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1 Introduction

The first goal of this paper is to develop a differential geometric formalism on strictly
pseudoconvex CR manifolds with R-action, analogous to the Kéhler identities and
Bochner—Kodaira—Nakano formula for Hermitian manifolds. We refine in this way
Tanaka’s formulas in the spirit of Demailly’s general version of the latter formulas.
This formalism leads to vanishing theorems and L2-estimates for the ,-operator for
complete CR manifolds.

The second goal is to generalize the result of Boutet de Monvel-Sjostrand about
the singularities of the Szeg6 kernel for complete strictly pseudoconvex CR manifolds
with R-action. This entails global and local embeddability theorems for CR manifolds
with R-action, including Sasakian manifolds. Moreover, by applying our result for the
Grauert tube of a positive line bundle we obtain a new result about the expansion of
the Bergman kernel on complete Kihler manifolds.

Let (X, T"9X) be a CR manifold of dimension 2n + 1, n > 1. The orthogonal

projection S : L§ (X) — ker O onto ker (0 is called the Szegé projection,

while its distribution kernel S (x, y) is called the Szeg6 kernel, where Déq) denotes

the Kohn Laplacian acting on (0, g)-forms. The study of the Szeg6 kernel is a classical
subject in several complex variables and CR geometry. If X is compact strictly pseu-
doconvex and D}()O) has closed range, Boutet de Monvel-Sjostrand [5] showed that
S (x, y) is a complex Fourier integral operator. The Boutet de Monvel-Sjostrand
description of the Szegd kernel had a profound impact in several complex variables,
symplectic and contact geometry, geometric quantization, and Kéhler geometry. These
ideas also partly motivated the introduction of the recent direct approaches and their
various extensions, see [23, 24].

However, almost all the results on Szeg6 kernel assumed that X is compact, while
for non-compact complex manifolds the Bergman kernel asymptotics was comprehen-
sively studied [18, 19, 23-25], and used in the several applications mentioned above.
Note that for CR manifolds, besides the global embeddability question [4, 26], there
is an important delicate specific issue, namely the local embeddability [1, 20, 22, 27],
which will be treated here by the analysis of the Szeg6 kernel.

The Szegb kernel was used by Boutet de Monvel-Guillemin [6] to introduce the
Toeplitz quantization on compact contact manifolds. In the same vein, the question of
“quantization commutes with reduction” was studied on CR manifolds in the recent
paper [17]. It is natural to extend these results to complete Sasakian manifolds.

Let us see some simple examples. Consider the hypersurface ¥ := {z =
(Z1s-vzn) € C% Imzy = f(z1,...,20—1)}, Where f € €°(C"!,R). Then
Y is a non-compact CR manifold carrying many smooth CR functions, but even
in this simple example we do not know the behavior of the associated Szegé ker-
nel. Another example is the Heisenberg manifold H = C" x R with CR structure

TLOH = span {837], + i%(z) axziﬂ 1< n}, where ¢ € €°°(C", R). Then,
H is also a non-compact CR manifold and the Szeg6 kernel has been studied when
¢ is quadratic (see [14]). However, for general ¢ there are fewer results. Both Y and

H are non-compact CR manifolds with transversal CR R-action. Therefore, we think
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that the study of the Szeg6 kernels on non-compact CR manifolds with transversal CR
R-action is a very natural and interesting question.

In [15], the first author obtained the Szegd kernel asymptotic expansion on the non-
degenerate part of the Levi form under the assumption that Kohn Laplacian has closed
range in L?. The method in [15] works well for non-compact setting, but for general
non-compact CR manifolds, the closed range property is not a natural assumption. In
the Heisenberg case mentioned above, even for ¢p quadratic, Dgo) does not have closed
range; however, the Szeg6 kernel still has an asymptotic expansion.

In this paper, we show that D,()O) has local closed range with respect to a spectral
projection Q; (see Definition 4.12) under certain geometric conditions. Furthermore,
combining this local closed range property with a detailed analysis, we establish Szegd
kernel asymptotic expansions on non-compact strictly pseudoconvex complete CR
manifolds with transversal CR R-action under certain natural geometric conditions.
To study the local closed range property, we establish a CR Bochner—Kodaira—Nakano
formula analog to [9], see Theorem 3.3, which has its own interest. This is also a
refinement of Tanaka’s basic identities [28, Theorems 5.1, 5.2] in our context. We
remark that the results in this paper hold both for transversal CR R-action and S'-
action.

We will work in the following setting. Let X be a connected smooth paracompact
manifold of dimension 2n + 1, H X be a smooth sub-bundle of 7' X of rank 2n, and J
be a smooth complex structure on the fibers of HX. Let 79 X be the complex sub-
bundle of the complexification CH X of H X, which corresponds to the i eigenspace
of J, thatis, TOX = {v —iJv : v € HX}. We say that X is a CR manifold (of
hypersurface type) if the formal integrability condition

[¢>x, T"OX), ¢ x, T"OX)] c ¢, T"0X). (1.1)

holds. The sub-bundle H X is called Levi distribution and the annihilator (H X)° C
T*X of HX is called the characteristic bundle of the CR manifold X.

We will assume in the sequel that X is orientable. Since H X is oriented by its
complex structure, it follows that (H X )O is a real orientable line bundle, thus trivial.
A global frame of (H X)?, that is, a real non-vanishing 1-form wy € € (X, T*X)
such that (HX)? = Ry, is called characteristic 1-form.

Given a characteristic 1-form wg on X the Levi form .Z“0 is defined by

1
L =20, v) = zdwo(u, Jv), foru,ve H.X. (1.2)

We say that (X, HX, J) is strictly pseudoconvex if there exists a characteristic 1-form
wo the Levi form ™ is positive definite at every point x € X. If .£“0 is positive
definite, then dwy is symplectic on H X, thus wy is a contact form and H X is a contact
structure. Associated with a contact form wg one has the Reeb vector field T = T,
uniquely defined by the equations

wo(T) =1, dwy(T,)=0 onX. (1.3)
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Assumption 1.1 (X, HX, J, wp) is an orientable strictly pseudoconvex CR manifold
of dimension 2n + 1, n > 1, where H X is the Levi distribution, J is the complex
structure, and wq is a contact form. We assume that X is endowed with a smooth
locally free R-action preserving wp and J such that the infinitesimal generator of the
R-action is a Reeb vector field, denoted 7.

We denote by 709X and 7D X the bundles of tangent vectors of type (1, 0) and
(0, 1), respectively. By Assumption 1.1 the R-action is CR and transversal (see (2.12)
and (2.13)), hence we have a decomposition CT X = T00x o T7TODX @ CT. The
Levi form (1.2) induces a Hermitian metric, called the Levi (or Webster) metric,

1
(I')g =gz = 7dwo(. J) + ao(Jan() (1.4)
on T X and by extension on CT X, with the following properties:
7dOx 1 7OVx 71 7OXxeTOVX), (T|T)y=1.  (1.5)

In Sect. 2.2, we observe that Assumption 1.1 implies that the contact metric mani-
fold (X, wo, T, J, g) is a Sasakian manifold. Conversely, every compact Sasakian
manifold admits an R-action as in Assumption 1.1.

Let K% := det(T19X) and let Rf;x be the curvature of K% induced by (- |-) &
(see (2.26) and (4.31)).

More generally, we consider an arbitrary R-invariant Hermitian metric g = gx =
(-1-)¢ = (-1-)on CT X such that (1.5) holds. Given such a metric we will denote by
Oy its fundamental (1, 1)-form givenby O (a, b) = v/—1{a | b), fora, b € T1OX.
Let dvy be the volume form induced by the R-invariant metric gy asin (1.5).Let (- | -)
be the L? inner product on the space of smooth compactly supported functions E>°(X)
with respect to dvy. We denote by L?(X, dvy) the completion of E>°(X) with respect
to (-]-).

We denote by 9, the tangential Cauchy—Riemann operator (see Definition 2.3). The
Szegd projection is the orthogonal projection with respect to (- | -),

SO . 12(X. dvy) — kerdp N LA(X, dvy), (1.6)

on the space of square-integrable CR functions on X. The distribution kernel
SO(x,y) € Z'(X x X) of the Szegd projection is called the Szegd kernel. The
main result of this article is as follows:

Theorem 1.2 Let (X, HX, J, wp) be an orientable strictly pseudoconvex CR manifold
of dimension 2n + 1, n > 1, with an R-action on X as in Assumption 1.1. Let gx be
an R-invariant metric as in (1.5) and let ® x be its fundamental form. Assume that the
Levi metric g ¢ is complete and there is C > 0 such that

VEIRY > 20VTTY, QVEID Awy = COY Awy.  (17)
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Then the Szegd projection is a Fourier integral operator with complex phase, that is,
for any local coordinate patch (D, x = (x1, ..., X2on+1)) with D € X, we have

OO .
SO, y) —/ PV g (x, y, )dt € €°(D x D), (1.8)
0

where the phase function ¢ € €°°(D x D) satisfies

¢ € €°(D x D), Img(x,y) >0,
px,x) =0, ox,y)#0 if x #y,

1.9
dep(. )|, = o0(). dyp(x, )|,_, = o). (19

p(x,y) = —9(y, x),

ands(x,y,t) € S (D X D x R+) is a symbol of order n with asymptotic expansion
s(x,y,t) = Z?‘;o sj(x, y)t"_j whose leading term so(x, y) satisfies

1
so(x, x) = E7f"*1|det.,sfx|, forallx € D, (1.10)

where det L is the determinant of £y with respect to gx, cf. (4.73).

We will show in Lemma 2.7 that RZ;X = Ricg where Ricy € Q1(X) is the
pseudohermitian Ricci form with respect to the pseudohermitian structure wq (see
(2.10)). We refer to Definition 2.1 for the definition of the symbol space Sé’l (D x D x
R+) and to [19, Theorems 3.3, 4.4] for more properties for the phase ¢ in (1.8).

Examples for the situation described in Theorem 1.2 are given by Galois coverings
of compact strictly pseudoconvex CR manifolds (Examples 4.5, 5.3), circle bundles
of positive line bundles over complete Kédhler manifolds (Example 4.6), and, as men-
tioned before, the Heisenberg group (Sect. 5).

If we work with (n, 0)-forms we can drop some of the hypotheses of Theorem 1.2.

Theorem 1.3 Let (X, HX, J, wg) be an orientable strictly pseudoconvex CR manifold
of dimension 2n + 1, n > 1, with an R-action on X as in Assumption 1.1. Assume
that the Levi metric g ¢ is complete. Then the Szegé projection S0 Li,O(X ) —
ker d, C LﬁqO(X ) is a Fourier integral operator with complex phase, that is, for any
local coordinate patch (D, x = (x1, ..., X2+1)) with D € X, the Szegd kernel has
the form (1.8) with respect to the trivialization of Kx given by dzy A ... Adz,.

The equivariant Kodaira embedding theorems for Sasakian manifolds were obtained
in [13, 16]. From Theorem 1.2, we obtain a Boutet de Monvel type embedding theo-
rem [4] for complete Sasakian manifolds as follows, which is a generalization of the
embedding theorem for compact Sasakian manifolds [26].

Corollary 1.4 In the situation of Theorem 1.2 the space of L*> CR functions separate
points and give local coordinates on X. In particular, for any compact set of K C X
there exists a positive integer N and CR functions f1,..., fy € L2(X) N €2 (X)
such that (f1, ..., fn) is an embedding of K in CV.
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As a consequence of Theorem 1.3 we obtain the following:

Corollary 1.5 In the situation of Theorem 1.3 the space of L* CR (n, 0)-forms separate
points and give local coordinates on X. Thus, X is locally CR embeddable in an
Euclidean space. In particular, every Sasakian manifold with complete Levi metric
8. is locally CR embeddable by global CR (n, 0)-forms.

The question arises if one can extend these results for general strictly pseudocon-
vex CR manifolds (without Assumption 1.1 about the existence of an R-action). An
analytic property that we use is that the spectral projections Q;, of the operator /—1T
(see 4.7) commute to 3. Beyond that it is not clear what would be general geometric
or analytic conditions that would imply that the Szeg6 projector is a Fourier integral
operator.

