{*} s_{1}, s_{2}\right\rangle_{L^{2}(U,-2 t \phi)}+\left\langle\mathcal{T}^{*} \nabla^{1,0} s_{1}, s_{2}\right\rangle_{L^{2}(U,-2 t \phi)}\right) d t \\
& =\int_{-\infty}^{\infty}\left\langle\left(\nabla^{1,0} \mathcal{T}^{*} e^{t \phi} \widehat{u}, e^{t \phi} \widehat{v}\right\rangle_{L^{2}(U,-2 t \phi)}+\left\langle\mathcal{T}^{*} \nabla^{1,0} e^{t \phi} \widehat{u}, e^{t \phi} \widehat{v}\right\rangle_{L^{2}(U,-2 t \phi)}\right) d t \\
& =\int_{-\infty}^{\infty}\left\langle\left(\mathcal{T}^{*} e^{t \phi} \widehat{u}, \nabla^{1,0 *}\left(e^{t \phi} \widehat{v}\right)\right\rangle_{L^{2}(U,-2 t \phi)}+\left\langle\nabla^{1,0}\left(e^{t \phi} \widehat{u}\right), \mathcal{T} e^{t \phi} \widehat{v}\right\rangle_{L^{2}(U,-2 t \phi)}\right) d t \\
& =\int_{-\infty}^{\infty}\left\langle\left(\mathcal{T}^{*} \widehat{u}, e^{-t \phi} \nabla^{1,0 *}\left(e^{t \phi} \widehat{v}\right)\right\rangle_{L^{2}(U)}+\left\langle e^{-t \phi} \nabla^{1,0} e^{t \phi} \widehat{u}, \mathcal{T} \widehat{v}\right\rangle_{L^{2}(U)}\right) d t
\end{aligned}
$$

$$
\begin{align*}
& =2 \pi\left(\mathcal{T}^{*} u \mid \partial_{b}^{*} v\right)+2 \pi\left(\partial_{b} u \mid \mathcal{T} v\right) \text {. } \tag{3.21}
\end{align*}
$$

Thus we obtain

$$
\begin{align*}
& (1 / 2 \pi) \int_{-\infty}^{\infty}\left\langle\left(\nabla^{1,0} \mathcal{T}^{*}+\mathcal{T}^{*} \nabla^{1,0}\right) s_{1}, s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)} d t \\
& =\left(\mathcal{T}^{*} u \partial_{b}^{*} v\right)+\left(\partial_{b} u \mid \mathcal{T} v\right) \tag{3.22}\\
& =\left(\left(\partial_{b} \mathcal{T}^{*}+\mathcal{T}^{*} \partial_{b}\right) u \mid v\right)
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
(1 / 2 \pi) \int_{-\infty}^{\infty}\left\langle\left(\bar{\partial} \overline{\mathcal{T}}^{*}+\overline{\mathcal{T}}^{*} \bar{\partial}\right) s_{1}, s_{2}\right\rangle_{L^{2}\left(U, e^{-2 t \phi}\right)} d t=\left(\left(\bar{\partial}_{b} \overline{\mathcal{T}}^{*}+\bar{\partial}_{b} \overline{\mathcal{T}}^{*}\right) u \mid v\right) . \tag{3.23}
\end{equation*}
$$

From (3.17), (3.18), (3.19), (3.22), and (3.23), we get that for $u, v \in \Omega_{c}^{\bullet \bullet \bullet}(D)$,
$\left(\square_{b} u \mid v\right)=\left(\left(\bar{\square}_{b}+[2 \sqrt{-1} \mathscr{L}, \Lambda](-\sqrt{-1} T)+\left(\partial_{b} \mathcal{T}^{*}+\mathcal{T}^{*} \partial_{b}\right)-\left(\bar{\partial}_{b} \overline{\mathcal{T}}^{*}+\overline{\mathcal{T}}^{*} \bar{\partial}_{b}\right)\right) u \mid v\right)$.
The theorem follows.
Corollary 3.4 (CR Nakano's inequality I) With the notations used above, for any $u \in$ $\Omega_{c}^{\bullet \bullet \bullet}(X)$,

$$
\begin{align*}
\frac{3}{2}\left(\square_{b} u \mid u\right) & \geq([2 \sqrt{-1} \mathscr{L}, \Lambda](-\sqrt{-1} T u) \mid u) \\
& -\frac{1}{2}\left(\|\mathcal{T} u\|^{2}+\left\|\mathcal{T}^{*} u\right\|^{2}+\|\overline{\mathcal{T}} u\|^{2}+\left\|\overline{\mathcal{T}}^{*} u\right\|^{2}\right) \tag{3.24}
\end{align*}
$$

If $\left(X, T^{(1,0)} X\right)$ is Kähler, i.e., $d \Theta_{X}=0$, then

$$
\begin{equation*}
\left(\square_{b} u \mid u\right) \geq([2 \sqrt{-1} \mathscr{L}, \Lambda](-\sqrt{-1} T u) \mid u) \tag{3.25}
\end{equation*}
$$

Proof By the Cauchy-Schwarz inequality, Theorem 3.3 and since $\mathcal{T}=0, \mathcal{T}^{*}=0$ if $d \Theta_{X}=0$, we get the corollary.

The following follows from straightforward calculation, we omit the proof.
Proposition 3.5 For a real (1,1)-form $\sqrt{-1} \alpha \in \Omega^{1,1}(D)$, if we choose local orthonormal frame $\left\{\bar{L}_{j}\right\}_{j=1}^{n}$ of $T^{(1,0)} D$ with the dual frame $\left\{\bar{e}_{j}\right\}_{j=1}^{n}$ of $T^{*(1,0)} D$ such that $\sqrt{-1} \alpha=\sqrt{-1} \lambda_{j}(x) \bar{e}_{j} \wedge e_{j}$ at a given point $x \in D$, then for any $f=\sum_{I, J} f_{I J}(x) \bar{e}^{I} \wedge e^{J} \in \Omega^{\bullet \bullet}(D)$, we have

$$
\begin{equation*}
[\sqrt{-1} \alpha, \Lambda] f(x)=\sum_{I, J}\left(\sum_{j \in I} \lambda_{j}(x)+\sum_{j \in J} \lambda_{j}(x)-\sum_{j=1}^{n} \lambda_{j}(x)\right) f_{I J}(x) \bar{e}^{I} \wedge e^{J} \tag{3.26}
\end{equation*}
$$

Corollary 3.6 With the notations used above, let Θ_{X} be a Hermitian metric on X such that

$$
\begin{equation*}
2 \sqrt{-1} \mathscr{L}=\Theta_{X} \tag{3.27}
\end{equation*}
$$

Then for any $u \in \Omega_{c}^{n, q}(X)$ with $1 \leq q \leq n$,

$$
\begin{equation*}
(-\sqrt{-1} T u \mid u) \leq \frac{1}{q}\left(\left\|\bar{\partial}_{b} u\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u\right\|^{2}\right) . \tag{3.28}
\end{equation*}
$$

Proof By applying (3.26) for $\sqrt{-1} \alpha:=2 \sqrt{-1} \mathscr{L}, \lambda_{j}=1$ for all j, we have

$$
\begin{equation*}
[2 \sqrt{-1} \mathscr{L}, \Lambda](-\sqrt{-1} T u)=q(-\sqrt{-1} T u), \text { for all } u \in \Omega_{c}^{n, q}(X) \tag{3.29}
\end{equation*}
$$

By $d \Theta_{X}=d(2 \sqrt{-1} \mathscr{L})=0$ and Corollary 3.4, we obtain

$$
\begin{equation*}
\left(\square_{b} u \mid u\right) \geq([2 \sqrt{-1} \mathscr{L}, \Lambda](-\sqrt{-1} T u) \mid u)=q(-\sqrt{-1} T u \mid u) . \tag{3.30}
\end{equation*}
$$

Let E be a CR line bundle over X (see Definition 2.4 in [13]. We say that E is a \mathbb{R}-equivariant CR line bundle over X if the \mathbb{R}-action on X can be CR lifted to E and for every point $x \in X$, we can find a T-invariant local CR frame of E defined near x (see [16, Definitions 2.6, 2.9]). Here, we also use T to denote the vector field acting on sections of E induced by the \mathbb{R}-action on E. From now on, we assume that E is a \mathbb{R}-equivariant CR line bundle over X with a \mathbb{R}-invariant Hermitian metric h^{E} on E. For $p, q \in \mathbb{N}_{0}$, let $\Omega^{p, q}(X, E)$ be the space of smooth (p, q)-forms of X with values in E and let $\Omega^{\bullet, \bullet}(X, E):=\oplus_{p, q \in \mathbb{N}_{0}} \Omega^{p, q}(X, E)$. Let $\Omega_{c}^{p, q}(X, E)$ be the subspace of $\Omega^{p, q}(X, E)$ whose elements have compact support in X and let $\Omega_{c}^{\bullet \bullet \bullet}(X, E):=\oplus_{p, q \in \mathbb{N}_{0}} \Omega_{c}^{p, q}(X, E)$. For $p, q \in \mathbb{N}_{0}$, let

$$
\bar{\partial}_{b, E}: \Omega^{p, q}(X, E) \rightarrow \Omega^{p, q+1}(X, E)
$$

be the tangential Cauchy-Riemann operator with values in E. Let $(\cdot \mid \cdot)_{E}$ be the L^{2} inner product on $\Omega_{c}^{\bullet \bullet \bullet}(X, E)$ induced by $\langle\cdot \mid \cdot\rangle$ and h^{E}. Let

$$
\bar{\partial}_{b, E}^{*}: \Omega^{p, q+1}(X, E) \rightarrow \Omega^{p, q}(X, E)
$$

be the formal adjoint of $\bar{\partial}_{b, E}$ with respect to $(\cdot \mid \cdot)_{E}$. Put

$$
\square_{b, E}:=\bar{\partial}_{b, E} \bar{\partial}_{b, E}^{*}+\bar{\partial}_{b, E}^{*} \bar{\partial}_{b, E}: \Omega^{\bullet \bullet \bullet}(X, E) \rightarrow \Omega^{\bullet \bullet}(X, E) .
$$

Let

$$
\begin{equation*}
\nabla^{E}: \Omega^{\bullet \bullet \bullet}(X, E) \rightarrow \Omega^{\bullet \bullet \bullet}\left(X, E \otimes \mathbb{C} T^{*} X\right) \tag{3.31}
\end{equation*}
$$

be the connection on E induced by h^{E} given as follows: Let s be a T-invariant local CR frame of E on an open set D of X,

$$
\begin{equation*}
|s|_{h^{E}}^{2}=e^{-2 \Phi}, \quad \Phi \in \mathscr{C}^{\infty}(D, \mathbb{R}) \tag{3.32}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\nabla^{E}(u \otimes s):=\left(\bar{\partial}_{b} u+\partial_{b} u-2\left(\partial_{b} \Phi\right) \wedge u+\omega_{0} \wedge(T u)\right) \otimes s, \quad u \in \Omega^{\bullet \bullet \bullet}(D) \tag{3.33}
\end{equation*}
$$

It is straightforward to check that (3.33) is independent of the choices of T-invariant local CR trivializing sections s and hence is globally defined. Put

$$
\begin{equation*}
\left(\nabla^{E}\right)^{0,1}:=\bar{\partial}_{b}, \quad\left(\nabla^{E}\right)^{1,0}:=\partial_{b}-2 \partial_{b} \Phi . \tag{3.34}
\end{equation*}
$$

Let

$$
\begin{equation*}
\bar{\square}_{b, E}:=\left(\nabla^{E}\right)^{1,0}\left(\left(\nabla^{E}\right)^{1,0}\right)^{*}+\left(\left(\nabla^{E}\right)^{1,0}\right)^{*}\left(\nabla^{E}\right)^{1,0}: \Omega^{\bullet \bullet}(X, E) \rightarrow \Omega^{\bullet \bullet}(X, E), \tag{3.35}
\end{equation*}
$$

where $\left(\left(\nabla^{E}\right)^{1,0}\right)^{*}$ is the adjoint of $\left(\nabla^{E}\right)^{1,0}$ with respect to $(\cdot \mid \cdot)_{E}$. Let $R^{E} \in \Omega^{1,1}(X)$ be the curvature of E induced by h^{E} given by $R^{E}:=-2 \bar{\partial}_{b} \partial_{b} \Phi$ on D, where Φ is as in (3.32). It is easy to check that R^{E} is globally defined. Let $D=U \times \mathcal{I}$ be a BRT chart. Since E is \mathbb{R}-equivariant, on D, E is a holomorphic line bundle over U. We can repeat the proof of Theorem 3.3 with minor changes and conclude the following:

Theorem 3.7 Let E be a \mathbb{R}-equivariant $C R$ line bundle over X with a \mathbb{R}-invariant Hermitian metric h^{E}. With the notations used above, we have on $\Omega^{\bullet \bullet}(X, E)$,

$$
\begin{align*}
\square_{b, E}= & \bar{\square}_{b, E}+[2 \sqrt{-1} \mathscr{L}, \Lambda](-\sqrt{-1} T)+\left[\sqrt{-1} R^{E}, \Lambda\right] \\
& +\left(\left(\nabla^{E}\right)^{1,0} \mathcal{T}^{*}+\mathcal{T}^{*}\left(\nabla^{E}\right)^{1,0}\right)-\left(\bar{\partial}_{b, E} \overline{\mathcal{T}}^{*}+\overline{\mathcal{T}}^{*} \bar{\partial}_{b, E}\right), \tag{3.36}
\end{align*}
$$

where $R^{E} \in \Omega^{1,1}(X)$ is the curvature of E induced by h^{E}.

3.3 CR Bochner-Kodaira-Nakano Formula II

The bundle $K_{X}^{*}:=\operatorname{det}\left(T^{(1,0)} X\right)$ is a \mathbb{R}-equivariant CR line bundle over X. The $(1,1)$ form Θ_{X} induces a \mathbb{R}-invariant Hermitian metric $h^{K_{X}^{*}}$ on K_{X}^{*}. Let $R^{K_{X}^{*}}$ be the curvature of K_{X}^{*} induced by $h^{K_{X}^{*}}$. Let

$$
\Psi: T^{* 0, q} X \rightarrow T^{* n, q} X \otimes K_{X}^{*}
$$

be the natural isometry defined as follows: Let $D=U \times \mathcal{I}$ be a BRT chart. Let $\left\{\bar{L}_{j}\right\}_{j=1}^{n} \subset T^{(1,0)} D,\left\{\bar{e}_{j}\right\}_{j=1}^{n} \subset T^{*(1,0)} D$ be as in the discussion after (2.26). Then,

$$
\Psi u:=\bar{e}_{1} \wedge \ldots \wedge \bar{e}_{n} \wedge u \otimes\left(\bar{L}_{1} \wedge \ldots \wedge \bar{L}_{n}\right) \in T^{* n, q} X \otimes K_{X}^{*}, \quad u \in T^{* 0, q} X
$$

It is easy to see that the definition above is independent of the choices of \mathbb{R}-invariant orthonormal frame $\left\{\bar{L}_{j}\right\}_{j=1}^{n} \subset T^{(1,0)} D$ and hence is globally defined. We have the isometry:

$$
\Psi: \Omega^{0, q}(X) \rightarrow \Omega^{n, q}\left(X, K_{X}^{*}\right)
$$

Moreover, it is straightforward to see that

$$
\begin{align*}
\bar{\partial}_{b} u & =\Psi^{-1} \bar{\partial}_{b, K_{X}^{*}} \Psi u, \bar{\partial}_{b}^{*} u \\
& =\Psi^{-1} \bar{\partial}_{b, K_{X}^{*}}^{*} \Psi u, \quad \square_{b} u=\Psi^{-1} \square_{b, K_{X}^{*}} \Psi u, \text { for every } u \in \Omega^{0, q}(X) \tag{3.37}
\end{align*}
$$

We can now prove
Theorem 3.8 With the notations used above, we have on $\Omega^{0, \bullet}(X)$,

$$
\begin{align*}
\square_{b}= & \Psi^{-1} \square_{b, K_{X}^{*}} \Psi+2 \mathscr{L}\left(\bar{L}_{j}, L_{k}\right) e_{k} \wedge i_{L_{j}}(-\sqrt{-1} T)+R^{K_{X}^{*}}\left(\bar{L}_{j}, L_{k}\right) e_{k} \wedge i_{L_{j}} \\
& +\Psi^{-1}\left(\nabla_{X}^{K_{X}^{*}}\right)^{1,0} \mathcal{T}^{*} \Psi-\left(\bar{\partial}_{b} \Psi^{-1} \overline{\mathcal{T}}^{*} \Psi+\Psi^{-1} \overline{\mathcal{T}}^{*} \Psi \bar{\partial}_{b}\right) \tag{3.38}
\end{align*}
$$

where $\left\{\bar{L}_{j}\right\}_{j=1}^{n}$ is a local \mathbb{R}-invariant orthonormal frame of $T^{(1,0)} X$ with dual frame $\left\{\bar{e}_{j}\right\}_{j=1}^{n} \subset T^{*(1,0)} X$.

