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Abstract
We prove a Bochner–Kodaira–Nakano formula and establish Szegő kernel expansions
on complete strictly pseudoconvex CR manifolds with transversal CR R-action under
certain natural geometric conditions. As a consequence we show that such manifolds
are locally CR embeddable.
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1 Introduction

The first goal of this paper is to develop a differential geometric formalism on strictly
pseudoconvex CR manifolds with R-action, analogous to the Kähler identities and
Bochner–Kodaira–Nakano formula for Hermitian manifolds. We refine in this way
Tanaka’s formulas in the spirit of Demailly’s general version of the latter formulas.
This formalism leads to vanishing theorems and L2-estimates for the ∂b-operator for
complete CR manifolds.

The second goal is to generalize the result of Boutet de Monvel–Sjöstrand about
the singularities of the Szegő kernel for complete strictly pseudoconvex CRmanifolds
withR-action. This entails global and local embeddability theorems for CRmanifolds
withR-action, including Sasakian manifolds. Moreover, by applying our result for the
Grauert tube of a positive line bundle we obtain a new result about the expansion of
the Bergman kernel on complete Kähler manifolds.

Let (X , T (1,0)X) be a CR manifold of dimension 2n + 1, n ≥ 1. The orthogonal
projection S(q) : L2

0,q(X) → ker�(q)
b onto ker�(q)

b is called the Szegő projection,

while its distribution kernel S(q)(x, y) is called the Szegő kernel, where �(q)
b denotes

the Kohn Laplacian acting on (0, q)-forms. The study of the Szegő kernel is a classical
subject in several complex variables and CR geometry. If X is compact strictly pseu-
doconvex and �(0)

b has closed range, Boutet de Monvel–Sjöstrand [5] showed that
S(0)(x, y) is a complex Fourier integral operator. The Boutet de Monvel–Sjöstrand
description of the Szegő kernel had a profound impact in several complex variables,
symplectic and contact geometry, geometric quantization, andKähler geometry. These
ideas also partly motivated the introduction of the recent direct approaches and their
various extensions, see [23, 24].

However, almost all the results on Szegő kernel assumed that X is compact, while
for non-compact complexmanifolds the Bergman kernel asymptotics was comprehen-
sively studied [18, 19, 23–25], and used in the several applications mentioned above.
Note that for CR manifolds, besides the global embeddability question [4, 26], there
is an important delicate specific issue, namely the local embeddability [1, 20, 22, 27],
which will be treated here by the analysis of the Szegő kernel.

The Szegő kernel was used by Boutet de Monvel–Guillemin [6] to introduce the
Toeplitz quantization on compact contact manifolds. In the same vein, the question of
“quantization commutes with reduction” was studied on CR manifolds in the recent
paper [17]. It is natural to extend these results to complete Sasakian manifolds.

Let us see some simple examples. Consider the hypersurface Y := {z =
(z1, . . . , zn) ∈ C

n; Im zn = f (z1, . . . , zn−1)}, where f ∈ C∞(Cn−1, R). Then
Y is a non-compact CR manifold carrying many smooth CR functions, but even
in this simple example we do not know the behavior of the associated Szegő ker-
nel. Another example is the Heisenberg manifold H = C

n × R with CR structure

T (1,0)
H := span

{
∂

∂z j
+ i ∂φ

∂z j
(z) ∂

∂x2n+1 : 1 ≤ j ≤ n
}
, where φ ∈ C∞(Cn, R). Then,

H is also a non-compact CR manifold and the Szegő kernel has been studied when
φ is quadratic (see [14]). However, for general φ there are fewer results. Both Y and
H are non-compact CR manifolds with transversal CR R-action. Therefore, we think
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that the study of the Szegő kernels on non-compact CRmanifolds with transversal CR
R-action is a very natural and interesting question.

In [15], the first author obtained the Szegő kernel asymptotic expansion on the non-
degenerate part of the Levi form under the assumption that Kohn Laplacian has closed
range in L2. The method in [15] works well for non-compact setting, but for general
non-compact CR manifolds, the closed range property is not a natural assumption. In
the Heisenberg case mentioned above, even for φ quadratic,�(0)

b does not have closed
range; however, the Szegő kernel still has an asymptotic expansion.

In this paper, we show that �(0)
b has local closed range with respect to a spectral

projection Qλ (see Definition 4.12) under certain geometric conditions. Furthermore,
combining this local closed range property with a detailed analysis, we establish Szegő
kernel asymptotic expansions on non-compact strictly pseudoconvex complete CR
manifolds with transversal CR R-action under certain natural geometric conditions.
To study the local closed range property, we establish a CRBochner–Kodaira–Nakano
formula analog to [9], see Theorem 3.3, which has its own interest. This is also a
refinement of Tanaka’s basic identities [28, Theorems 5.1, 5.2] in our context. We
remark that the results in this paper hold both for transversal CR R-action and S1-
action.

We will work in the following setting. Let X be a connected smooth paracompact
manifold of dimension 2n+ 1, HX be a smooth sub-bundle of T X of rank 2n, and J
be a smooth complex structure on the fibers of HX . Let T (1,0)X be the complex sub-
bundle of the complexification CHX of HX , which corresponds to the i eigenspace
of J , that is, T (1,0)X = {v − i Jv : v ∈ HX}. We say that X is a CR manifold (of
hypersurface type) if the formal integrability condition

[
C∞(X , T (1,0)X),C∞(X , T (1,0)X)

] ⊂ C∞(X , T (1,0)X). (1.1)

holds. The sub-bundle HX is called Levi distribution and the annihilator (HX)0 ⊂
T ∗X of HX is called the characteristic bundle of the CR manifold X .

We will assume in the sequel that X is orientable. Since HX is oriented by its
complex structure, it follows that (HX)0 is a real orientable line bundle, thus trivial.
A global frame of (HX)0, that is, a real non-vanishing 1-form ω0 ∈ C∞(X , T ∗X)

such that (HX)0 = Rω0, is called characteristic 1-form.
Given a characteristic 1-form ω0 on X the Levi formL ω0 is defined by

L = L ω0
x (u, v) = 1

2
dω0(u, Jv), for u, v ∈ Hx X . (1.2)

We say that (X , HX , J ) is strictly pseudoconvex if there exists a characteristic 1-form
ω0 the Levi form L ω0

x is positive definite at every point x ∈ X . If L ω0 is positive
definite, then dω0 is symplectic on HX , thus ω0 is a contact form and HX is a contact
structure. Associated with a contact form ω0 one has the Reeb vector field T = T ω0 ,
uniquely defined by the equations

ω0(T ) = 1, dω0(T , ·) = 0 on X . (1.3)
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Assumption 1.1 (X , HX , J , ω0) is an orientable strictly pseudoconvex CR manifold
of dimension 2n + 1, n ≥ 1, where HX is the Levi distribution, J is the complex
structure, and ω0 is a contact form. We assume that X is endowed with a smooth
locally free R-action preserving ω0 and J such that the infinitesimal generator of the
R-action is a Reeb vector field, denoted T .

We denote by T (1,0)X and T (0,1)X the bundles of tangent vectors of type (1, 0) and
(0, 1), respectively. By Assumption 1.1 the R-action is CR and transversal (see (2.12)
and (2.13)), hence we have a decomposition CT X = T (1,0)X ⊕ T (0,1)X ⊕ CT . The
Levi form (1.2) induces a Hermitian metric, called the Levi (or Webster) metric,

〈 · | · 〉L = gL := 1

2
dω0(·, J ·)+ ω0(·)ω0(·) (1.4)

on T X and by extension on CT X , with the following properties:

T (1,0)X ⊥ T (0,1)X , T ⊥ (T (1,0)X ⊕ T (0,1)X), 〈 T | T 〉L = 1. (1.5)

In Sect. 2.2, we observe that Assumption 1.1 implies that the contact metric mani-
fold (X , ω0, T , J , gL ) is a Sasakian manifold. Conversely, every compact Sasakian
manifold admits an R-action as in Assumption 1.1.

Let K ∗X := det(T (1,0)X) and let R
K ∗X
L be the curvature of K ∗X induced by 〈 · | · 〉L

(see (2.26) and (4.31)).
More generally, we consider an arbitrary R-invariant Hermitian metric g = gX =

〈 · | · 〉g = 〈 · | · 〉 on CT X such that (1.5) holds. Given such a metric we will denote by
�X its fundamental (1, 1)-form given by�X (a, b) = √−1〈a | b〉g for a, b ∈ T (1,0)X .
Let dvX be the volume form induced by theR-invariantmetric gX as in (1.5). Let ( · | · )
be the L2 inner product on the space of smooth compactly supported functionsC∞c (X)

with respect to dvX .We denote by L2(X , dvX ) the completion ofC∞c (X)with respect
to ( · | · ).

We denote by ∂b the tangential Cauchy–Riemann operator (see Definition 2.3). The
Szegő projection is the orthogonal projection with respect to ( · | · ),

S(0) : L2(X , dvX )→ ker ∂b ∩ L2(X , dvX ), (1.6)

on the space of square-integrable CR functions on X . The distribution kernel
S(0)(x, y) ∈ D ′(X × X) of the Szegő projection is called the Szegő kernel. The
main result of this article is as follows:

Theorem 1.2 Let (X , HX , J , ω0) be an orientable strictly pseudoconvex CRmanifold
of dimension 2n + 1, n ≥ 1, with an R-action on X as in Assumption 1.1. Let gX be
an R-invariant metric as in (1.5) and let �X be its fundamental form. Assume that the
Levi metric gL is complete and there is C > 0 such that

√−1RK ∗X
L ≥ −2C√−1L , (2

√−1L )n ∧ ω0 ≥ C�n
X ∧ ω0. (1.7)
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Then the Szegő projection is a Fourier integral operator with complex phase, that is,
for any local coordinate patch (D, x = (x1, . . . , x2n+1)) with D � X, we have

S(0)(x, y)−
∫ ∞
0

eiϕ(x,y)t s(x, y, t)dt ∈ C∞(D × D), (1.8)

where the phase function ϕ ∈ C∞(D × D) satisfies

ϕ ∈ C∞(D × D), Im ϕ(x, y) ≥ 0,

ϕ(x, x) = 0, ϕ(x, y) �= 0 if x �= y,

dxϕ(x, y)
∣∣
x=y = ω0(x), dyϕ(x, y)

∣∣
x=y = −ω0(x),

ϕ(x, y) = −ϕ(y, x),

(1.9)

and s(x, y, t) ∈ Sncl
(
D × D ×R+

)
is a symbol of order n with asymptotic expansion

s(x, y, t) =∑∞j=0 s j (x, y)tn− j whose leading term s0(x, y) satisfies

s0(x, x) = 1

2
π−n−1|detLx |, for all x ∈ D, (1.10)

where detLx is the determinant of Lx with respect to gX , cf. (4.73).

We will show in Lemma 2.7 that R
K ∗X
L = RicL where RicL ∈ 	1,1(X) is the

pseudohermitian Ricci form with respect to the pseudohermitian structure ω0 (see
(2.10)). We refer to Definition 2.1 for the definition of the symbol space Sncl

(
D× D×

R+
)
and to [19, Theorems 3.3, 4.4] for more properties for the phase ϕ in (1.8).

Examples for the situation described in Theorem 1.2 are given by Galois coverings
of compact strictly pseudoconvex CR manifolds (Examples 4.5, 5.3), circle bundles
of positive line bundles over complete Kähler manifolds (Example 4.6), and, as men-
tioned before, the Heisenberg group (Sect. 5).

If we work with (n, 0)-forms we can drop some of the hypotheses of Theorem 1.2.

Theorem 1.3 Let (X , HX , J , ω0) be an orientable strictly pseudoconvex CRmanifold
of dimension 2n + 1, n ≥ 1, with an R-action on X as in Assumption 1.1. Assume
that the Levi metric gL is complete. Then the Szegő projection S(n,0) : L2

n,0(X) →
ker ∂b ⊂ L2

n,0(X) is a Fourier integral operator with complex phase, that is, for any
local coordinate patch (D, x = (x1, . . . , x2n+1)) with D � X, the Szegő kernel has
the form (1.8) with respect to the trivialization of KX given by dz1 ∧ . . . ∧ dzn.

The equivariantKodaira embedding theorems for Sasakianmanifoldswere obtained
in [13, 16]. From Theorem 1.2, we obtain a Boutet de Monvel type embedding theo-
rem [4] for complete Sasakian manifolds as follows, which is a generalization of the
embedding theorem for compact Sasakian manifolds [26].

Corollary 1.4 In the situation of Theorem 1.2 the space of L2 CR functions separate
points and give local coordinates on X. In particular, for any compact set of K ⊂ X
there exists a positive integer N and CR functions f1, . . . , fN ∈ L2(X) ∩ C∞(X)

such that ( f1, . . . , fN ) is an embedding of K in C
N .
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As a consequence of Theorem 1.3 we obtain the following:

Corollary 1.5 In the situation of Theorem 1.3 the space of L2 CR (n, 0)-forms separate
points and give local coordinates on X. Thus, X is locally CR embeddable in an
Euclidean space. In particular, every Sasakian manifold with complete Levi metric
gL is locally CR embeddable by global CR (n, 0)-forms.

The question arises if one can extend these results for general strictly pseudocon-
vex CR manifolds (without Assumption 1.1 about the existence of an R-action). An
analytic property that we use is that the spectral projections Qλ of the operator

√−1T
(see 4.7) commute to ∂b. Beyond that it is not clear what would be general geometric
or analytic conditions that would imply that the Szegő projector is a Fourier integral
operator.

We now apply our main result to complex manifolds. Let (L, hL) be a holomorphic
line bundle over aHermitianmanifold (M,�M ), where hL denotes aHermitianmetric
on L and�M is a positive (1, 1) form on M . For every k ∈ N, let (Lk, hL

k
) be the k-th

power of (L, hL). The positive (1, 1) form �M and hL
k
induces a L2 inner product

( · | · )�M on 	
0,q
c (M, Lk)). Let L2

0,q(M, Lk) be the completion of 	
0,q
c (M, Lk) with

respect to ( · | · )�M . We write L2(M, Lk) := L2
0,0(M, Lk). Let

H0
(2)(M, Lk) = ker ∂k := {u ∈ L2(M, Lk); ∂u = 0},

be the space of holomorphic square-integrable sections of Lk . Let { f kj }dkj=1 be an

orthonormal basis for H0
(2)(M, Lk) with respect to ( · | · )�M , where dk ∈ N ∪ {∞}.

The Bergman kernel of Lk is

Pk(x, y) :=
dk∑
j=1

f kj (x)⊗ f kj (y)
∗ ∈ C∞(X × X , Lk � (Lk)∗). (1.11)

Let s be a local holomorphic frame of L defined on an open set D � M , |s|2
hL
= e−2φ ,

φ ∈ C∞(D, R). On D, we write f kj = f̃ kj s
⊗k , f̃ kj ∈ C∞(D), j = 1, . . . , dk . The

localized Bergman kernel on D is given by

Pk,s(x, y) :=
dk∑
j=1

e−kφ(x) f̃ kj (x) f̃
k
j (y)e

−kφ(y) ∈ C∞(D × D). (1.12)

Let RL be the Chern curvature of L induced by hL . Assume that ω = √−1RL is

positive. Let K ∗M := det(T (1,0)M) and let R
K ∗M
ω be the curvature of K ∗M induced by

ω. Applying Theorem 1.2 to the circle bundle of (L, hL), we get the following:

Theorem 1.6 Let (L, hL) be a Hermitian holomorphic line bundle over a Hermitian
manifold (M,�M ) of dimension n. We assume that ω = √−1RL defines a complete
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Kähler metric on M. We assume moreover that there is C > 0 such that

√−1RK ∗M
ω ≥ −Cω, ωn ≥ C�n

M on M . (1.13)

Let s be a local holomorphic frame of L defined on an open set D � M. Then,

Pk,s(x, y) ≡ eik
(x,y)b(x, y, k) mod O(k−∞) on D, (1.14)

where 
 ∈ C∞(D × D), Im
(x, y) ≥ C |x − y|2, C > 0, 
(x, x) = 0, for every
x ∈ D,

b(x, y, k) ∈ Snloc (1; D × D), b(x, y, k) ∼
∞∑
j=0

kn− j b j (x, y) in Snloc (1; D × D),

(1.15)
b j (x, y) ∈ C∞(D × D), j = 0, 1, . . . , and

b0(x, x) = (2π)−n ωn(x)

�n
M (x)

, for every x ∈ D.

In particular, there exist coefficients br ∈ C∞(X), r ∈ N0, such that for any open
set U of X with U compact, every � ∈ N0 and every m ∈ N, there is a CU ,�,m > 0
independent of k such that

‖Pk(x, x)−
m∑

r=0
br (x)kn−r‖C �(U ) ≤ CU ,�,mk

n−m−1. (1.16)

We refer the reader to Sect. 2 for the precise meaning of the notation Ak ≡ Bk

mod O(k−∞) on D in (1.14), Snloc (1; D × D) and the asymptotic sums in (1.15) and
(1.16).