We now apply our main result to complex manifolds. Let (L, 2) be a holomorphic
line bundle over a Hermitian manifold (M, ®,;), where hL denotes a Hermitian metric
on L and © )y is a positive (1, 1) form on M. For every k € N, let (L*, th) be the k-th
power of (L, h%). The positive (1, 1) form ©, and h-" induces a L? inner product
(-1 )ey on Q04 (M, L)), Let L2 (M. L¥) be the completion of Q% (M, L*) with
respect to (- | -)e,,. We write L2(M, L) := L%’O(M, LK), Let

HQ\ (M, LY = kerdy := {u € L*(M, L"); 9u = 0},

be the space of holomorphic square-integrable sections of L*. Let { f k}dk | be an
orthonormal basis for Hz)(M L) with respect to (- |-)e,,, where dy € N U {oo}.
The Bergman kernel of L is

di
Prx,y) ==Y A @ fF(0)* € €°(X x X, LFR (L5)). (1.11)
j=1

Let s be a local holomorphic frame of L defined on an open set D € M, |s|? w=€ —29,

¢ € €°(D,R). On D, we write f} = f" ®k f" € (D), j =1,...,dy. The
localized Bergman kernel on D is given by

di
Py s(x,y) := Ze_k'z’(x)ﬁ‘(x)f]k(y)e_k‘ﬁ(y) € €°(D x D). (1.12)
j=1

Let R be the Chern curvature of L 1nduced by hL. Assume that v = /—1RL is

positive. Let K}, := det(T1-9 M) and let R, K be the curvature of K}, induced by
. Applying Theorem 1.2 to the circle bundle of (L, h%), we get the following:

Theorem 1.6 Let (L, h%) be a Hermitian holomorphic line bundle over a Hermitian
manifold (M, ® ) of dimension n. We assume that @ = ~/—1R" defines a complete
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Kdhler metric on M. We assume moreover that there is C > 0 such that
VIR > —Cw, o' > CO", onM. (1.13)
Let s be a local holomorphic frame of L defined on an open set D € M. Then,
Pis(x,y) = *®Fpx, y, k) mod O(k™>) onD, (1.14)

where ® € €°(D x D), Im®(x,y) > C|lx — y|%, C > 0, ®(x, x) = 0, for every
x €D,

o0
b(x,y,k) € S;.(1; D x D), b(x,y, k)~ Zk”‘jbj(x, y) inSj. (1; D x D),
j=0
(1.15)
bi(x,y) € €*°(Dx D), j=0,1,..., and

" (x)

bo(x, x) = 2m)™" SRR
M

foreveryx € D.

In particular, there exist coefficients b, € €>°(X), r € Ny, such that for any open
set U of X with U compact, every £ € Ny and everym € N, there isa Cy ¢ > 0
independent of k such that

m
1PeCe, x) = > b ()K" ey < Coemk™ ™ (1.16)
r=0

We refer the reader to Sect. 2 for the precise meaning of the notation Ay = By
mod O (k™) on D in (1.14), S . (1; D x D) and the asymptotic sums in (1.15) and
(1.16).

For compact or certain complete Kéhler—Einstein manifolds, the expansion (1.16)
was obtained by Tian [29] for m = 0 and ¢ = 4. For general m, ¢, and compact
manifolds, the existence of the expansion was first obtained in [8, 31]. In [23, Theorem
6.1.1] the expansion was generalized for complete Hermitian manifolds such that RX I
and 0©; are bounded below. Our conditions (1.13) are different from [23, Theorem
6.1.1], we replace the condition on 9®,; by a condition on the volume form. The
reason is that we use a local closed range condition instead of standard closed range
or spectral gap condition.

This paperis organized as follows. In Sect. 2, we recall necessary notions of microlo-
cal analysis, pseudohermitian geometry, and strictly pseudoconvex CR manifolds with
transversal CR R-actions. In Sect. 3, we prove the Bochner—Kodaira formula on CR
manifolds with R-action. Section 4 is devoted to the proof of the asymptotics of the
Szegd kernel. In Sect. 5, we examine the Heisenberg group.
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2 Preliminaries

We use the following notations through this article: N = {1, 2, ...} is the set of natural
numbers, Ng = N[ J{0}, R is the set of real numbers, Ry = {x € R; x > 0}. For
m € N, let x = (xy, ..., xy) be coordinates of R”. Forn € N, let z = (21, ..., Zn),
7j = x2j—1++/—1x2j, j = 1,..., n, be coordinates of C". We write

0 1 0 0 0 1 0 )
D sy 2 () e
0z 2 <8x2j1 0x2;j 0z 2 \0x2j-1 0x2;j 2D

dzj =dxzj—1 +~—1dxj, dzj =dxzj—1 —~—1dxz;. (2.2)

2.1 Notions of Microlocal Analysis

Let X be a ¢ paracompact manifold. We let 7 X and 7* X denote the tangent bundle
of X and the cotangent bundle of X, respectively. The complexified tangent bundle
of X and the complexified cotangent bundle of X are denoted by CT X and CT*X,
respectively. Write (-, - ) to denote the pointwise duality between 7X and T*X. We
extend (-, -) bilinearly to CT X x CT*X.

Let D C X be an open set . The spaces of distributions of D and smooth functions
of D will be denoted by 2’(D) and (D), respectively. Let &’ (D) be the subspace
of 2'(D) whose elements have compact support in D. Let €°°(D) be the subspace
of °°(D) whose elements have compact support in D. Let A : 6°°(D) — 2'(D)
be a continuous map. We write A(x, y) to denote the distribution kernel of A. In this
work, we will identify A with A(x, y). The following two statements are equivalent:

(I) A is continuous: &' (D) — € (D),
) A(x,y) € €°(D x D).

If A satisfies (I) or (II), we say that A is smoothingon D.Let A, B : €°°(D) — 2'(D)
be continuous operators. We write

A = B(on D) (2.3)

if A — B is a smoothing operator. We say that A is properly supported if the restrictions
of the two projections (x, y) — x, (x, y) — y to Supp (A(x, y)) are proper.
For m € R, let H" (D) denote the Sobolev space of order m on D. Put

H{). (D) = {u € Z'(D); gu € H" (D), Vo € €°(D)},
Hioyp (D) = Hig.(D) N &' (D).

Let D be an open coordinate patch of X with local coordinates x. We recall the
following Hormander symbol space.

Definition 2.1 Form € R, S’l’fO(D x D xRy)isthe spaceof alla(x, y, 1) € €°(D x

2n+1

D x R4 ) such that for all compact K € D x D and alle, 8 € Ny" ", y € Ny, there
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is a constant Cy, g, > 0 such that
05900 a(x, y. 0] < Capy (1 + 1)), forall (x,y, 1) € K x Ry, 1> 1.
Put

S™(D x D xRy) = ﬂ S7o(D x D x Ry).

meR
Leta; € S;né(D x D xRy), j € No,withm; \( —00, j — 00. Then there exists a €

S1'6(D x D x R, unique modulo §~>°, such that a — Z];;(l) aj € ST6(DxDxRy)
for k € N. If a and a; have the properties above, we write

o0
a~ Zaj inSq'fg(D x D x Ry).
=0

The space S} (D x D x Ry) of classical symbols of order m is defined as the space
of symbols s(x, y, 1) € S™(D x D x Ry) satisfying

o
s(x, y, 1) ~ Zsj(x, MW" in S7(D x D x Ry),

20 24
sj(x,y) € €°(D x D), j € Ny.
We explain now for the precise meaning of Ay = B; mod O(k™°) on D

in (1.14), S;,(1; D x D) and the asymptotic sum in (1.15) (see also [18, Sect.

3.3]). A k-dependent smoothing operator Ay : Qg’q (D) — Q%9(D) is called k-
negligible if the kernel Ay (x, y) of Ay satisfies |0 BfAk(x, y)| = O(k~") uniformly
on every compact set in D x D, for all multi-indices «, 8, and all N € N. Let
Cy : Qg’q(D) — ©%4(D) be another k-dependent smoothing operator. We write
A = Cr, mod O(k™) or Ax(x,y) = Cr(x,y) mod OKk™) if Ay — Cy is k-
negligible.

We recall the definition of semi-classical Hormander symbol spaces:

Definition 2.2 Let U be an open set in RY. Let S(1; U) = S(1) be the set of a €
©€°°(U) such that for every « € N(I)V, there exists C, > 0, such that [d¥a(x)| < C, on
U.lfa = a(x, k)dependsonk € (1, 00), we say thata(x, k) € Sjoc (1) if x (x)a(x, k)
is uniformly bounded in S(1) when k variesin (1, 00), forany x € ¢5°(U).Form € R,
we put S (1) = k" Sjoc (1). If a; € S,

loc

Swd(1yifa—Y ") a; € §,." (1) for every No. From this, we form S (1 ¥, E) in

the natural way, where Y is a smooth paracompact manifold and E is a vector bundle
over Y.

(1), m; N\ —o0, we say thata ~ ZC;OZO ajin
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Let X be an orientable paracompact smooth manifold of dimension 2n + 1 with
n > 1. The Levi form (1.2) of X at x € X induces a Hermitian quadratic form on
70X by
X

1
Le(u,v) = Z—idwo(u,v), for u,v e THOX. (2.5)

Let g©7X be a Hermitian metric on CT X such that the decomposition CTX =
T30 x @ 70D X ®CT is orthogonal. For u, v € CT X we denote by (u|v) = (ulv)g
the inner product given by ¢C7X and for 1 € CTX, we write |u|§ = (ulu)g.
Given such a metric we will denote by Oy its fundamental (1, 1)-form given by
Ox(a,b) = /—1{a|b)g fora,b e T1OX.

For p,q € Ny, define TP9X = (APTED XYy A (AITODX) and let T**X =
D, en, TPV X. Foru € CTX and ¢ € CT*X, the pointwise duality is defined
by (u,¢) = ¢u). Let T*1OX < CT*X be the dual bundle of 70D X and
T7*0.DX < CT*X be the dual bundle of T©OVX. For p,q € Ny, the bundle
of (p, q) forms is denoted by T*P 9 X = (APT*1.0x) A (A9T*O-DX) and let
T**X = @) 4en,T*79 X. The induced Hermitian inner product on 7**X and
T***X by (-|-) are still denoted by (-|-). The Hermitian norms are still denoted by
|- ]. Let QP4(X) := €>®(X, T*P9 X) be the space of smooth (p, g)-forms on X

and Q%*(X) := @, ,cny, 71(X). Let €°(X) := Q00(X).

Definition 2.3 Let 779 : APTICT*X —> T*P-9X be the natural projection for
P, q € No, p+q > 1. The tangential (resp. anti-tangential) Cauchy—Riemann operator
is given by

p =P o d : QPI(X) — QP (X),
o =nPt 04 QP(X) — QPTLI(X). (2.6)

Let D C X be an open set. Let QP 9(D) be the space of smooth (p, g)-forms
on D with compact support in D. Let Q2°(D) := D, en QP 9(D). We write
€>°(D) = Q%%(D). Let (-]-) be the L? inner product on Q*(X) induced by
(-]-). Note that

(ulv) = /;((u(x)|v(x))dvx(x), u,v e QY (X), 2.7)

where dvy = (©%/n!) A wyp is the volume form induced by the Hermitian metric
Oy on X. Let L?,,q(X) be the completion of Q7°7(X) with respect to (-|-). Let

LX) =D, 4en, Lf,’q()g. We write L*(X) := L ,(X). \Ye denote by ||u||? :=
(u|u) the L2 -normon X. Let d » and 0, be the formal adjoints of 9, and dj, with respect
to (-] -), respectively. Let L, := 5;,5: +52§b be the Kohn Laplacian on 2°%°(X). Let
Op := 0,0, + 9 9p be the anti-Kohn Laplacian on *°(X). We still denoted by 9,

the maximal extension and by 5: the Hilbert space adjoint with respect to the L>-inner
product on X. We also denote by

Op = 950 + 8,0 : Dom O, € L2 ,(X) — L2 (X) (2.8)
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the Gaffney extension of the Kohn Laplacian with the domain

Dom [, = {u € L%_.(X) :u € Dom 9, ﬂDomgz, Apu € Domgz, 5214 € Domgb}. 2.9)

By aresult of Gaffney, [J; is a self-adjoint operator (see e.g., [23, Proposition 3.1.2]).