Proof Let $u \in \Omega^{0, q}(X)$. From (3.37) and (3.36), we have

$$
\begin{align*}
\square_{b} u= & \Psi^{-1} \square_{b, K_{X}^{*}} \Psi u \\
= & \Psi^{-1} \bar{\square}_{b, K_{X}^{*}} \Psi u+\Psi^{-1}[2 \sqrt{-1} \mathscr{L}, \Lambda](-\sqrt{-1} T)(\Psi u)+\Psi^{-1}\left[\sqrt{-1} R^{K_{X}^{*}}, \Lambda\right] \Psi u \\
& +\Psi^{-1}\left(\left(\nabla^{K_{X}^{*}}\right)^{1,0} \mathcal{T}^{*}+\mathcal{T}^{*}\left(\nabla^{K_{X}^{*}}\right)^{1,0}\right) \Psi u-\left(\bar{\partial}_{b} \Psi^{-1} \overline{\mathcal{T}}^{*} \Psi u+\Psi^{-1} \overline{\mathcal{T}}^{*} \Psi \bar{\partial}_{b} u\right) . \tag{3.39}
\end{align*}
$$

It is straightforward to check that

$$
\begin{array}{r}
{[2 \sqrt{-1} \mathscr{L}, \Lambda]=2 \mathscr{L}\left(\bar{L}_{j}, L_{k}\right)\left(\bar{e}_{j} \wedge i_{\bar{L}_{k}}-i_{L_{j}} e_{k} \wedge\right),} \\
{\left[2 \sqrt{-1} R^{K_{X}^{*}}, \Lambda\right]=R^{K_{X}^{*}}\left(\bar{L}_{j}, L_{k}\right)\left(\bar{e}_{j} \wedge i_{\bar{L}_{k}}-i_{L_{j}} e_{k} \wedge\right) .} \tag{3.40}
\end{array}
$$

From (3.39), (3.40) and noting that $\left(\bar{e}_{j} \wedge i_{\bar{L}_{k}}-i_{L_{j}} e_{k} \wedge\right) v=e_{k} \wedge i_{L_{j}} v, \mathcal{T}^{*}\left(\nabla^{K_{X}^{*}}\right)^{1,0} v=$ 0 , for every $v \in \Omega^{n, q}\left(X, K_{X}^{*}\right)$ and T commutes with Ψ, we get (3.38).

Corollary 3.9 With the notations used above, assume that $2 \sqrt{-1} \mathscr{L}=\Theta_{X}$ and there is $C>0$ such that

$$
\sqrt{-1} R^{K_{X}^{*}} \geq-C \Theta_{X} \text { on } X .
$$

Then, for any $u \in \Omega_{c}^{0, q}(X)$ with $1 \leq q \leq n$, we have

$$
\begin{equation*}
(-\sqrt{-1} T u \mid u) \leq \frac{1}{q}\left(\left\|\bar{\partial}_{b} u\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u\right\|^{2}\right)+C\|u\|^{2} . \tag{3.41}
\end{equation*}
$$

Proof Since $2 \sqrt{-1} \mathscr{L}=\Theta_{X}$, we can choose \mathbb{R}-invariant orthonormal frame $\left\{\bar{L}_{j}\right\}_{j=1}^{n}$ such that $2 \mathscr{L}\left(\bar{L}_{j}, L_{k}\right)=\delta_{j k}$, for every j, k. We write $u=\sum_{J} u_{J} e_{J}$ on D with
$u_{J} \in \mathscr{C}^{\infty}(D)$ and $e_{J}=e_{j_{1}} \wedge \ldots \wedge e_{j_{q}}, j_{1}<\ldots<j_{q}$. We have

$$
\begin{align*}
& \left\langle 2 \mathscr{L}\left(\bar{L}_{j}, L_{k}\right) e_{k} \wedge i_{L_{j}}(-\sqrt{-1} T) u \mid u\right\rangle=\left\langle\sum_{J} q\left(-\sqrt{-1} T u_{J}\right) e_{J} \mid u\right\rangle \\
& \quad=q\langle-\sqrt{-1} T u \mid u\rangle . \tag{3.42}
\end{align*}
$$

Since $\sqrt{-1} R^{K_{X}^{*}} \geq-C \Theta_{X}$, as (3.42), we can check that

$$
\begin{equation*}
\left\langle R^{K_{X}^{*}}\left(\bar{L}_{j}, L_{k}\right) e_{k} \wedge i_{L_{j}} u \mid u\right\rangle \geq-C q|u|^{2} . \tag{3.43}
\end{equation*}
$$

Since $d \Theta_{X}=d(2 \sqrt{-1} \mathscr{L})=0$, we have $\mathcal{T}=\left[\Lambda, \partial_{b} \Theta_{X}\right]=0$. From this observation, (3.38), (3.42), and (3.43), we obtain

$$
\begin{equation*}
\left(\left\|\bar{\partial}_{b} u\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u\right\|^{2}\right) \geq q(-\sqrt{-1} T u \mid u)-q C\|u\|^{2} \tag{3.44}
\end{equation*}
$$

holds for every $u \in \Omega_{c}^{0, q}(X)$ with $1 \leq q \leq n$.

4 Szegő Kernel Asymptotics

In this section, we will establish Szegő kernel asymptotic expansions on X under certain curvature assumptions.

4.1 Complete CR Manifolds

Let X be a CR manifold as in Assumption 1.1. Let g_{X} be the \mathbb{R}-invariant Hermitian metric as in (1.5). We will assume in the following that the Riemannian metric induced by g_{X} on $T X$ is complete and study the extension $\bar{\partial}_{b}, \bar{\partial}_{b}^{*}$, and T. We denote by the same symbols the maximal weak extensions in L^{2} of these differential operators.

Since g_{X} is complete we know by [10, Lemma 2.4, p.366] that there exists a sequence $\left\{\chi_{k}\right\}_{k=1}^{\infty} \subset \mathscr{C}_{c}^{\infty}(X)$ such that $0 \leq \chi_{k} \leq 1, \chi_{k+1}=1$ on supp χ_{k}, $\left|d \chi_{k}\right|_{g} \leq \frac{1}{2^{k}}$, for every $k \in \mathbb{N}$, and $\bigcup_{k=1}^{\infty} \operatorname{supp} \chi_{k}=X$. By using this sequence as in the Andreotti-Vesentini lemma on complex Hermitian manifolds (cf. [10, Theorem 3.2, p. 368], [23, Lemma 3.3.1]) and the classical Friedrichs lemma, we obtain the following.

Lemma 4.1 Assume that $\left(X, g_{X}\right)$ is complete. Then $\Omega_{c}^{p, q}(X)$ is dense in Dom $\bar{\partial}_{b}$, $\operatorname{Dom} \bar{\partial}_{b}^{*}$, $\operatorname{Dom} T, \operatorname{Dom} \bar{\partial}_{b} \cap \operatorname{Dom} \bar{\partial}_{b}^{*}$, and $\operatorname{Dom} T \cap \operatorname{Dom} \bar{\partial}_{b} \cap \operatorname{Dom} \bar{\partial}_{b}^{*}$ with respect to the graph norms of $\bar{\partial}_{b}, \bar{\partial}_{b}^{*}, T, \bar{\partial}_{b}+\bar{\partial}_{b}^{*}$, and $\bar{\partial}_{b}+\bar{\partial}_{b}^{*}+T$. Here the graph norm of a linear operator R is defined by $\|u\|+\|R u\|$ for $u \in \operatorname{Dom} R$.

As a consequence, analog to [23, Corollary 3.3.3], we obtain the following:
Corollary 4.2 If $\left(X, g_{X}\right)$ is complete, then the maximal extension of the formal adjoint of $\bar{\partial}_{b}$ and T coincide with their Hilbert space adjoint, respectively.

Corollary 4.3 If $\left(X, g_{X}\right)$ is complete, then $\sqrt{-1} T: \operatorname{Dom} \sqrt{-1} T \subset L_{\bullet, \bullet}^{2}(X) \rightarrow$ $L_{\bullet, \bullet}^{2}(X)$ is self-adjoint, that is, $(\sqrt{-1} T)^{*}=\sqrt{-1} T$.

Using these results, we extend the estimates from Corollary 3.9 as follows:
Theorem 4.4 Let X be a CR manifold as in Assumption 1.1. Assume that $2 \sqrt{-1} \mathscr{L}=$ Θ_{X}, g_{X} is complete and there is $C>0$ such that

$$
\sqrt{-1} R^{K_{X}^{*}} \geq-C \Theta_{X}
$$

Then, for any $u \in L_{0, q}^{2}(X), 1 \leq q \leq n, u \in \operatorname{Dom} \bar{\partial}_{b} \bigcap \operatorname{Dom} \bar{\partial}_{b}^{*} \bigcap \operatorname{Dom}(\sqrt{-1} T)$, we have

$$
\begin{equation*}
(-\sqrt{-1} T u \mid u) \leq \frac{1}{q}\left(\left\|\bar{\partial}_{b} u\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u\right\|^{2}\right)+C\|u\|^{2} . \tag{4.1}
\end{equation*}
$$

Proof Let $u \in L_{0, q}^{2}(X), 1 \leq q \leq n, u \in \operatorname{Dom} \bar{\partial}_{b} \bigcap \operatorname{Dom} \bar{\partial}_{b}^{*} \bigcap \operatorname{Dom}(\sqrt{-1} T)$. From Lemma 4.1, we can find $\left\{u_{j}\right\}_{j=1}^{\infty} \subset \Omega_{c}^{\bullet \bullet \bullet}(X)$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left(\left\|u_{j}-u\right\|^{2}+\left\|\bar{\partial}_{b} u_{j}-\bar{\partial}_{b} u\right\|^{2}+\left\|\sqrt{-1} T u_{j}-\sqrt{-1} T u\right\|^{2}\right)=0 \tag{4.2}
\end{equation*}
$$

From (3.41), we have for every $j=1,2, \ldots$,

$$
\begin{equation*}
\left(-\sqrt{-1} T u_{j} \mid u_{j}\right) \leq \frac{1}{q}\left(\left\|\bar{\partial}_{b} u_{j}\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u_{j}\right\|^{2}\right)+C\left\|u_{j}\right\|^{2} . \tag{4.3}
\end{equation*}
$$

Taking $j \rightarrow \infty$ in (4.3) and using (4.2), we get (4.1).
Let us describe two examples of CR manifolds with complete \mathbb{R}-invariant metric g_{X}.

Example 4.5 Let $\left(X, H X, J, \omega_{0}\right)$ be a compact strictly pseudoconvex CR manifold as in Assumption 1.1 and let g_{X} be a \mathbb{R}-invariant metric as in (1.5). Let $\pi: \widetilde{X} \rightarrow X$ be a Galois covering of X, that is, there exists a discrete, proper action Γ such that $X=\widetilde{X} / \Gamma$. By pulling back the objects from X by the projection π we obtain a strictly pseudoconvex CR manifold ($\widetilde{X}, H \widetilde{X}, \widetilde{J}, \widetilde{\omega}_{0}$) satisfying Assumption 1.1. Moreover, the metric $\widetilde{g}_{X}=\pi^{*} g_{X}$ is a complete \mathbb{R}-invariant metric satisfying (1.5).

Example 4.6 Let us consider now the case of a circle bundle associated to a Hermitian holomorphic line bundle. Let (M, J, Θ_{M}) be a complete Hermitian manifold. Let $\left(L, h^{L}\right) \rightarrow M$ be a Hermitian holomorphic line bundle over M. Let $h^{L^{*}}$ be the Hermitian metric on L^{*} induced by h^{L}. Let

$$
\begin{equation*}
X:=\left\{v \in L^{*} ;|v|_{h L^{*}}^{2}=1\right\} \tag{4.4}
\end{equation*}
$$

be the circle bundle of L^{*}; it is isomorphic to the S^{1} principal bundle associated to L. Since X is a hypersurface in the complex manifold L^{*}, it has a CR structure $(X, H X, J)$ inherited from the complex structure of L^{*} by setting $T^{(1,0)} X=T X \cap T^{(1,0)} L^{*}$.

In this situation, S^{1} acts on X by fiberwise multiplication, denoted $\left(x, e^{i \theta}\right) \mapsto x e^{i \theta}$. A point $x \in X$ is a pair $x=(p, \lambda)$, where λ is a linear functional on L_{p}, the S^{1} action is $x e^{i \theta}=(p, \lambda) e^{i \theta}=\left(p, e^{i \theta} \lambda\right)$.

Let ω_{0} be the connection 1-form on X associated to the Chern connection ∇^{L}. Then

$$
\begin{equation*}
d \omega_{0}=\pi^{*}\left(i R^{L}\right) \tag{4.5}
\end{equation*}
$$

where R^{L} is the curvature of ∇^{L}. Assume R^{L} is positive, hence X is a strictly pseudoconvex CR manifold. Hence, ($X, H X, J, \omega_{0}$) fulfills Assumption 1.1. We denote by ∂_{θ} the infinitesimal generator of the S^{1} action on X. The span of ∂_{θ} defines a rank one sub-bundle $T^{V} X \cong T S^{1} \subset T X$, the vertical sub-bundle of the fibration $\pi: X \rightarrow M$. Moreover (1.3) holds for $T=\partial_{\theta}$.

We construct now a Riemannian metric on X. Let g_{M} be a J-invariant metric on $T M$ associated to Θ_{M}. The Chern connection ∇^{L} on L induces a connection on the S^{1}-principal bundle $\pi: X \rightarrow M$, and let $T^{H} X \subset T X$ be the corresponding horizontal bundle. Let $g_{X}=\pi^{*} g_{M} \oplus d \theta^{2} / 4 \pi^{2}$ be the metric on $T X=T^{H} X \oplus T S^{1}$, with $d \theta^{2}$ the standard metric on $S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$. Then g_{X} is a \mathbb{R}-invariant Hermitian metric on X satisfying (1.5). Since g_{M} is complete it is easy to see that g_{X} is also complete.

4.2 The Operators $Q_{\lambda}, Q_{\left[\lambda_{1}, \lambda\right]}, Q_{\tau}$

From now on, we assume that X is a CR manifold satisfying Assumption 1.1 and (X, g_{X}) is complete. Let \mathbb{S} denote the spectrum of $\sqrt{-1} T$. By the spectral theorem, there exists a finite measure μ on $\mathbb{S} \times \mathbb{N}$ and a unitary operator

$$
U: L_{\bullet, \bullet}^{2}(X) \rightarrow L^{2}(\mathbb{S} \times \mathbb{N}, d \mu)
$$

with the following properties: If $h: \mathbb{S} \times \mathbb{N} \rightarrow \mathbb{R}$ is the function $h(s, n)=s$, then the element ξ of $L_{\bullet, \bullet}^{2}(X)$ lies in $\operatorname{Dom}(\sqrt{-1} T)$ if and only if $h U(\xi) \in L^{2}(\mathbb{S} \times \mathbb{N}, d \mu)$. We have

$$
U \sqrt{-1} T U^{-1} \varphi=h \varphi, \text { for all } \varphi \in U(\operatorname{Dom}(\sqrt{-1} T))
$$

Let $\lambda_{1}, \lambda \in \mathbb{R}, \lambda_{1}<\lambda$, and let $\tau(t) \in \mathscr{C}^{\infty}(\mathbb{R},[0,1])$. Put

$$
\begin{align*}
\mathscr{E}(\lambda, \sqrt{-1} T) & :=U^{-1}\left(\text { Image } U \cap\left\{\mathbb{1}_{(-\infty, \lambda]}(s) h(s, n) ; h(s, n) \in L^{2}(\mathbb{S} \times \mathbb{N}, d \mu)\right\}\right), \\
\mathscr{E}\left(\left[\lambda_{1}, \lambda\right], \sqrt{-1} T\right) & :=U^{-1}\left(\text { Image } U \cap\left\{\mathbb{1}_{\left[\lambda_{1}, \lambda\right]}(s) h(s, n) ; h(s, n) \in L^{2}(\mathbb{S} \times \mathbb{N}, d \mu)\right\}\right), \\
\mathscr{E}(\tau, \sqrt{-1} T) & :=U^{-1}\left(\text { Image } U \cap\left\{\tau(s) h(s, n) ; h(s, n) \in L^{2}(\mathbb{S} \times \mathbb{N}, d \mu)\right\}\right), \tag{4.6}
\end{align*}
$$

where $\mathbb{1}_{A}$ denotes the characteristic function of the set A. Let

$$
\begin{align*}
& Q_{\lambda}: L_{\bullet, \bullet}^{2}(X) \rightarrow \mathscr{E}(\lambda, \sqrt{-1} T), \\
& Q_{\left[\lambda_{1}, \lambda\right]}: L_{\bullet, \bullet}^{2}(X) \rightarrow \mathscr{E}\left(\left[\lambda_{1}, \lambda\right], \sqrt{-1} T\right), \tag{4.7}\\
& Q_{\tau}: L_{\bullet, \bullet}^{2}(X) \rightarrow \mathscr{E}(\tau, \sqrt{-1} T)
\end{align*}
$$

be the orthogonal projections with respect to $(\cdot \mid \cdot)$.
Since X is strictly pseudoconvex, from [21, Lemma 3.4 (3), p. 239], [13, Theorem 3.5], we have one of the following two cases:
(a) The \mathbb{R}-action is free,
(b) The \mathbb{R}-action comes from a CR torus action \mathbb{T}^{d} on X and ω_{0} and Θ_{X} are \mathbb{T}^{d} invariant.

When X is non-compact, the \mathbb{R}-action does not always come from a CR torus action. For example, when X is the Heisenberg group (see Sect. 5), the standard \mathbb{R}-action on X is free and does not come from any CR torus action.

Assume that the \mathbb{R}-action is free. Let $D=U \times \mathcal{I}$ be a BRT chart with BRT coordinates $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$. Since the \mathbb{R}-action is free, we can extend $x=$ $\left(x_{1}, \ldots, x_{2 n+1}\right)$ to $\hat{D}:=U \times \mathbb{R}$. We identify \hat{D} with an open set in X.

Lemma 4.7 Assume that the \mathbb{R}-action is free. Let $D=U \times \mathcal{I}$ be a BRT chart with BRT coordinates $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$. Let $\lambda_{1}, \lambda \in \mathbb{R}, \lambda_{1}<\lambda$. For $u \in \Omega_{c}^{\bullet \bullet \bullet}(D)$, we have

$$
\begin{align*}
\left(Q_{\lambda} u\right)(x) & =\frac{1}{(2 \pi)^{2 n+1}} \int e^{i<x-y, \eta>} \mathbb{1}(-\infty, \lambda]\left(-\eta_{2 n+1}\right) u(y) d y d \eta \in \Omega^{\bullet \bullet \bullet}(\hat{D}), \tag{4.9}\\
\left(Q_{\left[\lambda_{1}, \lambda\right]} u\right)(x) & =\frac{1}{(2 \pi)^{2 n+1}} \int e^{i<x-y, \eta>} \mathbb{1}\left[\lambda_{1}, \lambda\right]\left(-\eta_{2 n+1}\right) u(y) d y d \eta \in \Omega^{\bullet, \bullet}(\hat{D}), \tag{4.10}\\
\left(Q_{\tau} u\right)(x) & =\frac{1}{(2 \pi)^{2 n+1}} \int e^{i<x-y, \eta>} \tau\left(-\eta_{2 n+1}\right) u(y) d y d \eta \in \Omega^{\bullet \bullet \bullet}(\hat{D}), \tag{4.11}
\end{align*}
$$

and $\operatorname{supp} Q_{\lambda} u \subset \hat{D}$, supp $Q_{\left[\lambda_{1}, \lambda\right]} u \subset \hat{D}$, supp $Q_{\tau} u \subset \hat{D}$, where \hat{D} is as in the discussion after (4.8).