For compact or certain complete Kähler–Einstein manifolds, the expansion (1.16)
was obtained by Tian [29] for m = 0 and � = 4. For general m, �, and compact
manifolds, the existence of the expansionwas first obtained in [8, 31]. In [23, Theorem
6.1.1] the expansionwas generalized for complete Hermitianmanifolds such that RK ∗M
and ∂�M are bounded below. Our conditions (1.13) are different from [23, Theorem
6.1.1], we replace the condition on ∂�M by a condition on the volume form. The
reason is that we use a local closed range condition instead of standard closed range
or spectral gap condition.

This paper is organized as follows. InSect. 2,we recall necessary notions ofmicrolo-
cal analysis, pseudohermitian geometry, and strictly pseudoconvex CRmanifolds with
transversal CR R-actions. In Sect. 3, we prove the Bochner–Kodaira formula on CR
manifolds with R-action. Section 4 is devoted to the proof of the asymptotics of the
Szegő kernel. In Sect. 5, we examine the Heisenberg group.
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2 Preliminaries

We use the following notations through this article:N = {1, 2, . . .} is the set of natural
numbers, N0 = N

⋃{0}, R is the set of real numbers, R+ = {x ∈ R; x ≥ 0}. For
m ∈ N, let x = (x1, . . . , xm) be coordinates of R

m . For n ∈ N, let z = (z1, . . . , zn),
z j = x2 j−1 +

√−1x2 j , j = 1, . . . , n, be coordinates of C
n . We write

∂

∂z j
:= 1

2

(
∂

∂x2 j−1
−√−1 ∂

∂x2 j

)
,

∂

∂z j
:= 1

2

(
∂

∂x2 j−1
+√−1 ∂

∂x2 j

)
, (2.1)

dz j = dx2 j−1 +
√−1dx2 j , dz j = dx2 j−1 −

√−1dx2 j . (2.2)

2.1 Notions of Microlocal Analysis

Let X be aC∞ paracompact manifold. We let T X and T ∗X denote the tangent bundle
of X and the cotangent bundle of X , respectively. The complexified tangent bundle
of X and the complexified cotangent bundle of X are denoted by CT X and CT ∗X ,
respectively. Write 〈 · , · 〉 to denote the pointwise duality between T X and T ∗X . We
extend 〈 · , · 〉 bilinearly to CT X × CT ∗X .

Let D ⊂ X be an open set . The spaces of distributions of D and smooth functions
of D will be denoted byD ′(D) and C∞(D), respectively. Let E ′(D) be the subspace
of D ′(D) whose elements have compact support in D. Let C∞c (D) be the subspace
of C∞(D) whose elements have compact support in D. Let A : C∞c (D) → D ′(D)

be a continuous map. We write A(x, y) to denote the distribution kernel of A. In this
work, we will identify A with A(x, y). The following two statements are equivalent:

(I) A is continuous: E ′(D)→ C∞(D),
(II) A(x, y) ∈ C∞(D × D).

If A satisfies (I) or (II), we say that A is smoothing on D. Let A, B : C∞c (D)→ D ′(D)

be continuous operators. We write

A ≡ B(on D) (2.3)

if A−B is a smoothing operator.We say that A is properly supported if the restrictions
of the two projections (x, y)→ x , (x, y)→ y to Supp (A(x, y)) are proper.

For m ∈ R, let Hm(D) denote the Sobolev space of order m on D. Put

Hm
loc (D) = {u ∈ D ′(D); ϕu ∈ Hm(D), ∀ϕ ∈ C∞c (D)

}
,

Hm
comp (D) = Hm

loc(D) ∩ E ′(D) .

Let D be an open coordinate patch of X with local coordinates x . We recall the
following Hörmander symbol space.

Definition 2.1 Form ∈ R, Sm1,0(D×D×R+) is the space of all a(x, y, t) ∈ C∞(D×
D ×R+) such that for all compact K � D × D and all α, β ∈ N

2n+1
0 , γ ∈ N0, there
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is a constant Cα,β,γ > 0 such that

|∂α
x ∂β

y ∂
γ
t a(x, y, t)| ≤ Cα,β,γ (1+ |t |)m−|γ |, for all (x, y, t) ∈ K × R+, t ≥ 1.

Put

S−∞(D × D × R+) :=
⋂
m∈R

Sm1,0(D × D × R+).

Let a j ∈ S
m j
1,0(D×D×R+), j ∈ N0, withm j ↘ −∞, j →∞. Then there exists a ∈

Sm0
1,0(D×D×R+), unique modulo S−∞, such that a−∑k−1

j=0 a j ∈ Smk
1,0(D×D×R+)

for k ∈ N. If a and a j have the properties above, we write

a ∼
∞∑
j=0

a j in Sm0
1,0(D × D × R+).

The space Smcl (D × D × R+) of classical symbols of order m is defined as the space
of symbols s(x, y, t) ∈ Sm(D × D × R+) satisfying

s(x, y, t) ∼
∞∑
j=0

s j (x, y)t
m− j in Sm1,0(D × D × R+) ,

s j (x, y) ∈ C∞(D × D), j ∈ N0.

(2.4)

We explain now for the precise meaning of Ak ≡ Bk mod O(k−∞) on D
in (1.14), Snloc (1; D × D) and the asymptotic sum in (1.15) (see also [18, Sect.

3.3]). A k-dependent smoothing operator Ak : 	
0,q
0 (D) → 	0,q(D) is called k-

negligible if the kernel Ak(x, y) of Ak satisfies |∂α
x ∂

β
y Ak(x, y)| = O(k−N ) uniformly

on every compact set in D × D, for all multi-indices α, β, and all N ∈ N. Let
Ck : 	

0,q
0 (D) → 	0,q(D) be another k-dependent smoothing operator. We write

Ak ≡ Ck mod O(k−∞) or Ak(x, y) ≡ Ck(x, y) mod O(k−∞) if Ak − Ck is k-
negligible.

We recall the definition of semi-classical Hörmander symbol spaces:

Definition 2.2 Let U be an open set in R
N . Let S(1;U ) = S(1) be the set of a ∈

C∞(U ) such that for every α ∈ N
N
0 , there exists Cα > 0, such that |∂α

x a(x)| ≤ Cα on
U . If a = a(x, k) depends on k ∈ (1,∞), we say that a(x, k) ∈ Sloc (1) if χ(x)a(x, k)
is uniformly bounded in S(1)when k varies in (1,∞), for anyχ ∈ C∞0 (U ). Form ∈ R,
we put Smloc(1) = kmSloc (1). If a j ∈ S

m j
loc (1),m j ↘ −∞, we say that a ∼∑∞j=0 a j in

Sm0
loc (1) if a−∑N0

j=0 a j ∈ S
mN0+1
loc (1) for every N0. From this, we form Smloc (1; Y , E) in

the natural way, where Y is a smooth paracompact manifold and E is a vector bundle
over Y .
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Let X be an orientable paracompact smooth manifold of dimension 2n + 1 with
n ≥ 1. The Levi form (1.2) of X at x ∈ X induces a Hermitian quadratic form on
T (1,0)
x X by

Lx (u, v) = 1

2i
dω0(u, v), for u, v ∈ T (1,0)

x X . (2.5)

Let gCT X be a Hermitian metric on CT X such that the decomposition CT X =
T (1,0)X⊕T (0,1)X⊕CT is orthogonal. For u, v ∈ CT X we denote by 〈u|v〉 = 〈u|v〉g
the inner product given by gCT X and for u ∈ CT X , we write |u|2g := 〈u|u〉g .
Given such a metric we will denote by �X its fundamental (1, 1)-form given by
�X (a, b) = √−1〈a | b〉g for a, b ∈ T (1,0)X .

For p, q ∈ N0, define T (p,q)X := (�pT (1,0)X) ∧ (�qT (0,1)X) and let T •,•X =⊕
p,q∈N0

T (p,q)X . For u ∈ CT X and φ ∈ CT ∗X , the pointwise duality is defined

by 〈u, φ〉 := φ(u). Let T ∗(1,0)X ⊂ CT ∗X be the dual bundle of T (1,0)X and
T ∗(0,1)X ⊂ CT ∗X be the dual bundle of T (0,1)X . For p, q ∈ N0, the bundle
of (p, q) forms is denoted by T ∗(p,q)X := (�pT ∗(1,0)X) ∧ (�qT ∗(0,1)X) and let
T ∗•,•X := ⊕p,q∈N0T

∗(p,q)X . The induced Hermitian inner product on T •,•X and
T ∗•,•X by 〈 · | · 〉 are still denoted by 〈·|·〉. The Hermitian norms are still denoted by
| · |. Let 	p,q(X) := C∞(X , T ∗(p,q)X) be the space of smooth (p, q)-forms on X
and 	•,•(X) :=⊕p,q∈N0

	p,q(X). Let C∞(X) := 	0,0(X).

Definition 2.3 Let π p,q : �p+q
CT ∗X −→ T ∗(p,q)X be the natural projection for

p, q ∈ N0, p+q ≥ 1. The tangential (resp. anti-tangential) Cauchy–Riemann operator
is given by

∂b := π p,q+1 ◦ d : 	p,q(X) −→ 	p,q+1(X),

∂b := π p+1,q ◦ d : 	p,q(X) −→ 	p+1,q(X). (2.6)

Let D ⊂ X be an open set. Let 	
p,q
c (D) be the space of smooth (p, q)-forms

on D with compact support in D. Let 	
•,•
c (D) := ⊕

p,q∈N0
	

p,q
c (D). We write

C∞c (D) := 	
0,0
c (D). Let ( · | · ) be the L2 inner product on 	

•,•
c (X) induced by

〈 · | · 〉. Note that

(u|v) :=
∫

X
〈u(x)|v(x)〉dvX (x), u, v ∈ 	•,•c (X), (2.7)

where dvX := (�n
X/n!) ∧ ω0 is the volume form induced by the Hermitian metric

�X on X . Let L2
p,q(X) be the completion of 	

p,q
c (X) with respect to ( · | · ). Let

L2•,•(X) :=⊕p,q∈N0
L2
p,q(X). We write L2(X) := L2

0,0(X). We denote by ‖u‖2 :=
(u|u) the L2-norm on X . Let ∂

∗
b and ∂∗b be the formal adjoints of ∂b and ∂b with respect

to ( · | · ), respectively. Let�b := ∂b∂
∗
b+∂

∗
b∂b be the Kohn Laplacian on	•,•(X). Let

�b := ∂b∂
∗
b + ∂∗b ∂b be the anti-Kohn Laplacian on 	•,•(X). We still denoted by ∂b

the maximal extension and by ∂
∗
b the Hilbert space adjoint with respect to the L

2-inner
product on X . We also denote by

�b = ∂b∂
∗
b + ∂

∗
b∂b : Dom�b ⊂ L2•,•(X)→ L2•,•(X) (2.8)
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the Gaffney extension of the Kohn Laplacian with the domain

Dom�b =
{
u ∈ L2•,•(X) : u ∈ Dom ∂b ∩Dom ∂

∗
b, ∂bu ∈ Dom ∂

∗
b, ∂

∗
bu ∈ Dom ∂b

}
. (2.9)

By a result of Gaffney, �b is a self-adjoint operator (see e.g., [23, Proposition 3.1.2]).

2.2 Pseudohermitian Geometry

The following is well known:

Proposition 2.4 [28, Proposition 3.1] Let (X , HX , J , ω0) be an orientable strictly
pseudoconvex CR manifold. Then there exists a unique affine connection, called
Tanaka–Webster connection,

∇ := ∇ω0 : C∞(X , T X)→ C∞(X , T ∗X ⊗ T X)

such that

(I) ∇UC∞(X , HX) ⊂ C∞(X , HX) for U ∈ C∞(X , T X).
(II) ∇T = ∇ J = ∇dω0 = 0.
(III) The torsion T∇ of ∇ satisfies: T∇(U , V ) = dω0(U , V )T , T∇(T , JU ) =

−JT∇(T ,U ), U , V ∈ C∞(X , HX).

Recall that ∇ J ∈ C∞(X , T ∗X ⊗ L (HX , HX)), ∇dω0 ∈ C∞(T ∗X ⊗
�2(CT ∗X)) are defined by (∇U J )W = ∇U (JW ) − J∇UW and ∇Udω0(W , V ) =
Udω0(W , V ) − dω0(∇UW , V ) − dω0(W ,∇UV ) for U ∈ C∞(X , T X),W , V ∈
C∞(X , HX). Moreover, ∇ J = 0 and ∇dω0 = 0 imply that the Tanaka–Webster
connection is compatible with the Levi metric. By definition, the torsion of ∇ is given
by T∇(W ,U ) = ∇WU − ∇UW − [W ,U ] for U , V ∈ C∞(X , T X) and τ(T ,U ) for
U ∈ C∞(X , HX) is called pseudohermitian torsion.

In the following, we will use the Einstein summation convention. Let {Zα}nα=1 be a
local frame of T (1,0)X and {θα}nα=1 be the dual frame of {Zα}nα=1.We use the notations
Zα := Zα and θα = θα . Write

∇Zα = ωβ
α ⊗ Zβ, ∇Zα = ω

β
α ⊗ Zβ, and recall that ∇T = 0.

We call ωβ
α the connection 1-form of Tanaka–Webster connection with respect to the

frame {Zα}nα=1. We denote by �
β
α the Tanaka–Webster curvature 2-form. Then,

�β
α = dωβ

α − ωγ
α ∧ ωβ

γ .

By direct computation, we also have

�β
α = Rβ

α jk
θ j ∧ θk + Aβ

α jkθ
j ∧ θk + Bβ

α jkθ
j ∧ θk + C0 ∧ ω0,
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where C0 is a 1-form. The term Rβ

α jk
is called the pseudohermitian curvature tensor

and the form

RicL := Rαkθ
α ∧ θk, Rαk :=

n∑
j=1

R j
α jk (2.10)

is called pseudohermitian Ricci form.

2.3 Strictly Pseudoconvex CRManifolds withR-Action

Let (X , T (1,0)X) be a CR manifold of dim X = 2n + 1. Let r : R × X → X ,
r(x) = r ◦ x for r ∈ R, be an R-action on X , see [13]. Let T̂ be the infinitesimal
generator of the R-action:

(T̂ u)(x) := ∂

∂r
(u(r ◦ x))∣∣r=0 , u ∈ C∞(X). (2.11)

Definition 2.5 The R-action is called locally free if T̂ (x) �= 0 at every x ∈ X .

By Assumption 1.1 we have

The R-action is Cauchy–Riemann (CR) : [T̂ ,C∞(X , T (1,0)X)
] ⊂ C∞(X , T (1,0)X).

(2.12)
The R-action is transversal : CTx X = T 1,0

x X ⊕ T 0,1
x X ⊕ CT̂ (x) at every x ∈ X .

(2.13)

Note that (2.12) implies that LT̂ preserves HX and [LT̂ , J ] = 0. Since HX = ker ω0
we have for U ∈ C∞(X , HX),

(LT̂ω0)(U ) = T̂ (ω0(U ))− ω0(LT̂U ) = 0

(LT̂ω0)(T̂ ) = T̂ (ω0(T̂ ))− ω0(LT̂ T̂ ) = T̂ (ω0(T̂ )).

We pose f = ω0(T̂ ) and ω1 = f −1ω0. Then LT̂ω1 = 0 and ω1(T̂ ) = 1 since
(LT̂ω1)(U ) = 0 and (LT̂ω1)(T̂ ) = T̂ (ω1(T̂ )) = T̂ (1) = 0. This also implies
ιT̂ dω1 = 0. We have thus

ιT̂ω1 = 1, ιT̂ dω1 = 0, LT̂ J = 0.

We can therefore assume up to rescalingω0 by a smooth function that the infinitesimal
generator of the R-action is a Reeb vector field T = T̂ . This motivates the equality of
the infinitesimal generator to the Reeb field in Assumption 1.1.

By [28, Lemma 3.2 (3)]) we have 2JτU = (LT J )U for any U ∈ HX , hence
the pseudohermitian torsion τ vanishes, which means that the contact metric manifold
(X , ω0, T , J , gL ) is a Sasakian manifold. Conversely, there exists a natural transver-
sal CR R-action on any compact Sasakian manifold. Recall that compact Sasakian
manifolds can be classified in three categories based on the properties of the Reeb
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foliation consisting of the orbits of the Reeb field (see [7, Definition 6.1.25]). If the
orbits of the Reeb field are all closed, then the Reeb field T generates a locally free,
isometric S1-action thus also an R-action on (X , gL ). In this case the Reeb folia-
tion is called quasi-regular (and regular if the action is free). If the Reeb foliation is
not quasi-regular, it is said to be irregular. In this case, T generates a transversal CR
R-action on X .