2.2 Pseudohermitian Geometry

The following is well known:

Proposition 2.4 [28, Proposition 3.1] Let (X, HX, J, wg) be an orientable strictly
pseudoconvex CR manifold. Then there exists a unique affine connection, called
Tanaka—Webster connection,

V= VN %X, TX) — €°(X, T*X @ TX)

such that

D Vg€ (X,HX) C (X, HX) forU € €>°(X, TX).
() VI =VJ =Vdwy = 0.
(IIT) The torsion Ty of V satisfies: Tv(U,V) = dwo(U, V)T, Tv(T,JU)
—JTy(T,U), U,V € €*°(X, HX).

A*(CT*X)) are defined by (Vg Y)W = Vy(JW) — JVy W and Vydwy(W, V)
Udwo(W,V) —dwy(VgW, V) —dwy(W,VyV) for U € €°(X,TX), W,V
€>° (X, HX). Moreover, VJ = 0 and Vdwy = 0 imply that the Tanaka—Webster
connection is compatible with the Levi metric. By definition, the torsion of V is given
by Tv(W,U) = VyU — VyW — [W, U] for U,V € (X, TX) and = (T, U) for
U € €°°(X, HX) is called pseudohermitian torsion.

In the following, we will use the Einstein summation convention. Let {Z,}!,_, be a
local frame of 79 X and {6* }5 _, be the dual frame of {Z }/,_,. We use the notations
Zz = Zy and 6% = 0%, Write

Recall that VJ € €°X,T*X ® L(HX,HX)), Vdwy € €°(T*X ®
S

VZy = wf @ Zg, VZg = o ® Z5, and recall that VT = 0.

We call a)g the connection 1-form of Tanaka—Webster connection with respect to the
frame {Z,}!,_,. We denote by @5 the Tanaka—Webster curvature 2-form. Then,

0 =dof — o) Aa)g.
By direct computation, we also have
B pj k B k B 4] .~ ok
ef = R 707 NO"+ A 07 A O" + By 07 A 6%+ Co A,

@ Springer



266 Page 12of 53 C-Y Hsiao et al.

where Cy is a 1-form. The term Rf i is called the pseudohermitian curvature tensor
and the form

n
Ric o i= R A0F, Rypi=> R) (2.10)
j=1
is called pseudohermitian Ricci form.

2.3 Strictly Pseudoconvex CR Manifolds with R-Action

Let (X, T"9X) be a CR manifold of dimX = 27+ 1. Letr : R x X — X,
r(x) = r ox for r € R, be an R-action on X, see [13]. Let T be the infinitesimal
generator of the R-action:

~ 9 N
(Tu)(x) := E(M(r ox))|r:0, u € €% (X). (2.11)

Definition 2.5 The R-action is called locally free if f(x) # 0 atevery x € X.

By Assumption 1.1 we have

The R-action is Cauchy—Riemann (CR) : [T\, E° (X, T(I’O)X)] ce>®x, T9X).
(2.12)
The R-action is transversal : CT, X = T)°X @ 7O X @ CT(x) ateveryx € X.
(2.13)

Note that (2.12) implies that L7 preserves H X and [L7, J] = 0. Since H X = ker ay
we have for U € € (X, HX),

(L7w0)(U) = T(wo(U)) — wo(L7U) =0
(L7wo)(T) = T(wo(T)) — wo(L7T) = T (wo(T)).

We pose f = wo(/T\) and w; = f_l(QQ. Thin Lfa)Lz 0 and a)l(f) = 1 since
(L7w1)(U) = 0 and (L7w1)(T) = T(wi1(T)) = T(1) = 0. This also implies
t7dw; = 0. We have thus

7wy =1, 1pdw; =0, LzJ =0.

We can therefore assume up to rescaling wg by a smooth function that the infinitesimal
generator of the R-action is a Reeb vector field T = 7. This motivates the equality of
the infinitesimal generator to the Reeb field in Assumption 1.1.

By [28, Lemma 3.2 (3)]) we have 2JtU = (L7J)U for any U € HX, hence
the pseudohermitian torsion t vanishes, which means that the contact metric manifold
(X, wo, T, J, g) is a Sasakian manifold. Conversely, there exists a natural transver-
sal CR R-action on any compact Sasakian manifold. Recall that compact Sasakian
manifolds can be classified in three categories based on the properties of the Reeb
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foliation consisting of the orbits of the Reeb field (see [7, Definition 6.1.25]). If the
orbits of the Reeb field are all closed, then the Reeb field T generates a locally free,
isometric S'-action thus also an R-action on (X, g ¢). In this case the Reeb folia-
tion is called quasi-regular (and regular if the action is free). If the Reeb foliation is
not quasi-regular, it is said to be irregular. In this case, T generates a transversal CR
R-action on X.

We use the local coordinates of Baouendi—Rothschild—Treves (BRT charts) [3, Sect.
11, [19, Theorem 6.5] extensively as follows:

Theorem 2.6 (BRT charts) For each point x € X, there exists a coordinate neigh-
borhood D = U x T with coordinates x = (x1,...,X+1) centered at 0, where
U={z=(@1,---,zn) € C" : |z| < €}and T = {xop+1 € R : |x2u41| < €0},
€,e€>0,z2=(21,....,z)and zj = x2j1 +~—1x2j, j = 1,...,n, such that

0
T =
X241

on D, (2.14)

and there exists ¢ € €°° (U, R) independent of x2,+1 satisfying that

3 d¢ a "
Zi=—+i— () } (2.15)
{ J 3Z./ aZ./ 3XZ,,+1

Jj=1

is a frame of T"Y D, and {dzj} e 710 D js the dual frame.

n
j=

Let D = U x Z be a BRT chart. Let f € €°°(D) and u € QP9(D) withu =
Z,’J urydzy N dzy with ordered sets I, J and uyy; € €°° (D), for all I, J. We have

df =) Zj(Hdzj+ Y Zi())dZ; + T ([, (2.16)
Jj=1 j=I1
onf =Y Zj(Ndzj. Bpf =Y Z;())dZ;, 2.17)
j=1 j=1
Ipu = Z(ab””) Adzp ANdZy, Bpu = Z(gbulj) Adzr AdzZy. (2.18)
1,J 1,J

Foru € QP9(X),let L7u be the Lie derivative of u in the direction of T . For simplicity,
we write Tu to denote L7 u. Since the R-actionis CR, Tu € Q27:9(X). On a BRT chart
D,foru € QP9(D),u = ; yurjdzyndzy,wehaveTu = ), ;(Tujj)Adzindzy
on D.

The Levi form . in a BRT chart D C X has the form

L =009|r0.0y- (2.19)
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Indeed, the characteristic 1-form wgy and dwy on D are given by

n
0 00 _
wo(x) = dxzni1 —i ) <—¢dz L ,) ,
ot 0z; 07

(2.20)
n 82¢
dwo(x) = 2i ———dzj NdZ
0(x) j%::] 0707k / ¢

From now on, we assume that ®x is R-invariant. Let D = U x Z be a BRT chart.
The (1, 1) form ® = Oy on U is defined by, for x = (z, x2,41) € D,

O(z) := Ox(x). (2.21)

Note that it is independent of x»,,4+1. More precisely,

O@) =v=1 Y (Z;|1Z) (x)dz; A dZ. (2.22)

Jok=1

Note that for another BRT coordinates D = U x 7 , vy = (w, yap+1), there exist
biholomorphic map H € ¢°°(U, U) and G € €U, R) such that H(z) = w, for
all z € U, yanp1 = Xong1 + G(2), for all (z,x0041) € U x Z and U = H(U),
7 =T + G(U). We deduce that © is independent of the choice of BRT coordinates,
ie,® =0y = 0.

Until further notice, we work on a BRT chart D = U x Z. For p,q € Ny, let
T*P-9yU be the bundle of (p, ¢) forms on U and let T***U := EBp,qENOT*(P"f)U.
For p, g € Ny, let 779U be the bundle of (p, ¢) vector fields on U and let T**U :=
Gap,quOT(p"I)U. The (1, 1) form ® induces Hermitian metrics on 7**U and T**°U.
We shall use (-, -); to denote all the induced Hermitian metrics. The volume form
on U induced by ® is given by dA(z) := ©®"/n!. Thus, the volume form dvyx can be
represented by

dvx(x) = dA(z) ANdxapy1 0n D. (2.23)

The L>-inner product on Q*(U) with respect to ® is given by
(s1,82) 2y = f (51(2), $2(2))ndA(2), s1,52 € Q*(U). (2.24)
U

Let # € R be fixed. The L2-inner product on Q&'*(U) with respect to © and e 20
is given by

(S],S2>L2(U’e—2rq>) ::/;/(sl(z),sZ(z))he_zw’(Z)dk(z), 51,8 € QE°(U).  (2.25)
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The Chern curvature of K, := det(T 19O U) with respect to © is given by

- 3 0\ \" .
RXU := 39 log det <<— —) > , Rfv e M.
82,- 0zi Ih jk=1

On X, define K} := det(T(l’O)X). Then, K% is a CR line bundle over X. The Chern
curvature RXx of K ;‘( with respect to ®x is defined as follows: On a BRT chart D, let

n

RXX :=3,,0) log det (ZHZ0))} iy -

(2.26)

It is easy to see that RXX is independent of the choice of BRT coordinates and hence
RXX is globally defined, i.e., RXx € Q11(X).

Let {L j}’;:l be an R-invariant orthonormal frame of 7DD with the dual
(orthonormal) frame {e j};?zl. Then {L j };’.:1 is an R-invariant orthonormal frame

of T-9D with the dual (orthonormal) frame {e j}?:l' Since Oy is R-invariant,

there exist c’j = c’;(z), w’l‘. = u)]/f(z) € €*WU), j,k = 1,...,n, satistying
Yo cfw,l( = Sé,forall j,l=1,...,n,suchthatfor j =1,...,n,
n .
Lij=) ¢z, & =wdzu, (2.27)
k=1
n .
L= Zc’;zk, ej = wldz. (2.28)
k=1
We can check that {w; := Y} _, El;a%? j=1,...,nfand{w; := >} _, c’j‘.%; j=
1, ..., n} are orthonormal frames for TLOY and TODU with respect to ®, respec-
tively, and {e;; j = 1,...,n}, {e;; j = 1,...,n} are dual frames for_{wj; j =
l,...,n}and {w;; j = 1,...,n}, respectively. We also write w’/ and w’ to denote
ej and e, respectively, j =1, ..., n.
Lemma 2.7 We have
. K}
Ricy =Ry
on X.
Proof Fix p € D and letx = (x1, ..., x,+1) be BRT local coordinates defined on an
open set D of p with x(p) = 0. We take x = (xq, ..., X2n+1) = (Z1, - -+ Zns X2n+1)>
Zj =Xxpj-1+ixzj, j=1,...,n,sothat
1 n
9 =3 Il + 00z, (2.29)

j=1
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where ¢ € €°°(D) is as in (2.15).

In the following, we will use Einstein summation convention. Write Vz, Z; =
Ff ; Z;, where V denotes the Tanaka—Webster connection (see Proposition 2.4). From
[28, Lemma 3.2],

dwy (V7 Zj, Z) = Zi(dwo(Z;, Zi)) — dwo (Z, [ Zi, Zlpony) - (2.30)
Directly,
day (V7,2 Zx) = doy (T4, 21. 74 ) = 2T} ¢ (2.31)
Z; (da)o (Zj, 7k)) = ZiLgs_, (2.32)
3Zi3Zj32k
[Zi, Zi)lpony =0
and hence 5 3
d d
2irl Py ¢ (2.33)

.. = s
9207k 07,0707k

for all i, j,I,k = 1,...,n. Accordingly, by (2.29) and (2.33), we get that for all
iaj’k: 17"' , n,
I} 0) = 0. (2.34)

Moreover, by taking % both sides in (2.33), from (2.29) and (2.33), it is not difficult
to check that .

ar’; 3¢
—0) =2—7=—7=—(0). (2.35)
0z 070207, 07
It is clear that {dzj};f:1 and {de}’}:1 are the dual frames of {Z.,'};?:1 and {Z,'};?:l,
respectively. Denote

VZy =of ® Zg,

and we can check that the (1, 1) part of da)g is

n
= > (Zirfy) du ndz
k=1
and the (1, 1) part of @5 = da)g —wy A a)f denoted by
n
B ok ]
Z Rotkie AO
k,l=1
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equals the (1, 1) part of da)g. Hence, the pseudohermitian Ricci curvature tensor at
origin is

n 8 n BFE n 84¢
R, (0) = R -(0) =— —=5(0) = ———=(0).
o k:%; ak kzﬁ;] 9z kz_; 02k07k 02007
We get that
Ric (0 0)dzy ANdzZ 2.36
2(0) = Z azkazkazaazl( )dzy A dZ). (2.36)

On the other hand, by directed computation, we can check that

R¥5(0) = 9,095 log det ((Z;1Z4))"; ,_, (0) = Z azkazkaz = 0)dzy A d7.
o

(2.37)
From (2.36) and (2.37), the lemma follows. O

3 Bochner-Kodaira Formula on CR Manifolds with R-Action

In this section, we will prove the Bochner—Kodaira—Nakano for CR manifolds with
transversal CR R-action. They are refinements of Tanaka’s basic identities [28, The-
orems 5.1, 5.2] in our context. Namely, Tanaka’s formulas hold for any strictly
pseudoconvex manifold endowed with the Levi metric, while our formulas are specific
to CR manifolds with R-action endowed with arbitrary Hermitian metric ®y.