Proof Let $\chi \in \mathscr{C}_{c}^{\infty}(\mathbb{R}), \chi=1$ on $[-1,1], \chi=0$ outside $[-2,2]$. For every $M>0$, put $\tau_{M}(t):=\chi\left(\frac{t}{M}\right) \tau(t)$. Then,

$$
\begin{equation*}
Q_{\tau} u=\lim _{M \rightarrow \infty} Q_{\tau_{M}} u \quad \text { in } L_{\bullet, \bullet}^{2}(X), \text { for every } u \in L_{\bullet, \bullet}^{2}(X) \tag{4.12}
\end{equation*}
$$

From the Helffer-Sjöstrand formula [12, Proposition 7.2], we see that

$$
\begin{equation*}
Q_{\tau_{M}}=\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{\partial \tilde{\tau}_{M}}{\partial \bar{z}}(z-\sqrt{-1} T)^{-1} d z \wedge d \bar{z} \text { on } L_{\bullet, \bullet}^{2}(X) \tag{4.13}
\end{equation*}
$$

where $\tilde{\tau}_{M} \in \mathscr{C}_{C}^{\infty}(\mathbb{C})$ is an extension of τ_{M} with $\frac{\partial \tilde{\tau}_{M}}{\partial \bar{z}}=0$ on \mathbb{R}. It is not difficult to see that for $u \in \Omega_{c}^{\bullet \bullet}(D)$,

$$
\begin{equation*}
(z-\sqrt{-1} T)^{-1} u=\frac{1}{(2 \pi)^{2 n+1}} \int e^{i<x-y, \eta>} \frac{1}{z+\eta_{2 n+1}} u(y) d y d \eta \in \Omega^{\bullet \bullet}(\hat{D}) \tag{4.14}
\end{equation*}
$$

and supp $(z-\sqrt{-1} T)^{-1} u \subset \hat{D}$. From (4.13) and (4.14), we have
$\left(Q_{\tau_{M}} u\right)(x)=\frac{1}{2 \pi i} \frac{1}{(2 \pi)^{2 n+1}} \int_{\mathbb{C}} \int e^{i<x-y, \eta>} \frac{\frac{\partial \tilde{\tau}_{M}}{\partial \bar{z}}}{z+\eta_{2 n+1}} u(y) d y d \eta d z \wedge d \bar{z} \in \Omega^{\bullet \bullet}(\hat{D})$
and $\operatorname{supp} Q_{\tau_{M}} u \subset \hat{D}$, for every $u \in \Omega_{c}^{\bullet \bullet \bullet}(D)$. By Cauchy integral formula, we see that

$$
\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{1}{z+\eta_{2 n+1}} \frac{\partial \tilde{\tau}_{M}}{\partial \bar{z}} d z \wedge d \bar{z}=\tau_{M}\left(-\eta_{2 n+1}\right)
$$

From this observation and (4.15), we deduce that

$$
\begin{equation*}
\left(Q_{\tau_{M}} u\right)(x)=\frac{1}{(2 \pi)^{2 n+1}} \int e^{i\langle x-y, \eta\rangle} \tau_{M}\left(-\eta_{2 n+1}\right) u(y) d y d \eta \in \Omega^{\bullet \bullet}(\hat{D}) \tag{4.16}
\end{equation*}
$$

and supp $Q_{\tau_{M}} u \subset \hat{D}$, for every $u \in \Omega_{c}^{\bullet \bullet \bullet}(D)$. From (4.12) and (4.16), we get (4.11).
Let $\gamma_{\varepsilon} \in \mathscr{C}_{C}^{\infty}(\mathbb{R}), \lim _{\varepsilon \rightarrow 0} \gamma_{\varepsilon}(t)=\mathbb{1}(-\infty, \lambda](t)$, for every $t \in \mathbb{R}$. We can repeat the proof above and get that
$Q_{\lambda} u=\lim _{\varepsilon \rightarrow 0} Q_{\gamma_{\varepsilon}} u=\frac{1}{(2 \pi)^{2 n+1}} \int e^{i\langle x-y, \eta\rangle} \mathbb{1}(-\infty, \lambda]\left(-\eta_{2 n+1}\right) u(y) d y d \eta \in \Omega^{\bullet \bullet}(\hat{D})$
and supp $Q_{\lambda} u \subset \hat{D}$, for every $u \in \Omega_{c}^{\bullet, \bullet}(D)$. We obtain (4.9). The proof of (4.10) is similar.

We now assume that the \mathbb{R}-action is not free. From (4.8), we know that the \mathbb{R}-action comes from a CR torus action $\mathbb{T}^{d}=\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right)$ on X and ω_{0}, Θ_{X} are \mathbb{T}^{d} invariant. Since the \mathbb{R}-action comes from the \mathbb{T}^{d}-action, there exist $\beta_{1}, \ldots, \beta_{d} \in \mathbb{R}$, such that

$$
\begin{equation*}
T=\beta_{1} T_{1}+\ldots+\beta_{d} T_{d} \tag{4.17}
\end{equation*}
$$

where T_{j} is the vector field on X given by $T_{j} u:=\frac{\partial}{\partial \theta_{j}}\left(\left(1, \ldots, 1, e^{i \theta_{j}}, 1, \ldots, 1\right)^{*}\right.$ $u)\left.\right|_{\theta_{j}=0}, u \in \Omega^{\bullet \bullet}(X), j=1, \ldots, d$. For $\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}$, put

$$
\begin{aligned}
& L_{\bullet \bullet \bullet}^{2, m_{1}, \ldots, m_{d}}(X) \\
& :=\left\{u \in L_{\bullet, \bullet}^{2}(X) ;\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right)^{*} u=e^{i m_{1} \theta_{1}+\ldots+i m_{d} \theta_{d}} u, \text { for all }\left(\theta_{1}, \ldots, \theta_{d}\right) \in \mathbb{R}^{d}\right\}
\end{aligned}
$$

and let

$$
\begin{equation*}
Q_{m_{1}, \ldots, m_{d}}: L_{\bullet, \bullet}^{2}(X) \rightarrow L_{\bullet, \bullet}^{2, m_{1}, \ldots, m_{d}}(X) \tag{4.18}
\end{equation*}
$$

be the orthogonal projection. It is not difficult to see that for every $u \in L_{\bullet, \bullet}^{2}(X)$, we have

$$
\begin{align*}
Q_{\lambda} u & =\sum_{\substack{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d},-m_{1} \beta_{1}-\ldots-m_{d} \beta_{d} \leq \lambda}} Q_{m_{1}, \ldots, m_{d} u}, \ldots \sum_{\substack{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}, \lambda_{1} \leq-m_{1} \beta_{1}-\ldots-m_{d} \beta_{d} \leq \lambda}} Q_{m_{1}, \ldots, m_{d}} u, \\
Q_{\left[\lambda_{1}, \lambda\right]} u & \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \tau\left(-m_{1} \beta_{1}-\ldots-m_{d} \beta_{d}\right) Q_{m_{1}, \ldots, m_{d}} u . \tag{4.19}
\end{align*}
$$

From Lemma 4.7 and (4.19), we conclude that
Proposition 4.8 Let $\lambda_{1}, \lambda \in \mathbb{R}, \lambda_{1}<\lambda_{\text {. For } u} \in \operatorname{Dom} \bar{\partial}_{b}$, we have $Q_{\lambda} u, Q_{\left[\lambda_{1}, \lambda\right]} u$, $Q_{\tau} u \in \operatorname{Dom} \bar{\partial}_{b}$ and $\bar{\partial}_{b} Q_{\lambda} u=Q_{\lambda} \bar{\partial}_{b} u, \bar{\partial}_{b} Q_{\left[\lambda_{1}, \lambda\right]} u=Q_{\left[\lambda_{1}, \lambda\right]} \bar{\partial}_{b} u, \bar{\partial}_{b} Q_{\tau} u=Q_{\tau} \bar{\partial}_{b} u$. Similarly, for $u \in \operatorname{Dom} \bar{\partial}_{b}^{*}$, we have $Q_{\lambda} u, Q_{\left[\lambda_{1}, \lambda\right]} u, Q_{\tau} u \in \operatorname{Dom} \bar{\partial}_{b}^{*}$ and $\bar{\partial}_{b}^{*} Q_{\lambda} u=$ $Q_{\lambda} \bar{\partial}_{b}^{*} u, \bar{\partial}_{b}^{*} Q_{\left[\lambda_{1}, \lambda\right]} u=Q_{\left[\lambda_{1}, \lambda\right]} \bar{\partial}_{b}^{*} u, \bar{\partial}_{b}^{*} Q_{\tau} u=Q_{\tau} \bar{\partial}_{b}^{*} u$.

For $\lambda \in \mathbb{R}$, define

$$
\square_{b, \lambda}: \operatorname{Dom} \square_{b, \lambda} \subset \mathscr{E}(\lambda, \sqrt{-1} T) \rightarrow \mathscr{E}(\lambda, \sqrt{-1} T)
$$

$\operatorname{Dom} \square_{b, \lambda}:=\operatorname{Dom} \square_{b} \bigcap \mathscr{E}(\lambda, \sqrt{-1} T), \square_{b, \lambda} u=\square_{b} u$, for $u \in \operatorname{Dom} \square_{b, \lambda}$,
where \square_{b} is defined in (2.8), (2.9). From Proposition 4.8, we see that

$$
\begin{align*}
& \operatorname{Dom} \square_{b, \lambda}=Q_{\lambda}\left(\operatorname{Dom} \square_{b}\right) \\
& Q_{\lambda} \square_{b}=\square_{b} Q_{\lambda}=\square_{b, \lambda} Q_{\lambda} \text { on Dom } \square_{b} \tag{4.21}
\end{align*}
$$

From now on, we write $\square_{b}^{(q)}$ and $\square_{b, \lambda}^{(q)}$ to denote \square_{b} and $\square_{b, \lambda}$ acting on $(0, q)$ forms, respectively.

4.3 Local Closed Range for $\square_{b}^{(0)}$

In this section, we will establish the local closed range property for $\square_{b}^{(0)}$ under appropriate curvature assumptions. We first need the following.

Lemma 4.9 Assume that $2 \sqrt{-1} \mathscr{L}=\Theta_{X}, g_{X}$ is complete and there is $C>0$ such that

$$
\sqrt{-1} R^{K_{X}^{*}} \geq-C \Theta_{X}
$$

Then, for any $u \in L_{0, q}^{2}(X), 1 \leq q \leq n, u \in \operatorname{Dom} \bar{\partial}_{b} \cap \operatorname{Dom} \bar{\partial}_{b}^{*} \cap \mathscr{E}(\lambda, \sqrt{-1} T)$, $\lambda \in \mathbb{R}, \lambda<-C$, we have

$$
\begin{equation*}
\|u\|^{2} \leq \frac{1}{q(-\lambda-C)}\left(\left\|\bar{\partial}_{b} u\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u\right\|^{2}\right) . \tag{4.22}
\end{equation*}
$$

Proof Let $\lambda<-C$ and let $u \in \operatorname{Dom} \bar{\partial}_{b} \cap \operatorname{Dom} \bar{\partial}_{b}^{*} \cap \mathscr{E}(\lambda, \sqrt{-1} T), u \in L_{0, q}^{2}(X)$, $1 \leq q \leq n$. Let $M \gg 1$ and let $u_{M}:=Q_{[-M, \lambda]} u$. By Proposition 4.8, we see that

$$
u_{M} \in \operatorname{Dom} \bar{\partial}_{b} \cap \operatorname{Dom} \bar{\partial}_{b}^{*} \cap \mathscr{E}(\lambda, \sqrt{-1} T) \bigcap \operatorname{Dom}(\sqrt{-1} T)
$$

From this observation and (4.1), we have

$$
\begin{align*}
-\lambda\left\|u_{M}\right\|^{2} & \leq\left(-\sqrt{-1} T u_{M} \mid u_{M}\right) \leq \frac{1}{q}\left(\left\|Q_{[-M, \lambda]} \bar{\partial}_{b} u\right\|^{2}+\left\|Q_{[-M, \lambda]} \bar{\partial}_{b}^{*} u\right\|^{2}\right)+C\left\|u_{M}\right\|^{2} \\
& \leq \frac{1}{q}\left(\left\|\bar{\partial}_{b} u\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u\right\|^{2}\right)+C\left\|u_{M}\right\|^{2} . \tag{4.23}
\end{align*}
$$

Since $\lambda<-C$ we deduce from (4.23) that

$$
\begin{equation*}
\left\|u_{M}\right\|^{2} \leq \frac{1}{q(-\lambda-C)}\left(\left\|\bar{\partial}_{b} u\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u\right\|^{2}\right) \tag{4.24}
\end{equation*}
$$

Letting $M \rightarrow \infty$ in (4.24) we get (4.22).
For every $q=0,1, \ldots, n$, put $\mathscr{E}^{(q)}(\lambda, \sqrt{-1} T):=\mathscr{E}(\lambda, \sqrt{-1} T) \bigcap L_{0, q}^{2}(X)$. We prove now a vanishing theorem for harmonic forms which are eigenforms of $\sqrt{-1} T$.

Theorem 4.10 Assume that $2 \sqrt{-1} \mathscr{L}=\Theta_{X}, g_{X}$ is complete and there is $C>0$ such that

$$
\sqrt{-1} R^{K_{X}^{*}} \geq-C \Theta_{X}
$$

Let $q \in\{1, \ldots, n\}$. Let $\lambda \in \mathbb{R}, \lambda<-C$. The operator

$$
\square_{b, \lambda}^{(q)}: \operatorname{Dom} \square_{b, \lambda}^{(q)} \subset \mathscr{E}^{(q)}(\lambda, \sqrt{-1} T) \rightarrow \mathscr{E}^{(q)}(\lambda, \sqrt{-1} T)
$$

has closed range and $\operatorname{ker} \square_{b, \lambda}^{(q)}=\{0\}$. Hence, there is a bounded operator

$$
G_{\lambda}^{(q)}: \mathscr{E}^{(q)}(\lambda, \sqrt{-1} T) \rightarrow \operatorname{Dom} \square_{b, \lambda}^{(q)}
$$

such that

$$
\begin{equation*}
\square_{b, \lambda}^{(q)} G_{\lambda}^{(q)}=I \text { on } \mathscr{E}^{(q)}(\lambda, \sqrt{-1} T) \tag{4.25}
\end{equation*}
$$

Proof Let $u \in \operatorname{Dom} \square_{b, \lambda}^{(q)}$. From (4.22), we have

$$
\|u\|^{2} \leq \frac{1}{q(-\lambda-C)}\left(\left\|\bar{\partial}_{b} u\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u\right\|^{2}\right)=\frac{1}{q(-\lambda-C)}\left(\square_{b, \lambda}^{(q)} u \mid u\right) .
$$

Hence,

$$
\begin{equation*}
\|u\| \leq \frac{1}{q(-\lambda-C)}\left\|\square_{b, \lambda}^{(q)} u\right\| . \tag{4.26}
\end{equation*}
$$

From (4.26), the theorem follows.
We now consider $(0,1)$-forms. Let $G_{\lambda}^{(1)}$ be as in (4.25). Since $G_{\lambda}^{(1)}$ is L^{2} bounded, there is $C_{0}>0$ such that

$$
\begin{equation*}
\left\|G_{\lambda}^{(1)} v\right\| \leq C_{0}\|v\|, \text { for every } v \in \mathscr{E}^{(1)}(\lambda, \sqrt{-1} T) \tag{4.27}
\end{equation*}
$$

We use the previous result to solve the $\bar{\partial}_{b}$-equation for eigenforms of $\sqrt{-1} T$.
Theorem 4.11 Assume that $2 \sqrt{-1} \mathscr{L}=\Theta_{X}, g_{X}$ is complete and there is $C>0$ such that

$$
\sqrt{-1} R^{K_{X}^{*}} \geq-C \Theta_{X}
$$

Let $\lambda \in \mathbb{R}, \lambda<-C$. For every $v \in \mathscr{E}^{(1)}(\lambda, \sqrt{-1} T)$ with $\bar{\partial}_{b} v=0$, we can find $u \in \operatorname{Dom} \bar{\partial}_{b} \bigcap \mathscr{E}^{(0)}(\lambda, \sqrt{-1} T)$ such that

$$
\begin{align*}
& \bar{\partial}_{b} u=v, \\
& \|u\|^{2} \leq C_{0}\|v\|^{2}, \tag{4.28}
\end{align*}
$$

where $C_{0}>0$ is a constant as in (4.27).
Proof Let $v \in \mathscr{E}^{(1)}(\lambda, \sqrt{-1} T)$ with $\bar{\partial}_{b} v=0$. From (4.25), we have

$$
\begin{equation*}
v=\bar{\partial}_{b} \bar{\partial}_{b}^{*} G_{\lambda}^{(1)} v+\bar{\partial}_{b}^{*} \bar{\partial}_{b} G_{\lambda}^{(1)} v \tag{4.29}
\end{equation*}
$$

Since $\bar{\partial}_{b}\left(\bar{\partial}_{b}^{*} \bar{\partial}_{b} G_{\lambda}^{(1)} v\right)=\bar{\partial}_{b} v-\bar{\partial}_{b}^{2} \bar{\partial}_{b}^{*} G_{\lambda}^{(1)} v=0, \bar{\partial}_{b}^{*}\left(\bar{\partial}_{b}^{*} \bar{\partial}_{b} G_{\lambda}^{(1)} v\right)=0, \bar{\partial}_{b}^{*} \bar{\partial}_{b} G_{\lambda}^{(1)} v \in$ $\operatorname{ker} \square_{b, \lambda}^{(1)}$. From Theorem 4.10, we see that $\bar{\partial}_{b}^{*} \bar{\partial}_{b} G_{\lambda}^{(1)} v=0$. From this observation and (4.29), we get $v=\bar{\partial}_{b} u, u=\bar{\partial}_{b}^{*} G_{\lambda}^{(1)} v$. Now,

$$
\begin{aligned}
\|u\|^{2} & =\left\|\bar{\partial}_{b}^{*} G_{\lambda}^{(1)} v\right\|^{2} \leq\left\|\bar{\partial}_{b} G_{\lambda}^{(1)} v\right\|^{2}+\left\|\bar{\partial}_{b}^{*} G_{\lambda}^{(1)} v\right\|^{2} \\
& =\left(\square_{b, \lambda}^{(1)} G_{\lambda}^{(1)} v \mid G_{\lambda}^{(1)} v\right)=\left(v \mid G_{\lambda}^{(1)} v\right) \leq C_{0}\|v\|^{2},
\end{aligned}
$$

where $C_{0}>0$ is as in (4.27). The theorem follows.