Weuse the local coordinates ofBaouendi–Rothschild–Trevès (BRTcharts) [3, Sect.
1], [19, Theorem 6.5] extensively as follows:

Theorem 2.6 (BRT charts) For each point x ∈ X, there exists a coordinate neigh-
borhood D = U × I with coordinates x = (x1, . . . , x2n+1) centered at 0, where
U = {z = (z1, . . . , zn) ∈ C

n : |z| < ε} and I = {x2n+1 ∈ R : |x2n+1| < ε0},
ε, ε0 > 0, z = (z1, . . . , zn) and z j = x2 j−1 +

√−1x2 j , j = 1, . . . , n, such that

T = ∂

∂x2n+1
on D, (2.14)

and there exists φ ∈ C∞(U , R) independent of x2n+1 satisfying that

{
Z j := ∂

∂z j
+ i

∂φ

∂z j
(z)

∂

∂x2n+1

}n
j=1

(2.15)

is a frame of T (1,0)D, and
{
dz j
}n
j=1 ⊂ T ∗(1,0)D is the dual frame.

Let D = U × I be a BRT chart. Let f ∈ C∞(D) and u ∈ 	p,q(D) with u =∑
I ,J u I J dzI ∧ dz J with ordered sets I , J and uI J ∈ C∞(D), for all I , J . We have

d f =
n∑
j=1

Z j ( f )dz j +
n∑
j=1

Z j ( f )dz j + T ( f )ω0, (2.16)

∂b f =
n∑
j=1

Z j ( f )dz j , ∂b f =
n∑
j=1

Z j ( f )dz j , (2.17)

∂bu =
∑
I ,J

(∂bu I J ) ∧ dzI ∧ dz J , ∂bu =
∑
I ,J

(∂bu I J ) ∧ dzI ∧ dz J . (2.18)

Foru ∈ 	p,q(X), letLT u be theLie derivative ofu in the direction of T . For simplicity,
we write Tu to denoteLT u. Since theR-action is CR, Tu ∈ 	p,q(X). On a BRT chart
D, foru ∈ 	p,q(D),u =∑I ,J u I J dzI∧dz J ,wehaveTu =∑I ,J (TuI J )∧dzI∧dz J
on D.

The Levi formL in a BRT chart D ⊂ X has the form

L = ∂∂φ|T (1,0)X . (2.19)
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Indeed, the characteristic 1-form ω0 and dω0 on D are given by

ω0(x) = dx2n+1 − i
n∑
j=1

(
∂φ

∂z j
dz j − ∂φ

∂z j
dz j

)
,

dω0(x) = 2i
n∑

j,k=1

∂2φ

∂z j∂zk
dz j ∧ dzk .

(2.20)

From now on, we assume that �X is R-invariant. Let D = U × I be a BRT chart.
The (1, 1) form � = �U on U is defined by, for x = (z, x2n+1) ∈ D,

�(z) := �X (x). (2.21)

Note that it is independent of x2n+1. More precisely,

�(z) = √−1
n∑

j,k=1

〈
Z j |Zk

〉
(x)dz j ∧ dzk . (2.22)

Note that for another BRT coordinates D = Ũ × Ĩ, y = (w, y2n+1), there exist
biholomorphic map H ∈ C∞(U , Ũ ) and G ∈ C∞(U , R) such that H(z) = w, for
all z ∈ U , y2n+1 = x2n+1 + G(z), for all (z, x2n+1) ∈ U × I and Ũ = H(U ),
Ĩ = I + G(U ). We deduce that � is independent of the choice of BRT coordinates,
i.e., � = �U = �Ũ .

Until further notice, we work on a BRT chart D = U × I. For p, q ∈ N0, let
T ∗(p,q)U be the bundle of (p, q) forms on U and let T ∗•,•U := ⊕p,q∈N0T

∗(p,q)U .
For p, q ∈ N0, let T (p,q)U be the bundle of (p, q) vector fields onU and let T •,•U :=
⊕p,q∈N0T

(p,q)U . The (1, 1) form� induces Hermitianmetrics on T •,•U and T ∗•,•U .
We shall use 〈 · , · 〉h to denote all the induced Hermitian metrics. The volume form
on U induced by � is given by dλ(z) := �n/n!. Thus, the volume form dvX can be
represented by

dvX (x) = dλ(z) ∧ dx2n+1 on D. (2.23)

The L2-inner product on 	
•,•
c (U ) with respect to � is given by

〈s1, s2〉L2(U ) :=
∫

U
〈s1(z), s2(z)〉hdλ(z), s1, s2 ∈ 	•,•c (U ). (2.24)

Let t ∈ R be fixed. The L2-inner product on 	
•,•
c (U ) with respect to � and e−2tφ(z)

is given by

〈s1, s2〉L2(U ,e−2tφ) :=
∫

U
〈s1(z), s2(z)〉he−2tφ(z)dλ(z), s1, s2 ∈ 	•,•c (U ). (2.25)
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The Chern curvature of K ∗U := det(T (1,0)U ) with respect to � is given by

RK ∗U := ∂∂ log det

(〈 ∂

∂z j
,

∂

∂zk

〉
h

)n

j,k=1
, RK ∗U ∈ 	1,1(U ).

On X , define K ∗X := det(T (1,0)X). Then, K ∗X is a CR line bundle over X . The Chern
curvature RK ∗X of K ∗X with respect to �X is defined as follows: On a BRT chart D, let

RK ∗X := ∂b∂b log det
(〈Z j |Zk〉

)n
j,k=1 . (2.26)

It is easy to see that RK ∗X is independent of the choice of BRT coordinates and hence
RK ∗X is globally defined, i.e., RK ∗X ∈ 	1,1(X).

Let {L j }nj=1 be an R-invariant orthonormal frame of T (0,1)D with the dual

(orthonormal) frame {e j }nj=1. Then {L j }nj=1 is an R-invariant orthonormal frame

of T (1,0)D with the dual (orthonormal) frame {e j }nj=1. Since �X is R-invariant,

there exist ckj = ckj (z), w
k
j = wk

j (z) ∈ C∞(U ), j, k = 1, . . . , n, satisfying∑n
k=1 ckjw

l
k = δlj , for all j, l = 1, . . . , n, such that for j = 1, . . . , n,

L j =
n∑

k=1
ckj Zk, e j = w

j
k dzk, (2.27)

L j =
n∑

k=1
ckj Zk, e j = w

j
k dzk . (2.28)

We can check that {w j :=∑n
k=1 ckj

∂
∂zk
; j = 1, . . . , n} and {w j :=∑n

k=1 ckj
∂

∂zk
; j =

1, . . . , n} are orthonormal frames for T (1,0)U and T (0,1)U with respect to �, respec-
tively, and {e j ; j = 1, . . . , n}, {e j ; j = 1, . . . , n} are dual frames for {w j ; j =
1, . . . , n} and {w j ; j = 1, . . . , n}, respectively. We also write w j and w j to denote
e j and e j , respectively, j = 1, . . . , n.

Lemma 2.7 We have

RicL = R
K ∗X
L

on X.

Proof Fix p ∈ D and let x = (x1, . . . , x2n+1) be BRT local coordinates defined on an
open set D of p with x(p) = 0. We take x = (x1, . . . , x2n+1) = (z1, . . . , zn, x2n+1),
z j = x2 j−1 + i x2 j , j = 1, . . . , n, so that

φ(z) = 1

2

n∑
j=1
|z j |2 + O(|z|4), (2.29)
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where φ ∈ C∞(D) is as in (2.15).
In the following, we will use Einstein summation convention. Write ∇Zi Z j =

�l
i j Zl , where ∇ denotes the Tanaka–Webster connection (see Proposition 2.4). From

[28, Lemma 3.2],

dω0
(∇Zi Z j , Zk

) = Zi (dω0(Z j , Zk))− dω0
(
Z j , [Zi , Zk]T (0,1)X

)
. (2.30)

Directly,

dω0
(∇Zi Z j , Zk

) = dω0

(
�l
i j Zl , Zk

)
= 2i�l

i j
∂2φ

∂zl∂zk
, (2.31)

Zi
(
dω0

(
Z j , Zk

)) = 2i
∂3φ

∂zi∂z j∂zk
, (2.32)

[Zi , Zk]|T (0,1)X = 0

and hence

2i�l
i j

∂2φ

∂zl∂zk
= 2i

∂3φ

∂zi∂z j∂zk
, (2.33)

for all i, j, l, k = 1, . . . , n. Accordingly, by (2.29) and (2.33), we get that for all
i, j, k = 1, · · · , n,

�k
i j (0) = 0. (2.34)

Moreover, by taking ∂
∂zh

both sides in (2.33), from (2.29) and (2.33), it is not difficult
to check that

∂�k
i j

∂zh
(0) = 2

∂4φ

∂zi∂z j∂zk∂zh
(0). (2.35)

It is clear that {dz j }nj=1 and {dz j }nj=1 are the dual frames of {Z j }nj=1 and {Z j }nj=1,
respectively. Denote

∇Zα = ωβ
α ⊗ Zβ,

and we can check that the (1, 1) part of dω
β
α is

−
n∑

k,l=1

(
Zl�

β
kα)
)
dzk ∧ dzl

and the (1, 1) part of �
β
α = dω

β
α − ω

γ
α ∧ ω

β
γ denoted by

n∑
k,l=1

Rβ

αkl
θk ∧ θ l
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equals the (1, 1) part of dω
β
α . Hence, the pseudohermitian Ricci curvature tensor at

origin is

Rαl(0) =
n∑

k=β=1
Rβ

αkl
(0) = −

n∑
k=β=1

∂�
β
kα

∂zl
(0) = −2

n∑
k=1

∂4φ

∂zk∂zk∂zα∂zl
(0).

We get that

RicL (0) = −2
n∑

k=1

∂4φ

∂zk∂zk∂zα∂zl
(0)dzα ∧ dzl . (2.36)

On the other hand, by directed computation, we can check that

RK ∗X (0) = ∂b∂b log det
(〈Z j |Zk〉

)n
j,k=1 (0) = −2

n∑
k=1

∂4φ

∂zk∂zk∂zα∂zl
(0)dzα ∧ dzl .

(2.37)
From (2.36) and (2.37), the lemma follows. ��

3 Bochner–Kodaira Formula on CRManifolds with R-Action

In this section, we will prove the Bochner–Kodaira–Nakano for CR manifolds with
transversal CR R-action. They are refinements of Tanaka’s basic identities [28, The-
orems 5.1, 5.2] in our context. Namely, Tanaka’s formulas hold for any strictly
pseudoconvexmanifold endowed with the Levi metric, while our formulas are specific
to CR manifolds with R-action endowed with arbitrary Hermitian metric �X .

3.1 The Fourier Transform on BRT Charts

Let D = U×I be a BRT chart. Let f ∈ C∞c (D). We write f = f (x) = f (z, x2n+1).
For each fixed x2n+1 ∈ I , f (·, x2n+1) ∈ C∞c (U ). For each fixed z ∈ U , f (z, ·) ∈
C∞c (I). Let p, q ∈ N0, u ∈ 	

p,q
c (D). We write u =∑I ,J u I J dzI ∧ dz J ∈ 	

p,q
c (D)

andwe always assume that the summation is performed only over increasingly ordered
indices I = i1 < i2 < . . . < i p, J = j1 < j2 < . . . < jq , and uI J ∈ C∞c (D), for all
{I , J }. For each fixed z ∈ U , uI J (z, ·) ∈ C∞c (I).

Definition 3.1 The Fourier transform of the function f ∈ C∞c (D) with respect to
x2n+1, denoted by f̂ , is defined by

f̂ (z, t) :=
∫ ∞
−∞

e−i t x2n+1 f (z, x2n+1)dx2n+1 ∈ C∞(U × R). (3.1)
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The Fourier transform of the form u =∑I ,J u I J dzI ∧ dz J ∈ 	
p,q
c (D) with respect

to x2n+1, denoted by û, is defined by

û(z, t) =
∑
I ,J

û I J (z, t)dzI ∧ dz J ∈ 	p,q(U ×R) := C∞(U ×R, T ∗(p,q)U ). (3.2)

Note that f̂ ∈ C∞(U × R) and f̂ (·, t) ∈ C∞c (U ) for every t ∈ R. Similarly,
û ∈ 	p,q(U × R) and û(·, t) ∈ 	

p,q
c (U ) for every t ∈ R. From Parseval’s formula,

we have for u, v ∈ 	
p,q
c (D),

∫ ∞
−∞
〈u(z, x2n+1)|v(z, x2n+1)〉dx2n+1 = (1/2π)

∫ ∞
−∞
〈̂u(z, t), v̂(z, t)〉hdt, (3.3)

for every z ∈ U . By using integration by parts, we have for u ∈ 	
p,q
c (D),

−√−1T̂ u = t û, , i .e., −√−1 ∂̂u

∂x2n+1
(z, t) = t û(z, t). (3.4)

Let t ∈ R be fixed. Let |(z, 1)|2h := e−2tφ(z) be the Hermitian metric on the trivial
line bundle U × C over U . The Chern connection of (U × C, e−2tφ) is given by

∇(U×C,e−2tφ) = ∇1,0 + ∇0,1, ∇1,0 = ∂ − 2t∂φ, ∇0,1 = ∂. (3.5)

Indeed, ∇(U×C,e−2tφ) = d + h−1∂h = d + e2tφ∂(e−2tφ). The curvature of (U ×
C, e−2tφ) is

R(U×C,e−2tφ) =
(
∇(U×C,e−2tφ)

)2 = 2t∂∂φ. (3.6)

We can identify ∂∂φ with Levi form L and write R(U×C,e−2tφ) = 2tL . Moreover,
we will identify 	•,•(U ) and 	

•,•
c (U ) with 	•,•(U ,U × C) and 	

•,•
c (U ,U × C),

respectively.

Proposition 3.2 Let u, v ∈ 	
•,•
c (D). We have

̂∂bu = e−tφ∂(etφ û) on U × R, (3.7)

̂
∂
∗
bv = e−tφ∂

∗
(etφv̂) on U × R, (3.8)

∂̂bu = e−tφ∇1,0(etφ û) on U × R, (3.9)

∂̂∗b u = e−tφ∇1,0∗(etφ û) on U × R, (3.10)

where ∂
∗
,∇1,0∗ are the formal adjoints of ∂,∇1,0 with respect to 〈 · , · 〉L2(U ,e−2tφ),

respectively, and ∂
∗
b, ∂
∗
b are the formal adjoints of ∂b, ∂b with respect to ( · | · ), respec-

tively.
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Proof Letu =∑I ,J u I J dzI∧dz J . By ∂bu =∑I ,J
∑n

j=1
(

∂uI J
∂z j
− i ∂φ

∂z j
∂uI J

∂x2n+1

)
dz j∧

dzI ∧ dz J ,

(
∂̂bu
)

(z, t) =
∑
I ,J

n∑
j=1

(
∂ û I J

∂z j
(z, t)+ t

∂φ

∂z j
(z)̂uI J (z, t)

)
dz j ∧ dzI ∧ dz J

= e−tφ(z)∂(etφ
∑
I ,J

û I J dzI ∧ dz J )(z, t)

= (e−tφ∂(etφ û)
)
(z, t).

(3.11)

Thus the first equality holds. From Parseval’s formula,

(∂bu|v) =
∫

D
〈∂bu|v〉dλ(z)dx2n+1

=
∫

U

(
(2π)−1

∫ ∞
−∞
〈∂̂bu(z, t), v̂(z, t)〉hdt

)
dλ(z)

= (2π)−1
∫ ∞
−∞

∫

U
〈e−tφ∂(etφ û), v̂〉hdλ(z)dt

= (2π)−1
∫ ∞
−∞
〈∂(etφ û), etφv̂〉L2(U ,e−2tφ)dt

= (2π)−1
∫ ∞
−∞
〈etφ û, ∂

∗
(etφv̂)〉L2(U ,e−2tφ)dt

= (2π)−1
∫ ∞
−∞

∫

U
〈̂u, e−tφ∂

∗
(etφv̂)〉hdλ(z)dt . (3.12)

Meanwhile, we have

(∂bu|v) = (u|∂∗bv) = (2π)−1
∫ ∞
−∞

∫

U
〈̂u, ∂̂

∗
bv〉hdλ(z)dt . (3.13)

Thus the second equality holds. The proofs of the third and the fourth equalities are
similar. ��

3.2 CR Bochner–Kodaira–Nakano Formula I

Analog to [23, (1.4.32)], we define the Lefschetz operator �X ∧ · on∧•,•(T ∗X) and
its adjoint � = i(�X ) with respect to the Hermitian inner product 〈·|·〉 associated
with �X . The Hermitian torsion of �X is defined by

T := [�, ∂b�X ]. (3.14)
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Let D = U × I be a BRT chart and let {L j }nj=1 ⊂ T (1,0)D, {e j }nj=1 ⊂ T ∗(1,0)D,

{w j }nj=1 ⊂ T (1,0)U be as in the discussion after (2.26). We can check that

�X ∧ · =
√−1e j ∧ e j ∧ ·, � = −√−1iL j iL j

on D. (3.15)

Note that iL j and iL j
are the adjoints of e j∧ and e j∧, respectively.