3.1 The Fourier Transform on BRT Charts

Let D = U xZbeaBRT chart. Let f € €°°(D). Wewrite f = f(x) = f(z, x2041).
For each fixed x2,41 € I, f(-, x2p41) € €2°(U). For each fixed z € U, f(z,-) €
E°(Z). Let p. g € No,u € QU (D). Wewrite u = Y, ;jurjdz; Adzy € QEI(D)
and we always assume that the summation is performed only over increasingly ordered
indices =ij <ip <...<ip,J=j1<jp<...<jganduj; € €°(D), for all
{1, J}.Foreachfixedz € U, u;;(z,-) € €°(1).

Definition 3.1 The Fourier transform of the function f € €>°(D) with respect to
X2n+1, denoted by f is defined by

m .
f(z,t) = f e "t £z xopy1)dXomy € €U x R). 3.1
—00
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The Fourier transform of the form u = ZI’J urydz; Adzy € QP (D) with respect
to X2, 1, denoted by u, is defined by

Wz t) =Y i dz Adzy € QPIU xR) := E®(U xR, T*P9U). (3.2)
1,J

Note that f € ¢°°(U x R) and f(-, t) € €°(U) for every t € R. Similarly,
ue QPIU x R)and u(-, 1) € QLY (U) for every t € R. From Parseval’s formula,
we have for u, v € Q29(D),

/ (u(z,X2n+1)|v(z,x2n+1)>dxzn+1=(1/27T)f ((z, ), 0(z, ))pdt, (3.3)

—00

for every z € U. By using integration by parts, we have for u € Q7 (D),

o —

ou
0X2741

—=ATu =1, ,ie, —+—1 (z,1) = t(z, 1). (3.4)

Let t € R be fixed. Let |(z, 1)|7 := e~2¢© be the Hermitian metric on the trivial
line bundle U x C over U. The Chern connection of (U x C, e~2'?) is given by

yUXCe™) _ glo L g0l gl0_§ 9154 VOl =73 3.5)
Indeed, VUXCe™) _ g =g = d + €299 (e=2?). The curvature of (U x

C, e72’¢) is
RUXC.e2) _ (V(UXC,e’Z"”))Z =2t90¢. (3.6)

We can identify 99¢ with Levi form . and write RWXCe™") _ pp . Moreover,
we will identify Q*°(U) and Q&*(U) with Q**(U, U x C) and Q2°*(U, U x C),

respectively.

Proposition 3.2 Let u, v € Q& °(D). We have

3;,7: e19("’0) onU x R, (3.7)
gz:: e 99" ("?) onU x R, (3.8)
i = e PV on U x R, (3.9)
B = eV (R on U x R, (3.10)

where 3", V%% are the formal adjoints of 3, V-0 with respect to (-, - YL2(U -2,
respectively, and 52, 0, are the formal adjoints of 3y, dp with respectto (- |-), respec-
tively.
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= 5y o d¢p d -
Proof Letu = Zl,] urjdzindzy.By dpu = Zl,] Z;":I ( 5%/ 62 axbzt,fi. ) dzjA
dzy Ndzy,

()= (5

ou 0 ~ _ _
1{ t)+t%(z)u”(z,t)> dzj Ndzp NdZy
J

I1,J j=1
= ¢ POFE? Y Ty ydz A dZ ) GAD
1,J
= (eflqbg(et‘p'u\)) (z,1).
Thus the first equality holds. From Parseval’s formula,
(Opulv) =f(5hu|v)d/\(z)dX2n+1
D
o0 —_—
=/ <(2ﬂ)_1/ <3bu(zyt),3(z,t))hdt)d?»(Z)
U —00
o _—
=Qn)"! / / (€79("0), DY pd(z)dt
—oo JU
S [
= Qn)"! / (0(e"%), €'90) 12y o200t
—00
o =k
=)~} / (€7, 3" (e"P0)) L2y o200 dt
_gj -
=(Qn)"! / f @, e (e'"?0)) nd A (z)dt. (3.12)
—o0 JU
Meanwhile, we have
_ . o =
(Opulv) = (u)d,v) = (271)_1/ / (u, 3pv)pdr(z)dt. (3.13)
—o0 JU

Thus the second equality holds. The proofs of the third and the fourth equalities are
similar. m|

3.2 CR Bochner-Kodaira—Nakano Formulal
Analog to [23, (1.4.32)], we define the Lefschetz operator ®x A -on A**(T*X) and

its adjoint A = i(®x) with respect to the Hermitian inner product (-|-) associated
with ®x. The Hermitian torsion of ®y is defined by

T :=[A, 0pOx]. (3.14)
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Let D = U x T be a BRT chart and let {Z,-};%Zl c 74O p, {ejYis, 710 p,
{u)j}’j’-:l c T1OU be as in the discussion after (2.26). We can check that

Ox A-=+=1¢j nej A+ A=—v=lirig, onD. (3.15)

Note that iz; and i . are the adjoints of e A and € A, respectively.
J
Since 90(z) = 3Ox(x) on D,and O A - = /—1ej Aej A+, A = —y/— i, iu,
on U, see [23, 1.4.32], we have 7 = [A, 9,0] = [A, 0] on Q*°(D), which is
independent of x,,11. We remark that 7 is a differential operator of order zero. With
respect to the Hermitian inner product (-|-) associated with ©x, we have the ad]omt

operator 7*, the conjugate operator 7 and the adjoint of the conjugate operator 7 -
for 7.

Theorem 3.3 With the notations used above, we have on Q2°*°(X),
Op = Op+[2vV—1.L, Al(—v—1T)+ @ T*+T* ) — (0, T +T 9p). (3.16)

Proof Since the both side of (3.16) are globally defined, we can check (3.16) on a BRT
chart. Now, we work on a BRT chart D = U x Z. We will use the same notations as
before. Let

OUXCe™) 33" +379: Q2 (U) — Q0 (U),
FUXCe9) 0% o 1,0 0910k . o0 o0
O = vi0yl0 L glOyLoe. gee )y » Q2 (),

where V! is given by (3.5), 9", V9% are the formal adjoints of 3, V1:? with respect
to (-, - )LZ(U,e‘2’¢)’ respectively. From [23, (1.4.44)],

_ — —2t¢ — — —
OWxCe™) _ FUXCETD 1 ST 2, A+ (VT T 0 — G T +T7 ).

Letu, v € QF°*(D).Lets|(z) := e ?@%(z, 1) € Q**(U xR), 52(2) := '"?@0(z,1) €
Q*°*(U x R). Firstly, we have

o
(1/27r)/ (OWxCe ”>s1,s2>L2(U,efz,¢)dt = (Dpu | Opv) + (dpu | 3pv).
—00

(3.17)
In fact, from Proposition 3.2,

*© (UxC,e2¢)
(a ’ S1, sz)Lz(U’efzrq))dt
—00

(0.¢]
= f ((85‘], 352>L2(U,e—2’¢) + (8*S1, 8*S2)L2(U,€_2[¢))dt
—00

—_—

o0
:/ <<8bu abU)LZ(U)+<8bM abU>L2(U))dt

—00

= 27 (Dpu|Opv) + 27 (D u| D).
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Similarly, we have
S —2t¢
(l/27r)/ T s 52) 2 ooy dt = @puldpv) + (Bfuldfv).  (3.18)
—00
Thirdly, we have

(1/27'[)/ HI2V=1.2, Als1, $2) 12 20yt = ([2¢/ =1L, A)(—v/=1T)ulv).

(3.19)
In fact, it follows from

o0
/ [([2\/ —lf, A]Sl, S2>L2(U’e—21¢)dt

—00

= / <t[2\/ —lg, A]/IZ,%\)LZ(U)dl‘

—00

=21 ([2v/—1.Z, Al1(—~/—1Tu)|v).
Fourthly, we consider the rest terms

(VHOT* TV 051, 50) 2oy (VT 4T VO st 92) 12,020y
(3.20)
By Proposition 3.2, we have

0
/ ((Vl’OT* + T*VI’O)S] , SZ)LZ(U,e—M’)dt
—00

o0
/ <(V1’OT*51, s2>L2(U,—2t¢) —+ <T*V1’OS1, S2>L2(U,—2t¢)>dt

—0o0

o0

= / <(V1'OT*€t¢ﬁ, et¢ﬂL2(U’_2,¢) + <T*V1'Oet¢ﬁ, et¢/U\)L2(U’_2t¢))dt
—00
OO 1,0 1,0
= f ((T*et¢u, V ’ *(et¢ﬁ))L2(U,72t¢) + (V ’ (e“pﬁ), T€[¢6>L2(U)72t¢))dt
—00

o0
= / <<T*it\, €7t¢vl’0*(€t¢i)\)>L2(U) + (eit(ﬁvl’oet(ﬁit\, Tﬂ]}(y))dl‘

—00

o0
= f <(T*ﬁ, S;U)H(U) + (Bbu, Tﬁ)LZ(U))dt
—0oQ
=21 (T"uloyv) + 27 (dpu|7 v).
(3.21)
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Thus we obtain

o0
(1/271)/ (VEOT* £ TV 051, 52) 12y o210t
—0o0

= (T"uld;v) + (3pu|Tv) (3.22)
= ((pT* + T 0p)ulv).

Similarly, we obtain
ke o
(1/271)/ (0T +7T a)sl,s2>L2(U’e—2t¢)dt = (0p7 + 057 Hulv). (3.23)
—00

From (3.17), (3.18), (3.19), (3.22), and (3.23), we get that for u, v € Q&*(D),
(Opulv) = ([@p+2vV—=1.Z, Al(—v=1T)+ T +T*)— 0T +T 0p)ulv).
The theorem follows. O

Corollary 3.4 (CR Nakano’s inequality I) With the notations used above, for any u €
Q0 (X),

%(Dbum) > ([2v/=1.Z, Al(—v/—=1Tu)|u)

1 (3.24)
— §(||Tu||2 FIT*ull® + 1T ul® + 17 ull®).
If (X, TWLO XY is Kéihler, i.e., d®x = 0, then
Opulu) = (27 =12, Al(—V—1Tuw) ). (3.23)

Proof By the Cauchy—Schwarz inequality, Theorem 3.3 and since 7 = 0, 7* = 0 if
d®y = 0, we get the corollary. O

The following follows from straightforward calculation, we omit the proof.
Proposition 3.5 For a_real (1, D-form /—1a € QUYD), if we choose local
orthonormal frame {Lj};5:1 of TYOD with the dual frame {Ej};?zl of T*1.0p
such that /—la = ~/—1Aj(x)e; A ej at a given point x € D, then for any
f=2r frr)el el e Q**(D), we have

[V=To, AIF@) =D | D20+ D 400 = > a0 | frs)e! ne’.
j=1

1,J \jel jeJ
(3.26)

Corollary 3.6 With the notations used above, let ® x be a Hermitian metric on X such
that
2V -1% = Oy. (3.27)
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Then for any u € Qe (X) with1 < g < n,
1/ - _
(—v=TTulu) < . (Wt + 13501 (3.28)

Proof By applying (3.26) for /—1la := 23/—1.%, A; = 1 for all j, we have
2V —1.Z, Al(——1Tu) = g(—/—1Tu), forallu € Q7! (X). (3.29)
By d®yx = dQ2/=1%) =0 and Corollary 3.4, we obtain
Opulu) = (2 =12, A (—=1Tw)|u) = q(—~/=1Tulu). (3.30)

]

Let E be a CR line bundle over X (see Definition 2.4 in [13]. We say that E is
a R-equivariant CR line bundle over X if the R-action on X can be CR lifted to E
and for every point x € X, we can find a T-invariant local CR frame of E defined
near x (see [16, Definitions 2.6, 2.9]). Here, we also use 7' to denote the vector field
acting on sections of E induced by the R-action on E. From now on, we assume
that E is a R-equivariant CR line bundle over X with a R-invariant Hermitian metric
hE on E. For p,q € Ny, let Q79(X, E) be the space of smooth (p, ¢)-forms of
X with values in E and let Q**(X, E) = @) 4en, 279 (X, E). Let Q2(X, E)
be the subspace of 279(X, E) whose elements have compact support in X and let
QX E) i= ®p gen, QY (X, E). For p, q € No, let

g QPI(X,E) —» QPIYY(X, E)

be the tangential Cauchy—Riemann operator with values in E. Let (- |- )z be the L?
inner product on Q&'*(X, E) induced by (- |-) and h%. Let

8,5 QPITNX, E) - QPI(X, E)
be the formal adjoint of Eb’ £ with respectto (- |-)g. Put
Ok 1= p.£0p p + 0, p b+ (X, E) = Q¥*(X, E).