Fix $q \in\{0,1, \ldots, n\}$. Let $S^{(q)}: L_{0, q}^{2}(X) \rightarrow \operatorname{Ker} \square_{b}^{(q)}$ be the orthogonal projection with respect to $(\cdot \mid \cdot)$. From Proposition 4.8, we can check that

$$
\begin{align*}
Q_{\lambda} S^{(q)} & =S^{(q)} Q_{\lambda} \text { on } L_{0, q}^{2}(X), \\
Q_{\left[\lambda_{1}, \lambda\right]} S^{(q)} & =S^{(q)} Q_{\left[\lambda_{1}, \lambda\right]} \text { on } L_{0, q}^{2}(X), \tag{4.30}\\
Q_{\tau} S^{(q)} & =S^{(q)} Q_{\tau} \text { on } L_{0, q}^{2}(X) .
\end{align*}
$$

We recall the following notion introduced in [19, Definition 1.8].
Definition 4.12 Fix $q \in\{0,1,2, \ldots, n\}$. Let $Q: L_{0, q}^{2}(X) \rightarrow L_{0, q}^{2}(X)$ be a continuous operator. We say that $\square_{b}^{(q)}$ has local L^{2} closed range on an open set $D \subset X$ with respect to Q if for every $D^{\prime} \Subset D$, there exist constants $C_{D^{\prime}}>0$ and $p \in \mathbb{N}$, such that

$$
\left\|Q\left(I-S^{(q)}\right) u\right\|^{2} \leq C_{D^{\prime}}\left(\left(\square_{b}^{(q)}\right)^{p} u \mid u\right), \text { for all } u \in \Omega_{c}^{0, q}\left(D^{\prime}\right)
$$

We remind that we do not assume that $\Theta_{X}=2 \sqrt{-1} \mathscr{L}$. The Levi form $2 \sqrt{-1} \mathscr{L}$ induces a Hermitian metric $\langle\cdot \mid \cdot\rangle_{\mathscr{L}}$ on $\mathbb{C} T X$ and $\langle\cdot \mid \cdot\rangle_{\mathscr{L}}$ induces a Hermitian metric $\langle\cdot \mid \cdot\rangle_{\mathscr{L}}$ on $T^{* \bullet, \bullet} X$. More precisely, if X is strictly pseudoconvex, i.e., $2 \sqrt{-1} \mathscr{L} \in$ $\Omega^{1,1}(X)$ is positive definite, then we can construct a Hermitian metric $\langle\cdot \mid \cdot\rangle_{\mathscr{L}}$ on $\mathbb{C} T X=T^{(1,0)} X \oplus T^{(0,1)} X \oplus \mathbb{C}\{T\}$ in the following way: For arbitrary $a, b \in T^{(1,0)} X$, $\langle a \mid b\rangle_{\mathscr{L}}:=2 \mathscr{L}(a, \bar{b}),\langle\bar{a} \mid \bar{b}\rangle_{\mathscr{L}}:=\langle b \mid a\rangle_{\mathscr{L}},\langle a \mid \bar{b}\rangle_{\mathscr{L}}:=0$ and $\langle T \mid T\rangle_{\mathscr{L}}:=1$. We simply use $2 \sqrt{-1} \mathscr{L}$ to represent $\langle\cdot \mid \cdot\rangle \mathscr{L}$. Let $(\cdot \mid \cdot)_{\mathscr{L}}$ be the L^{2} inner product on $\Omega_{c}^{\bullet \bullet \bullet}(X)$ induced by $\langle\cdot \mid \cdot\rangle_{\mathscr{L}}$ and let $L_{\bullet, \bullet}^{2}(X, \mathscr{L})$ be the completion of $\Omega_{c}^{\bullet \bullet \bullet}(X)$ with respect to $(\cdot \mid \cdot) \mathscr{L}$. We write $L^{2}(X, \mathscr{L}):=L_{0,0}^{2}(X, \mathscr{L})$. For $f \in L_{\bullet, \bullet}^{2}(X, \mathscr{L})$, we write $\|f\|_{\mathscr{L}}^{2}:=(f \mid f) \mathscr{L}$.

Let $R_{\mathscr{L}}^{K_{X}^{*}}$ be the Chern curvature of K_{X}^{*} with respect to the Hermitian metric $\langle,\rangle_{\mathscr{L}}$ on X, see (2.26). Locally it can be represented by

$$
\begin{equation*}
R_{\mathscr{L}}^{K_{X}^{*}}=\bar{\partial}_{b} \partial_{b} \log \operatorname{det}\left(\left\langle Z_{j} \mid Z_{k}\right\rangle \mathscr{L}\right)_{j, k=1}^{n}, \tag{4.31}
\end{equation*}
$$

where $\left\{Z_{j}\right\}_{j=1}^{n} \subset T^{(1,0)} X$ is as in (2.15).
For $u \in \Omega_{c}^{\bullet \bullet \bullet}(X)$, from Lemma 4.7 and (4.19), we see that $Q_{\lambda} u, Q_{\left[\lambda_{1}, \lambda\right]} u, Q_{\tau} u$ are independent of the choices of \mathbb{R}-invariant Hermitian metrics on X.

Theorem 4.13 Assume that $g_{\mathscr{L}}$ is complete and there is $C>0$ such that

$$
\begin{equation*}
\sqrt{-1} R_{\mathscr{L}}^{K_{X}^{*}} \geq-2 C \sqrt{-1} \mathscr{L}, \quad(2 \sqrt{-1} \mathscr{L})^{n} \wedge \omega_{0} \geq C \Theta_{X}^{n} \wedge \omega_{0} \tag{4.32}
\end{equation*}
$$

Let $D \Subset X$ be an open set. Let $\lambda \in \mathbb{R}, \lambda<-C$. Then, $\square_{b}^{(0)}$ has local closed range on D with respect to Q_{λ}.
Proof Let $u \in \mathscr{C}_{c}^{\infty}(D)$. Let $v:=\bar{\partial}_{b} Q_{\lambda} u=Q_{\lambda} \bar{\partial}_{b} u$. Since $\bar{\partial}_{b} u \in \Omega_{c}^{0,1}(D)$,

$$
Q_{\lambda} \bar{\partial}_{b} u \in L_{\bullet, \bullet}^{2}(X, \mathscr{L}) \bigcap L_{\bullet, \bullet}^{2}(X)
$$

From Theorem 4.11, there exists $g \in L^{2}(X, \mathscr{L})$ with

$$
\begin{equation*}
\|g\|_{\mathscr{L}}^{2} \leq C_{0}\left\|\bar{\partial}_{b} Q_{\lambda} u\right\|_{\mathscr{L}}^{2} \leq C_{0}\left\|\bar{\partial}_{b} u\right\|_{\mathscr{L}}^{2} \tag{4.33}
\end{equation*}
$$

such that

$$
\begin{equation*}
\bar{\partial}_{b} g=\bar{\partial}_{b} Q_{\lambda} u, \tag{4.34}
\end{equation*}
$$

where $C_{0}>0$ is a constant as in (4.28). Since $\bar{\partial}_{b}\left(I-S^{(0)}\right) Q_{\lambda} u=\bar{\partial}_{b} Q_{\lambda} u$ and $\left(I-S^{(0)}\right) Q_{\lambda} u \perp \operatorname{ker} \bar{\partial}_{b}$, we have

$$
\begin{equation*}
\left\|\left(I-S^{(0)}\right) Q_{\lambda} u\right\|^{2} \leq\|g\|^{2} \leq \frac{1}{C}\|g\|_{\mathscr{L}}^{2}, \tag{4.35}
\end{equation*}
$$

where $C>0$ is a constant as in (4.32). From (4.32), (4.33), and (4.35), we have

$$
\begin{equation*}
\left\|Q_{\lambda}\left(I-S^{(0)}\right) u\right\|^{2}=\left\|\left(I-S^{(0)}\right) Q_{\lambda} u\right\|^{2} \leq \frac{1}{C}\|g\|_{\mathscr{L}}^{2} \leq \frac{C_{0}}{C}\left\|\bar{\partial}_{b} u\right\|_{\mathscr{L}}^{2} \tag{4.36}
\end{equation*}
$$

Since $\bar{\partial}_{b} u$ has compact support in D, there exists $C_{1}>0$ independent of u such that

$$
\begin{equation*}
\left\|\bar{\partial}_{b} u\right\|_{\mathscr{L}}^{2} \leq C_{1}\left\|\bar{\partial}_{b} u\right\|^{2} . \tag{4.37}
\end{equation*}
$$

(4.36) and (4.37), the theorem follows.

For $\lambda \in \mathbb{R}, \lambda \leq 0$, let $\tau_{\lambda} \in \mathscr{C}^{\infty}(\mathbb{R},[0,1]), \tau_{\lambda}=1$ on $\left.]-\infty, 2 \lambda\right], \tau_{\lambda}=0$ outside $(-\infty, \lambda]$. It is clear that $\left\|Q_{\tau_{\lambda}}\left(I-S^{(0)}\right) u\right\| \leq\left\|Q_{\lambda}\left(I-S^{(0)}\right) u\right\|$, for every $u \in L^{2}(X)$. From this observation and Theorem 4.13, we deduce that

Theorem 4.14 Assume that $g_{\mathscr{L}}$ is complete and there is $C>0$ such that

$$
\begin{equation*}
\sqrt{-1} R_{\mathscr{L}}^{K_{X}^{*}} \geq-2 C \sqrt{-1} \mathscr{L}, \quad(2 \sqrt{-1} \mathscr{L})^{n} \wedge \omega_{0} \geq C \Theta_{X}^{n} \wedge \omega_{0} \tag{4.38}
\end{equation*}
$$

Let $D \Subset X$ be an open set. Let $\lambda \in \mathbb{R}, \lambda<-C$. Then, $\square_{b}^{(0)}$ has local closed range on D with respect to $Q_{\tau_{\lambda}}$.

4.4 Local Closed Range for $\square_{b}^{(n, 0)}$

In this section, we will establish the local closed range property for $\square_{b}^{(n, 0)}$ under appropriate curvature assumptions. We observe that the condition (4.32) can be removed, if we consider ($n, 0$)-forms instead of smooth function. We will adopt the same notation as before.

Let \square_{b} be the Gaffney extension of the usual Kohn Laplacian. Let $\square_{b}^{(n, q)}$ be the restriction of \square_{b} acting on (n, q)-forms. Set

$$
\begin{equation*}
\mathscr{E}^{(n, q)}(\lambda, \sqrt{-1} T):=\mathscr{E}(\lambda, \sqrt{-1} T) \cap L_{n, q}^{2}(X), \quad \square_{b, \lambda}^{(n, q)}:=\left.\square_{b}^{(n, q)}\right|_{\mathscr{E}(\lambda, \sqrt{-1} T) \cap \operatorname{Dom} \square_{b}^{(n, q)}} . \tag{4.39}
\end{equation*}
$$

Let $S^{(n, q)}: L_{n, q}^{2}(X) \rightarrow \operatorname{Ker} \square_{b}^{(n, q)}$ be orthogonal projection. It is known that $Q_{\tau}, Q_{\lambda}, Q_{\left[\lambda_{1}, \lambda\right]}$ commutes with $S^{(n, q)}$ on $L_{n, q}^{2}(X)$. Now, we present the main result of this section as follows:

Theorem 4.15 Let X be a CR manifold with a transversal $C R \mathbb{R}$-action. Let Θ_{X} be an \mathbb{R}-invariant Hermitian metric on X. Assume that $g \mathscr{L}$ is complete. Let $D \Subset X$ be an open set. Let $\lambda \in \mathbb{R}, \lambda<0$. Then, $\square_{b}^{(n, 0)}$ has local closed range on D with respect to Q_{λ}, i.e., there exists $C>0$ such that for all $u \in \Omega_{c}^{n, 0}(D)$,

$$
\begin{equation*}
\left\|Q_{\lambda}\left(I-S^{(n, 0)}\right) u\right\|^{2} \leq C\left\|\bar{\partial}_{b} u\right\|^{2} . \tag{4.40}
\end{equation*}
$$

This result is very natural in view of the Kodaira vanishing theorem, in the same way as Theorem 4.13 is parallel to the Kodaira-Serre type vanishing theorem. The proof is analog to the proof of Theorem 4.13.

Firstly, from Corollary 3.6 and the density Lemma 4.1, we obtain the following:
Lemma 4.16 With the notations used above, let Θ_{X} be a Hermitian metric on X such that

$$
\begin{equation*}
2 \sqrt{-1} \mathscr{L}=\Theta_{X} \tag{4.41}
\end{equation*}
$$

Then for any $u \in L_{n, q}^{2}(X) \cap \operatorname{Dom} \bar{\partial}_{b} \cap \operatorname{Dom} \bar{\partial}_{b}^{*} \cap \operatorname{Dom}(\sqrt{-1} T), 1 \leq q \leq n$, we have

$$
\begin{equation*}
(-\sqrt{-1} T u \mid u) \leq \frac{1}{q}\left(\left\|\bar{\partial}_{b} u\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u\right\|^{2}\right) . \tag{4.42}
\end{equation*}
$$

Lemma 4.17 Assume that $2 \sqrt{-1} \mathscr{L}=\Theta_{X}$ and g_{X} is complete. Then, for any $u \in$ $L_{n, q}^{2}(X) \cap \operatorname{Dom} \bar{\partial}_{b} \cap \operatorname{Dom} \bar{\partial}_{b}^{*} \cap \mathscr{E}(\lambda, \sqrt{-1} T), \lambda<0$, and $1 \leq q \leq n$, we have

$$
\begin{equation*}
\|u\|^{2} \leq \frac{1}{q(-\lambda)}\left(\left\|\bar{\partial}_{b} u\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u\right\|^{2}\right) \tag{4.43}
\end{equation*}
$$

Proof Let $u \in L_{n, q}^{2}(X) \cap \operatorname{Dom} \bar{\partial}_{b} \cap \operatorname{Dom} \bar{\partial}_{b}^{*} \cap \mathscr{E}(\lambda, \sqrt{-1} T), \lambda<0$, and $1 \leq q \leq n$. Let $M \gg 1$ be a sufficiently large positive real number such that $-M<\lambda$ and $u_{M}:=Q_{[-M, \lambda]} u$. By Proposition 4.8, we see that

$$
\begin{equation*}
u_{M} \in L_{n, q}^{2}(X) \cap \operatorname{Dom} \bar{\partial}_{b} \cap \operatorname{Dom} \bar{\partial}_{b}^{*} \cap \mathscr{E}(\lambda, \sqrt{-1} T) \cap \operatorname{Dom}(\sqrt{-1} T) \tag{4.44}
\end{equation*}
$$

Then

$$
\begin{align*}
-\lambda\left\|u_{M}\right\|^{2} & \leq\left(-\sqrt{-1} T u_{M} \mid u_{M}\right) \leq \frac{1}{q}\left(\left\|\bar{\partial}_{b} u_{M}\right\|^{2}+\left\|\bar{\partial}_{b}^{*} u_{M}\right\|^{2}\right) \tag{4.45}\\
& \leq \frac{1}{q}\left(\left\|Q_{[-M, \lambda]} \bar{\partial}_{b} u\right\|^{2}+\left\|Q_{[-M, \lambda]} \bar{\partial}_{b}^{*} u\right\|^{2}\right) .
\end{align*}
$$

By letting $M \rightarrow+\infty$ we complete the proof.
Moreover, we have the following analog of Theorem 4.10.