Since ∂�(z) = ∂b�X (x) on D, and � ∧ · = √−1e j ∧ e j ∧ ·, � = −
√−1iw j iw j

on U , see [23, 1.4.32], we have T = [�, ∂b�] = [�, ∂�] on 	•,•(D), which is
independent of x2n+1. We remark that T is a differential operator of order zero. With
respect to the Hermitian inner product 〈·|·〉 associated with �X , we have the adjoint
operator T ∗, the conjugate operator T and the adjoint of the conjugate operator T ∗
for T .

Theorem 3.3 With the notations used above, we have on 	•,•(X),

�b = �b+[2
√−1L ,�](−√−1T )+(∂b T ∗+T ∗ ∂b)−(∂b T

∗+T ∗ ∂b). (3.16)

Proof Since the both side of (3.16) are globally defined, we can check (3.16) on a BRT
chart. Now, we work on a BRT chart D = U × I. We will use the same notations as
before. Let

�(U×C,e−2tφ) = ∂ ∂
∗ + ∂

∗
∂ : 	•,•c (U )→ 	•,•c (U ),

�(U×C,e−2tφ) := ∇1,0∗∇1,0 +∇1,0∇1,0∗ : 	•,•c (U )→ 	•,•c (U ),

where ∇1,0 is given by (3.5), ∂
∗
,∇1,0∗ are the formal adjoints of ∂,∇1,0 with respect

to 〈 · , · 〉L2(U ,e−2tφ), respectively. From [23, (1.4.44)],

�(U×C,e−2tφ) = �(U×C,e−2tφ)+[2√−1tL ,�]+(∇1,0T ∗+T ∗∇1,0)−(∂ T ∗+T ∗ ∂).

Letu, v ∈ 	
•,•
c (D). Let s1(z) := etφ(z)û(z, t) ∈ 	•,•(U×R), s2(z) := etφ(z)v̂(z, t) ∈

	•,•(U × R). Firstly, we have

(1/2π)

∫ ∞
−∞
〈�(U×C,e−2tφ)s1, s2〉L2(U ,e−2tφ)dt = ( ∂bu | ∂bv )+ ( ∂

∗
bu | ∂∗bv ).

(3.17)
In fact, from Proposition 3.2,

∫ ∞
−∞
〈�(U×C,e−2tφ)s1, s2〉L2(U ,e−2tφ)dt

=
∫ ∞
−∞

(
〈∂s1, ∂s2〉L2(U ,e−2tφ) + 〈∂∗s1, ∂∗s2〉L2(U ,e−2tφ)

)
dt

=
∫ ∞
−∞

(
〈∂̂bu, ∂̂bv〉L2(U ) + 〈∂̂∗bu, ∂̂

∗
bv〉L2(U )

)
dt

= 2π(∂bu|∂bv)+ 2π(∂
∗
bu|∂∗bv).
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Similarly, we have

(1/2π)

∫ ∞
−∞
〈�(U×C,e−2tφ)

s1, s2〉L2(U ,e−2tφ)dt = (∂bu|∂bv)+ (∂∗b u|∂∗bv). (3.18)

Thirdly, we have

(1/2π)

∫ ∞
−∞

t〈[2√−1L ,�]s1, s2〉L2(U ,e−2tφ)dt = ([2√−1L ,�](−√−1T )u|v).

(3.19)
In fact, it follows from

∫ ∞
−∞

t〈[2√−1L ,�]s1, s2〉L2(U ,e−2tφ)dt

=
∫ ∞
−∞
〈t[2√−1L ,�]̂u, v̂〉L2(U )dt

=
∫ ∞
−∞
〈[2√−1L ,�](−√̂−1Tu), v̂〉L2(U )dt

= 2π([2√−1L ,�](−√−1Tu)|v).

Fourthly, we consider the rest terms

〈(∇1,0T ∗ + T ∗∇1,0)s1, s2〉L2(U ,e−2tφ), 〈(∇0,1T ∗ + T ∗∇0,1)s1, s2〉L2(U ,e−2tφ).

(3.20)
By Proposition 3.2, we have

∫ ∞
−∞
〈(∇1,0T ∗ + T ∗∇1,0)s1, s2〉L2(U ,e−2tφ)dt

=
∫ ∞
−∞
〈
(
∇1,0T ∗s1, s2〉L2(U ,−2tφ) + 〈T ∗∇1,0s1, s2〉L2(U ,−2tφ)

)
dt

=
∫ ∞
−∞
〈
(
∇1,0T ∗etφ û, etφv̂〉L2(U ,−2tφ) + 〈T ∗∇1,0etφ û, etφv̂〉L2(U ,−2tφ)

)
dt

=
∫ ∞
−∞
〈
(
T ∗etφ û,∇1,0∗(etφv̂)〉L2(U ,−2tφ) + 〈∇1,0(etφ û), T etφv̂〉L2(U ,−2tφ)

)
dt

=
∫ ∞
−∞
〈
(
T ∗û, e−tφ∇1,0∗(etφv̂)〉L2(U ) + 〈e−tφ∇1,0etφ û, T v̂〉L2(U )

)
dt

=
∫ ∞
−∞
〈
(
T ∗û, ∂̂∗b v〉L2(U ) + 〈∂̂bu, T v̂〉L2(U )

)
dt

= 2π(T ∗u|∂∗bv)+ 2π(∂bu|T v).

(3.21)
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Thus we obtain

(1/2π)

∫ ∞
−∞
〈(∇1,0T ∗ + T ∗∇1,0)s1, s2〉L2(U ,e−2tφ)dt

= (T ∗u|∂∗bv)+ (∂bu|T v)

= ((∂bT ∗ + T ∗∂b)u|v).

(3.22)

Similarly, we obtain

(1/2π)

∫ ∞
−∞
〈(∂ T ∗ + T ∗∂)s1, s2〉L2(U ,e−2tφ)dt = ((∂bT

∗ + ∂bT
∗
)u|v). (3.23)

From (3.17), (3.18), (3.19), (3.22), and (3.23), we get that for u, v ∈ 	
•,•
c (D),

(�bu|v) = ((�b+[2
√−1L ,�](−√−1T )+(∂bT ∗+T ∗∂b)−(∂bT

∗+T ∗∂b))u|v).

The theorem follows. ��
Corollary 3.4 (CR Nakano’s inequality I) With the notations used above, for any u ∈
	
•,•
c (X),

3

2
(�bu|u) ≥ ([2√−1L ,�](−√−1Tu)|u)

− 1

2
(‖T u‖2 + ‖T ∗u‖2 + ‖T u‖2 + ‖T ∗u‖2).

(3.24)

If (X , T (1,0)X) is Kähler, i.e., d�X = 0, then

(�bu|u) ≥ ([2√−1L ,�](−√−1Tu)|u). (3.25)

Proof By the Cauchy–Schwarz inequality, Theorem 3.3 and since T = 0, T ∗ = 0 if
d�X = 0, we get the corollary. ��

The following follows from straightforward calculation, we omit the proof.

Proposition 3.5 For a real (1, 1)-form
√−1α ∈ 	1,1(D), if we choose local

orthonormal frame {L j }nj=1 of T (1,0)D with the dual frame {e j }nj=1 of T ∗(1,0)D
such that

√−1α = √−1λ j (x)e j ∧ e j at a given point x ∈ D, then for any
f =∑I ,J f I J (x)eI ∧ eJ ∈ 	•,•(D), we have

[√−1α,�] f (x) =
∑
I ,J

⎛
⎝∑

j∈I
λ j (x)+

∑
j∈J

λ j (x)−
n∑
j=1

λ j (x)

⎞
⎠ f I J (x)e

I ∧ eJ .

(3.26)

Corollary 3.6 With the notations used above, let �X be a Hermitian metric on X such
that

2
√−1L = �X . (3.27)
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Then for any u ∈ 	
n,q
c (X) with 1 ≤ q ≤ n,

(
−√−1Tu|u

)
≤ 1

q

(
‖∂bu‖2 + ‖∂∗bu‖2

)
. (3.28)

Proof By applying (3.26) for
√−1α := 2

√−1L , λ j = 1 for all j , we have

[2√−1L ,�](−√−1Tu) = q(−√−1Tu), for all u ∈ 	
n,q
c (X). (3.29)

By d�X = d(2
√−1L ) = 0 and Corollary 3.4, we obtain

(�bu|u) ≥ ([2√−1L ,�](−√−1Tu)|u) = q(−√−1Tu|u). (3.30)

��
Let E be a CR line bundle over X (see Definition 2.4 in [13]. We say that E is

a R-equivariant CR line bundle over X if the R-action on X can be CR lifted to E
and for every point x ∈ X , we can find a T -invariant local CR frame of E defined
near x (see [16, Definitions 2.6, 2.9]). Here, we also use T to denote the vector field
acting on sections of E induced by the R-action on E . From now on, we assume
that E is a R-equivariant CR line bundle over X with a R-invariant Hermitian metric
hE on E . For p, q ∈ N0, let 	p,q(X , E) be the space of smooth (p, q)-forms of
X with values in E and let 	•,•(X , E) := ⊕p,q∈N0	

p,q(X , E). Let 	
p,q
c (X , E)

be the subspace of 	p,q(X , E) whose elements have compact support in X and let
	
•,•
c (X , E) := ⊕p,q∈N0	

p,q
c (X , E). For p, q ∈ N0, let

∂b,E : 	p,q(X , E)→ 	p,q+1(X , E)

be the tangential Cauchy–Riemann operator with values in E . Let ( · | · )E be the L2

inner product on 	
•,•
c (X , E) induced by 〈 · | · 〉 and hE . Let

∂
∗
b,E : 	p,q+1(X , E)→ 	p,q(X , E)

be the formal adjoint of ∂b,E with respect to ( · | · )E . Put

�b,E := ∂b,E ∂
∗
b,E + ∂

∗
b,E ∂b,E : 	•,•(X , E)→ 	•,•(X , E).

Let
∇E : 	•,•(X , E)→ 	•,•(X , E ⊗ CT ∗X) (3.31)

be the connection on E induced by hE given as follows: Let s be a T -invariant local
CR frame of E on an open set D of X ,

|s|2hE = e−2
, 
 ∈ C∞(D, R). (3.32)
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Then,

∇E (u ⊗ s) := (∂bu + ∂bu − 2(∂b
) ∧ u + ω0 ∧ (Tu))⊗ s, u ∈ 	•,•(D). (3.33)

It is straightforward to check that (3.33) is independent of the choices of T -invariant
local CR trivializing sections s and hence is globally defined. Put

(∇E )0,1 := ∂b, (∇E )1,0 := ∂b − 2∂b
. (3.34)

Let

�b,E := (∇E )1,0((∇E )1,0)∗ + ((∇E )1,0)∗(∇E )1,0 : 	•,•(X , E)→ 	•,•(X , E), (3.35)

where ((∇E )1,0)∗ is the adjoint of (∇E )1,0 with respect to ( · | · )E . Let RE ∈ 	1,1(X)

be the curvature of E induced by hE given by RE := −2∂b∂b
 on D, where 
 is as
in (3.32). It is easy to check that RE is globally defined. Let D = U × I be a BRT
chart. Since E is R-equivariant, on D, E is a holomorphic line bundle overU . We can
repeat the proof of Theorem 3.3 with minor changes and conclude the following:

Theorem 3.7 Let E be a R-equivariant CR line bundle over X with a R-invariant
Hermitian metric hE . With the notations used above, we have on 	•,•(X , E),

�b,E = �b,E + [2
√−1L ,�](−√−1T )+ [√−1RE ,�]

+
(
(∇E )1,0T ∗ + T ∗(∇E )1,0

)
−
(
∂b,ET

∗ + T ∗∂b,E
)
,

(3.36)

where RE ∈ 	1,1(X) is the curvature of E induced by hE .

3.3 CR Bochner–Kodaira–Nakano Formula II

The bundle K ∗X := det(T (1,0)X) is a R-equivariant CR line bundle over X . The (1, 1)
form�X induces aR-invariantHermitianmetric hK

∗
X on K ∗X . Let RK ∗X be the curvature

of K ∗X induced by hK
∗
X . Let

� : T ∗0,q X → T ∗n,q X ⊗ K ∗X

be the natural isometry defined as follows: Let D = U × I be a BRT chart. Let
{L j }nj=1 ⊂ T (1,0)D, {e j }nj=1 ⊂ T ∗(1,0)D be as in the discussion after (2.26). Then,

�u := e1 ∧ . . . ∧ en ∧ u ⊗ (L1 ∧ . . . ∧ Ln) ∈ T ∗n,q X ⊗ K ∗X , u ∈ T ∗0,q X .

It is easy to see that the definition above is independent of the choices of R-invariant
orthonormal frame {L j }nj=1 ⊂ T (1,0)D and hence is globally defined. We have the
isometry:

� : 	0,q(X)→ 	n,q(X , K ∗X ).
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Moreover, it is straightforward to see that

∂bu = �−1∂b,K ∗X �u, ∂
∗
bu

= �−1∂∗b,K ∗X �u, �bu = �−1�b,K ∗X �u, for every u ∈ 	0,q(X).

(3.37)

We can now prove

Theorem 3.8 With the notations used above, we have on 	0,•(X),

�b = �−1�b,K ∗X � + 2L (L j , Lk)ek ∧ iL j (−
√−1T )+ RK ∗X (L j , Lk)ek ∧ iL j

+�−1(∇K ∗X )1,0T ∗�−
(
∂b�

−1T ∗� +�−1T ∗�∂b

)
,

(3.38)
where {L j }nj=1 is a local R-invariant orthonormal frame of T (1,0)X with dual frame

{e j }nj=1 ⊂ T ∗(1,0)X.

Proof Let u ∈ 	0,q(X). From (3.37) and (3.36), we have

�bu = �−1�b,K ∗X �u

= �−1�b,K ∗X �u +�−1[2√−1L ,�](−√−1T )(�u)+�−1[√−1RK ∗X ,�]�u

+�−1
(
(∇K ∗X )1,0T ∗ + T ∗(∇K ∗X )1,0

)
�u−

(
∂b�

−1T ∗�u +�−1T ∗�∂bu
)
.

(3.39)
It is straightforward to check that

[2√−1L ,�] = 2L (L j , Lk)(e j ∧ iLk
− iL j ek∧),

[2√−1RK ∗X ,�] = RK ∗X (L j , Lk)(e j ∧ iLk
− iL j ek∧).

(3.40)

From (3.39), (3.40) and noting that (e j ∧iLk
−iL j ek∧)v = ek∧iL j v, T ∗(∇K ∗X )1,0v =

0, for every v ∈ 	n,q(X , K ∗X ) and T commutes with �, we get (3.38). ��
Corollary 3.9 With the notations used above, assume that 2

√−1L = �X and there
is C > 0 such that

√−1RK ∗X ≥ −C�X on X .

Then, for any u ∈ 	
0,q
c (X) with 1 ≤ q ≤ n, we have

(
−√−1Tu|u

)
≤ 1

q

(
‖∂bu‖2 + ‖∂∗bu‖2

)
+ C‖u‖2. (3.41)

Proof Since 2
√−1L = �X , we can choose R-invariant orthonormal frame {L j }nj=1

such that 2L (L j , Lk) = δ jk , for every j, k. We write u = ∑
J u J eJ on D with
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uJ ∈ C∞(D) and eJ = e j1 ∧ . . . ∧ e jq , j1 < . . . < jq . We have

〈 2L (L j , Lk)ek ∧ iL j (−
√−1T )u | u 〉 = 〈

∑
J

q(−√−1TuJ )eJ | u 〉

= q〈−√−1Tu | u 〉. (3.42)

Since
√−1RK ∗X ≥ −C�X , as (3.42), we can check that

〈RK ∗X (L j , Lk)ek ∧ iL j u|u〉 ≥ −Cq|u|2. (3.43)

Since d�X = d(2
√−1L ) = 0,we haveT = [�, ∂b�X ] = 0. From this observation,

(3.38), (3.42), and (3.43), we obtain

(
‖∂bu‖2 + ‖∂∗bu‖2

)
≥ q

(
−√−1Tu|u

)
− qC‖u‖2 (3.44)

holds for every u ∈ 	
0,q
c (X) with 1 ≤ q ≤ n. ��

4 Szegő Kernel Asymptotics

In this section, we will establish Szegő kernel asymptotic expansions on X under
certain curvature assumptions.

4.1 Complete CRManifolds

Let X be a CR manifold as in Assumption 1.1. Let gX be the R-invariant Hermitian
metric as in (1.5).Wewill assume in the following that the Riemannian metric induced
by gX on T X is complete and study the extension ∂b, ∂

∗
b, and T . We denote by the

same symbols the maximal weak extensions in L2 of these differential operators.
Since gX is complete we know by [10, Lemma 2.4, p. 366] that there exists

a sequence {χk}∞k=1 ⊂ C∞c (X) such that 0 ≤ χk ≤ 1, χk+1 = 1 on suppχk ,
|dχk |g ≤ 1

2k
, for every k ∈ N, and

⋃∞
k=1 suppχk = X . By using this sequence

as in the Andreotti–Vesentini lemma on complex Hermitian manifolds (cf. [10, The-
orem 3.2, p. 368], [23, Lemma 3.3.1]) and the classical Friedrichs lemma, we obtain
the following.