Let
VE. Q" (X,E) > Q**(X,E ®CT*X) (3.31)

be the connection on E induced by #Z given as follows: Let s be a T-invariant local
CR frame of E on an open set D of X,

Isl7e =%, @ € €°(D,R). (3.32)
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Then,
VE(u ®5) = (Qpu + pu —2pP) Au+wo A (Tu)) s, ue Q¥*(D). (3.33)

It is straightforward to check that (3.33) is independent of the choices of T-invariant
local CR trivializing sections s and hence is globally defined. Put

(VEYL.=3,, (vEYL0 .= 5, — 28,0. (3.34)

Let
Op, g = (VELO(WELO* 4 (vEYLO*(vE)LO Qo (X, E) — @**(X. E). (3.35)
where ((VE)!19)* is the adjoint of (V5)!-? with respect to (| -)g. Let RF € Q11(X)
be the curvature of E induced by 1% given by RY := —28,9,® on D, where ® is as
in (3.32). It is easy to check that RY is globally defined. Let D = U x T be a BRT

chart. Since E is R-equivariant, on D, E is a holomorphic line bundle over U. We can
repeat the proof of Theorem 3.3 with minor changes and conclude the following:

Theorem 3.7 Let E be a R-equivariant CR line bundle over X with a R-invariant
Hermitian metric h®. With the notations used above, we have on Q**(X, E),

Op.g = Op g + [2V/—1.Z, Al(—/—=1T) + [V—1RE, A]

+((VOOT 4 TV ) (8,67 +T O ), (3.36

where RE € QU1(X) is the curvature of E induced by h*.

3.3 CR Bochner-Kodaira—Nakano Formula Il

The bundle K} := det(T10X)isa R-equivariant CR line bundle over X. The (1, 1)
form Oy induces a R-invariant Hermitian metric 1% XonK 3“( Let RXX be the curvature
of K} induced by hXX. Let

W T0X s TX @ K

be the natural isometry defined as follows: Let D = U x 7 be a BRT chart. Let
{L; };'-Zl cT®Op, {E‘/}’}:1 c T*1.9 D be as in the discussion after (2.26). Then,

Vu:=eiA... Aty AU® (L1 A...AL) e T"™IX @Ky, ueT* "X,
It is easy to see that the definition above is independent of the choices of R-invariant
orthonormal frame {L j}’}: 1 C 719 D and hence is globally defined. We have the

isometry:

QX)) - QUI(X,K}).
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Moreover, it is straightforward to see that

pu = ‘l’_lgb,K}qj”v au
= W0y g Wu, Opu = W'D, gy Wu, foreveryu € Q09 (X).
(3.37)

We can now prove

Theorem 3.8 With the notations used above, we have on QO”(X ),

Op = \IJ_IDb’K;\Il + ZZ(Zj, Lper A iLj(_’\/ —17) + RK;f(Zj, Lip)er N iL_,-
+ w—l(vK%l’OT*xy—(ﬁb\p—lT*w + \y—lT*\yﬁb),
_ (3.38)
where {L j}'J’.: | is a local R-invariant orthonormal frame of T8O X with dual frame

fejyi_, c T*M0X.
Proof Let u € 9%4(X). From (3.37) and (3.36), we have

Opu = ‘P_IDb,K)*(\I’M
=W 'Tp k; Wu+ W V=1L, AN—V=IT) (Wa) + W [V=TRKY, AW
Ly ((V’%LOT* 4 T*(v’(i)‘-o)wu—@,,\rl?*w + W*‘T*w&,u).
(3.39)
It is straightforward to check that

2V-1L, A1 =22(L;, L), A iT, —iLen),

: . (3.40)
[2V=1R*x, Al = R*X(L;, L) @j Aig, —iL;exn).

From (3.39), (3.40) and noting that (¢; Aig, —ir;exA)v = e Nip;v, TH(VE) 0y =
0, for every v € Q™9(X, K%) and T commutes with W, we get (3.38). O

Corollary 3.9 With the notations used above, assume that 2+/—1.% = Ox and there
is C > 0 such that

V—1RXx > —CcOy onX.

Then, for any u € Q(C)’q(X) with 1 < g < n, we have
1/ = —
(=v=TTulu) < (Wpull + 1Fu1?) + C ™ (3.41)

Proof Since 2+/—1.Z = ®x, we can choose R-invariant orthonormal frame {Zj }’Jl.:1
such that 2.,2”(3]-, L) = §jyi, for every j, k. We write u = Z, ujey on D with
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uj€¢>(D)ande; =ej, A...Aej, j1 <...< jg. Wehave

(2L (Lj, Lex A ip,(—/=1Tu|u) = (Y q(—v/—=1Tus)es |u)

J

—~/—1Tu|u). (3.42)
Since \/—IRK§ > —(COy, as (3.42), we can check that
(RK;? (Zj, Li)ex Nipulu) > —Cq|u|2. (3.43)

Sinced®yx = d(2/—1.%) = 0,wehave T = [A, 9,®x] = 0. From this observation,
(3.38), (3.42), and (3.43), we obtain

(W5l + 13u1) = g (—V=1Tulu) = gCllul? (3.44)

holds for every u € Q?’Q(X) with 1 < g <n. O

4 Szego6 Kernel Asymptotics

In this section, we will establish Szegd kernel asymptotic expansions on X under
certain curvature assumptions.

4.1 Complete CR Manifolds

Let X be a CR manifold as in Assumption 1.1. Let gx be the R-invariant Hermitian
metric as in (1.5). We will assume in the following that the Riemannian metric induced
by gx on TX is complete and study the extension 9, 52, and 7. We denote by the
same symbols the maximal weak extensions in L? of these differential operators.

Since gy is complete we know by [10, Lemma 2.4, p.366] that there exists
a sequence {Xk}k | € 6°(X) such that 0 < xx < I, xx+1 = 1 on supp x,
ldxile < 2k, for every k € N, and | ;2 supp xx = X. By using this sequence
as in the Andreotti—Vesentini lemma on complex Hermitian manifolds (cf. [10, The-
orem 3.2, p.368], [23, Lemma 3.3.1]) and the classical Friedrichs lemma, we obtain
the following.

Lemma 4.1 Assume that (X, gX) lS complete. Then QP9(X) is dense in Dom 3,
Dom Bb, Dom T, Dom 31, N Dom ab, and Dom T N Dom 3;, N Dom 81; with respect to

the graph norms of 9y, 8b, T, 9, + 8b, and 9y + 8b + T. Here the graph norm of a
linear operator R is defined by ||\u|| + || Rul| for u € Dom R.

As a consequence, analog to [23, Corollary 3.3.3], we obtain the following:

Corollary 4.2 If (X, gx) is complete, then the maximal extension of the formal adjoint
of 0p and T coincide with their Hilbert space adjoint, respectively.
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Corollary 4.3 If (X, gx) is complete, then /—1T : Dom+/—1T C L%’.(X) —
L2 ((X) is self-adjoint, that is, (v/=1T)* = /—1T.

Using these results, we extend the estimates from Corollary 3.9 as follows:

Theorem 4.4 Let X be a CR manifold as in Assumption 1.1. Assume that 2/—1.% =
Oy, gx is complete and there is C > 0 such that

V—IRKx > —cey.

Then, for any u € L%,q(X), 1 < g <n, u € Domdy (| Domd, (| Dom(y/—1T), we
have

1/ — _
(—V/=1Tuu) < g(nabun2 + [3ul2) + Clul®. @.1)

Proof Letu € L (X), 1 < ¢ < n,u € Dom3d,, (N Dom 3, () Dom(y/—1T). From
Lemma 4.1, we can find {u;}32, C Q2°(X) such that

(||uj — ul? + [3pu; — dpul® + |V =1Tu; — «/—1Tu||2> —0. (42)

lim
From (3.41), we have forevery j = 1,2, ...,
1/~ —
(=1Tuj ) = (W P+ 135507) + Clg P 43)

Taking j — oo in (4.3) and using (4.2), we get (4.1). O

Let us describe two examples of CR manifolds with complete R-invariant metric
8X-

Example 4.5 Let (X, HX, J, wp) be a compact strictly pseudoconvex CR manifold as
in Assumption 1.1 and let gx be a R-invariant metric as in (1.5). Let 7 : X > X
be a Galois covering of X, that is, there exists a discrete, proper action I" such that
X=X / I'. By pulling back the objects from X by the projection = we obtain a strictly
pseudoconvex CR manifold ()? ,H X , 7. , @) satisfying Assumption 1.1. Moreover, the
metric gx = m*gyx is a complete R-invariant metric satisfying (1.5).

Example 4.6 Let us consider now the case of a circle bundle associated to a Hermitian
holomorphic line bundle. Let (M, J, ®);) be a complete Hermitian manifold. Let
(L,h%) — M be a Hermitian holomorphic line bundle over M. Let hX" be the
Hermitian metric on L* induced by . Let

X:={el® . =1 (4.4)
be the circle bundle of L*; it is isomorphic to the S! principal bundle associated to L.
Since X is ahypersurface in the complex manifold L*, ithasa CR structure (X, HX, J)

inherited from the complex structure of L* by setting 700X = 7x n 71O 1*,
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In this situation, S! acts on X by fiberwise multiplication, denoted (x, eie) — xe'?,

Apointx € X isapair x = (p, A), where A is a linear functional on L, the S! action
is xe'? = (p, Ve’ = (p, €92).
Let wg be the connection 1-form on X associated to the Chern connection V. Then

dwy = 7*(iRY), (4.5)

where R’ is the curvature of V. Assume R’ is positive, hence X is a strictly pseudo-
convex CR manifold. Hence, (X, HX, J, wp) fulfills Assumption 1.1. We denote by
dp the infinitesimal generator of the S! action on X. The span of 3y defines a rank one
sub-bundle TV X = TS! c T X, the vertical sub-bundle of the fibration 7 : X — M.
Moreover (1.3) holds for T = 9g.

We construct now a Riemannian metric on X. Let g3 be a J-invariant metric on
T M associated to © 7. The Chern connection VX on L induces a connection on the
S1-principal bundle 7 : X — M, andlet T X C T X be the corresponding horizontal
bundle. Let gx = n*gy @ d6? /47> be the metricon TX = THX @ TS', with 40>
the standard metric on S' = R/27Z. Then gx is a R-invariant Hermitian metric on
X satisfying (1.5). Since gjs is complete it is easy to see that gx is also complete.