Theorem 4.18 Let X be a CR manifold with a transversal $C R \mathbb{R}$-action. Let Θ_{X} be an \mathbb{R}-invariant Hermitian metric on X. Assume that $2 \sqrt{-1} \mathscr{L}=\Theta_{X}$ and g_{X} is complete. Let $1 \leq q \leq n$ and $\lambda<0$. Then the operator

$$
\begin{equation*}
\square_{b, \lambda}^{(n, q)}: \operatorname{Dom} \square_{b, \lambda}^{(n, q)} \subset \mathscr{E}^{(n, q)}(\lambda, \sqrt{-1} T) \rightarrow \mathscr{E}^{(n, q)}(\lambda, \sqrt{-1} T) \tag{4.46}
\end{equation*}
$$

has closed range, and

$$
\begin{equation*}
\operatorname{Ker} \square_{b, \lambda}^{(n, q)}=\{0\} . \tag{4.47}
\end{equation*}
$$

Hence, there exists a bounded operator

$$
\begin{equation*}
G_{\lambda}^{(n, q)}: \mathscr{E}^{(n, q)}(\lambda, \sqrt{-1} T) \rightarrow \operatorname{Dom} \square_{b, \lambda}^{(n, q)} \tag{4.48}
\end{equation*}
$$

such that

$$
\begin{equation*}
\square_{b, \lambda}^{(n, q)} G_{\lambda}^{(n, q)}=I \quad \text { on } \mathscr{E}^{(n, q)}(\lambda, \sqrt{-1} T) \tag{4.49}
\end{equation*}
$$

Therefore, we have $C_{0}>0$ such that, for all $v \in \mathscr{E}^{(n, 1)}(\lambda, \sqrt{-1} T)$,

$$
\begin{equation*}
\left\|G_{\lambda}^{(n, 1)} v\right\| \leq C_{0}\|v\| \tag{4.50}
\end{equation*}
$$

Secondly, we solve the $\bar{\partial}_{b}$-equation as follows.
Theorem 4.19 Let X be a CR manifold with a transversal $C R \mathbb{R}$-action. Let Θ_{X} be an \mathbb{R}-invariant Hermitian metric on X. Assume that $2 \sqrt{-1} \mathscr{L}=\Theta_{X}$ and g_{X} is complete. Then for every $\lambda<0$ and every $v \in \mathscr{E}^{(n, 1)}(\lambda, \sqrt{-1} T)$ with $\bar{\partial}_{b} v=0$, there exists $u \in \operatorname{Dom} \bar{\partial}_{b} \cap \mathscr{E}^{(n, 0)}(\lambda, \sqrt{-1} T)$ such that

$$
\begin{equation*}
\bar{\partial}_{b} u=v, \quad\|u\|^{2} \leq C_{0}\|v\|^{2} . \tag{4.51}
\end{equation*}
$$

Proof Let $\lambda<0$. Let $v \in \mathscr{E}^{(n, 1)}(\lambda, \sqrt{-1} T)$ with $\bar{\partial}_{b} v=0$. We have

$$
\begin{equation*}
v=\square_{b, \lambda}^{(n, 1)} G_{\lambda}^{(n, 1)} v=\bar{\partial}_{b} \bar{\partial}_{b}^{*} G_{\lambda}^{(n, 1)} v+\bar{\partial}_{b}^{*} \bar{\partial}_{b} G_{\lambda}^{(n, 1)} v \tag{4.52}
\end{equation*}
$$

Since $\bar{\partial}_{b}\left(\bar{\partial}_{b}^{*} \bar{\partial}_{b} G_{\lambda}^{(n, 1)} v\right)=\bar{\partial}_{b} v-\bar{\partial}_{b}^{2} \bar{\partial}_{b}^{*} G_{\lambda}^{(n, 1)} v=0, \bar{\partial}_{b}^{*}\left(\bar{\partial}_{b}^{*} \bar{\partial}_{b} G_{\lambda}^{(n, 1)} v\right)=0$,

$$
\begin{equation*}
\bar{\partial}_{b}^{*} \bar{\partial}_{b} G_{\lambda}^{(n, 1)} v \in \operatorname{Ker} \square_{b, \lambda}^{(n, 1)} . \tag{4.53}
\end{equation*}
$$

Thus, we see that $\bar{\partial}_{b}^{*} \bar{\partial}_{b} G_{\lambda}^{(n, 1)} v=0$ and $v=\bar{\partial}_{b} u$ with $u=\bar{\partial}_{b}^{*} G_{\lambda}^{(n, 1)} v$. Thus obtain

$$
\begin{align*}
\|u\|^{2} & =\left\|\bar{\partial}_{b}^{*} G_{\lambda}^{(n, 1)} v\right\|^{2} \leq\left\|\bar{\partial}_{b} G_{\lambda}^{(n, 1)} v\right\|^{2}+\left\|\bar{\partial}_{b}^{*} G_{\lambda}^{(n, 1)} v\right\|^{2} \\
& =\left(\square_{b, \lambda}^{(n, 1)} G_{\lambda}^{(n, 1)} v \mid G_{\lambda}^{(n, 1)} v\right)=\left(v \mid G_{\lambda}^{(n, 1)} v\right) \tag{4.54}\\
& \leq C_{0}\|v\|^{2} .
\end{align*}
$$

The proof is complete.

Proof of Theorem 4.15 Note that Θ_{X} is not necessarily equal to $2 \sqrt{-1} \mathscr{L}$ so we have to deduce the general case to the particular case considered in Theorems 4.16-4.19. Let $\lambda<0$. Let $v:=\bar{\partial}_{b} Q_{\lambda} u=Q_{\lambda} \bar{\partial}_{b} u$. Note that Q_{λ} is independent of the choice of Θ_{X}. Then $v \in L_{n, 1}^{2}(X, \mathscr{L}) \cap L_{n, 1}^{2}(X)$. From the above theorem, we can find $g \in L_{n, 0}^{2}(X, \mathscr{L})$ such that $\bar{\partial}_{b} g=v$ and

$$
\begin{equation*}
\|g\|_{\mathscr{L}}^{2} \leq C_{0}\|v\|_{\mathscr{L}}^{2}=C_{0}\left\|Q_{\lambda} \bar{\partial}_{b} u\right\|_{\mathscr{L}}^{2} \leq C_{0}\left\|\bar{\partial}_{b} u\right\|_{\mathscr{L}}^{2} . \tag{4.55}
\end{equation*}
$$

where the first inequality in (4.55) follows from Theorem 4.19. We claim that

$$
\|g\|=\|g\|_{\mathscr{L}}
$$

and thus $g \in L_{n, 0}^{2}(X, \mathscr{L}) \cap L_{n, 0}^{2}(X)$. In fact, we write locally

$$
\begin{equation*}
g=\alpha d z_{1} \wedge \cdots \wedge d z_{n} . \tag{4.56}
\end{equation*}
$$

With respect to $\Theta_{X}=\sqrt{-1}\left\langle Z_{i} \mid Z_{j}\right\rangle d z_{i} \wedge d z_{j}$ and $2 \sqrt{-1} \mathscr{L}=\sqrt{-1}\left\langle Z_{i} \mid Z_{j}\right\rangle \mathscr{L} d z_{i} \wedge$ $d z_{j}$,

$$
\begin{align*}
|g|^{2} & =|\alpha|^{2} \operatorname{det}\left(\left\langle Z_{i} \mid Z_{j}\right\rangle\right)^{-1}, \\
|g|_{\mathscr{L}}^{2} & =|\alpha|^{2} \operatorname{det}\left(\left\langle Z_{i} \mid Z_{j}\right\rangle \mathscr{L}\right)^{-1}, \tag{4.57}
\end{align*}
$$

and, respectively, the volume forms are given by

$$
\begin{align*}
\Theta_{X}^{n} & \wedge \omega_{0}
\end{align*}=n!(\sqrt{-1})^{n} \operatorname{det}\left(\left\langle Z_{i} \mid Z_{j}\right\rangle\right) d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n} \wedge \omega_{0}, ~=(\sqrt{-1})^{n} \operatorname{det}\left(\left\langle Z_{i} \mid Z_{j}\right\rangle \mathscr{L}\right) d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n} \wedge \omega_{0} .
$$

Thus, the claim follows from

$$
\begin{equation*}
\|g\|^{2}=\int_{X}|g|^{2} \Theta_{X}^{n} \wedge \omega_{0}=\int_{X}|g|_{\mathscr{L}}^{2}(2 \sqrt{-1} \mathscr{L})^{n} \wedge \omega_{0}=\|g\|_{\mathscr{L}}^{2} \tag{4.59}
\end{equation*}
$$

Since $\bar{\partial}_{b}\left(I-S^{(n, 0)}\right) Q_{\lambda} u=\bar{\partial}_{b} Q_{\lambda} u=v$ and $\left(I-S^{(n, 0)}\right) Q_{\lambda} u \perp \operatorname{Ker} \bar{\partial}_{b}$, we have $\bar{\partial}_{b}\left(I-S^{(n, 0)}\right) Q_{\lambda} u$ is the solution of minimal norm with respect to Θ_{X}, i.e.,

$$
\begin{equation*}
\left\|\bar{\partial}_{b}\left(I-S^{(n, 0)}\right) Q_{\lambda} u\right\|^{2} \leq\|g\|^{2}=\|g\|_{\mathscr{L}}^{2} \leq C_{0}\left\|\bar{\partial}_{b} u\right\|_{\mathscr{L}}^{2} \leq C_{0} C_{1}\left\|\bar{\partial}_{b} u\right\|^{2} \tag{4.60}
\end{equation*}
$$

by $\operatorname{supp}(u) \Subset D$.

4.5 L^{2} Estimates for $\bar{\partial}_{b, E}$

In this section, we prove an analog for the $\bar{\partial}_{b, E}$-operator of the L^{2}-estimates of the Hörmander-Andreotti-Vesentini estimates for $\overline{\bar{\partial}}$. As in the case of complex manifolds, we use the Bochner-Kodaira-Nakano formula in the present form (3.36). In order to
eliminate the first-order error term $\left[\left(\nabla^{E}\right)^{1,0}, \mathcal{T}^{*}\right]-\left[\bar{\partial}_{b, E}, \overline{\mathcal{T}}^{*}\right]$ in (3.36), we reformulate (3.36) can be reformulated as in [10, VII.1]. Under the hypothesis of Theorem 3.7, we have on $\Omega^{\bullet \bullet}(X, E)$,

$$
\begin{equation*}
\square_{b}^{E}=\bar{\square}_{b, \mathcal{T}}^{E}+\left[2 \mathscr{L} T+\sqrt{-1} R^{E}, \Lambda\right]+\mathcal{T}_{\Theta}, \tag{4.61}
\end{equation*}
$$

where $\bar{\square}_{b, \mathcal{T}}^{E}:=\left[\left(\nabla^{E}\right)^{1,0}+\mathcal{T},\left(\nabla^{E}\right)^{1,0 *}+\mathcal{T}^{*}\right]$ is a positive formally self-adjoint operator, and

$$
\begin{equation*}
\mathcal{T}_{\Theta}:=\left[\Lambda,\left[\Lambda, \frac{\sqrt{-1}}{2} \partial_{b} \bar{\partial}_{b} \Theta_{X}\right]\right]-\left[\bar{\partial}_{b} \Theta_{X},\left(\bar{\partial}_{b} \Theta_{X}\right)^{*}\right] \tag{4.62}
\end{equation*}
$$

is an operator of order zero depending only on the torsion of Hermitian metric Θ_{X}.
Theorem 4.20 (L^{2}-estimates for $\bar{\partial}_{b}$) Let X be a CR manifold with a smooth locally free $C R \mathbb{R}$-action. Let Θ_{X} be an \mathbb{R}-invariant Hermitian metric on X. Assume g_{X} is complete. Let E be a \mathbb{R}-equivariant $C R$ line bundle over X with a \mathbb{R}-invariant Hermitian metric h^{E}. Assume that for some $(r, q), q \geq 1$, there exists a function $\psi: X \rightarrow[0, \infty)$ such that, for all $s \in \Omega_{c}^{r, q}(X, E)$, pointwisely

$$
\begin{equation*}
\left\langle\left[2 \mathscr{L} T+\sqrt{-1} R^{E}, \Lambda\right]+\mathcal{T}_{\Theta} s \mid s\right\rangle \geq \psi|s|^{2} . \tag{4.63}
\end{equation*}
$$

Then, for any $f \in L_{r, q}^{2}(X, E)$ satisfying $\bar{\partial}_{b, E} f=0$ and $\int_{X} \psi^{-1}|f|^{2} d v_{X}<\infty$, there exists $g \in L_{r, q-1}^{2}(X, E)$ such that $\bar{\partial}_{b, E} g=f$ and $\|g\|^{2} \leq \int_{X} \psi^{-1}|f|^{2} d v_{X}$.

Proof Consider the complex of closed densely defined operators

$$
\begin{equation*}
L_{r, q-1}^{2}(X, E) \xrightarrow{T=\bar{\partial}_{b, E}} L_{r, q}^{2}(X, E) \xrightarrow{S=\bar{\partial}_{b, E}} L_{r, q+1}^{2}(X, E), \tag{4.64}
\end{equation*}
$$

where T and S are maximal extensions of $\bar{\partial}_{b, E}$. We apply (4.61) and obtain for all $s \in \Omega_{c}^{r, q}(X, E)$, it follows that

$$
\begin{equation*}
\left\|\bar{\partial}_{b, E} s\right\|^{2}+\left\|\bar{\partial}_{b, E}^{*} s\right\|^{2} \geq\left(\left[2 \mathscr{L} T+\sqrt{-1} R^{E}, \Lambda\right]+\mathcal{T}_{\Theta} s \mid s\right) \geq \int_{X} \psi|s|^{2} d v_{X} \tag{4.65}
\end{equation*}
$$

By Cauchy-Schwarz inequality,

$$
\begin{equation*}
|(f \mid s)|^{2}=\left|\left(\psi^{-1 / 2} f \mid \psi^{1 / 2} s\right)\right|^{2} \leq \int_{X} \psi^{-1}|f|^{2} d v_{X} \cdot\left(\left\|\bar{\partial}_{b, E} s\right\|^{2}+\left\|\bar{\partial}_{b, E}^{*}\right\|^{2}\right) \tag{4.66}
\end{equation*}
$$

Since g_{X} is complete, the above inequality still holds for all $s \in \operatorname{Dom}(S) \cap \operatorname{Dom}\left(T^{*}\right)$ by the density Lemma 4.1. Consider now $s \in \operatorname{Dom}\left(T^{*}\right)$ and write the orthogonal decomposition $s=s_{1}+s_{2}$ with $s_{1} \in \operatorname{Ker}(S)$ and $s_{2} \in \operatorname{Ker}(S)^{\perp} \subset\left[\operatorname{Im}\left(S^{*}\right)\right] \subset \operatorname{Ker} T^{*}$.

So $s_{1}=s-s_{2} \in \operatorname{Ker}(S) \cap \operatorname{Dom}\left(T^{*}\right)$. Recall $f \in \operatorname{Ker}(S)$,

$$
\begin{equation*}
|(f \mid s)|^{2}=\left|\left(f \mid s_{1}\right)\right|^{2} \leq \int_{X} \psi^{-1}|f|^{2} d v_{X} \cdot\left\|T^{*} s_{1}\right\|^{2}=\int_{X} \psi^{-1}|f|^{2} d v_{X} \cdot\left\|T^{*} s\right\|^{2} \tag{4.67}
\end{equation*}
$$

We consider $\lambda: \operatorname{Im}\left(T^{*}\right) \rightarrow \mathbb{C}$ defined by $\lambda\left(T^{*} s\right)=(f \mid s)$ for $s \in \operatorname{Dom}\left(T^{*}\right)$. We see that λ is \mathbb{C}-antilinear map and $\left|\lambda\left(T^{*} s\right)\right| \leq\left(\int_{X} \psi^{-1}|f|^{2} d v_{X}\right)^{1 / 2}\left\|T^{*} s\right\|$, i.e., λ is bounded with norm $\|\lambda\| \leq\left(\int_{X} \psi^{-1}|f|^{2} d v_{X}\right)^{1 / 2}$. By the complex HahnBanach theorem we can extend λ to $L_{r, q-1}^{2}(X, E)$ with the same norm $\|\lambda\| \leq$ $\left(\int_{X} \psi^{-1}|f|^{2} d v_{X}\right)^{1 / 2}$.

By the Riesz representation theorem, there exists $g \in L_{r, q-1}^{2}(X, E)$ such that $\lambda(\alpha)=(g \mid \alpha)$ for $\alpha \in L_{r, q-1}^{2}(X, E)$ with $\|g\|^{2}=\|\lambda\|^{2} \leq \int_{X} \psi^{-1}|f|^{2} d v_{X}$. We set $\alpha=T^{*} s, s \in \operatorname{Dom}\left(T^{*}\right)$. Thus $\left(g \mid T^{*} s\right)=\lambda\left(T^{*} s\right)=(f \mid s)$ and $g \in \operatorname{Dom}\left(T^{* *}\right)=$ $\operatorname{Dom}(T)$ satisfying $T g=f$.

For certain complete CR manifold endowed with a Nakano q-semipositive line bundle, the L^{2} method applies to solve the $\bar{\partial}_{b, E}$-equation for (n, q)-forms as follows. For the cohomology aspect of Nakano q-semipositive line bundles on complex manifolds, see [30].
Corollary 4.21 Let X be a CR manifold with a smooth locally free $C R \mathbb{R}$-action. Let Θ_{X} be an \mathbb{R}-invariant Hermitian metric on X. Assume g_{X} is complete. Assume $\mathscr{L}=0$ and $d \Theta_{X}=0$. Let E be a \mathbb{R}-equivariant CR line bundle over X with a \mathbb{R}-invariant Hermitian metric h^{E}. Let $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be eigenvalues of R^{E} with respect to Θ_{X}. Assume $\left(E, h^{E}\right)$ is Nakano q-semipositive with respect to Θ_{X}, i.e., $\lambda_{1}+\cdots+$ $\lambda_{q} \geq 0$. Then, for any $f \in L_{n, q}^{2}(X, E)$ satisfying $\bar{\partial}_{b, E} f=0$ and $\int_{X}\left(\lambda_{1}+\cdots+\right.$ $\left.\lambda_{q}\right)^{-1}|f|^{2} d v_{X}<\infty$, there exists $g \in L_{n, q-1}^{2}(X, E)$ such that $\bar{\partial}_{b, E} g=f$ and $\|g\|^{2} \leq \int_{X}\left(\lambda_{1}+\cdots+\lambda_{q}\right)^{-1}|f|^{2} d v_{X}$.

4.6 Vanishing Theorems

In this section, we present some vanishing theorems that follow from the previous L^{2} estimates. We obtain first a CR counterpart of the Kodaira vanishing theorem [23, Theorem 1.5.4.(a)] as follows:

Corollary 4.22 Assume that $2 \sqrt{-1} \mathscr{L}=\Theta_{X}, g_{X}$ is complete and let $\lambda<0$ and $1 \leq q \leq n$. Then, we have

$$
\begin{equation*}
\text { Ker } \square_{b} \cap \mathscr{E}(\lambda, \sqrt{-1} T) \cap L_{n, q}^{2}(X)=0 \tag{4.68}
\end{equation*}
$$

This follows immediately from Theorem 4.18.
We obtain a CR counterpart of the Kodaira-Serre vanishing theorem [23, Theorem 1.5.6] as follows:

Corollary 4.23 Assume that $2 \sqrt{-1} \mathscr{L}=\Theta_{X}, g_{X}$ is complete and let $C>0$ such that

$$
\begin{equation*}
\sqrt{-1} R^{K_{X}^{*}} \geq-C \Theta_{X} \tag{4.69}
\end{equation*}
$$

Let $\lambda<-C$ and $1 \leq q \leq n$. Then, we have

$$
\begin{equation*}
\operatorname{Ker} \square_{b} \cap \mathscr{E}(\lambda, \sqrt{-1} T) \cap L_{0, q}^{2}(X)=0 \tag{4.70}
\end{equation*}
$$

This follows immediately from Theorem 4.10. We note that the previous vanishing theorems on CR manifolds imply the following generalizations due to AndreottiVesentini [2] of the Kodaira-Serre and Kodaira vanishing theorems for complete Kähler manifolds.