Lemma 4.1 Assume that (X , gX ) is complete. Then 	
p,q
c (X) is dense in Dom ∂b,

Dom ∂
∗
b, Dom T , Dom ∂b ∩Dom ∂

∗
b, and Dom T ∩Dom ∂b ∩Dom ∂

∗
b with respect to

the graph norms of ∂b, ∂
∗
b, T , ∂b + ∂

∗
b, and ∂b + ∂

∗
b + T . Here the graph norm of a

linear operator R is defined by ‖u‖ + ‖Ru‖ for u ∈ Dom R.

As a consequence, analog to [23, Corollary 3.3.3], we obtain the following:

Corollary 4.2 If (X , gX ) is complete, then the maximal extension of the formal adjoint
of ∂b and T coincide with their Hilbert space adjoint, respectively.
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Corollary 4.3 If (X , gX ) is complete, then
√−1T : Dom√−1T ⊂ L2•,•(X) →

L2•,•(X) is self-adjoint, that is, (
√−1T )∗ = √−1T .

Using these results, we extend the estimates from Corollary 3.9 as follows:

Theorem 4.4 Let X be a CR manifold as in Assumption 1.1. Assume that 2
√−1L =

�X , gX is complete and there is C > 0 such that

√−1RK ∗X ≥ −C�X .

Then, for any u ∈ L2
0,q(X), 1 ≤ q ≤ n, u ∈ Dom ∂b

⋂
Dom∂

∗
b
⋂

Dom(
√−1T ), we

have

(−√−1Tu | u ) ≤ 1

q

(
‖∂bu‖2 + ‖∂∗bu‖2

)
+ C‖u‖2. (4.1)

Proof Let u ∈ L2
0,q(X), 1 ≤ q ≤ n, u ∈ Dom ∂b

⋂
Dom ∂

∗
b
⋂

Dom(
√−1T ). From

Lemma 4.1, we can find {u j }∞j=1 ⊂ 	
•,•
c (X) such that

lim
j→∞

(
‖u j − u‖2 + ‖∂bu j − ∂bu‖2 + ‖

√−1Tu j −
√−1Tu‖2

)
= 0. (4.2)

From (3.41), we have for every j = 1, 2, . . .,

(−√−1Tu j | u j ) ≤ 1

q

(
‖∂bu j‖2 + ‖∂∗bu j‖2

)
+ C‖u j‖2. (4.3)

Taking j →∞ in (4.3) and using (4.2), we get (4.1). ��
Let us describe two examples of CR manifolds with complete R-invariant metric

gX .

Example 4.5 Let (X , HX , J , ω0) be a compact strictly pseudoconvex CRmanifold as
in Assumption 1.1 and let gX be a R-invariant metric as in (1.5). Let π : X̃ → X
be a Galois covering of X , that is, there exists a discrete, proper action � such that
X = X̃/�. By pulling back the objects from X by the projection π we obtain a strictly
pseudoconvexCRmanifold (X̃ , H X̃ , J̃ , ω̃0) satisfyingAssumption 1.1.Moreover, the
metric g̃X = π∗gX is a complete R-invariant metric satisfying (1.5).

Example 4.6 Let us consider now the case of a circle bundle associated to a Hermitian
holomorphic line bundle. Let (M, J ,�M ) be a complete Hermitian manifold. Let
(L, hL) → M be a Hermitian holomorphic line bundle over M . Let hL

∗
be the

Hermitian metric on L∗ induced by hL . Let

X := {v ∈ L∗; |v|2
hL∗ = 1} (4.4)

be the circle bundle of L∗; it is isomorphic to the S1 principal bundle associated to L .
Since X is a hypersurface in the complexmanifold L∗, it has aCRstructure (X , HX , J )

inherited from the complex structure of L∗ by setting T (1,0)X = T X ∩ T (1,0)L∗.
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In this situation, S1 acts on X by fiberwisemultiplication, denoted (x, eiθ ) �→ xeiθ .
A point x ∈ X is a pair x = (p, λ), where λ is a linear functional on L p, the S1 action
is xeiθ = (p, λ)eiθ = (p, eiθλ).

Letω0 be the connection 1-form on X associated to the Chern connection∇L . Then

dω0 = π∗(i RL), (4.5)

where RL is the curvature of∇L . Assume RL is positive, hence X is a strictly pseudo-
convex CR manifold. Hence, (X , HX , J , ω0) fulfills Assumption 1.1. We denote by
∂θ the infinitesimal generator of the S1 action on X . The span of ∂θ defines a rank one
sub-bundle T V X ∼= T S1 ⊂ T X , the vertical sub-bundle of the fibration π : X → M .
Moreover (1.3) holds for T = ∂θ .

We construct now a Riemannian metric on X . Let gM be a J -invariant metric on
T M associated to �M . The Chern connection ∇L on L induces a connection on the
S1-principal bundleπ : X → M , and let T H X ⊂ T X be the corresponding horizontal
bundle. Let gX = π∗gM ⊕ dθ2/4π2 be the metric on T X = T H X ⊕ T S1, with dθ2

the standard metric on S1 = R/2πZ. Then gX is a R-invariant Hermitian metric on
X satisfying (1.5). Since gM is complete it is easy to see that gX is also complete.

4.2 The OperatorsQ�,Q[�1,�],Q�

From now on, we assume that X is a CR manifold satisfying Assumption 1.1 and
(X , gX ) is complete. Let S denote the spectrum of

√−1T . By the spectral theorem,
there exists a finite measure μ on S× N and a unitary operator

U : L2•,•(X)→ L2(S× N, dμ)

with the following properties: If h : S× N→ R is the function h(s, n) = s, then the
element ξ of L2•,•(X) lies in Dom(

√−1T ) if and only if hU (ξ) ∈ L2(S × N, dμ).
We have

U
√−1TU−1ϕ = hϕ, for allϕ ∈ U (Dom(

√−1T )).

Let λ1, λ ∈ R, λ1 < λ, and let τ(t) ∈ C∞(R, [0, 1]). Put
E (λ,

√−1T ) := U−1
(
ImageU ∩ {1(−∞,λ](s)h(s, n); h(s, n) ∈ L2(S× N, dμ)}

)
,

E ([λ1, λ],
√−1T ) := U−1

(
ImageU ∩ {1[λ1,λ](s)h(s, n); h(s, n) ∈ L2(S× N, dμ)}

)
,

E (τ,
√−1T ) := U−1

(
ImageU ∩ {τ(s)h(s, n); h(s, n) ∈ L2(S× N, dμ)}

)
,

(4.6)
where 1A denotes the characteristic function of the set A. Let

Qλ : L2•,•(X)→ E (λ,
√−1T ),

Q[λ1,λ] : L2•,•(X)→ E ([λ1, λ],
√−1T ),

Qτ : L2•,•(X)→ E (τ,
√−1T )

(4.7)
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be the orthogonal projections with respect to ( · | · ).
Since X is strictly pseudoconvex, from [21, Lemma 3.4 (3), p. 239], [13, Theorem

3.5], we have one of the following two cases:

(a) TheR -action is free,

(b) TheR -action comes from a CR torus actionT
don Xandω0and�XareT

d invariant.
(4.8)

When X is non-compact, the R-action does not always come from a CR torus action.
For example, when X is the Heisenberg group (see Sect. 5), the standard R-action on
X is free and does not come from any CR torus action.

Assume that the R-action is free. Let D = U × I be a BRT chart with BRT
coordinates x = (x1, . . . , x2n+1). Since the R-action is free, we can extend x =
(x1, . . . , x2n+1) to D̂ := U × R. We identify D̂ with an open set in X .

Lemma 4.7 Assume that the R-action is free. Let D = U × I be a BRT chart with
BRT coordinates x = (x1, . . . , x2n+1). Let λ1, λ ∈ R, λ1 < λ. For u ∈ 	

•,•
c (D), we

have

(Qλu)(x) = 1

(2π)2n+1

∫
ei<x−y,η>1(−∞, λ](−η2n+1)u(y)dydη ∈ 	•,•(D̂),

(4.9)

(Q[λ1,λ]u)(x) = 1

(2π)2n+1

∫
ei<x−y,η>1[λ1, λ](−η2n+1)u(y)dydη ∈ 	•,•(D̂),

(4.10)

(Qτu)(x) = 1

(2π)2n+1

∫
ei<x−y,η>τ(−η2n+1)u(y)dydη ∈ 	•,•(D̂), (4.11)

and supp Qλu ⊂ D̂, supp Q[λ1,λ]u ⊂ D̂, supp Qτu ⊂ D̂, where D̂ is as in the
discussion after (4.8).

Proof Let χ ∈ C∞c (R), χ = 1 on [−1, 1], χ = 0 outside [−2, 2]. For every M > 0,
put τM (t) := χ( t

M )τ (t). Then,

Qτu = lim
M→∞ QτM u in L2•,•(X), for every u ∈ L2•,•(X). (4.12)

From the Helffer–Sjöstrand formula [12, Proposition 7.2], we see that

QτM =
1

2π i

∫

C

∂τ̃M

∂z
(z −√−1T )−1dz ∧ dz on L2•,•(X), (4.13)

where τ̃M ∈ C∞c (C) is an extension of τM with ∂τ̃M
∂z = 0 on R. It is not difficult to

see that for u ∈ 	
•,•
c (D),

(z −√−1T )−1u = 1

(2π)2n+1

∫
ei<x−y,η> 1

z + η2n+1
u(y)dydη ∈ 	•,•(D̂)

(4.14)
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and supp (z −√−1T )−1u ⊂ D̂. From (4.13) and (4.14), we have

(QτM u)(x) = 1

2π i

1

(2π)2n+1

∫

C

∫
ei<x−y,η>

∂τ̃M
∂z

z + η2n+1
u(y)dydηdz∧dz ∈ 	•,•(D̂)

(4.15)
and supp QτM u ⊂ D̂, for every u ∈ 	

•,•
c (D). By Cauchy integral formula, we see

that

1

2π i

∫

C

1

z + η2n+1
∂τ̃M

∂z
dz ∧ dz = τM (−η2n+1).

From this observation and (4.15), we deduce that

(QτM u)(x) = 1

(2π)2n+1

∫
ei〈x−y,η〉τM (−η2n+1)u(y)dydη ∈ 	•,•(D̂) (4.16)

and supp QτM u ⊂ D̂, for every u ∈ 	
•,•
c (D). From (4.12) and (4.16), we get (4.11).

Let γε ∈ C∞c (R), limε→0 γε(t) = 1(−∞, λ](t), for every t ∈ R. We can repeat
the proof above and get that

Qλu = lim
ε→0

Qγεu =
1

(2π)2n+1

∫
ei〈x−y,η〉1(−∞, λ](−η2n+1)u(y)dydη ∈ 	•,•(D̂)

and supp Qλu ⊂ D̂, for every u ∈ 	
•,•
c (D). We obtain (4.9). The proof of (4.10) is

similar. ��

We now assume that theR-action is not free. From (4.8), we know that theR-action
comes from aCR torus actionT

d = (eiθ1 , . . . , eiθd ) on X andω0,�X areT
d invariant.

Since the R-action comes from the T
d -action, there exist β1, . . . , βd ∈ R, such that

T = β1T1 + . . .+ βdTd , (4.17)

where Tj is the vector field on X given by Tju := ∂
∂θ j

((1, . . . , 1, eiθ j , 1, . . . , 1)∗

u)|θ j=0, u ∈ 	•,•(X), j = 1, . . . , d. For (m1, . . . ,md) ∈ Z
d , put

L2,m1,...,md•,• (X)

:= {u ∈ L2•,•(X); (eiθ1 , . . . , eiθd )∗u = eim1θ1+...+imdθd u, for all (θ1, . . . , θd) ∈ R
d}

and let
Qm1,...,md : L2•,•(X)→ L2,m1,...,md•,• (X) (4.18)
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be the orthogonal projection. It is not difficult to see that for every u ∈ L2•,•(X), we
have

Qλu =
∑

(m1,...,md )∈Zd ,
−m1β1−...−mdβd≤λ

Qm1,...,md u,

Q[λ1,λ]u =
∑

(m1,...,md )∈Zd ,
λ1≤−m1β1−...−mdβd≤λ

Qm1,...,md u,

Qτu =
∑

(m1,...,md )∈Zd

τ(−m1β1 − . . .− mdβd)Qm1,...,md u.

(4.19)

From Lemma 4.7 and (4.19), we conclude that

Proposition 4.8 Let λ1, λ ∈ R, λ1 < λ. For u ∈ Dom ∂b, we have Qλu, Q[λ1,λ]u,

Qτu ∈ Dom ∂b and ∂bQλu = Qλ∂bu, ∂bQ[λ1,λ]u = Q[λ1,λ]∂bu, ∂bQτu = Qτ ∂bu.
Similarly, for u ∈ Dom ∂

∗
b, we have Qλu, Q[λ1,λ]u, Qτu ∈ Dom ∂

∗
b and ∂

∗
bQλu =

Qλ∂
∗
bu, ∂

∗
bQ[λ1,λ]u = Q[λ1,λ]∂

∗
bu, ∂

∗
bQτu = Qτ ∂

∗
bu.

For λ ∈ R, define

�b,λ : Dom�b,λ ⊂ E (λ,
√−1T )→ E (λ,

√−1T ),

Dom�b,λ := Dom�b

⋂
E (λ,

√−1T ), �b,λu = �bu, for u ∈ Dom�b,λ,

(4.20)
where �b is defined in (2.8), (2.9). From Proposition 4.8, we see that

Dom�b,λ = Qλ(Dom�b),

Qλ�b = �bQλ = �b,λQλ on Dom�b.
(4.21)

From now on, we write �(q)
b and �(q)

b,λ to denote �b and �b,λ acting on (0, q) forms,
respectively.

4.3 Local Closed Range for�(0)
b

In this section, we will establish the local closed range property for �(0)
b under appro-

priate curvature assumptions. We first need the following.

Lemma 4.9 Assume that 2
√−1L = �X , gX is complete and there is C > 0 such

that

√−1RK ∗X ≥ −C�X .
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Then, for any u ∈ L2
0,q(X), 1 ≤ q ≤ n, u ∈ Dom ∂b ∩ Dom ∂

∗
b ∩ E (λ,

√−1T ),
λ ∈ R, λ < −C, we have

‖u‖2 ≤ 1

q(−λ− C)

(
‖∂bu‖2 + ‖∂∗bu‖2

)
. (4.22)

Proof Let λ < −C and let u ∈ Dom ∂b ∩ Dom ∂
∗
b ∩ E (λ,

√−1T ), u ∈ L2
0,q(X),

1 ≤ q ≤ n. Let M  1 and let uM := Q[−M,λ]u. By Proposition 4.8, we see that

uM ∈ Dom ∂b ∩ Dom ∂
∗
b ∩ E (λ,

√−1T )
⋂

Dom(
√−1T ).

From this observation and (4.1), we have

−λ‖uM‖2 ≤ (−√−1TuM | uM ) ≤ 1

q

(
‖Q[−M,λ]∂bu‖2 + ‖Q[−M,λ]∂

∗
bu‖2

)
+ C‖uM‖2

≤ 1

q

(
‖∂bu‖2 + ‖∂∗bu‖2

)
+ C‖uM‖2.

(4.23)
Since λ < −C we deduce from (4.23) that

‖uM‖2 ≤ 1

q(−λ− C)

(
‖∂bu‖2 + ‖∂∗bu‖2

)
. (4.24)

Letting M →∞ in (4.24) we get (4.22). ��
For every q = 0, 1, . . . , n, put E (q)(λ,

√−1T ) := E (λ,
√−1T )

⋂
L2
0,q(X). We

prove now a vanishing theorem for harmonic forms which are eigenforms of
√−1T .

Theorem 4.10 Assume that 2
√−1L = �X , gX is complete and there is C > 0 such

that

√−1RK ∗X ≥ −C�X .

Let q ∈ {1, . . . , n}. Let λ ∈ R, λ < −C. The operator

�(q)
b,λ : Dom�(q)

b,λ ⊂ E (q)(λ,
√−1T )→ E (q)(λ,

√−1T )

has closed range and ker�(q)
b,λ = {0}. Hence, there is a bounded operator

G(q)
λ : E (q)(λ,

√−1T )→ Dom�(q)
b,λ

such that
�(q)

b,λG
(q)
λ = I onE (q)(λ,

√−1T ). (4.25)
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Proof Let u ∈ Dom�(q)
b,λ. From (4.22), we have

‖u‖2 ≤ 1

q(−λ− C)

(
‖∂bu‖2 + ‖∂∗bu‖2

)
= 1

q(−λ− C)
(�(q)

b,λu | u ).

Hence,

‖u‖ ≤ 1

q(−λ− C)
‖�(q)

b,λu‖. (4.26)

From (4.26), the theorem follows. ��

We now consider (0, 1)-forms. Let G(1)
λ be as in (4.25). Since G(1)

λ is L2 bounded,
there is C0 > 0 such that

‖G(1)
λ v‖ ≤ C0‖v‖, for every v ∈ E (1)(λ,

√−1T ). (4.27)

We use the previous result to solve the ∂b-equation for eigenforms of
√−1T .