4.2 The Operators Q), Qpz,,11, Q¢

From now on, we assume that X is a CR manifold satisfying Assumption 1.1 and
(X, gx) is complete. Let S denote the spectrum of /—17. By the spectral theorem,
there exists a finite measure p on S x N and a unitary operator

U:L,(X)— L*(SxN,dp)

with the following properties: If 7 : S x N — R is the function i (s, n) = s, then the
element & of L3 ,(X) lies in Dom(v/—1T) if and only if hU () € L*(S x N, dp).
We have

U«/—ITU_I(p = he,forallg € U(Dom(+~/—1T)).
Let A1, A € R, A1 < A,and let 7(¢) € (R, [0, 1]). Put
E,/—1T) := Ul (ImageU N {1 (—o0, 11 ($)A(s, n); h(s,n) € L2(S x N, d,u)}),

E(h, M, V=IT) = U~ (ImageU A (L, (s, n); (s, n) € L2(S x N, du)}),

E(t,=IT) = U~ (ImageU N {z(s)h(s, n): h(s,n) € L3S x N, d;g}),
(4.6)
where 1 4 denotes the characteristic function of the set A. Let
Q1 L2 (X) > & V-IT),
Oy 1 Le o(X) = (A, AL V/=1T), 4.7)
Q;: L (X) = &(x,v/—1T)
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be the orthogonal projections with respect to (- |- ).
Since X is strictly pseudoconvex, from [21, Lemma 3.4 (3), p.239], [13, Theorem
3.5], we have one of the following two cases:

(a) The R -action is free,

(b) The R -action comes from a CR torus actionT¢on Xand woand © y are T invariant.
4.8)
When X is non-compact, the R-action does not always come from a CR torus action.
For example, when X is the Heisenberg group (see Sect. 5), the standard R-action on
X is free and does not come from any CR torus action.
Assume that the R-action is free. Let D = U x I be a BRT chart with BRT

coordinates x = (xg,...,X2,+1). Since the R-action is free, we can extend x =
(X1, ..., x2p41) to D := U x R. We identify D with an open set in X.
Lemma 4.7 Assume that the R-action is free. Let D = U x I be a BRT chart with
BRT coordinates x = (x1, ..., xo41). Let \{, A € R, A; < A. Foru € Q°*(D), we
have
Q) = f ¢TI (=00, Al(=mang1)u(y)dydn € Q%*(D),
4.9)
1 5 — e.0 N
(Qpry g (x) = erlq P, Al(=n2nDu(y)dydn € Q**(D),
(4.10)
1 | <X—y,n> 0,0, N
(Qruw)(x) = (277)—2"“/61 I e (—nopDu(y)dydn € Q¥°(D),  (4.11)

and supp Q u C D, supp Q. aqu C D, supp Q-u C D, where D is as in the
discussion after (4.8).

Proof Let x € €°°(R), x = 1on[—1, 1], x = 0 outside [—2, 2]. For every M > 0,
put Ty (7) := x (37)7(¢). Then,

Q.u= lim Qu inL2 (X),foreveryu € L2 (X). (4.12)
M— o0 ’ ’

From the Helffer—Sjostrand formula [12, Proposition 7.2], we see that

1 [ o7
Qry =5~ i 8_;”@ —V=IT)'dz Adz on L2 (X)), (4.13)

where Ty € €°°(C) is an extension of 7 with % = 0 on R. It is not difficult to
see that for u € Q¥°(D),

1 ‘ 1 .
72—~ —1T) 'u = —/e’<x_y"7>—u dydn € Q**(D
( ) 2l E— (y)dydn (D)
(4.14)
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and supp (z — V=IT)"Yu c D. From (4.13) and (4.14), we have

ATy

i<x—ymn>__ 0z 97 — e, 0, 1\
(Cry) () = (271)2'”rl / / Z+ N2n41 T g N € 9(4 (1?))

and supp O, u C D, for every u € Q&*(D). By Cauchy integral formula, we see
that

1 1 a'L’M
— | ——————dzAdz=+
27i Jo 2+ nang1 02 M (n1)-

From this observation and (4.15), we deduce that
] 7 —v e, 0 N
(Qry0(X) = o / ¢ gy (= )u(y)dydn € QV*(D) - (4.16)

and supp Qr,,u C D, for every u € Q2'°(D). From (4.12) and (4.16), we get (4.11).
Let y; € €°[R), limg_,0 ¥, (t) = 1(—o00, A](t), for every t € R. We can repeat
the proof above and get that

1

Quut = lim Oy = 7y

fe”x_y'”)]l(—oo, 2(=n2a)u(y)dydn € Q¥ (D)

and supp Q;u C D, for every u € Q2°(D). We obtain (4.9). The proof of (4.10) is
similar. O

We now assume that the R-action is not free. From (4.8), we know that the R-action

comes from a CR torus action T¢ = (e’e1 ..., el )on X and wy, ®x are T4 invariant.

Since the R-action comes from the T¢-action, there exist Bi, ..., Ba € R, such that
T=T+...4+ BTy, “4.17)

where T is the vector field on X given by Tju := %((1, 1,69, H*

W) =0, u € QV*(X), j = 1,...,d. For (my, ..., mg) € Z%, put

L2,m1,...,md (X)

={ue Ly (X); (", ... &%)y = mOt—timibiy forall (6, ...,00) e R

and let
Omiomg * La o(X) — L4 (X) (4.18)
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be the orthogonal projection. It is not difficult to see that for every u € L%y.(X ), we
have

Q)Lu = Z le ..... mgU,
(my,..., md)eZd,
—miBi—..—mafa=h
Q[k],k]u = Z Qm1 ,,,,, mgU, (419)
(my,..., md)GZd,
M==miBr—..—mqfa =X
Quu= Y t=mBi—...—maBa)Qm...mg-

From Lemma 4.7 and (4.19), we conclude that

Proposition 4.8 Let A1, . € R, 4 < A Foru € Dom 9, we have Qyu, Qa1
Qru S Dom 31, and abQ_)Lu = Q)Labu, abQ[M,)\]u = Q[M,Mabu, 8_;,Q,u f Q,Bbu.
Similarly, for u € Dom 8;, we have Q)u, Q. ,u4, Q-u € Dom BZ and BZQ;\u =

Q,\EZM, 5:Q[x1,x]u = Q[xl,x]gzu, 5ZQ1” = Qrgzu-

For A € R, define

Op,y :DomUp, C A, V—1T) = &N, ~/—1T),

Dom Uy 5 := Dom [, ﬂo@(k, V—=IT), Opu =Upu, for u € DomUp ;,
(4.20)
where [Jp, is defined in (2.8), (2.9). From Proposition 4.8, we see that

Dom [y 3 = Q5 (Dom ),

(4.21)
Q)LD}, = D},Q}L = Db’)LQ)\ on Dom Db.

From now on, we write D}()’Z) and qu; to denote [, and [Jp, 5 acting on (0, g) forms,
respectively.

4.3 Local Closed Range for Dl(,o)

In this section, we will establish the local closed range property for Dlgo) under appro-
priate curvature assumptions. We first need the following.

Lemma 4.9 Assume that 2+/—1.¢ = Oy, gx is complete and there is C > O such
that

V—1RXXx > _Coy.
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Then, for any u € L§ ,(X), 1 < q < n, u € Domd) N Dom 3, N &(h, v/—1T),
LreR A< —C, we have

1 - —
Il = == (1ol + 175017). (4:22)

Proof Let 1 < —C and let u € Dom 3, N Domd, N &L, v/—1T), u € Lg ,(X),
1 <g<n.LetM > 1andletuy := Q[—pm, ru. By Proposition 4.8, we see that

up € Domd, NDomd, N &L, ~/—1T) ﬂ Dom(v/—1T).
From this observation and (4.1), we have

1 - _
Ml = (=TT luae) = = (1Q1w293500P + 101 1Tyu1 ) + Cllasy

1, — _
< ;(Habuuz + Bul2) + Clun |,

(4.23)
Since A < —C we deduce from (4.23) that
1 — —%k 2
1P = —————(18pull® + 1T5u1?). (4.24)
q(=1—C) b
Letting M — oo in (4.24) we get (4.22). O

Forevery g = 0,1,...,n, put &P, /—=IT) := E, /—1T) ﬂL(Z)’q(X). We
prove now a vanishing theorem for harmonic forms which are eigenforms of /—17.

Theorem 4.10 Assume that 2</—1.¢ = Oy, gx is complete and there is C > 0 such
that

V=IRKx > —coy.
Letg €{l,...,n}. Let A € R, A < —C. The operator
O, : Dom O} € €90, V=1T) — &P, V/=1T)

has closed range and ker D}(fi = {0}. Hence, there is a bounded operator

G;q) : D\, v/—1T) - Dom Dl(f){

such that
O G =1 on&D (., /=1T). (4.25)
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Proof Let u € Dom DX’;. From (4.22), we have

1 - — 1
Il = = (1ol + 1357) = =5 (Ofu ).
Hence,
lull < mum,ﬁ?iun. (4.26)
From (4.26), the theorem follows. O

We now consider (0, 1)-forms. Let G;l) be as in (4.25). Since Gil) is L2 bounded,
there is Cy > 0 such that

1Gv|| < Collvll, foreveryv € &0, vV=1T). 4.27)

We use the previous result to solve the 9j-equation for eigenforms of v/—17'.

Theorem 4.11 Assume that 2+/—1.¢ = Oy, gx is complete and there is C > 0 such
that

V—IRKx > _cey.

Let ) € HE, A < —C. For every v € zo@(l)(k, ~—1T) with 5;,1) = 0, we can find
u € Dom 3, (O (A, /=1T) such that

5bu =,
5 ) (4.28)
lull© < Collvll~,
where Cy > 0 is a constant as in (4.27).
Proof Letv € &V (1, /—1T) with 9,v = 0. From (4.25), we have
v=20,0,G"v+0,0,G"v. (4.29)

Since 3, (5;5,,Ggl>v) = 3pv—9,,G Vv =0,7; (5;:5,,cy>v) =0,7,3,6 v e
ker D,(jl)A From Theorem 4.10, we see that 5;5,5 G)(xl) v = 0. From this observation and
(4.29), we get v = 51,14, u= 5ZG§1)U. Now,

lull? = 13,65 vl < 13,65 v)> + 13,6 vl
1 1 1 1
= (056" 16v) = (v 6Pv) < Collvl?.

where Cy > 0 is as in (4.27). The theorem follows. ]
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Fixq € {0,1,...,n}.Let S : L%,q(X) — Ker Déq) be the orthogonal projection
with respect to (- | - ). From Proposition 4.8, we can check that

0,57 = 5P Q;0n L ,(X),
Qp.1S@ = S0, on L, (X), (4.30)
0.8 =590 onL§  (X).

We recall the following notion introduced in [19, Definition 1.8].
Definition 4.12 Fixq € {0, 1,2,...,n}.LetQ : L%’q(X) — L%,q(X) be a continuous

operator. We say that Dlgq) has local L? closed range on an open set D C X with respect
to Q if for every D’ € D, there exist constants Cp > 0 and p € N, such that

10U — SOy < Cpr(OL)Puu), forallu € /(D).

We remind that we do not assume that @y = 2./—1.%. The Levi form 2/—1.%
induces a Hermitian metric {-|-) ¢ on CT X and (- | - )  induces a Hermitian metric
(+]-)¢ on T***X. More precisely, if X is strictly pseudoconvex, i.e., 2/—1.Z €
QU1(X) is positive definite, then we can construct a Hermitian metric (-|-) ¢ on
CTX = THOXxgeT 0D X pC{T} inthe following way: For arbitrary a, b € T-0 X,
(alb) ¢ = 2L(a,b),(@|b) ¢ := (bla) ¢, (alb) ¢ := 0and (T|T) & := 1. We simply
use 2¢/—1.Z to represent (-|-) . Let (-|-) ¢ be the L? inner product on £22"°*(X)
induced by (-|-) ¢ and let L%,,(X, %) be the completion of Q&'°*(X) with respect

to (-]-) . We write L*(X,.%) = L%’O(X,.i”). For f € L%,(X,.i”), we write
1£1% = (f1f)e.

Let R;X be the Chern curvature of K% with respect to the Hermitian metric (, ) &
on X, see (2.26). Locally it can be represented by

K% =
R =38y logdet ((Z;1Zi) ) 4.31)

n
J.k=1"

where {Z; };’.Zl c 719X is as in (2.15).
Foru € ©2*(X), from Lemma 4.7 and (4.19), we see that Q,u, Q, aju, Qru are
independent of the choices of R-invariant Hermitian metrics on X.