Corollary 4.24 (Andreotti-Vesentini) Let (M, ω) be a complete Kähler manifold of dimension n and let $\left(L, h^{L}\right) \rightarrow M$ be a Hermitian holomorphic line bundle such that $\sqrt{-1} R^{L}=\omega$ and there is $C>0$ such that $\sqrt{-1} R_{\omega}^{K_{M}^{*}} \geq-C \omega$ on M. Then there exists $m_{0} \in \mathbb{N}$ such that for every $m \geq m_{0}$ we have $H_{(2)}^{q-}\left(M, L^{m}\right)=0$ for $q \geq 1$, where $H_{(2)}^{q}\left(M, L^{m}\right)$ denotes the $L^{2} q$-th Dolbeault cohomology group with respect to the metric $\left(h^{L}\right)^{m}$ and volume form ω^{n} / n ! with values in L^{m}.

Proof We apply the previous results for the CR manifold X constructed in Example 4.6. In this case $T=\partial_{\theta}$. For $m \in \mathbb{Z}$, the space $L_{0, q}^{2}\left(M, L^{m}\right)$ is isometric to the space of m-equivariant L^{2} forms on $X, L_{0, q}^{2}(X)_{m}=\left\{u \in L_{0, q}^{2}(X)\right.$: $\left(e^{i \theta}\right)^{*} u=e^{i m \theta} u$, for any $\left.e^{i \theta} \in S^{1}\right\}$. Note that $L_{0, q}^{2}(X)_{m}=\mathscr{E}(q)\left(-m, \sqrt{-1} \partial_{\theta}\right)$ and the L^{2}-Dolbeault complex $\left(L_{0, \bullet}^{2}\left(M, L^{m}\right), \bar{\partial}\right)$ is isomorphic to the $\bar{\partial}_{b}$-complex $\left(L_{0, \bullet}^{2}(X)_{m}, \bar{\partial}_{b}\right)$. Hence, the assertion follows from Theorem 4.10.

In the same vein recover from Theorem 4.18 the following vanishing theorem for the L^{2}-cohomology of positive bundles twisted with the canonical bundle on complete Kähler manifolds.

Corollary 4.25 (Andreotti-Vesentini) Let (M, ω) be a complete Kähler manifold of dimension n and let $\left(L, h^{L}\right) \rightarrow M$ be a Hermitian holomorphic line bundle such that $\sqrt{-1} R^{L}=\omega$. Then $H_{(2)}^{n, q}(M, L)=0$ for $q \geq 1$, where $H_{(2)}^{n, q}(M, L)$ denotes the $L^{2} q$-th Dolbeault cohomology group with respect to the metric h^{L} and volume form $\omega^{n} / n!$ with values in $K_{X} \otimes L$.

4.7 Szegö Kernel Asymptotic Expansions

In this section, we prove Theorem 1.2 and Corollary 1.4. We first introduced some notations. Let $D \subset X$ be an open coordinate patch with local coordinates $x=$ $\left(x_{1}, \ldots, x_{2 n+1}\right)$. Let $m \in \mathbb{R}, 0 \leq \rho, \delta \leq 1$. Let $S_{\rho, \delta}^{m}\left(T^{*} D\right)$ denote the Hörmander symbol space on $T^{*} D$ of order m type (ρ, δ) and let $S_{\mathrm{cl}}^{m}\left(T^{*} D\right)$ denote the space of classical symbols on $T^{*} D$ of order m, see Grigis-Sjöstrand [11, Definition 1.1 and p.35] and Definition 2.1. Let $L_{\rho, \delta}^{m}(D)$ and $L_{\mathrm{cl}}^{m}(D)$ denote the space of pseudodifferential operators on D of order m type (ρ, δ) and the space of classical pseudodifferential operators on D of order m, respectively.

Let Σ be the characteristic manifold of \square_{b}. We have

$$
\begin{align*}
\Sigma & =\Sigma^{-} \cup \Sigma^{+}, \\
\Sigma^{-} & =\left\{\left(x,-c \omega_{0}(x)\right) \in T^{*} X ; c<0\right\}, \tag{4.71}\\
\Sigma^{+} & =\left\{\left(x,-c \omega_{0}(x)\right) \in T^{*} X ; c>0\right\} .
\end{align*}
$$

We recall the following definition introduced in [19, Definition 2.4].
Definition 4.26 Let $Q: L^{2}(X) \rightarrow L^{2}(X)$ be a continuous operator. Let $D \Subset X$ be an open local coordinate patch of X with local coordinates $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$ and let $\eta=\left(\eta_{1}, \ldots, \eta_{2 n+1}\right)$ be the dual variables of x. We write

$$
Q \equiv 0 \mathrm{at} \Sigma^{-} \cap T^{*} D,
$$

if for every $D^{\prime} \Subset D$,

$$
Q(x, y) \equiv \int e^{i\langle x-y, \eta\rangle} q(x, \eta) d \eta \text { on } D^{\prime}
$$

where $q(x, \eta) \in S_{1,0}^{0}\left(T^{*} D^{\prime}\right)$ and there exist $M>0$ and a conic open neighborhood Λ_{-}of Σ^{-}such that for every $(x, \eta) \in T^{*} D^{\prime} \cap \Lambda_{-}$with $|\eta| \geq M$, we have $q(x, \eta)=0$.

For a given point $x_{0} \in D$, let $\left\{W_{j}\right\}_{j=1}^{n}$ be an orthonormal frame of $T^{(1,0)} X$ with respect to $\langle\cdot \mid \cdot\rangle$ near x_{0}, for which the Levi form is diagonal at x_{0}. Put

$$
\begin{equation*}
\mathscr{L}_{x_{0}}\left(W_{j}, \bar{W}_{\ell}\right)=\mu_{j}\left(x_{0}\right) \delta_{j \ell}, \quad j, \ell=1, \ldots, n . \tag{4.72}
\end{equation*}
$$

We will denote by

$$
\begin{equation*}
\operatorname{det} \mathscr{L}_{x_{0}}=\prod_{j=1}^{n} \mu_{j}\left(x_{0}\right) \tag{4.73}
\end{equation*}
$$

We recall the following results in [19, Theorems 1.9, 5.1].
Theorem 4.27 Let $D \Subset X$ be an open coordinate patch with local coordinates $x=$ $\left(x_{1}, \ldots, x_{2 n+1}\right)$. Let $Q: L^{2}(X) \rightarrow L^{2}(X)$ be a continuous operator and let Q^{*} be the L^{2} adjoint of Q with respect to $(\cdot \mid \cdot)$. Suppose that $\square_{b}^{(0)}$ has local L^{2} closed range on D with respect to Q and $Q S^{(0)}=S^{(0)} Q$ on $L^{2}(X)$ and

$$
Q-Q_{0} \equiv 0 \quad \text { at } \Sigma^{-} \cap T^{*} D,
$$

where $Q_{0} \in L_{\mathrm{cl}}^{0}(D)$. Then,

$$
\begin{equation*}
\left(Q^{*} S^{(0)} Q\right)(x, y) \equiv \int_{0}^{\infty} e^{i \varphi(x, y) t} a(x, y, t) d t \text { on } D \tag{4.74}
\end{equation*}
$$

where

$$
\begin{align*}
& \varphi \in \mathscr{C}^{\infty}(D \times D), \quad \operatorname{Im} \varphi(x, y) \geq 0, \\
& \varphi(x, x)=0, \quad \varphi(x, y) \neq 0 \text { if } x \neq y, \\
& \left.d_{x} \varphi(x, y)\right|_{x=y}=\omega_{0}(x),\left.\quad d_{y} \varphi(x, y)\right|_{x=y}=-\omega_{0}(x), \tag{4.75}\\
& \varphi(x, y)=-\bar{\varphi}(y, x),
\end{align*}
$$

$a(x, y, t) \in S_{\mathrm{cl}}^{n}\left(D \times D \times \mathbb{R}_{+}\right)$and the leading term $a_{0}(x, y)$ of the expansion (2.4) of $a(x, y, t)$ satisfies

$$
\begin{equation*}
a_{0}(x, x)=\frac{1}{2} \pi^{-n-1}\left|\operatorname{det} \mathcal{L}_{x}\right| \overline{q\left(x, \omega_{0}(x)\right)} q\left(x, \omega_{0}(x)\right), \text { for all } x \in D, \tag{4.76}
\end{equation*}
$$

where $\operatorname{det} \mathcal{L}_{x}$ is the determinant of the Leviform defined in (4.73), $q(x, \eta) \in \mathscr{C}^{\infty}\left(T^{*} D\right)$ is the principal symbol of Q.

We refer the reader to [19, Theorems 3.3, 4.4] for more properties for the phase φ in (4.75). Let $D=U \times \mathcal{I}$ be a BRT chart with BRT coordinates $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$. For $\lambda \in \mathbb{R}$, put

$$
\begin{equation*}
\hat{Q}_{\tau_{\lambda}}:=(2 \pi)^{-(2 n+1)} \int e^{i\langle x-y, \eta\rangle} \tau_{\lambda}\left(-\eta_{2 n+1}\right) d \eta \in L_{1,0}^{0}(D), \tag{4.77}
\end{equation*}
$$

where $\tau_{\lambda} \in \mathscr{C}^{\infty}(\mathbb{R})$ is as in the discussion before Theorem 4.14. It is not difficult to see that

$$
\begin{equation*}
\hat{Q}_{\tau_{\lambda}}-I \equiv 0 \text { at } \Sigma^{-} \bigcap T^{*} D . \tag{4.78}
\end{equation*}
$$

Assume that the \mathbb{R}-action is free. From (4.11), we see that $Q_{\tau_{\lambda}}=\hat{Q}_{\tau_{\lambda}}$ on D. From this observation, Theorems 4.14, 4.27, (4.78), and noticing that $Q_{\tau_{\lambda}}^{*} S^{(0)} Q_{\tau_{\lambda}}=Q_{\tau_{\lambda}^{2}} S^{(0)}$, where $Q_{\tau_{\lambda}}^{*}$ is the L^{2} adjoint of $Q_{\tau_{\lambda}}$ with respect to $(\cdot \mid \cdot)$, we get

Theorem 4.28 Suppose that the \mathbb{R}-action is free. Assume that $g_{\mathscr{L}}$ is complete and there is $C>0$ such that

$$
\sqrt{-1} R_{\mathscr{L}}^{K_{X}^{*}} \geq-2 C \sqrt{-1} \mathscr{L}, \quad(2 \sqrt{-1} \mathscr{L})^{n} \wedge \omega_{0} \geq C \Theta_{X}^{n} \wedge \omega_{0}
$$

Let $D=U \times \mathcal{I} \Subset X$ be a BRT chart with BRT coordinates $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$. Let $\lambda \in \mathbb{R}, \lambda<-C$. Then,

$$
\begin{equation*}
\left(Q_{\tau_{\lambda}^{2}} S^{(0)}\right)(x, y) \equiv \int_{0}^{\infty} e^{i \varphi(x, y) t} s(x, y, t) d t \text { on } D \tag{4.79}
\end{equation*}
$$

where $\varphi \in \mathscr{C}^{\infty}(D \times D)$ is as in (4.74), $s(x, y, t) \in S_{\mathrm{cl}}^{n}\left(D \times D \times \mathbb{R}_{+}\right)$and the leading term $s_{0}(x, y)$ of the expansion (2.4) of $s(x, y, t)$ satisfies

$$
\begin{equation*}
s_{0}(x, x)=\frac{1}{2} \pi^{-n-1}\left|\operatorname{det} \mathcal{L}_{x}\right|, \text { for all } x \in D . \tag{4.80}
\end{equation*}
$$

We now assume that the \mathbb{R}-action is not free. From (4.8), we know that the \mathbb{R}-action comes from a CR torus action $\mathbb{T}^{d}=\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right)$ on X and ω_{0}, Θ_{X} are \mathbb{T}^{d} invariant. We will use the same notations as in the discussion before Proposition 4.8. We need

Lemma 4.29 Suppose that the \mathbb{R}-action is not free. With the notations and assumptions used above, let $D=U \times \mathcal{I} \Subset X$ be a BRT chart with BRT coordinates $x=\left(x^{\prime}, x_{2 n+1}\right)$, $x^{\prime}=\left(x_{1}, \ldots, x_{2 n}\right)$. Fix $D_{0} \Subset D$ and $\lambda \in \mathbb{R}$. For $u \in \mathscr{C}_{c}^{\infty}\left(D_{0}\right)$, we have

$$
\begin{align*}
& Q_{\tau_{\lambda}} u=\hat{Q}_{\tau_{\lambda}} u+\hat{R}_{\tau_{\lambda}} u \text { on } D_{0}, \\
& \left(\hat{R}_{\tau_{\lambda}} u\right)(x)=\frac{1}{2 \pi} \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \int_{\mathbb{T}^{d}} e^{i\left\langle x_{2 n+1}-y_{2 n+1}, \eta_{2 n+1}\right\rangle+i\left(\sum_{j=1}^{d} m_{j} \beta_{j}\right) y_{2 n+1}-i m_{1} \theta_{1}-\ldots-i m_{d} \theta_{d}} \\
& \times \tau_{\lambda}\left(-\eta_{2 n+1}\right)\left(1-\chi\left(y_{2 n+1}\right)\right) u\left(\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right) \circ x^{\prime}\right) d \mathbb{T}_{d} d \eta_{2 n+1} d y_{2 n+1} \text { on } D_{0}, \tag{4.81}
\end{align*}
$$

where $\chi \in \mathscr{C}_{c}^{\infty}(I), \chi\left(x_{2 n+1}\right)=1$ forevery $\left(x^{\prime}, x_{2 n+1}\right) \in D_{0}$ and $\beta_{1} \in \mathbb{R}, \ldots, \beta_{d} \in \mathbb{R}$ are as in (4.17).

Proof We also write $y=\left(y^{\prime}, y_{2 n+1}\right)=\left(y_{1}, \ldots, y_{2 n+1}\right), y^{\prime}=\left(y_{1}, \ldots, y_{2 n}\right)$, to denote the BRT coordinates x. Let $u \in \mathscr{C}_{c}^{\infty}\left(D_{0}\right)$. From (4.19), it is easy to see that on D,

$$
\begin{gather*}
Q_{\tau_{\lambda}} u(y)=\sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \tau_{\lambda}\left(-\sum_{j=1}^{d} m_{j} \beta_{j}\right) e^{i\left(\sum_{j=1}^{d} m_{j} \beta_{j}\right) y_{2 n+1} \times} \times \tag{4.82}\\
\int_{\mathbb{T}^{d}} e^{-\left(i m_{1} \theta_{1}+\ldots+i m_{d} \theta_{d}\right)} u\left(\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right) \circ y^{\prime}\right) d T_{d} .
\end{gather*}
$$

Now, we claim that

$$
\begin{equation*}
\hat{Q}_{\tau_{\lambda}}+\hat{R}_{\tau_{\lambda}}=Q_{\tau_{\lambda}} \text { on } \mathscr{C}_{0}^{\infty}\left(D_{0}\right) \tag{4.83}
\end{equation*}
$$

Let $u \in \mathscr{C}_{c}^{\infty}\left(D_{0}\right)$. From Fourier inversion formula, it is straightforward to see that

$$
\begin{align*}
& \hat{Q}_{\tau_{\lambda}} u(x)=\frac{1}{2 \pi} \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \int e^{i\left\langle x_{2 n+1}-y_{2 n+1}, \eta_{2 n+1}\right\rangle} \tau_{\lambda}\left(-\eta_{2 n+1}\right) \chi\left(y_{2 n+1}\right) \\
& \quad \times e^{i\left(\sum_{j=1}^{d} m_{j} \beta_{j}\right) y_{2 n+1}-i m_{1} \theta_{1}-\ldots-i m_{d} \theta_{d}} u\left(\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right) \circ x^{\prime}\right) d \mathbb{T}_{d} d y_{2 n+1} d \eta_{2 n+1} . \tag{4.84}
\end{align*}
$$

From (4.84) and the definition of $\hat{R}_{\tau_{\lambda}}$, we have

$$
\begin{align*}
& \left(\hat{Q}_{\tau_{\lambda}}+\hat{R}_{\tau_{\lambda}}\right) u(x) \\
& =\frac{1}{2 \pi} \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \int e^{i\left\langle x_{2 n+1}-y_{2 n+1}, \eta_{2 n+1}\right\rangle} \tau_{\lambda}\left(-\eta_{2 n+1}\right) \\
& \quad \times e^{i\left(\sum_{j=1}^{d} m_{j} \beta_{j}\right) y_{2 n+1}-i m_{1} \theta_{1}-\ldots-i m_{d} \theta_{d}} u\left(\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right) \circ x^{\prime}\right) d \mathbb{T}_{d} d y_{2 n+1} d \eta_{2 n+1} . \tag{4.85}
\end{align*}
$$

Note that the following formula holds for every $\alpha \in \mathbb{R}$,

$$
\begin{equation*}
\int e^{i \alpha y_{2 n+1}} e^{-i y_{2 n+1} \eta_{2 n+1}} d y_{2 n+1}=2 \pi \delta_{\alpha}\left(\eta_{2 n+1}\right) \tag{4.86}
\end{equation*}
$$

where the integral is defined as an oscillatory integral and δ_{α} is the Dirac measure at α. Using (4.82), (4.86), and the Fourier inversion formula, (4.85) becomes

$$
\begin{align*}
\left(\hat{Q}_{\tau_{\lambda}}+\hat{R}_{\tau_{\lambda}}\right) u(x)= & \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \tau_{\lambda}\left(-\sum_{j=1}^{d} m_{j} \beta_{j}\right) e^{i\left(\sum_{j=1}^{d} m_{j} \beta_{j}\right) x_{2 n+1}} \times \\
& \int_{\mathbb{T}_{d}} e^{-i m_{1} \theta_{1}-\ldots-i m_{d} \theta_{d}} u\left(\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right) \circ x^{\prime}\right) d \mathbb{T}_{d} \tag{4.87}\\
= & Q_{\tau_{\lambda}} u(x) .
\end{align*}
$$

From (4.87), the claim (4.83) follows.
To study $Q_{\tau_{\lambda}^{2}} S^{(0)}$ when the \mathbb{R} is not free, we also need the following two known results [19, Theorems 3.2, 5.2].