Theorem 4.11 Assume that 2
√−1L = �X , gX is complete and there is C > 0 such

that

√−1RK ∗X ≥ −C�X .

Let λ ∈ R, λ < −C. For every v ∈ E (1)(λ,
√−1T ) with ∂bv = 0, we can find

u ∈ Dom ∂b
⋂

E (0)(λ,
√−1T ) such that

∂bu = v,

‖u‖2 ≤ C0‖v‖2,
(4.28)

where C0 > 0 is a constant as in (4.27).

Proof Let v ∈ E (1)(λ,
√−1T ) with ∂bv = 0. From (4.25), we have

v = ∂b ∂
∗
bG

(1)
λ v + ∂

∗
b∂bG

(1)
λ v. (4.29)

Since ∂b

(
∂
∗
b∂bG

(1)
λ v
)
= ∂bv − ∂

2
b ∂
∗
bG

(1)
λ v = 0, ∂

∗
b

(
∂
∗
b∂bG

(1)
λ v
)
= 0, ∂

∗
b∂bG

(1)
λ v ∈

ker�(1)
b,λ. From Theorem 4.10, we see that ∂

∗
b∂bG

(1)
λ v = 0. From this observation and

(4.29), we get v = ∂bu, u = ∂
∗
bG

(1)
λ v. Now,

‖u‖2 = ‖∂∗bG(1)
λ v‖2 ≤ ‖∂bG(1)

λ v‖2 + ‖∂∗bG(1)
λ v‖2

= (�(1)
b,λG

(1)
λ v |G(1)

λ v ) = ( v |G(1)
λ v ) ≤ C0‖v‖2,

where C0 > 0 is as in (4.27). The theorem follows. ��
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Fix q ∈ {0, 1, . . . , n}. Let S(q) : L2
0,q(X)→ Ker�(q)

b be the orthogonal projection
with respect to ( · | · ). From Proposition 4.8, we can check that

QλS
(q) = S(q)Qλon L

2
0,q(X),

Q[λ1,λ]S(q) = S(q)Q[λ1,λ]on L2
0,q(X),

Qτ S
(q) = S(q)Qτon L

2
0,q(X).

(4.30)

We recall the following notion introduced in [19, Definition 1.8].

Definition 4.12 Fixq ∈ {0, 1, 2, . . . , n}. LetQ : L2
0,q(X)→ L2

0,q(X)be a continuous

operator.We say that�(q)
b has local L2 closed range on an open set D ⊂ X with respect

to Q if for every D′ � D, there exist constants CD′ > 0 and p ∈ N, such that

‖Q(I − S(q))u‖2 ≤ CD′
(
(�(q)

b )pu | u), for all u ∈ 	
0,q
c (D′).

We remind that we do not assume that �X = 2
√−1L . The Levi form 2

√−1L
induces a Hermitian metric 〈 · | · 〉L on CT X and 〈 · | · 〉L induces a Hermitian metric
〈 · | · 〉L on T ∗•,•X . More precisely, if X is strictly pseudoconvex, i.e., 2

√−1L ∈
	1,1(X) is positive definite, then we can construct a Hermitian metric 〈 · | · 〉L on
CT X = T (1,0)X⊕T (0,1)X⊕C{T } in the followingway: For arbitrary a, b ∈ T (1,0)X ,
〈a|b〉L := 2L (a, b), 〈a|b〉L := 〈b|a〉L , 〈a|b〉L := 0 and 〈T |T 〉L := 1.We simply
use 2

√−1L to represent 〈 · | · 〉L . Let ( · | · )L be the L2 inner product on 	
•,•
c (X)

induced by 〈 · | · 〉L and let L2•,•(X ,L ) be the completion of 	
•,•
c (X) with respect

to ( · | · )L . We write L2(X ,L ) := L2
0,0(X ,L ). For f ∈ L2•,•(X ,L ), we write

‖ f ‖2L := ( f | f )L .

Let R
K ∗X
L be the Chern curvature of K ∗X with respect to the Hermitian metric 〈, 〉L

on X , see (2.26). Locally it can be represented by

R
K ∗X
L = ∂b∂b log det

(〈Z j |Zk〉L
)n
j,k=1 , (4.31)

where {Z j }nj=1 ⊂ T (1,0)X is as in (2.15).
For u ∈ 	

•,•
c (X), from Lemma 4.7 and (4.19), we see that Qλu, Q[λ1,λ]u, Qτu are

independent of the choices of R-invariant Hermitian metrics on X .

Theorem 4.13 Assume that gL is complete and there is C > 0 such that

√−1RK ∗X
L ≥ −2C√−1L , (2

√−1L )n ∧ ω0 ≥ C�n
X ∧ ω0. (4.32)

Let D � X be an open set. Let λ ∈ R, λ < −C. Then, �(0)
b has local closed range

on D with respect to Qλ.

Proof Let u ∈ C∞c (D). Let v := ∂bQλu = Qλ∂bu. Since ∂bu ∈ 	
0,1
c (D),

Qλ∂bu ∈ L2•,•(X ,L )
⋂

L2•,•(X).
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From Theorem 4.11, there exists g ∈ L2(X ,L ) with

‖g‖2L ≤ C0‖∂bQλu‖2L ≤ C0‖∂bu‖2L (4.33)

such that
∂bg = ∂bQλu, (4.34)

where C0 > 0 is a constant as in (4.28). Since ∂b(I − S(0))Qλu = ∂bQλu and
(I − S(0))Qλu ⊥ ker ∂b, we have

‖(I − S(0))Qλu‖2 ≤ ‖g‖2 ≤ 1

C
‖g‖2L , (4.35)

where C > 0 is a constant as in (4.32). From (4.32), (4.33), and (4.35), we have

‖Qλ(I − S(0))u‖2 = ‖(I − S(0))Qλu‖2 ≤ 1

C
‖g‖2L ≤

C0

C
‖∂bu‖2L . (4.36)

Since ∂bu has compact support in D, there exists C1 > 0 independent of u such that

‖∂bu‖2L ≤ C1‖∂bu‖2. (4.37)

(4.36) and (4.37), the theorem follows. ��
For λ ∈ R, λ ≤ 0, let τλ ∈ C∞(R, [0, 1]), τλ = 1 on ] − ∞, 2λ], τλ = 0 outside

(−∞, λ]. It is clear that ‖Qτλ(I − S(0))u‖ ≤ ‖Qλ(I − S(0))u‖, for every u ∈ L2(X).
From this observation and Theorem 4.13, we deduce that

Theorem 4.14 Assume that gL is complete and there is C > 0 such that

√−1RK ∗X
L ≥ −2C√−1L , (2

√−1L )n ∧ ω0 ≥ C�n
X ∧ ω0. (4.38)

Let D � X be an open set. Let λ ∈ R, λ < −C. Then, �(0)
b has local closed range on

D with respect to Qτλ .

4.4 Local Closed Range for�(n,0)
b

In this section, wewill establish the local closed range property for�(n,0)
b under appro-

priate curvature assumptions. We observe that the condition (4.32) can be removed, if
we consider (n, 0)-forms instead of smooth function. We will adopt the same notation
as before.

Let �b be the Gaffney extension of the usual Kohn Laplacian. Let �(n,q)
b be the

restriction of �b acting on (n, q)-forms. Set

E (n,q)(λ,
√−1T ) := E (λ,

√−1T ) ∩ L2
n,q (X), �(n,q)

b,λ := �(n,q)
b |

E (λ,
√−1T )∩Dom�(n,q)

b
.

(4.39)
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Let S(n,q) : L2
n,q(X) → Ker�(n,q)

b be orthogonal projection. It is known that

Qτ , Qλ, Q[λ1,λ] commutes with S(n,q) on L2
n,q(X). Now, we present the main result

of this section as follows:

Theorem 4.15 Let X be a CR manifold with a transversal CR R-action. Let �X be an
R-invariant Hermitian metric on X. Assume that gL is complete. Let D � X be an
open set. Let λ ∈ R, λ < 0. Then, �(n,0)

b has local closed range on D with respect to

Qλ, i.e., there exists C > 0 such that for all u ∈ 	
n,0
c (D),

‖Qλ(I − S(n,0))u‖2 ≤ C‖∂bu‖2. (4.40)

This result is very natural in view of the Kodaira vanishing theorem, in the same
way as Theorem 4.13 is parallel to the Kodaira–Serre type vanishing theorem. The
proof is analog to the proof of Theorem 4.13.

Firstly, from Corollary 3.6 and the density Lemma 4.1, we obtain the following:

Lemma 4.16 With the notations used above, let �X be a Hermitian metric on X such
that

2
√−1L = �X . (4.41)

Then for any u ∈ L2
n,q(X)∩Dom ∂b ∩Dom ∂

∗
b ∩Dom(

√−1T ), 1 ≤ q ≤ n, we have

(
−√−1Tu|u

)
≤ 1

q

(
‖∂bu‖2 + ‖∂∗bu‖2

)
. (4.42)

Lemma 4.17 Assume that 2
√−1L = �X and gX is complete. Then, for any u ∈

L2
n,q(X) ∩ Dom ∂b ∩ Dom ∂

∗
b ∩ E (λ,

√−1T ), λ < 0, and 1 ≤ q ≤ n, we have

‖u‖2 ≤ 1

q(−λ)

(
‖∂bu‖2 + ‖∂∗bu‖2

)
. (4.43)

Proof Let u ∈ L2
n,q(X) ∩Dom ∂b ∩Dom ∂

∗
b ∩ E (λ,

√−1T ), λ < 0, and 1 ≤ q ≤ n.
Let M  1 be a sufficiently large positive real number such that −M < λ and
uM := Q[−M,λ]u. By Proposition 4.8, we see that

uM ∈ L2
n,q(X) ∩ Dom ∂b ∩ Dom ∂

∗
b ∩ E (λ,

√−1T ) ∩ Dom(
√−1T ). (4.44)

Then

−λ‖uM‖2 ≤
(
−√−1TuM |uM

)
≤ 1

q

(
‖∂buM‖2 + ‖∂∗buM‖2

)

≤ 1

q

(
‖Q[−M,λ]∂bu‖2 + ‖Q[−M,λ]∂

∗
bu‖2

)
.

(4.45)

By letting M →+∞ we complete the proof. ��
Moreover, we have the following analog of Theorem 4.10.
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Theorem 4.18 Let X be a CR manifold with a transversal CR R-action. Let �X be an
R-invariant Hermitian metric on X. Assume that 2

√−1L = �X and gX is complete.
Let 1 ≤ q ≤ n and λ < 0. Then the operator

�(n,q)
b,λ : Dom�(n,q)

b,λ ⊂ E (n,q)(λ,
√−1T )→ E (n,q)(λ,

√−1T ) (4.46)

has closed range, and
Ker�(n,q)

b,λ = {0}. (4.47)

Hence, there exists a bounded operator

G(n,q)
λ : E (n,q)(λ,

√−1T )→ Dom�(n,q)
b,λ (4.48)

such that
�(n,q)

b,λ G(n,q)
λ = I on E (n,q)(λ,

√−1T ). (4.49)

Therefore, we have C0 > 0 such that, for all v ∈ E (n,1)(λ,
√−1T ),

‖G(n,1)
λ v‖ ≤ C0‖v‖. (4.50)

Secondly, we solve the ∂b-equation as follows.

Theorem 4.19 Let X be a CR manifold with a transversal CR R-action. Let �X be an
R-invariant Hermitian metric on X. Assume that 2

√−1L = �X and gX is complete.
Then for every λ < 0 and every v ∈ E (n,1)(λ,

√−1T ) with ∂bv = 0, there exists
u ∈ Dom ∂b ∩ E (n,0)(λ,

√−1T ) such that

∂bu = v, ‖u‖2 ≤ C0‖v‖2. (4.51)

Proof Let λ < 0. Let v ∈ E (n,1)(λ,
√−1T ) with ∂bv = 0. We have

v = �(n,1)
b,λ G(n,1)

λ v = ∂b ∂
∗
bG

(n,1)
λ v + ∂

∗
b∂bG

(n,1)
λ v. (4.52)

Since ∂b

(
∂
∗
b∂bG

(n,1)
λ v

)
= ∂bv − ∂

2
b ∂
∗
bG

(n,1)
λ v = 0, ∂

∗
b

(
∂
∗
b∂bG

(n,1)
λ v

)
= 0,

∂
∗
b∂bG

(n,1)
λ v ∈ Ker�(n,1)

b,λ . (4.53)

Thus, we see that ∂
∗
b∂bG

(n,1)
λ v = 0 and v = ∂bu with u = ∂

∗
bG

(n,1)
λ v. Thus obtain

‖u‖2 = ‖∂∗bG(n,1)
λ v‖2 ≤ ‖∂bG(n,1)

λ v‖2 + ‖∂∗bG(n,1)
λ v‖2

= (�(n,1)
b,λ G(n,1)

λ v |G(n,1)
λ v ) = ( v |G(n,1)

λ v )

≤ C0‖v‖2.
(4.54)

The proof is complete. ��
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Proof of Theorem 4.15 Note that �X is not necessarily equal to 2
√−1L so we have

to deduce the general case to the particular case considered in Theorems 4.16–4.19.
Let λ < 0. Let v := ∂bQλu = Qλ∂bu. Note that Qλ is independent of the choice
of �X . Then v ∈ L2

n,1(X ,L ) ∩ L2
n,1(X). From the above theorem, we can find

g ∈ L2
n,0(X ,L ) such that ∂bg = v and

‖g‖2L ≤ C0‖v‖2L = C0‖Qλ∂bu‖2L ≤ C0‖∂bu‖2L . (4.55)

where the first inequality in (4.55) follows from Theorem 4.19. We claim that

‖g‖ = ‖g‖L

and thus g ∈ L2
n,0(X ,L ) ∩ L2

n,0(X). In fact, we write locally

g = αdz1 ∧ · · · ∧ dzn . (4.56)

With respect to �X =
√−1〈Zi |Z j 〉dzi ∧ dz j and 2

√−1L = √−1〈Zi |Z j 〉L dzi ∧
dz j ,

|g|2 = |α|2 det(〈Zi |Z j 〉)−1,
|g|2L = |α|2 det(〈Zi |Z j 〉L )−1,

(4.57)

and, respectively, the volume forms are given by

�n
X ∧ ω0 = n!(√−1)n det(〈Zi |Z j 〉)dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn ∧ ω0,

(2
√−1L )n ∧ ω0 = n!(√−1)n det(〈Zi |Z j 〉L )dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn ∧ ω0.

(4.58)
Thus, the claim follows from

‖g‖2 =
∫

X
|g|2�n

X ∧ ω0 =
∫

X
|g|2L (2

√−1L )n ∧ ω0 = ‖g‖2L . (4.59)

Since ∂b(I − S(n,0))Qλu = ∂bQλu = v and (I − S(n,0))Qλu ⊥ Ker ∂b, we have
∂b(I − S(n,0))Qλu is the solution of minimal norm with respect to �X , i.e.,

‖∂b(I − S(n,0))Qλu‖2 ≤ ‖g‖2 = ‖g‖2L ≤ C0‖∂bu‖2L ≤ C0C1‖∂bu‖2 (4.60)

by supp(u) � D. ��

4.5 L2 Estimates for @b,E

In this section, we prove an analog for the ∂b,E -operator of the L2-estimates of the
Hörmander–Andreotti–Vesentini estimates for ∂ . As in the case of complexmanifolds,
we use the Bochner–Kodaira–Nakano formula in the present form (3.36). In order to
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eliminate the first-order error term [(∇E )1,0, T ∗]− [∂b,E , T ∗] in (3.36), we reformu-
late (3.36) can be reformulated as in [10, VII.1]. Under the hypothesis of Theorem 3.7,
we have on 	•,•(X , E),

�E
b = �E

b,T + [2L T +√−1RE ,�] + T�, (4.61)

where �E
b,T := [(∇E )1,0 + T , (∇E )1,0∗ + T ∗] is a positive formally self-adjoint

operator, and

T� := [�, [�,

√−1
2

∂b∂b�X ]] − [∂b�X , (∂b�X )∗] (4.62)

is an operator of order zero depending only on the torsion of Hermitian metric �X .

Theorem 4.20 (L2-estimates for ∂b) Let X be a CR manifold with a smooth locally
free CR R-action. Let �X be an R-invariant Hermitian metric on X. Assume gX
is complete. Let E be a R-equivariant CR line bundle over X with a R-invariant
Hermitian metric hE . Assume that for some (r , q), q ≥ 1, there exists a function
ψ : X → [0,∞) such that, for all s ∈ 	

r ,q
c (X , E), pointwisely

〈
[2L T +√−1RE ,�] + T�s|s

〉
≥ ψ |s|2. (4.63)

Then, for any f ∈ L2
r ,q(X , E) satisfying ∂b,E f = 0 and

∫
X ψ−1| f |2dvX <∞, there

exists g ∈ L2
r ,q−1(X , E) such that ∂b,Eg = f and ‖g‖2 ≤ ∫X ψ−1| f |2dvX .