Theorem 4.13 Assume that g o is complete and there is C > 0 such that
v —lR;X > -2CV-12, 2V—-12)" Awy = CO% A wy. (4.32)

Let D € X be an open set. Let A € R, A < —C. Then, D;O) has local closed range
on D with respect to Q).

Proof Letu € €°(D). Let v := 0, Qsu = Q;dpu. Since dpu € Q' (D),
Qi0pu € L (X, L) [ LI J(X).
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From Theorem 4.11, there exists g € LZ(X , %) with
lgll%, < Colldr Qrul’y, < Colldpul’, (4.33)

such that B _
0pg = 35 Qsu, (4.34)

where Cp > O is a constant as in (4.28). Since 9;,(I — S(O))qu = 9,0Qu and
(I — SO0, u 1 kerd,, we have

1

I = S 0ul” < gl? < Eugu?g, (4.35)

where C > 0 is a constant as in (4.32). From (4.32), (4.33), and (4.35), we have
0)y,, 112 (0) 2 1 2 Co = o
10, = S )ull” = I(I = S™7)Quull” < E”g”g < Fllabullg- (4.36)

Since d,u has compact support in D, there exists C1 > 0 independent of u such that
19pull % < Cilldpull®. (4.37)

(4.36) and (4.37), the theorem follows. O

Fori e R, A <0, lett) € €°[R,[0,1]), 7, = 1 on]— 00, 2A], T, = 0 outside
(=00, A]. Ttis clear that | Qr, (I — SO)u|| < |Qx(I — SO)u]|, forevery u € L*(X).
From this observation and Theorem 4.13, we deduce that

Theorem 4.14 Assume that g o is complete and there is C > 0 such that
VEIRY = 2CV=1%, V=12Y" Awy = COY A . (4.38)

Let D € X be an open set. Let . € R, A < —C. Then, DI(JO) has local closed range on
D with respect to Q.

4.4 Local Closed Range for D:,n’o)

In this section, we will establish the local closed range property for DI(:"O) under appro-
priate curvature assumptions. We observe that the condition (4.32) can be removed, if
we consider (n, 0)-forms instead of smooth function. We will adopt the same notation
as before.

Let U, be the Gaffney extension of the usual Kohn Laplacian. Let Dl()n’q) be the
restriction of [J; acting on (n, ¢ )-forms. Set

ECDGLNEIT) = EG NI N L (X, O =00 -
(4.39)
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Let S0 : L7 (X) — Ker Dé"’q) be orthogonal projection. It is known that

Q0+, 0,., O, ,»] commutes with §4) on L%’q(X). Now, we present the main result
of this section as follows:

Theorem 4.15 Let X be a CR manifold with a transversal CR R-action. Let ©® x be an
R-invariant Hermitian metric on X. Assume that g ¢ is complete. Let D € X be an
open set. Let . € R, A < 0. Then, D,()"’O) has local closed range on D with respect to

0, L.e., there exists C > 0 such that for all u € Q’CI’O(D),
104 (1 = 8" u|* < Cl[apull. (4.40)

This result is very natural in view of the Kodaira vanishing theorem, in the same
way as Theorem 4.13 is parallel to the Kodaira—Serre type vanishing theorem. The
proof is analog to the proof of Theorem 4.13.

Firstly, from Corollary 3.6 and the density Lemma 4.1, we obtain the following:

Lemma 4.16 With the notations used above, let ® x be a Hermitian metric on X such
that
2V —-1¥% = ©y. 4.41)

Then for any u € Lﬁ’q(X) NDom 3, NDom 3, NDom(y/—1T), 1 < g < n, we have
1/ — _
(—«/—1Tu|u> << <||3;,u||2 + ||aZu||2). (4.42)

Lemma 4.17 Assume that 2_«/—13 = Oy and gx is complete. Then, for any u €
Lﬁ’q(X) N Dom d;, N Dom 8: NEM, V/—1T), A <0,and 1 < g < n, we have

lull? = —— (1Bpull® + [Tyu]?)- (443)

q(=4)
Proof Letu € L2 ,(X) N Dom 3, NDomd, N &k, v=1T), A < 0,and 1 < ¢ <n.
Let M > 1 be a sufficiently large positive real number such that —M < A and

upy = Q[—m,u. By Proposition 4.8, we see that

Uy € L,%,q(X) NDom 3, NDom 3, N &, ~/—1T) NDom(~/—1T).  (4.44)

Then
1, _
| < (=~ =TTuplun) < — (st + 15500 12)
| 1 (4.45)
— %
<~ (12 wnBoull + 1 Q- 1Tyul)
By letting M — +o00 we complete the proof. O

Moreover, we have the following analog of Theorem 4.10.
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Theorem 4.18 Let X be a CR manifold with a transversal CR R-action. Let © x be an
R-invariant Hermitian metric on X. Assume that 2/—1.%¢ = Ox and gx is complete.
Let 1 < g <nandX < 0. Then the operator

O - Dom O3 € ™D (3, /=1T) — "D (h, V=1T) (4.46)

has closed range, and
Ker Op5" = {0). (4.47)

Hence, there exists a bounded operator

Gin,q) . (go(n,q)@’ ~/—1T) — Dom Dl(;’,liq) (4.48)
such that
Déf?,kq)G)(\n,q) -1 on éa(rl,q)(k’ /—1T). (4.49)

Therefore, we have Cy > 0 such that, for all v € £V (%, /=1T),
(n,1)
G, vl < Collvll. (4.50)

Secondly, we solve the 3,-equation as follows.

Theorem 4.19 Let X be a CR manifold with a transversal CR R-action. Let ©® x be an
R-invariant Hermitian metric on X. Assume that 2/—1.4 = © ) x and gx is complete.
Then for every & < 0 and every v € EMD (N, /—=1T) with dpv = 0, there exists
u € Dom d, N &E™O (N, /=1T) such that

apu=v, [ul* =< Collv]*. (4.51)
Proof Let A < 0.Letv € &™D(x, /—1T) with 9,v = 0. We have

v=00"6""v =39,8,G7" v +8,0,G{" v (4.52)
Since ) (5,’;5bagnvl>v) =3 —3,0,G" Vv =0, (5:5;,G§"’”v) —0,
3,0,Gy" v € Ker )31 (4.53)
Thus, we see that EngGgfl’l)v =0and v = dpu with u = 5:Gin’1)v. Thus obtain

K .1 — L1 ok Nl
lul®> = 19,6 Pl < 3,6 Pvl? + 19,6 Vo2

= (006" 60 v) = (0] 6V ) (4.54)
< Colvl*.
The proof is complete. O
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Proof of Theorem 4.15 Note that @ is not necessarily equal to 2+/—1.% so we have
to deduce the general case to the particular case considered in Theorems 4.16—4.19.
Let A < 0. Let v := 9,Qyu = Q,9pu. Note that Q; is independent of the choice
of ®x. Then v € L’%,l(X, )N erl,l(X). From the above theorem, we can find

8§ € Lﬁ,O(X7 Z) such that 5178 —= v and

Igll%, < Collvlll, = Coll @xdpull’, < Colldpul’,. (4.55)

where the first inequality in (4.55) follows from Theorem 4.19. We claim that

gl =llglle

and thus g € LZ’O(X, )N Lﬁ’O(X). In fact, we write locally
g=adzi AN Ndzy. (4.56)

With respect to Ox = «/—1(Z;|Z;)dz; Adzj and 2/ =17 = /—=U(Z;|Z;) pdz; A
dzj,
lgI* = la|* det((Z;1Z,;) 7",

213, = lal*det((Zi1Z)) )",

and, respectively, the volume forms are given by

(4.57)

O% Awo = nl(vV—=1)"det((Z;|Z;))dz1 AdZ1 A -+ ANdzy A dZp A wo,

QV=1D)" Awy =nl(V=1D)"det((Z;|Z}) #)dz1 AdZy A -+ Adzy AdZp A wp.
(4.58)
Thus, the claim follows from

||8||2=/X|8|2®3'(Awo=/x|g|3g(2\/—1$)"/\wo= gl (4.59)

_ Since 3y(1 — S"P)Qu = 9, Qsu = vand (I — S“O)Qyu L Ker dj, we have
9, (1 — S™9Y0, u is the solution of minimal norm with respect to Oy, i.e.,

18,1 — S 0 ull® < lgl* = llgl, < Colldpulll, < CoCilldpull®  (4.60)
by supp(u) € D. O
4.5 L2 Estimates for 9 ¢

In this section, we prove an analog for the 5, g-operator of the L?-estimates of the
Hormander—Andreotti—Vesentini estimates for d. As in the case of complex manifolds,
we use the Bochner—Kodaira—Nakano formula in the present form (3.36). In order to
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eliminate the first-order error term [(VE) [y [51,, E, ?*] in (3.36), we reformu-
late (3.36) can be reformulated as in [10, VII.1]. Under the hypothesis of Theorem 3.7,
we have on Q*°(X, E),

0F =Ty 7 + 22T + V=1RF, Al + To, (4.61)

where EiT = [(VEYLO 4 7 (VEYLO* 1 7] is a positive formally self-adjoint
operator, and

/—1 _— _ _
To == [A, [A, Tah8b®x]] — [05Ox, (350x)"] (4.62)

is an operator of order zero depending only on the torsion of Hermitian metric ® x.

Theorem 4.20 (L2-estimates for 3,) Ler X be a CR manifold with a smooth locally
free CR R-action. Let ®x be an R-invariant Hermitian metric on X. Assume gx
is complete. Let E be a R-equivariant CR line bundle over X with a R-invariant
Hermitian metric hE. Assume that for some (r,q), q > 1, there exists a function
V¥ 1 X — [0, 00) such that, for all s € Q.9 (X, E), pointwisely

<[2$T+¢—1RE, Al +T@s|s> > sl (4.63)

Then, forany f € Lf,q(X, E) satisfying 3y g f = Oande U fI2dvy < oo, there
exists g € L%)q,](X, E) such thatgb,Eg = fand|g|?* < fx vl fPdvy.

Proof Consider the complex of closed densely defined operators

2 T=§[;,E 2 S=5b,E 2
L}, ((X.E) —> L} (X, E) — L} ,.,(X, E), (4.64)

where T and S are maximal extensions of 3, . We apply (4.61) and obtain for all
s € Qu1(X, E), it follows that

1,517 + 13, 517 = (1227 + V=TRE, AL+ Tosls) = [ wisPdux.
X

(4.65)
By Cauchy—-Schwarz inequality,

|<f|s)|2=|<w*‘/2f|w‘/2s>|2s/Xw*‘lfﬂdvx(||5b,Es||2+||5Z,E||2) (4.66)

Since gx is complete, the above inequality still holds for all s € Dom(S) N Dom(7"*)
by the density Lemma 4.1. Consider now s € Dom(7T*) and write the orthogonal
decomposition s = 51452 withs; € Ker(S) and sy € Ker(S)* C [Im(5*)] C Ker T*.
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Sos; = s — 57 € Ker(S) N Dom(T*). Recall f € Ker(S),

(191 = 1(flsDP? sf 1/f_1|f|2dvx~||T*Slllz=f vl fPdox - 1T
X X
(4.67)

We consider A : Im(7T*) — C defined by A(T*s) = (f|s) for s € Dom(T™).
We see that A is C-antilinear map and |A(T*s)| < (fX vl f1Rdv) V2 T3,
ie., A is bounded with norm [|A| < (fy ¥~!|f|*dvx)!/?. By the complex Hahn—
Banach theorem we can extend A to Lf’ q_l(X , E) with the same norm ||A] <
Sx v fPdux)' /2.

By the Riesz representation theorem, there exists g € Lf’ q_l(X , E) such that
Ma) = (glo) fore € L7, (X, E) with [[g]> = A1 < [y ¥~ fPdvx. We set
a = T*s,s € Dom(T*). Thus (g|T*s) = A(T*s) = (f|s) and g € Dom(T**) =
Dom(T') satisfying Tg = f. O

For certain complete CR manifold endowed with a Nakano g-semipositive line bun-
dle, the L? method applies to solve the 9, g-equation for (n, g)-forms as follows. For

the cohomology aspect of Nakano g-semipositive line bundles on complex manifolds,
see [30].