Theorem 4.30 We assume that the \mathbb{R}-action is arbitrary. Let $D \Subset X$ be a coordinate patch with local coordinates $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$. Then there exist properly supported continuous operators $A \in L_{\frac{1}{2}, \frac{1}{2}}^{-1}(D), \tilde{S} \in L_{\frac{1}{2}, \frac{1}{2}}^{0}(D)$, such that

$$
\begin{align*}
& \square_{b}^{(0)} A+\tilde{S}=\operatorname{Ion} D, \\
& A^{*} \square_{b}^{(0)}+\tilde{S}=\operatorname{Ion} D, \\
& \square_{b}^{(0)} \tilde{S} \equiv 0 \text { on } D, \tag{4.88}\\
& A \equiv A^{*} \text { on } D, \quad \tilde{S} A \equiv 0 \text { on } D, \\
& \tilde{S} \equiv \tilde{S}^{*} \equiv \tilde{S}^{2} \text { on } D,
\end{align*}
$$

where A^{*}, \tilde{S}^{*} are the formal adjoints of A, \tilde{S} with respect to $(\cdot \mid \cdot)$, respectively, and $\tilde{S}(x, y)$ satisfies

$$
\begin{equation*}
\tilde{S}(x, y) \equiv \int_{0}^{\infty} e^{i \varphi(x, y) t} s(x, y, t) d t \text { on } D \tag{4.89}
\end{equation*}
$$

where $\varphi(x, y) \in \mathscr{C}^{\infty}(D \times D)$ and $s(x, y, t) \in S_{\mathrm{cl}}^{n}\left(D \times D \times \mathbb{R}_{+}\right)$are as in (4.79).
Theorem 4.31 Let us consider an arbitrary \mathbb{R}-action and let $Q: L^{2}(X) \rightarrow L^{2}(X)$ be a continuous operator and let Q^{*} be the L^{2} adjoint of Q with respect to $(\cdot \mid \cdot)$. Suppose that $\square_{b}^{(0)}$ has local L^{2} closed range on D with respect to Q and $Q S^{(0)}=S^{(0)} Q$ on $L^{2}(X)$. Let D be a coordinate patch with local coordinates $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$. We have

$$
\begin{equation*}
Q^{*} S^{(0)} Q \equiv \tilde{S}^{*} Q^{*} Q \tilde{S} \text { on } D \tag{4.90}
\end{equation*}
$$

where \tilde{S} is as in Theorem 4.30.
For the proof we need the following.

Lemma 4.32 Suppose that the \mathbb{R}-action is not free. Fix $p \in X$. Let $D=U \times \mathcal{I}$ be a $B R T$ chart defined near p with BRT coordinates $x=\left(x^{\prime}, x_{2 n+1}\right), x^{\prime}=\left(x_{1}, \ldots, x_{2 n}\right)$, $x(p)=0$. Fix $D_{0} \Subset D, p \in D_{0}$, and $\lambda \in \mathbb{R}$. Then,

$$
\tilde{S} \hat{R}_{\tau_{\lambda}} \equiv 0 \text { on } D_{0}
$$

where $\hat{R}_{\tau_{\lambda}}$ and \tilde{S} are as in Lemma 4.29 and Theorem 4.30, respectively.
Proof From (4.75), we may assume D_{0} is small so that

$$
\begin{equation*}
\left|\partial_{y_{2 n+1}} \varphi(x, y)\right| \geq C, \text { for every }(x, y) \in D_{0} \tag{4.91}
\end{equation*}
$$

where $C>0$ is a constant. Let $g \in \mathscr{C}_{c}^{\infty}\left(D_{0}\right)$. From (4.81) and (4.89), we have

$$
\begin{align*}
& \left(\tilde{S} \hat{R}_{\tau_{\lambda}} g\right)(x) \\
& =\frac{1}{2 \pi} \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \int e^{i t \varphi(x, u)} a(x, u, t) e^{i\left\langle u_{2 n+1}-y_{2 n+1}, \eta_{2 n+1}\right\rangle+i\left(\sum_{j=1}^{d} m_{j} \beta_{j}\right) y_{2 n+1}-i \sum_{j=1}^{d} m_{j} \theta_{j}} \\
& \times \tau_{\lambda}\left(-\eta_{2 n+1}\right)\left(1-\chi\left(y_{2 n+1}\right)\right) g\left(\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right) \circ u^{\prime}\right) d \mathbb{T}_{d} d \eta_{2 n+1} d y_{2 n+1} d v_{X}(u) \text { on } D_{0}, \tag{4.92}
\end{align*}
$$

where we also write $u=\left(u^{\prime}, u_{2 n+1}\right), u^{\prime}=\left(u_{1}, \ldots, u_{2 n}\right)$, to denote the BRT coordinates x. Since $u_{2 n+1} \neq y_{2 n+1}$, for every $\left(u^{\prime}, u_{2 n+1}\right) \in D_{0}, y_{2 n+1} \in \operatorname{Supp}(1-$ $\left.\chi\left(y_{2 n+1}\right)\right)$, we can integrate by parts in $\eta_{2 n+1}$ and rewrite (4.92):

$$
\begin{align*}
& \left(\tilde{S} \hat{R}_{\tau_{\lambda}} g\right)(x) \\
& =\frac{1}{2 \pi} \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \int e^{i t \varphi(x, u)} a(x, u, t) \frac{1}{i\left(u_{2 n+1}-y_{2 n+1}\right)} \\
& \times e^{i\left\langle u_{2 n+1}-y_{2 n+1}, \eta_{2 n+1}\right\rangle+i\left(\sum_{j=1}^{d} m_{j} \beta_{j}\right) y_{2 n+1}-i \sum_{j=1}^{d} m_{j} \theta_{j}} \\
& \times \tau_{\lambda}^{\prime}\left(-\eta_{2 n+1}\right)\left(1-\chi\left(y_{2 n+1}\right)\right) g\left(\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right) \circ u^{\prime}\right) d \mathbb{T}_{d} d \eta_{2 n+1} d y_{2 n+1} d v_{X}(u) \text { on } D_{0} . \tag{4.93}
\end{align*}
$$

Let

$$
\begin{aligned}
& A\left(x, u^{\prime}, y_{2 n+1}\right) \\
& :=\int e^{i t \varphi(x, u)+i\left\langle u_{2 n+1}-y_{2 n+1}, \eta_{2 n+1}\right\rangle} a(x, u, t)\left(1-\chi\left(y_{2 n+1}\right)\right) \frac{1}{i\left(u_{2 n+1}-y_{2 n+1}\right)} \\
& \quad \times \tau_{\lambda}^{\prime}\left(-\eta_{2 n+1}\right) d \eta_{2 n+1} d u_{2 n+1} d t .
\end{aligned}
$$

By (4.91) there exists $c>0$ such that

$$
\begin{aligned}
& \left|\partial_{u_{2 n+1}}\left(i t \varphi(x, u)+i\left\langle u_{2 n+1}-y_{2 n+1}, \eta_{2 n+1}\right\rangle\right)\right| \geq c t \\
& \quad \text { for } t \gg|\lambda|, \eta_{2 n+1} \in \operatorname{Supp} \tau_{\lambda}^{\prime}\left(-\eta_{2 n+1}\right)
\end{aligned}
$$

for every $(x, u) \in D_{0} \times D_{0}$. Hence, we can integrate by parts in $u_{2 n+1}$ and $\eta_{2 n+1}$ and deduce that

$$
\begin{equation*}
A\left(x, u^{\prime}, y_{2 n+1}\right) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0} \times \mathbb{R}\right) \text { and } A\left(x, u^{\prime}, y_{2 n+1}\right) \text { is a Schwartz function in } y_{2 n+1} . \tag{4.94}
\end{equation*}
$$

We have

$$
\begin{align*}
& \left(\tilde{S} \hat{R}_{\tau_{\lambda}} g\right)(x) \\
& =\frac{1}{2 \pi} \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \int A\left(x, u^{\prime}, y_{2 n+1}\right) e^{i\left(\sum_{j=1}^{d} m_{j} \beta_{j}\right) y_{2 n+1}-i m_{1} \theta_{1}-\ldots-i m_{d} \theta_{d}} \tag{4.95}\\
& \times g\left(\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right) \circ u^{\prime}\right) d v\left(u^{\prime}\right) d y_{2 n+1} d \mathbb{T}_{d},
\end{align*}
$$

where $d v_{X}(u)=d v\left(u^{\prime}\right) d u_{2 n+1}$. From (4.94) and (4.95), we have

$$
\begin{align*}
\left\|\tilde{S} \hat{R}_{\tau_{\lambda}} g\right\|_{D_{0}, s} & \leq C \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \int \mid \int_{\mathbb{T}^{d}} e^{-i m_{1} \theta_{1}-\ldots-i m_{d} \theta_{d}} g\left(\left.\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}} \circ u^{\prime}\right)\right|^{2} \tau(u) d v_{X}(u)\right. \\
& =C \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \int \mid \int_{\mathbb{T}^{d}} e^{-i m_{1} \theta_{1}-\ldots-i m_{d} \theta_{d}} g\left(\left.\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}} \circ u\right)\right|^{2} \tau(u) d v_{X}(u)\right. \\
& \leq \hat{C} \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \int \mid \int_{\mathbb{T}^{d}} e^{-i m_{1} \theta_{1}-\ldots-i m_{d} \theta_{d}} g\left(\left.\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}} \circ u\right)\right|^{2} d v_{X}(u)\right. \\
& \leq \hat{C}_{0}\|g\|^{2}, \tag{4.96}
\end{align*}
$$

where $\|\cdot\|_{D_{0}, s}$ denotes the standard Sobolev norm of order s on $D_{0}, C, \hat{C}, \hat{C}_{0}>0$ are constants, $\tau \in \mathscr{C}_{0}^{\infty}(D), \tau=1$ near D_{0}. From (4.96), we deduce that

$$
\tilde{S} \hat{R}_{\tau_{\lambda}}: L_{c}^{2}\left(D_{0}\right) \rightarrow H_{\mathrm{loc}}^{s}\left(D_{0}\right) \text { is continuous, for every } s \in \mathbb{N}
$$

Let $\Delta_{X}: \mathscr{C}^{\infty}(X) \rightarrow \mathscr{C}^{\infty}(X)$ be the standard Laplacian on X induced by $\langle\cdot \mid \cdot\rangle$. Since $\langle\cdot \mid \cdot\rangle$ is \mathbb{T}^{d} invariant, Δ_{X} is \mathbb{T}^{d} invariant. Fix $s \in \mathbb{N}$. Let

$$
G_{s}: \mathscr{C}_{c}^{\infty}\left(D_{0}\right) \rightarrow \mathscr{C}_{c}^{\infty}\left(D_{0}\right)
$$

be a parametrix of \triangle_{X}^{s} on D_{0} and G_{s} is properly supported on D_{0}. Hence, there is a properly supported smoothing operator

$$
F_{s}: \mathscr{E}^{\prime}\left(D_{0}\right) \rightarrow \mathscr{C}_{c}^{\infty}\left(D_{0}\right)
$$

such that

$$
\begin{equation*}
g=\left(\triangle_{X}^{s} G_{s}+F_{s}\right) g \text { on } D_{0} \tag{4.97}
\end{equation*}
$$

for all $g \in \mathscr{C}_{c}^{\infty}\left(D_{0}\right)$. Now, on D_{0},

$$
\begin{equation*}
\tilde{S} \hat{R}_{\tau_{\lambda}} g=\tilde{S} \hat{R}_{\tau_{\lambda}}\left(\triangle_{X}^{s} G_{s} g\right)+\tilde{S} \hat{R}_{\tau_{\lambda}}\left(F_{s} g\right) \tag{4.98}
\end{equation*}
$$

Since F_{S} is smoothing, we have

$$
\begin{equation*}
\left\|\tilde{S} \hat{R}_{\tau_{\lambda}}\left(F_{s} g\right)\right\|_{D_{0}, s} \leq C\|g\|_{-s}, \tag{4.99}
\end{equation*}
$$

where $C>0$ is a constant. Now, we can integrate by parts and repeat the proof of (4.95) and show that

$$
\begin{align*}
& \left(\tilde{S} \hat{R}_{\tau_{\lambda}} \Delta_{X}^{s} G_{s} g\right)(x) \\
& =\frac{1}{2 \pi} \sum_{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}} \int A_{s}\left(x, u^{\prime}, y_{2 n+1}\right) e^{i\left(\sum_{j=1}^{d} m_{j} \beta_{j}\right) y_{2 n+1}-i m_{1} \theta_{1}-\ldots-i m_{d} \theta_{d}} \tag{4.100}\\
& \times\left(G_{s} g\right)\left(\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right) \circ u^{\prime}\right) d v\left(u^{\prime}\right) d y_{2 n+1} d \mathbb{T}_{d}
\end{align*}
$$

where

$$
\begin{equation*}
A_{s}\left(x, u^{\prime}, y_{2 n+1}\right) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0} \times \mathbb{R}\right) \text { is a Schwartz function in } y_{2 n+1} \tag{4.101}
\end{equation*}
$$

From (4.100), (4.101), and noticing that $G_{s}: H_{\text {comp }}^{-2 s}(D) \rightarrow H_{\text {comp }}^{0}(D)$ is continuous, we can repeat the proof of (4.96) and conclude that

$$
\begin{equation*}
\left\|\tilde{S} \hat{R}_{\tau_{\lambda}}\left(\triangle_{X}^{s} G_{s} g\right)\right\|_{D_{0}, s} \leq C\left\|G_{s} g\right\| \leq C_{1}\|g\|_{-s}, \tag{4.102}
\end{equation*}
$$

where $C, C_{1}>0$ are constants. From (4.97), (4.98), (4.99), and (4.102), we get that

$$
\tilde{S} \hat{R}_{\tau_{\lambda}}: H_{\mathrm{comp}}^{-s}\left(D_{0}\right) \rightarrow H_{\mathrm{loc}}^{s}\left(D_{0}\right) \text { is continuous for every } s \in \mathbb{N} .
$$

Hence, $\tilde{S} \hat{R}_{\tau_{\lambda}}$ is smoothing on D_{0}.
Theorem 4.33 Suppose that the \mathbb{R}-action is not free. Assume that $g_{\mathscr{L}}$ is complete and there is $C>0$ such that

$$
\sqrt{-1} R_{\mathscr{L}}^{K_{X}^{*}} \geq-2 C \sqrt{-1} \mathscr{L}, \quad(2 \sqrt{-1} \mathscr{L})^{n} \wedge \omega_{0} \geq C \Theta_{X}^{n} \wedge \omega_{0}
$$

Let $D=U \times \mathcal{I} \Subset X$ be a BRT chart with BRT coordinates $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$. Let $\lambda \in \mathbb{R}, \lambda<-C$. Then,

$$
\begin{equation*}
\left(Q_{\tau_{\lambda}^{2}} S^{(0)}\right)(x, y) \equiv \int_{0}^{\infty} e^{i \varphi(x, y) t} s(x, y, t) d t \text { on } D \tag{4.103}
\end{equation*}
$$

where $\varphi \in \mathscr{C}^{\infty}(D \times D)$ and $s(x, y, t) \in S_{\mathrm{cl}}^{n}\left(D \times D \times \mathbb{R}_{+}\right)$are as in (4.79).
Proof From (4.81), (4.90), and Lemma 4.32, we see that on D,

$$
Q_{\tau_{\lambda}^{2}} S^{(0)} \equiv \tilde{S}^{*} \hat{Q}_{\tau_{\lambda}}^{*} \hat{Q}_{\tau_{\lambda}} \tilde{S}
$$

Using this observation, we can repeat the proof of [19, Theorem 5.8] and obtain the conclusion.