Proof Consider the complex of closed densely defined operators

L2
r ,q−1(X , E)

T=∂b,E−−−−→ L2
r ,q(X , E)

S=∂b,E−−−−→ L2
r ,q+1(X , E), (4.64)

where T and S are maximal extensions of ∂b,E . We apply (4.61) and obtain for all
s ∈ 	

r ,q
c (X , E), it follows that

‖∂b,Es‖2 + ‖∂∗b,Es‖2 ≥
(
[2L T +√−1RE ,�] + T�s|s

)
≥
∫

X
ψ |s|2dvX .

(4.65)
By Cauchy–Schwarz inequality,

|( f |s)|2 = |(ψ−1/2 f |ψ1/2s)|2 ≤
∫

X
ψ−1| f |2dvX ·

(
‖∂b,Es‖2 + ‖∂∗b,E‖2

)
(4.66)

Since gX is complete, the above inequality still holds for all s ∈ Dom(S)∩Dom(T ∗)
by the density Lemma 4.1. Consider now s ∈ Dom(T ∗) and write the orthogonal
decomposition s = s1+s2 with s1 ∈ Ker(S) and s2 ∈ Ker(S)⊥ ⊂ [Im(S∗)] ⊂ Ker T ∗.
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So s1 = s − s2 ∈ Ker(S) ∩ Dom(T ∗). Recall f ∈ Ker(S),

|( f |s)|2 = |( f |s1)|2 ≤
∫

X
ψ−1| f |2dvX · ‖T ∗s1‖2 =

∫

X
ψ−1| f |2dvX · ‖T ∗s‖2.

(4.67)
We consider λ : Im(T ∗) → C defined by λ(T ∗s) = ( f |s) for s ∈ Dom(T ∗).

We see that λ is C-antilinear map and |λ(T ∗s)| ≤ (
∫
X ψ−1| f |2dvX )1/2‖T ∗s‖,

i.e., λ is bounded with norm ‖λ‖ ≤ (
∫
X ψ−1| f |2dvX )1/2. By the complex Hahn–

Banach theorem we can extend λ to L2
r ,q−1(X , E) with the same norm ‖λ‖ ≤

(
∫
X ψ−1| f |2dvX )1/2.
By the Riesz representation theorem, there exists g ∈ L2

r ,q−1(X , E) such that

λ(α) = (g|α) for α ∈ L2
r ,q−1(X , E) with ‖g‖2 = ‖λ‖2 ≤ ∫X ψ−1| f |2dvX . We set

α = T ∗s, s ∈ Dom(T ∗). Thus (g|T ∗s) = λ(T ∗s) = ( f |s) and g ∈ Dom(T ∗∗) =
Dom(T ) satisfying Tg = f . ��

For certain complete CRmanifold endowedwith aNakano q-semipositive line bun-
dle, the L2 method applies to solve the ∂b,E -equation for (n, q)-forms as follows. For
the cohomology aspect of Nakano q-semipositive line bundles on complex manifolds,
see [30].

Corollary 4.21 Let X be a CR manifold with a smooth locally free CR R-action. Let
�X be anR-invariant Hermitian metric on X. Assume gX is complete. AssumeL = 0
and d�X = 0. Let E be a R-equivariant CR line bundle over X with a R-invariant
Hermitian metric hE . Let λ1 ≤ · · · ≤ λn be eigenvalues of RE with respect to
�X . Assume (E, hE ) is Nakano q-semipositive with respect to �X , i.e., λ1 + · · · +
λq ≥ 0. Then, for any f ∈ L2

n,q(X , E) satisfying ∂b,E f = 0 and
∫
X (λ1 + · · · +

λq)
−1| f |2dvX < ∞, there exists g ∈ L2

n,q−1(X , E) such that ∂b,Eg = f and

‖g‖2 ≤ ∫X (λ1 + · · · + λq)
−1| f |2dvX .

4.6 Vanishing Theorems

In this section, we present some vanishing theorems that follow from the previous
L2 estimates. We obtain first a CR counterpart of the Kodaira vanishing theorem [23,
Theorem 1.5.4.(a)] as follows:

Corollary 4.22 Assume that 2
√−1L = �X , gX is complete and let λ < 0 and

1 ≤ q ≤ n. Then, we have

Ker�b ∩ E (λ,
√−1T ) ∩ L2

n,q(X) = 0. (4.68)

This follows immediately from Theorem 4.18.
We obtain a CR counterpart of the Kodaira–Serre vanishing theorem [23, Theorem

1.5.6] as follows:

Corollary 4.23 Assume that 2
√−1L = �X , gX is complete and let C > 0 such that

√−1RK ∗X ≥ −C�X . (4.69)
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Let λ < −C and 1 ≤ q ≤ n. Then, we have

Ker�b ∩ E (λ,
√−1T ) ∩ L2

0,q(X) = 0. (4.70)

This follows immediately from Theorem 4.10. We note that the previous vanishing
theorems on CR manifolds imply the following generalizations due to Andreotti–
Vesentini [2] of the Kodaira–Serre and Kodaira vanishing theorems for complete
Kähler manifolds.

Corollary 4.24 (Andreotti–Vesentini) Let (M, ω) be a complete Kähler manifold of
dimension n and let (L, hL)→ M be a Hermitian holomorphic line bundle such that√−1RL = ω and there is C > 0 such that

√−1RK ∗M
ω ≥ −Cω on M. Then there

exists m0 ∈ N such that for every m ≥ m0 we have Hq
(2)(M, Lm) = 0 for q ≥ 1,

where Hq
(2)(M, Lm) denotes the L2 q-th Dolbeault cohomology group with respect to

the metric (hL)m and volume form ωn/n! with values in Lm.

Proof We apply the previous results for the CR manifold X constructed in Exam-
ple 4.6. In this case T = ∂θ . For m ∈ Z, the space L2

0,q(M, Lm) is isometric

to the space of m-equivariant L2 forms on X , L2
0,q(X)m = {u ∈ L2

0,q(X) :
(eiθ )∗u = eimθu, for any eiθ ∈ S1}. Note that L2

0,q(X)m = E (q)(−m,
√−1∂θ )

and the L2-Dolbeault complex (L2
0,•(M, Lm), ∂) is isomorphic to the ∂b-complex

(L2
0,•(X)m, ∂b). Hence, the assertion follows from Theorem 4.10. ��

In the same vein recover from Theorem 4.18 the following vanishing theorem for
the L2-cohomology of positive bundles twisted with the canonical bundle on complete
Kähler manifolds.

Corollary 4.25 (Andreotti–Vesentini) Let (M, ω) be a complete Kähler manifold of
dimension n and let (L, hL)→ M be a Hermitian holomorphic line bundle such that√−1RL = ω. Then Hn,q

(2) (M, L) = 0 for q ≥ 1, where Hn,q
(2) (M, L) denotes the

L2 q-th Dolbeault cohomology group with respect to the metric hL and volume form
ωn/n! with values in KX ⊗ L.

4.7 Szegö Kernel Asymptotic Expansions

In this section, we prove Theorem 1.2 and Corollary 1.4. We first introduced some
notations. Let D ⊂ X be an open coordinate patch with local coordinates x =
(x1, . . . , x2n+1). Let m ∈ R, 0 ≤ ρ, δ ≤ 1. Let Smρ,δ(T

∗D) denote the Hörman-
der symbol space on T ∗D of order m type (ρ, δ) and let Smcl (T

∗D) denote the space
of classical symbols on T ∗D of orderm, see Grigis–Sjöstrand [11, Definition 1.1 and
p.35] and Definition 2.1. Let Lm

ρ,δ(D) and Lm
cl (D) denote the space of pseudodifferen-

tial operators on D of orderm type (ρ, δ) and the space of classical pseudodifferential
operators on D of order m, respectively.
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Let � be the characteristic manifold of �b. We have

� = �− ∪�+,

�− = {(x,−cω0(x)) ∈ T ∗X; c < 0},
�+ = {(x,−cω0(x)) ∈ T ∗X; c > 0}.

(4.71)

We recall the following definition introduced in [19, Definition 2.4].

Definition 4.26 Let Q : L2(X)→ L2(X) be a continuous operator. Let D � X be an
open local coordinate patch of X with local coordinates x = (x1, . . . , x2n+1) and let
η = (η1, . . . , η2n+1) be the dual variables of x . We write

Q ≡ 0at�− ∩ T ∗D ,

if for every D′ � D,

Q(x, y) ≡
∫

ei〈x−y,η〉q(x, η)dη on D′,

where q(x, η) ∈ S01,0(T
∗D′) and there exist M > 0 and a conic open neighborhood

�− of�− such that for every (x, η) ∈ T ∗D′∩�− with |η| ≥ M , we have q(x, η) = 0.

For a given point x0 ∈ D, let {Wj }nj=1 be an orthonormal frame of T (1,0)X with
respect to 〈 · | · 〉 near x0, for which the Levi form is diagonal at x0. Put

Lx0(Wj ,W �) = μ j (x0)δ j� , j, � = 1, . . . , n . (4.72)

We will denote by

detLx0 =
n∏
j=1

μ j (x0) . (4.73)

We recall the following results in [19, Theorems 1.9, 5.1].

Theorem 4.27 Let D � X be an open coordinate patch with local coordinates x =
(x1, . . . , x2n+1). Let Q : L2(X) → L2(X) be a continuous operator and let Q∗ be
the L2 adjoint of Q with respect to ( · | · ). Suppose that�(0)

b has local L2 closed range
on D with respect to Q and QS(0) = S(0)Q on L2(X) and

Q − Q0 ≡ 0 at�− ∩ T ∗D,

where Q0 ∈ L0
cl (D). Then,

(Q∗S(0)Q)(x, y) ≡
∫ ∞
0

eiϕ(x,y)t a(x, y, t)dt on D, (4.74)
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where
ϕ ∈ C∞(D × D), Im ϕ(x, y) ≥ 0,

ϕ(x, x) = 0, ϕ(x, y) �= 0 if x �= y,

dxϕ(x, y)
∣∣
x=y = ω0(x), dyϕ(x, y)

∣∣
x=y = −ω0(x),

ϕ(x, y) = −ϕ(y, x),

(4.75)

a(x, y, t) ∈ Sncl
(
D × D × R+

)
and the leading term a0(x, y) of the expansion (2.4)

of a(x, y, t) satisfies

a0(x, x) = 1

2
π−n−1|detLx |q(x, ω0(x))q(x, ω0(x)), for all x ∈ D, (4.76)

wheredetLx is the determinant of theLevi formdefined in (4.73), q(x, η) ∈ C∞(T ∗D)

is the principal symbol of Q.

We refer the reader to [19, Theorems 3.3, 4.4] for more properties for the phase ϕ

in (4.75). Let D = U ×I be a BRT chart with BRT coordinates x = (x1, . . . , x2n+1).
For λ ∈ R, put

Q̂τλ := (2π)−(2n+1)
∫

ei〈x−y,η〉τλ(−η2n+1)dη ∈ L0
1,0(D), (4.77)

where τλ ∈ C∞(R) is as in the discussion before Theorem 4.14. It is not difficult to
see that

Q̂τλ − I ≡ 0 at�−
⋂

T ∗D. (4.78)

Assume that theR-action is free. From (4.11), we see that Qτλ = Q̂τλ on D. From this
observation, Theorems 4.14, 4.27, (4.78), and noticing that Q∗τλ

S(0)Qτλ = Qτ 2λ
S(0),

where Q∗τλ
is the L2 adjoint of Qτλ with respect to ( · | · ), we get

Theorem 4.28 Suppose that the R-action is free. Assume that gL is complete and
there is C > 0 such that

√−1RK ∗X
L ≥ −2C√−1L , (2

√−1L )n ∧ ω0 ≥ C�n
X ∧ ω0.

Let D = U × I � X be a BRT chart with BRT coordinates x = (x1, . . . , x2n+1). Let
λ ∈ R, λ < −C. Then,

(Qτ 2λ
S(0))(x, y) ≡

∫ ∞
0

eiϕ(x,y)t s(x, y, t)dt on D, (4.79)

where ϕ ∈ C∞(D×D) is as in (4.74), s(x, y, t) ∈ Sncl
(
D×D×R+

)
and the leading

term s0(x, y) of the expansion (2.4) of s(x, y, t) satisfies

s0(x, x) = 1

2
π−n−1|detLx |, for all x ∈ D. (4.80)

123



266 Page 44 of 53 C-Y Hsiao et al.

We now assume that theR-action is not free. From (4.8), we know that theR-action
comes from aCR torus actionT

d = (eiθ1 , . . . , eiθd ) on X andω0,�X areT
d invariant.

We will use the same notations as in the discussion before Proposition 4.8. We need

Lemma 4.29 Suppose that theR-action is not free.With the notations and assumptions
used above, let D = U×I � X be aBRT chart with BRT coordinates x = (x ′, x2n+1),
x ′ = (x1, . . . , x2n). Fix D0 � D and λ ∈ R. For u ∈ C∞c (D0), we have

Qτλu = Q̂τλu + R̂τλu on D0,

(R̂τλu)(x) = 1

2π

∑

(m1,...,md )∈Zd

∫

Td

ei〈x2n+1−y2n+1,η2n+1〉+i(
∑d

j=1 m jβ j )y2n+1−im1θ1−...−imdθd

× τλ(−η2n+1)(1− χ(y2n+1))u((eiθ1 , . . . , eiθd ) ◦ x ′)dTddη2n+1dy2n+1 on D0,

(4.81)
whereχ ∈ C∞c (I ),χ(x2n+1) = 1 for every (x ′, x2n+1) ∈ D0 andβ1 ∈ R, . . . , βd ∈ R

are as in (4.17).

Proof Wealsowrite y = (y′, y2n+1) = (y1, . . . , y2n+1), y′ = (y1, . . . , y2n), to denote
the BRT coordinates x . Let u ∈ C∞c (D0). From (4.19), it is easy to see that on D,

Qτλu(y) =
∑

(m1,...,md )∈Zd

τλ(−
d∑
j=1

m jβ j )e
i(
∑d

j=1 m jβ j )y2n+1×
∫

Td
e−(im1θ1+...+imdθd )u((eiθ1 , . . . , eiθd ) ◦ y′)dTd .

(4.82)

Now, we claim that
Q̂τλ + R̂τλ = Qτλ onC∞0 (D0). (4.83)

Let u ∈ C∞c (D0). From Fourier inversion formula, it is straightforward to see that

Q̂τλu(x) = 1

2π

∑

(m1,...,md )∈Zd

∫
ei〈x2n+1−y2n+1,η2n+1〉τλ(−η2n+1)χ(y2n+1)

× ei(
∑d

j=1 m jβ j )y2n+1−im1θ1−...−imdθd u((eiθ1 , . . . , eiθd ) ◦ x ′)dTddy2n+1dη2n+1.
(4.84)

From (4.84) and the definition of R̂τλ , we have

(Q̂τλ + R̂τλ)u(x)

= 1

2π

∑

(m1,...,md )∈Zd

∫
ei〈x2n+1−y2n+1,η2n+1〉τλ(−η2n+1)

× ei(
∑d

j=1 m jβ j )y2n+1−im1θ1−...−imdθd u((eiθ1 , . . . , eiθd ) ◦ x ′)dTddy2n+1dη2n+1.
(4.85)

Note that the following formula holds for every α ∈ R,

∫
eiαy2n+1e−iy2n+1η2n+1dy2n+1 = 2πδα(η2n+1), (4.86)
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where the integral is defined as an oscillatory integral and δα is the Dirac measure at
α. Using (4.82), (4.86), and the Fourier inversion formula, (4.85) becomes

(Q̂τλ + R̂τλ)u(x) =
∑

(m1,...,md )∈Zd

τλ(−
d∑
j=1

m jβ j )e
i(
∑d

j=1 m jβ j )x2n+1×
∫

Td

e−im1θ1−...−imdθd u((eiθ1 , . . . , eiθd ) ◦ x ′)dTd

=Qτλu(x).

(4.87)

From (4.87), the claim (4.83) follows. ��
To study Qτ 2λ

S(0) when the R is not free, we also need the following two known
results [19, Theorems 3.2, 5.2].

Theorem 4.30 We assume that the R-action is arbitrary. Let D � X be a coordinate
patch with local coordinates x = (x1, . . . , x2n+1). Then there exist properly supported
continuous operators A ∈ L−11

2 , 12
(D) , S̃ ∈ L0

1
2 , 12

(D), such that

�(0)
b A + S̃ = I on D,

A∗�(0)
b + S̃ = I on D,

�(0)
b S̃ ≡ 0 on D,

A ≡ A∗ on D, S̃ A ≡ 0 on D,

S̃ ≡ S̃∗ ≡ S̃2 on D,

(4.88)

where A∗, S̃∗ are the formal adjoints of A, S̃ with respect to ( · | · ), respectively, and
S̃(x, y) satisfies

S̃(x, y) ≡
∫ ∞
0

eiϕ(x,y)t s(x, y, t)dt on D, (4.89)

where ϕ(x, y) ∈ C∞(D × D) and s(x, y, t) ∈ Sncl (D × D × R+) are as in (4.79).

Theorem 4.31 Let us consider an arbitrary R-action and let Q : L2(X)→ L2(X) be
a continuous operator and let Q∗ be the L2 adjoint of Q with respect to ( · | · ). Suppose
that �(0)

b has local L2 closed range on D with respect to Q and QS(0) = S(0)Q on
L2(X). Let D be a coordinate patch with local coordinates x = (x1, . . . , x2n+1). We
have

Q∗S(0)Q ≡ S̃∗Q∗QS̃on D, (4.90)

where S̃ is as in Theorem 4.30.

For the proof we need the following.
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Lemma 4.32 Suppose that the R-action is not free. Fix p ∈ X. Let D = U × I be a
BRT chart defined near p with BRT coordinates x = (x ′, x2n+1), x ′ = (x1, . . . , x2n),
x(p) = 0. Fix D0 � D, p ∈ D0, and λ ∈ R. Then,

S̃ R̂τλ ≡ 0 on D0,

where R̂τλ and S̃ are as in Lemma 4.29 and Theorem 4.30, respectively.

Proof From (4.75), we may assume D0 is small so that

|∂y2n+1ϕ(x, y)| ≥ C, for every (x, y) ∈ D0, (4.91)

where C > 0 is a constant. Let g ∈ C∞c (D0). From (4.81) and (4.89), we have

(S̃ R̂τλg)(x)

= 1

2π

∑

(m1,...,md )∈Zd

∫
eitϕ(x,u)a(x, u, t)ei〈u2n+1−y2n+1,η2n+1〉+i(

∑d
j=1 m jβ j )y2n+1−i∑d

j=1 m j θ j

× τλ(−η2n+1)(1− χ(y2n+1))g((eiθ1 , . . . , eiθd ) ◦ u′)dTddη2n+1dy2n+1dvX (u) on D0,

(4.92)
where we also write u = (u′, u2n+1), u′ = (u1, . . . , u2n), to denote the BRT coor-
dinates x . Since u2n+1 �= y2n+1, for every (u′, u2n+1) ∈ D0, y2n+1 ∈ Supp (1 −
χ(y2n+1)), we can integrate by parts in η2n+1 and rewrite (4.92):

(S̃ R̂τλg)(x)

= 1

2π

∑

(m1,...,md )∈Zd

∫
eitϕ(x,u)a(x, u, t)

1

i(u2n+1 − y2n+1)

× ei〈u2n+1−y2n+1,η2n+1〉+i(
∑d

j=1 m jβ j )y2n+1−i∑d
j=1 m j θ j

× τ ′λ(−η2n+1)(1− χ(y2n+1))g((eiθ1 , . . . , eiθd ) ◦ u′)dTddη2n+1dy2n+1dvX (u) on D0.

(4.93)
Let

A(x, u′, y2n+1)

:=
∫

eitϕ(x,u)+i〈u2n+1−y2n+1,η2n+1〉a(x, u, t)(1− χ(y2n+1))
1

i(u2n+1 − y2n+1)
× τ ′λ(−η2n+1)dη2n+1du2n+1dt .

By (4.91) there exists c > 0 such that

|∂u2n+1(i tϕ(x, u)+ i〈u2n+1 − y2n+1, η2n+1〉)| ≥ ct,

for t  |λ|, η2n+1 ∈ Supp τ ′λ(−η2n+1)
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for every (x, u) ∈ D0× D0. Hence, we can integrate by parts in u2n+1 and η2n+1 and
deduce that

A(x, u′, y2n+1) ∈ C∞(D0 × D0 × R)and A(x, u′, y2n+1)is a Schwartz function in y2n+1.
(4.94)

We have

(S̃ R̂τλg)(x)

= 1

2π

∑

(m1,...,md )∈Zd

∫
A(x, u′, y2n+1)ei(

∑d
j=1 m jβ j )y2n+1−im1θ1−...−imdθd

× g((eiθ1 , . . . , eiθd ) ◦ u′)dv(u′)dy2n+1dTd ,

(4.95)

where dvX (u) = dv(u′)du2n+1. From (4.94) and (4.95), we have

‖S̃ R̂τλg‖D0,s ≤ C
∑

(m1,...,md )∈Zd

∫ ∣∣∣
∫

Td
e−im1θ1−...−imd θd g((eiθ1 , . . . , eiθd ◦ u′)

∣∣∣
2
τ(u)dvX (u)

= C
∑

(m1,...,md )∈Zd

∫ ∣∣∣
∫

Td
e−im1θ1−...−imd θd g((eiθ1 , . . . , eiθd ◦ u)

∣∣∣
2
τ(u)dvX (u)

≤ Ĉ
∑

(m1,...,md )∈Zd

∫ ∣∣∣
∫

Td
e−im1θ1−...−imd θd g((eiθ1 , . . . , eiθd ◦ u)

∣∣∣
2
dvX (u)

≤ Ĉ0‖g‖2,
(4.96)

where ‖ · ‖D0,s denotes the standard Sobolev norm of order s on D0, C, Ĉ, Ĉ0 > 0
are constants, τ ∈ C∞0 (D), τ = 1 near D0. From (4.96), we deduce that

S̃ R̂τλ : L2
c(D0)→ Hs

loc (D0)is continuous, for every s ∈ N.

Let "X : C∞(X) → C∞(X) be the standard Laplacian on X induced by 〈 · | · 〉.
Since 〈 · | · 〉 is T

d invariant, "X is T
d invariant. Fix s ∈ N. Let

Gs : C∞c (D0)→ C∞c (D0)

be a parametrix of "s
X on D0 and Gs is properly supported on D0. Hence, there is a

properly supported smoothing operator

Fs : E ′(D0)→ C∞c (D0)

such that
g = ("s

XGs + Fs)g on D0, (4.97)

for all g ∈ C∞c (D0). Now, on D0,

S̃ R̂τλg = S̃ R̂τλ("s
XGsg)+ S̃ R̂τλ(Fsg). (4.98)
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Since Fs is smoothing, we have

‖S̃ R̂τλ(Fsg)‖D0,s ≤ C‖g‖−s, (4.99)

where C > 0 is a constant. Now, we can integrate by parts and repeat the proof of
(4.95) and show that

(S̃ R̂τλ"s
XGsg)(x)

= 1

2π

∑

(m1,...,md )∈Zd

∫
As(x, u

′, y2n+1)ei(
∑d

j=1 m jβ j )y2n+1−im1θ1−...−imdθd

× (Gsg)((e
iθ1 , . . . , eiθd ) ◦ u′)dv(u′)dy2n+1dTd ,

(4.100)

where

As(x, u
′, y2n+1) ∈ C∞(D0 × D0 × R)is a Schwartz function in y2n+1. (4.101)

From (4.100), (4.101), and noticing that Gs : H−2scomp (D)→ H0
comp (D) is continuous,

we can repeat the proof of (4.96) and conclude that

‖S̃ R̂τλ("s
XGsg)‖D0,s ≤ C‖Gsg‖ ≤ C1‖g‖−s, (4.102)

where C,C1 > 0 are constants. From (4.97), (4.98), (4.99), and (4.102), we get that

S̃ R̂τλ : H−scomp (D0)→ Hs
loc (D0)is continuous for every s ∈ N.

Hence, S̃ R̂τλ is smoothing on D0. ��
Theorem 4.33 Suppose that the R-action is not free. Assume that gL is complete and
there is C > 0 such that

√−1RK ∗X
L ≥ −2C√−1L , (2

√−1L )n ∧ ω0 ≥ C�n
X ∧ ω0.

Let D = U × I � X be a BRT chart with BRT coordinates x = (x1, . . . , x2n+1). Let
λ ∈ R, λ < −C. Then,

(Qτ 2λ
S(0))(x, y) ≡

∫ ∞
0

eiϕ(x,y)t s(x, y, t)dt on D, (4.103)

where ϕ ∈ C∞(D × D) and s(x, y, t) ∈ Sncl
(
D × D × R+

)
are as in (4.79).

Proof From (4.81), (4.90), and Lemma 4.32, we see that on D,

Qτ 2λ
S(0) ≡ S̃∗ Q̂∗τλ

Q̂τλ S̃.

Using this observation, we can repeat the proof of [19, Theorem 5.8] and obtain the
conclusion. ��
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Theorem 4.34 Let us consider an arbitrary R-action. Assume that gL is complete
and there is C > 0 such that

√−1RK ∗X
L ≥ −2C√−1L , (2

√−1L )n ∧ ω0 ≥ C�n
X ∧ ω0.

Let D = U× I be a BRT chart with BRT coordinates x = (x1, . . . , x2n+1). Let λ ∈ R,
λ < −C. Then,

(I − Qτ 2λ
)2S(0) ≡ 0 on D. (4.104)

Proof From (4.88), we have

(I − Qτ 2λ
)S(0) = S̃(I − Qτ 2λ

)S(0). (4.105)

From Lemma 4.32, we have

S̃(I − Qτ 2λ
) ≡ S̃(I − Q̂τ 2λ

) on D0.

Since WF (I − Q̂τ 2λ
)
⋂

�− = ∅ and WF′ (S̃) = diag (�− ×�−), we have

S̃(I − Q̂τ 2λ
) ≡ 0 on D0, (4.106)

where WF (I − Q̂τ 2λ
) denotes the wave front set of I − Q̂τ 2λ

and

WF′ (S̃) = {(x, ξ, y, η) ∈ T ∗D × T ∗D; (x, ξ, y,−η) ∈WF (S̃).

From (4.105) and (4.106), we get

(I − Qτ 2λ
)S(0) : L2(X)→ C∞(D)is continuous (4.107)

and hence
S(0)(I − Qτ 2λ

) : E ′(D)→ L2(X)is continuous. (4.108)

From (4.107) and (4.108), we get

(I − Qτ 2λ
)S(0)(I − Qτ 2λ

) : E ′(D)→ C∞(D)is continuous.

The theorem follows. ��
We can now prove the main result of this work.

Theorem 4.35 (=Theorem 1.2) Let the R-action be arbitrary. Assume that gL is com-
plete and there is C > 0 such that

√−1RK ∗X
L ≥ −2C√−1L , (2

√−1L )n ∧ ω0 ≥ C�n
X ∧ ω0.
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Let D � X be a local coordinate patch with local coordinates x = (x1, . . . , x2n+1).
Then,

S(0)(x, y) ≡
∫ ∞
0

eiϕ(x,y)t s(x, y, t)dt on D, (4.109)

where ϕ ∈ C∞(D×D) satisfies (4.75), s(x, y, t) ∈ Sncl
(
D×D×R+

)
and the leading

term s0(x, y) of the expansion (2.4) of s(x, y, t) satisfies

s0(x, x) = 1

2
π−n−1|detLx |, for all x ∈ D. (4.110)

Proof Let λ ∈ R, λ < −C . From Theorem 4.34, we have

(I − 2Qτ 2λ
+ Qτ 4λ

)S(0) ≡ 0 on D. (4.111)

We can repeat the proofs of Theorems 4.28 and 4.33 and get

Qτ 2λ
S(0) ≡

∫ ∞
0

eiϕ(x,y)t ŝ(x, y, t) on D,

Qτ 4λ
S(0) ≡

∫ ∞
0

eiϕ(x,y)t s̃(x, y, t) on D,

(4.112)

where ϕ ∈ C∞(D × D), ŝ(x, y, t), s̃(x, y, t) ∈ Sncl
(
D × D × R+

)
are as in (4.79).

From (4.111) and (4.112), the theorem follows. ��
Proof of Theorem 1.3 The proof is analogous to the proof of Theorem 1.2 by using
Theorem 4.15 instead of Theorem 4.13. ��
Proof of Corollary 1.4 Let K be a compact set of X . Fix x ∈ K . From Theorem 1.2
and the fact that the Szegő kernel is smoothing away the diagonal, we can repeat the
proof of [19, Theorem 1.10] and deduce that there are open neighborhoods Vx ⊂ Ux

of x and global smooth L2 CR functions ( f0,x , f1,x , · · · , fNx ,x ) = Fx such that
Fx : Ux → C

Nx+1 is an embedding and supK\Ux
| f0,x | ≤ 1

2 , infVx | f0,x | ≥ 1. There
exists x1, x2, . . . , xm ∈ K such that K ⊂ Vx1 ∪ Vx2 ∪ Vxm ⊂ Ux1 ∪Ux1 ∪Ux2 ∪Uxm .
Then K $ x �→ (Fx1, · · · , Fxm ) is an embedding. ��
Proof of Corollary 1.5 We proceed as in the proof of Corollary 1.5 by working on a
compact coordinate patch K with coordinates (x1, . . . , x2n+1) and observing that in
these coordinates a CR (n, 0)-form equals f dz1 ∧ . . .∧ dzn with f a CR function on
K . ��

5 Examples

We now consider Heisenberg group H = C
n × R with CR structure

T (1,0)
H := span

{
∂

∂z j
+ i

∂φ

∂z j
(z)

∂

∂x2n+1

}n
j=1

, (5.1)

123
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where φ ∈ C∞(Cn, R). Let ( · | · )H be the L2 inner product on H induced by the
Euclidean measure dx on R

2n+1. Let

SH : L2(H)→
{
u ∈ L2(H);

( ∂

∂z j
− i

∂φ

∂z j
(z)

∂

∂x2n+1

)
u = 0

}

be the orthogonal projection with respect to ( · | · )H and let SH(x, y) ∈ D ′(H×H) be
the distribution kernel of SH. From Theorem 1.2, we deduce

Corollary 5.1 With the notations used above, assume that
(

∂2φ(z)
∂z j ∂zk

)n
j,k=1 is positive

definite, at every z ∈ C
n. Let 0 < λ1(z) ≤ . . . ≤ λn(z) be the eigenvalues of(

∂2φ(z)
∂z j ∂zk

)n
j,k=1, for every z ∈ C

n. Suppose that there is C > 0 such that

√−1∂∂

(
− log det

(
∂2φ

∂z j∂zk

)n

j,k=1

)
≥ −C√−1∂∂φ ,

1

λ1(z)
≤ C, for every z ∈ C

n .

(5.2)

Let D � H be any open set. Then,

SH(x, y) ≡
∫ ∞
0

eiϕ(x,y)t s(x, y, t)dt on D, (5.3)

where ϕ ∈ C∞(D × D) and s(x, y, t) ∈ Sncl
(
D × D × R+

)
are as in Theorem 1.2.

Example 5.2 With the notations used in Corollary 5.1, assume that

φ(z) = |z|2 + r(z), (5.4)

with r(z) ∈ C∞c (Cn) and
√−1∂∂(|z|2+ r(z)) > 0 on C

n . With this φ, we can check
the conditions of Corollary 5.1 fulfilled as follows. In fact, in this case, we have

det

(
∂2φ

∂z j∂zk

)n

j,k=1
= det

(
∂2(|z|2 + r(z))

∂z j∂zk

)n

j,k=1
= 1+ F(z) > 0

with some F(z) ∈ C∞c (Cn). And we have

√−1∂∂

(
− log det

(
∂2φ

∂z j∂zk

)n

j,k=1

)
= √−1∂∂ (− log(1+ F(z))) ∈ 	1,1

c (Cn).

Since r(z) ∈ C∞c (Cn) and
√−1∂∂φ = √−1∂∂(|z|2 + r(z)) > 0, we have a uni-

form lower bound for the smallest eigenvalue, i.e., λ1(z) > 1/C1 for some C1 > 0.
Moreover, we can choose C2 > 0 sufficiently large such that

√−1∂∂ (− log(1+ F(z)))+ C2
√−1∂∂φ ≥ 0,
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since the first term
√−1∂∂ (− log(1+ F(z))) is a real (1, 1)-form with compact sup-

port inC
n and the second term

√−1∂∂φ is a real positive (1, 1)-formwith a uniformly
positive lower bound for the smallest eigenvalue λ1(z) > 1/C1 on C

n . Finally, we
obtain C := max{C1,C2} > 0 as desired in (5.2).

With this φ, it is easy to see that (5.2) hold. This example shows that, after small
perturbation of the Levi form of Heisenberg group, we still can obtain the Szegő kernel
expansion via Corollary 5.1.

Example 5.3 Let (X , T (1,0)X) be a strictly pseudoconvex, CR manifold of dimension
2n + 1, n ≥ 1, with a discrete, proper, CR action � such that the quotient X/� is
compact.Assume X admits a transversalCRR-actionon X and let�X be a�-invariant,
R-invariant, Hermitian metric on X . Then the conclusion of Theorem 1.2 holds. In
fact, the �-covering manifold is complete and we can find the desired constant C
depending on the fundamental domainU � X given by the �-action such that (1.7) is
fulfilled. As a consequence, if we consider the circle bundle case in which RL = 2L ,
we could obtain the Bergman kernel expansion for covering manifold [23, 6.1.2].
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