Theorem 4.34 Let us consider an arbitrary \mathbb{R}-action. Assume that $g_{\mathscr{L}}$ is complete and there is $C>0$ such that

$$
\sqrt{-1} R_{\mathscr{L}}^{K_{X}^{*}} \geq-2 C \sqrt{-1} \mathscr{L}, \quad(2 \sqrt{-1} \mathscr{L})^{n} \wedge \omega_{0} \geq C \Theta_{X}^{n} \wedge \omega_{0}
$$

Let $D=U \times I$ be a BRT chart with BRT coordinates $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$. Let $\lambda \in \mathbb{R}$, $\lambda<-C$. Then,

$$
\begin{equation*}
\left(I-Q_{\tau_{\lambda}^{2}}\right)^{2} S^{(0)} \equiv 0 \text { on } D \tag{4.104}
\end{equation*}
$$

Proof From (4.88), we have

$$
\begin{equation*}
\left(I-Q_{\tau_{\lambda}^{2}}\right) S^{(0)}=\tilde{S}\left(I-Q_{\tau_{\lambda}^{2}}\right) S^{(0)} \tag{4.105}
\end{equation*}
$$

From Lemma 4.32, we have

$$
\tilde{S}\left(I-Q_{\tau_{\lambda}^{2}}\right) \equiv \tilde{S}\left(I-\hat{Q}_{\tau_{\lambda}^{2}}\right) \text { on } D_{0} .
$$

Since WF $\left(I-\hat{Q}_{\tau_{\lambda}^{2}}\right) \bigcap \Sigma^{-}=\emptyset$ and $\mathrm{WF}^{\prime}(\tilde{S})=\operatorname{diag}\left(\Sigma^{-} \times \Sigma^{-}\right)$, we have

$$
\begin{equation*}
\tilde{S}\left(I-\hat{Q}_{\tau_{\lambda}^{2}}\right) \equiv 0 \text { on } D_{0} \tag{4.106}
\end{equation*}
$$

where WF $\left(I-\hat{Q}_{\tau_{\lambda}^{2}}\right)$ denotes the wave front set of $I-\hat{Q}_{\tau_{\lambda}^{2}}$ and

$$
\mathrm{WF}^{\prime}(\tilde{S})=\left\{(x, \xi, y, \eta) \in T^{*} D \times T^{*} D ;(x, \xi, y,-\eta) \in \mathrm{WF}(\tilde{S})\right.
$$

From (4.105) and (4.106), we get

$$
\begin{equation*}
\left(I-Q_{\tau_{\lambda}^{2}}\right) S^{(0)}: L^{2}(X) \rightarrow \mathscr{C}^{\infty}(D) \text { is continuous } \tag{4.107}
\end{equation*}
$$

and hence

$$
\begin{equation*}
S^{(0)}\left(I-Q_{\tau_{\lambda}^{2}}\right): \mathscr{E}^{\prime}(D) \rightarrow L^{2}(X) \text { is continuous. } \tag{4.108}
\end{equation*}
$$

From (4.107) and (4.108), we get

$$
\left(I-Q_{\tau_{\lambda}^{2}}\right) S^{(0)}\left(I-Q_{\tau_{\lambda}^{2}}\right): \mathscr{E}^{\prime}(D) \rightarrow \mathscr{C}^{\infty}(D) \text { is continuous }
$$

The theorem follows.
We can now prove the main result of this work.
Theorem 4.35 (=Theorem 1.2) Let the \mathbb{R}-action be arbitrary. Assume that $g \mathscr{L}$ is complete and there is $C>0$ such that

$$
\sqrt{-1} R_{\mathscr{L}}^{K_{X}^{*}} \geq-2 C \sqrt{-1} \mathscr{L}, \quad(2 \sqrt{-1} \mathscr{L})^{n} \wedge \omega_{0} \geq C \Theta_{X}^{n} \wedge \omega_{0}
$$

Let $D \Subset X$ be a local coordinate patch with local coordinates $x=\left(x_{1}, \ldots, x_{2 n+1}\right)$. Then,

$$
\begin{equation*}
S^{(0)}(x, y) \equiv \int_{0}^{\infty} e^{i \varphi(x, y) t} s(x, y, t) d t \text { on } D \tag{4.109}
\end{equation*}
$$

where $\varphi \in \mathscr{C}^{\infty}(D \times D)$ satisfies (4.75), $s(x, y, t) \in S_{\mathrm{cl}}^{n}\left(D \times D \times \mathbb{R}_{+}\right)$and the leading term $s_{0}(x, y)$ of the expansion (2.4) of $s(x, y, t)$ satisfies

$$
\begin{equation*}
s_{0}(x, x)=\frac{1}{2} \pi^{-n-1}\left|\operatorname{det} \mathcal{L}_{x}\right|, \text { for all } x \in D \tag{4.110}
\end{equation*}
$$

Proof Let $\lambda \in \mathbb{R}, \lambda<-C$. From Theorem 4.34, we have

$$
\begin{equation*}
\left(I-2 Q_{\tau_{\lambda}^{2}}+Q_{\tau_{\lambda}^{4}}\right) S^{(0)} \equiv 0 \text { on } D \tag{4.111}
\end{equation*}
$$

We can repeat the proofs of Theorems 4.28 and 4.33 and get

$$
\begin{align*}
Q_{\tau_{\lambda}^{2}} S^{(0)} & \equiv \int_{0}^{\infty} e^{i \varphi(x, y) t} \hat{s}(x, y, t) \text { on } D \\
Q_{\tau_{\lambda}^{4}} S^{(0)} & \equiv \int_{0}^{\infty} e^{i \varphi(x, y) t} \tilde{s}(x, y, t) \text { on } D \tag{4.112}
\end{align*}
$$

where $\varphi \in \mathscr{C}^{\infty}(D \times D), \hat{s}(x, y, t), \tilde{s}(x, y, t) \in S_{\mathrm{cl}}^{n}\left(D \times D \times \mathbb{R}_{+}\right)$are as in (4.79). From (4.111) and (4.112), the theorem follows.

Proof of Theorem 1.3 The proof is analogous to the proof of Theorem 1.2 by using Theorem 4.15 instead of Theorem 4.13.

Proof of Corollary 1.4 Let K be a compact set of X. Fix $x \in K$. From Theorem 1.2 and the fact that the Szegő kernel is smoothing away the diagonal, we can repeat the proof of [19, Theorem 1.10] and deduce that there are open neighborhoods $V_{x} \subset U_{x}$ of x and global smooth $L^{2} \mathrm{CR}$ functions $\left(f_{0, x}, f_{1, x}, \cdots, f_{N_{x}, x}\right)=F_{x}$ such that $F_{x}: U_{x} \rightarrow \mathbb{C}^{N_{x}+1}$ is an embedding and $\sup _{K \backslash U_{x}}\left|f_{0, x}\right| \leq \frac{1}{2}, \inf _{V_{x}}\left|f_{0, x}\right| \geq 1$. There exists $x_{1}, x_{2}, \ldots, x_{m} \in K$ such that $K \subset V_{x_{1}} \cup V_{x_{2}} \cup V_{x_{m}} \subset U_{x_{1}} \cup U_{x_{1}} \cup U_{x_{2}} \cup U_{x_{m}}$. Then $K \ni x \mapsto\left(F_{x_{1}}, \cdots, F_{x_{m}}\right)$ is an embedding.

Proof of Corollary 1.5 We proceed as in the proof of Corollary 1.5 by working on a compact coordinate patch K with coordinates $\left(x_{1}, \ldots, x_{2 n+1}\right)$ and observing that in these coordinates a $\mathrm{CR}(n, 0)$-form equals $f d z_{1} \wedge \ldots \wedge d z_{n}$ with f a CR function on K.

5 Examples

We now consider Heisenberg group $\mathbb{H}=\mathbb{C}^{n} \times \mathbb{R}$ with CR structure

$$
\begin{equation*}
T^{(1,0)} \mathbb{H}:=\operatorname{span}\left\{\frac{\partial}{\partial z_{j}}+i \frac{\partial \phi}{\partial z_{j}}(z) \frac{\partial}{\partial x_{2 n+1}}\right\}_{j=1}^{n}, \tag{5.1}
\end{equation*}
$$

where $\phi \in \mathscr{C}^{\infty}\left(\mathbb{C}^{n}, \mathbb{R}\right)$. Let $(\cdot \mid \cdot)_{\mathbb{H}}$ be the L^{2} inner product on \mathbb{H} induced by the Euclidean measure $d x$ on $\mathbb{R}^{2 n+1}$. Let

$$
S_{\mathbb{H}}: L^{2}(\mathbb{H}) \rightarrow\left\{u \in L^{2}(\mathbb{H}) ;\left(\frac{\partial}{\partial \bar{z}_{j}}-i \frac{\partial \phi}{\partial \bar{z}_{j}}(z) \frac{\partial}{\partial x_{2 n+1}}\right) u=0\right\}
$$

be the orthogonal projection with respect to $(\cdot \mid \cdot)_{\mathbb{H}}$ and let $S_{\mathbb{H}}(x, y) \in \mathscr{D}^{\prime}(\mathbb{H} \times \mathbb{H})$ be the distribution kernel of $S_{\mathbb{H}}$. From Theorem 1.2, we deduce
Corollary 5.1 With the notations used above, assume that $\left(\frac{\partial^{2} \phi(z)}{\partial z_{j} \partial \bar{z}_{k}}\right)_{j, k=1}^{n}$ is positive definite, at every $z \in \mathbb{C}^{n}$. Let $0<\lambda_{1}(z) \leq \ldots \leq \lambda_{n}(z)$ be the eigenvalues of $\left(\frac{\partial^{2} \phi(z)}{\partial z_{j} \partial \bar{z}_{k}}\right)_{j, k=1}^{n}$, for every $z \in \mathbb{C}^{n}$. Suppose that there is $C>0$ such that

$$
\begin{align*}
& \sqrt{-1} \partial \bar{\partial}\left(-\log \operatorname{det}\left(\frac{\partial^{2} \phi}{\partial z_{j} \partial \bar{z}_{k}}\right)_{j, k=1}^{n}\right) \geq-C \sqrt{-1} \partial \bar{\partial} \phi, \tag{5.2}\\
& \frac{1}{\lambda_{1}(z)} \leq C, \text { for every } z \in \mathbb{C}^{n} .
\end{align*}
$$

Let $D \Subset \mathbb{H}$ be any open set. Then,

$$
\begin{equation*}
S_{\mathbb{H}}(x, y) \equiv \int_{0}^{\infty} e^{i \varphi(x, y) t} s(x, y, t) d t \text { on } D \tag{5.3}
\end{equation*}
$$

where $\varphi \in \mathscr{C}^{\infty}(D \times D)$ and $s(x, y, t) \in S_{\mathrm{cl}}^{n}\left(D \times D \times \mathbb{R}_{+}\right)$are as in Theorem 1.2.
Example 5.2 With the notations used in Corollary 5.1, assume that

$$
\begin{equation*}
\phi(z)=|z|^{2}+r(z) \tag{5.4}
\end{equation*}
$$

with $r(z) \in \mathscr{C}_{c}^{\infty}\left(\mathbb{C}^{n}\right)$ and $\sqrt{-1} \partial \bar{\partial}\left(|z|^{2}+r(z)\right)>0$ on \mathbb{C}^{n}. With this ϕ, we can check the conditions of Corollary 5.1 fulfilled as follows. In fact, in this case, we have

$$
\operatorname{det}\left(\frac{\partial^{2} \phi}{\partial z_{j} \partial \bar{z}_{k}}\right)_{j, k=1}^{n}=\operatorname{det}\left(\frac{\partial^{2}\left(|z|^{2}+r(z)\right)}{\partial z_{j} \partial \bar{z}_{k}}\right)_{j, k=1}^{n}=1+F(z)>0
$$

with some $F(z) \in \mathscr{C}_{c}^{\infty}\left(\mathbb{C}^{n}\right)$. And we have

$$
\sqrt{-1} \partial \bar{\partial}\left(-\log \operatorname{det}\left(\frac{\partial^{2} \phi}{\partial z_{j} \partial \bar{z}_{k}}\right)_{j, k=1}^{n}\right)=\sqrt{-1} \partial \bar{\partial}(-\log (1+F(z))) \in \Omega_{c}^{1,1}\left(\mathbb{C}^{n}\right)
$$

Since $r(z) \in \mathscr{C}_{c}^{\infty}\left(\mathbb{C}^{n}\right)$ and $\sqrt{-1} \partial \bar{\partial} \phi=\sqrt{-1} \partial \bar{\partial}\left(|z|^{2}+r(z)\right)>0$, we have a uniform lower bound for the smallest eigenvalue, i.e., $\lambda_{1}(z)>1 / C_{1}$ for some $C_{1}>0$. Moreover, we can choose $C_{2}>0$ sufficiently large such that

$$
\sqrt{-1} \partial \bar{\partial}(-\log (1+F(z)))+C_{2} \sqrt{-1} \partial \bar{\partial} \phi \geq 0
$$

since the first term $\sqrt{-1} \partial \bar{\partial}(-\log (1+F(z)))$ is a real $(1,1)$-form with compact support in \mathbb{C}^{n} and the second term $\sqrt{-1} \partial \bar{\partial} \phi$ is a real positive $(1,1)$-form with a uniformly positive lower bound for the smallest eigenvalue $\lambda_{1}(z)>1 / C_{1}$ on \mathbb{C}^{n}. Finally, we obtain $C:=\max \left\{C_{1}, C_{2}\right\}>0$ as desired in (5.2).

With this ϕ, it is easy to see that (5.2) hold. This example shows that, after small perturbation of the Levi form of Heisenberg group, we still can obtain the Szegő kernel expansion via Corollary 5.1.

Example 5.3 Let $\left(X, T^{(1,0)} X\right)$ be a strictly pseudoconvex, CR manifold of dimension $2 n+1, n \geq 1$, with a discrete, proper, CR action Γ such that the quotient X / Γ is compact. Assume X admits a transversal $C R \mathbb{R}$-action on X and let Θ_{X} be a Γ-invariant, \mathbb{R}-invariant, Hermitian metric on X. Then the conclusion of Theorem 1.2 holds. In fact, the Γ-covering manifold is complete and we can find the desired constant C depending on the fundamental domain $U \Subset X$ given by the Γ-action such that (1.7) is fulfilled. As a consequence, if we consider the circle bundle case in which $R^{L}=2 \mathscr{L}$, we could obtain the Bergman kernel expansion for covering manifold [23, 6.1.2].

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare that there are no conflict of interest regarding the publication of this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Akahori, T.: A new approach to the local embedding theorem of CR-structures for $n \geq 4$ (the local solvability for the operator $\bar{\partial}_{b}$-operator in the abstract sense). Mem. Am. Math. Soc. 67(366), xvi+257 (1987)
2. Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ. Math. 25 (1965), 81-130; Erratum: 279, 153-155 (1965)
3. Baouendi, M.-S., Rothschild, L.-P., Trèves, F.: CR structures with group action and extendability of CR functions. Invent. math. 83, 359-396 (1985)
4. Boutet de Monvel, L.: Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz, 1974-75, Exposé No. 9
5. Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegő, Journées Équations aux Dérivées Partielles de Rennes (1975), Soc. Math. France, Paris, 123-164, pp. 34-35. Astérisque, No (1976)
6. Boutet de Monvel, L., Guillemin, V.: The Spectral Theory of Toeplitz Operators, vol. 99, pp. v+161. Princeton University Press, Princeton (1981)
7. Boyer, C., Galicki, K.: Sasakian Geometry, pp. xii+613. Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)
8. Catlin, D.: The Bergman kernel and a theorem of Tian. In: Analysis and Geometry in Several Complex Variables (Katata, 1997), pp. 1-23, Trends Math. Birkhäuser, Boston (1999)
9. Demailly, J.-P.: Sur l'identité de Bochner-Kodaira-Nakano en géométrie hermitienne, Lecture Notes in Math. vol. 1198, pp. 88-97. Springer, New York (1985)
10. Demailly, J.-P.: Complex analytic and differential geometry, published online at https://www-fourier. ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf (2012)
11. Grigis, A., Sjöstrand, J.: Microlocal Analysis for Differential Operators. An Introduction, London Mathematical Society Lecture Note Series, vol. 196. Cambridge University Press, Cambridge (1994)
12. Helffer, B., Sjöstrand, J.: Équation de Schrödinger avec champ magnétique et equation de Harper. Schrödinger operators. In: Holden, H., Jensen, A. (eds.) Sonderborg, 1988; Lecture Notes in Phys., vol. 345, pp. 118-197. Springer, Berlin (1989)
13. Herrmann, H., Hsiao, C.-Y., Li, X.: Szegő kernels and equivariant embedding theorems for CR manifolds, to appear in Math. Res. Lett arXiv:1710.04910
14. Herrmann, H., Hsiao, C.-Y., Li, X.: An explicit formula for Szegő kernels on the Heisenberg group. Acta Math. Sin. 34(8), 1225-1247 (2018)
15. Hsiao, C.-Y.: Projections in several complex variables. Mém. Soc. Math. France, Nouv. Sér. 123, 131 (2010)
16. Hsiao, C.-Y., Li, X., Marinescu, G.: Equivariant Kodaira embedding for CR manifolds with circle action. Mich. Math. J. 70, 55-113 (2021)
17. Hsiao, C.-Y., Ma, X., Marinescu, G.: Geometric quantization on CR manifolds, arXiv:1906.05627
18. Hsiao, C.-Y., Marinescu, G.: Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles. Commun. Anal. Geom. 22(1), 1-108 (2014)
19. Hsiao, C.-Y., Marinescu, G.: On the singularities of the Szegő projections on lower energy forms. J. Differ. Geom. 107, 83-155 (2017)
20. Jacobowitz, H., Trèves, F.: Nonrealizable CR structures. Invent. Math. 66, 231-249 (1982)
21. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I, pp. xii+329. Reprint of the 1963 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley, New York (1996)
22. Kuranishi, M.: Strongly pseudoconvex CR structures over small balls. III. An embedding theorem. Ann. Math. 116(2), 249-330 (1982)
23. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels, Progress in Math, vol. 254. Birkhäuser, Basel (2007)
24. Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217(4), 1756-1815 (2008)
25. Ma, X., Marinescu, G.: Exponential estimate for the asymptotics of Bergman kernels. Math. Ann. 362(3-4), 1327-1347 (2015)
26. Marinescu, G., Yeganefar, N.: Embeddability of some strictly pseudoconvex CR manifolds. Trans. Am. Math. Soc. 359(10), 4757-4771 (2007)
27. Nirenberg, L.: On a question of Hans Lewy. Russ. Math. Surv. 29, 251-262 (1974)
28. Tanaka, N.: A Differential Geometric Study on Strictly Pseudo-convex Manifolds. Kinokuniya Book-Store Co., Ltd., Tokyo. Lectures in Mathematics, p. 9. Kyoto University, No, Department of Mathematics (1975)
29. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32, 99-130 (1990)
30. Wang, H.: Cohomology dimension growth for Nakano q-semipositive line bundles. J. Geom. Anal. 31, 4934-4965 (2021)
31. Zelditch, S.: Szegő kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317-331 (1998)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Chin-Yu Hsiao was partially supported by Taiwan Ministry of Science and Technology projects 108-2115-M-001-012-MY5, 109-2923-M-001-010-MY4 and Academia Sinica Career Development Award.

[^1]: George Marinescu
 gmarines@math.uni-koeln.de
 Chin-Yu Hsiao
 chsiao@math.sinica.edu.tw
 Huan Wang
 huanwang2016@hotmail.com
 1 Institute of Mathematics, Academia Sinica, Taipei, Taiwan
 2 Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany
 3 Institute of Mathematics 'Simion Stoilow', Romanian Academy, Bucharest, Romania
 4 Tong Jing Nan Lu 798, Suzhou, People's Republic of China