Corollary 4.21 Let X be a CR manifold with a smooth locally free CR R-action. Let
®x be an R-invariant Hermitian metric on X. Assume gx is complete. Assume £ = 0
and d®x = 0. Let E be a R-equivariant CR line bundle over X with a R-invariant
Hermitian metric hE. Let .y < --- < A, be eigenvalues of RE with respect to
Ox. Assume (E, hE) is Nakano q-semipositive with respect to Oy, i.e, .1 + --- +
Ag = 0. Then, for any [ € L,%’q(X, E) satisfying 9p. g f = 0 and fx()‘l 4+t
Aq)_1|f|2dvx < o0, there exists g € L> (X, E) such that 51,’Eg = f and

n,g—1
Igll?> < [y i+ -+ +2g) " fPdvy.

4.6 Vanishing Theorems

In this section, we present some vanishing theorems that follow from the previous
L? estimates. We obtain first a CR counterpart of the Kodaira vanishing theorem [23,
Theorem 1.5.4.(a)] as follows:

Corollary 4.22 Assume that 2/—1.2 = Oy, gx is complete and let . < 0 and
1 < g < n. Then, we have

KerO, N &G, V=1T)N L}, ,(X) =0. (4.68)
This follows immediately from Theorem 4.18.

We obtain a CR counterpart of the Kodaira—Serre vanishing theorem [23, Theorem
1.5.6] as follows:

Corollary 4.23 Assume that 2/—1.%Z = Ox, gx is complete and let C > 0 such that

V—1RXx > _Coy. (4.69)

@ Springer



Szeg6 Kernel Asymptotics... Page 410f53 266

Let . < —C and 1 < g < n. Then, we have
Ker [y N &, ~/=1T) N Lj ,(X) = 0. 4.70)

This follows immediately from Theorem 4.10. We note that the previous vanishing
theorems on CR manifolds imply the following generalizations due to Andreotti—
Vesentini [2] of the Kodaira—Serre and Kodaira vanishing theorems for complete
Kéhler manifolds.

Corollary 4.24 (Andreotti—Vesentini) Let (M, w) be a complete Kiihler manifold of
dimension n and let (L, h™) — M be a Hermitian holomorphic line bundle such that

—1RL = w and there is C > 0 such that «/—IRL[:M > —Cw on M. Then there
exists mog € N such that for every m > mqo we have H(%)(M, L™y =0forqg > 1,
where H(qz) (M, L™) denotes the L? q-th Dolbeault cohomology group with respect to

the metric (W% and volume form " /n! with values in L™.

Proof We apply the previous results for the CR manifold X constructed in Exam-
ple 4.6. In this case T = dy. For m € Z, the space L%’q(M, L™) is isometric

to the space of m-equivariant L2 forms on X, L(z)‘q(X)m = {u € L%)’q(X)

@*u = ™%y, foranye’® e S'}. Note that L%’q(X)m = ED(—m, /—10)
and the L2-Dolbeault complex (L(z)’.(M ,L™),9) is isomorphic to the Eb—complex
(L(z)’.(X )m, 0p). Hence, the assertion follows from Theorem 4.10. m|

In the same vein recover from Theorem 4.18 the following vanishing theorem for
the L2-cohomology of positive bundles twisted with the canonical bundle on complete
Kihler manifolds.

Corollary 4.25 (Andreotti—Vesentini) Let (M, w) be a complete Kdihler manifold of
dimension n and let (L, h™) — M be a Hermitian holomorphic line bundle such that

—1RL = w. Then H("z’)q(M, L) = 0 for g > 1, where H(nz’)q(M, L) denotes the

L? g-th Dolbeault cohomology group with respect to the metric h™ and volume form
" /n! with values in Kx ® L.

4.7 Szego Kernel Asymptotic Expansions

In this section, we prove Theorem 1.2 and Corollary 1.4. We first introduced some
notations. Let D C X be an open coordinate patch with local coordinates x =
(X1, ...y xom41). Let m € R, 0 < p,8 < 1. Let SKS(T*D) denote the Horman-
der symbol space on T*D of order m type (o, §) and let S7j (T* D) denote the space
of classical symbols on 7* D of order m, see Grigis—Sjostrand [11, Definition 1.1 and
p-35] and Definition 2.1. Let L’;” s(D) and L7} (D) denote the space of pseudodifferen-
tial operators on D of order m type (p, 6) and the space of classical pseudodifferential
operators on D of order m, respectively.
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Let X be the characteristic manifold of [J;,. We have

T=>"uUxt,
Y7 ={(x, —cwp(x)) € T*X; ¢ < 0}, 4.71)
>t = {(x, —cwp(x)) € T*X; ¢ > 0}.

We recall the following definition introduced in [19, Definition 2.4].
Definition 4.26 Let Q : L>(X) — L?(X) be a continuous operator. Let D € X be an

open local coordinate patch of X with local coordinates x = (x, ..., X2,+41) and let
n = (M1, ..., Nan+1) be the dual variables of x. We write

Q=0aX NT*D,

if for every D’ € D,
Ox,y) = /e”x_y’")q(x, n)dn on D/,

where g (x, n) € S?’O(T*D/ ) and there exist M > 0 and a conic open neighborhood
A_ of ¥~ such thatforevery (x, n) € T*D'NA_ with [n| > M, wehave g(x, n) = 0.

For a given point xg € D, let {Wj}?: | be an orthonormal frame of 710X with
respect to ( - | - ) near xp, for which the Levi form is diagonal at x¢. Put

Loy Wi, We) = pwj(x0)sje, j.L=1,...,n. 4.72)
We will denote by
n
det Ly, = [ | 1j(x0). (4.73)
j=1

We recall the following results in [19, Theorems 1.9, 5.1].

Theorem 4.27 Let D € X be an open coordinate patch with local coordinates x =
(X1, ...y Xon41). Let Q : L%2(X) — L*(X) be a continuous operator and let Q* be
the L? adjoint of Q with respect to (- |-). Suppose that D;()O) has local L? closed range
on D with respect to Q and QS© = SO Q on L>(X) and

Q0—00=0 atT" NT*D,

where Qg € L(C)l (D). Then,

Oo .
(0*SP0)(x, y) 5/ PN (x, y, t)dt on D, (4.74)
0
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where
¢ € €°(D x D), Imp(x,y) >0,

px,x) =0, ox,y) #0 if x #y,

4.75
dep(. )|, = 00(). dyp(x. )|, = o). *75)

px,y) = —9(y, x),

a(x,y,t) € S (D x D x IR+) and the leading term ag(x, y) of the expansion (2.4)
of a(x, y, t) satisfies

1 -
ao(x, x) = 5”7"71 |det L,]g (x, wo(x)q(x, wo(x)), forallx € D,  (4.76)

where det L is the determinant of the Levi form defined in (4.73), g (x, n) € €°°(T*D)
is the principal symbol of Q.

We refer the reader to [19, Theorems 3.3, 4.4] for more properties for the phase ¢
in (4.75). Let D = U x Z be a BRT chart with BRT coordinates x = (x1, ..., X2441)-
For A € R, put

O, 1= @) OV [0, iy € LgD). @)

where 7, € ¥°°(R) is as in the discussion before Theorem 4.14. It is not difficult to
see that .
O, —1=0atxs” ﬂ T*D. (4.78)

Assume that the R-action is free. From (4.11), we see that Q, = Qn on D. From this
observation, Theorems 4.14, 4.27, (4.78), and noticing that Q’;AS © O = QT)%S 0

where Q7 is the L? adjoint of Q-+, withrespectto (-|-), we get

Theorem 4.28 Suppose that the R-action is free. Assume that g ¢ is complete and
there is C > 0 such that

VEIREY = 220TT, V1D Awy = COL A,

Let D = U x I € X be a BRT chart with BRT coordinates x = (x1, ..., Xon+1). Let
reR A < —C. Then,

o0
(QTAzS(O))(x,y)E/O YN s (x, y, 1)dt onD, (4.79)

where ¢ € €°°(D x D) isas in (4.74), s(x, y, t) € S} (D X D x R+) and the leading
term so(x, y) of the expansion (2.4) of s(x, y, t) satisfies

1
so(x, x) = En*"*wdet Ly|, forallx € D. (4.80)
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We now assume that the R-action is not free. From (4.8), we know that the R-action
comes from a CR torus action T = (6’91 L )on X and wg, ®x are T4 invariant.
We will use the same notations as in the discussion before Proposition 4.8. We need

Lemma 4.29 Suppose that the R-action is not free. With the notations and assumptions
used above, let D = U xZ @ X be a BRT chart with BRT coordinates x = (x', x541),
x'=(x1,...,x2). Fix Dy € D and A € R. For u € €>°(Dy), we have

Qnu = Qnu+ Ryu onDy,
(Iép u)(x) = i Z ei(X2n+1—)’z,,+|.nzn+1)+i(2§:1mjﬂ,-)yz,lH—imlel—...—imde,,
A
2w
(m1,....ma)€Z 1a
61
..

X T (=12 1) (1 = x 2np1)Nu (€, ... %) o x')dTgdnapt1dyans1 on Do,

(4.81)
where x € €°(I), x (xon+1) = 1 forevery (x', xon4+1) € DoandB1 € R, ..., B4 € R
are as in (4.17).

Proof Wealsowritey = (¥, yan+1) = (V15 -+ Yons1), Y = (Y1, ..., Y2n), todenote
the BRT coordinates x. Let u € €°°(Dy). From (4.19), it is easy to see that on D,

d
- oNd
Quu() = Y wl= Y mppe B
(my,....,mg)€Zd Jj=1 (482)

/d e—(imlel+..‘+imd9d)u((ei91 o, eied) ° y/)de
T

Now, we claim that . .
Qr, + Ry, = O, oné5°(Dy). (4.83)

Let u € €°°(Dy). From Fourier inversion formula, it is straightforward to see that

. 1 T
Oru()=— > /6“"2”“ YT 3 (=1 1) X (V20 1)
1) 2

x el‘(Z?:l mjﬁj)y2n+1—im191—»--—im{ﬁdu((ei@l7 o, el'@d) ° X’)dedyandnan-
. (4.84)
From (4.84) and the definition of R, , we have

(Qr, + Ry u(x)

1 ; _y
= Z ol P )2n+lvn2n+l>r)\(_n2n+])
(my,..., mg)eZd
X ei(Z?ZI m;jBj)ynt1—im 0 7"'71""‘19‘114((6[9l s, eied) o x’)d']Tddyandnan.
(4.85)
Note that the following formula holds for every o € R,
/ eiay2n+l e_iy2n+1772n+1 d)’2n+l — 2n8a(n2n+] ), (486)
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where the integral is defined as an oscillatory integral and §, is the Dirac measure at
«. Using (4.82), (4.86), and the Fourier inversion formula, (4.85) becomes

d
De, + Reu(x) = o= S m; By)el CimimiBDxme1 5
(Qr;\ tA) ( ) A( 1,3])

(mi,....mg)eZd j=1
) ) ) ) (4.87)
/ e—lm191—...—lmd0du((6101 e, elgd) ° x/)de
Ta
=Qqu(x).
From (4.87), the claim (4.83) follows. O

To study Q rfS © when the R is not free, we also need the following two known
results [19, Theorems 3.2, 5.2].

Theorem 4.30 We assume that the R-action is arbitrary. Let D € X be a coordinate
patch with local coordinates x = (x1, . .., Xon+1). Then there exist properly supported
continuous operators A € LTII (D), S e LY (D), such that

22 23

O A+ 8 = IonD,

A*Dlgo) +S8S=1IonD,

DI(JO)S' =0 onD, (4.88)
A* onD, SA=0 onD,

*=8% onD,

S
1| T
i

S
where A*, S§* are the formal adjoints of A, § with respect to (- |-), respectively, and

S (x, y) satisfies
o0
S(x,y) = f YN g(x, vy, 1)dt on D, (4.89)
0

where ¢(x,y) € €°°(D x D) and s(x, y,t) € S}, (D x D x Ry) are as in (4.79).

Theorem 4.31 Let us consider an arbitrary R-action and let Q : L*(X) — L*(X) be
a continuous operator and let Q* be the L? adjoint of Q with respectto (- |- ). Suppose
that DISO) has local L* closed range on D with respect to Q and 0S© = @0 on
L2(X). Let D be a coordinate patch with local coordinates x = (x, . . ., Xon+41). We
have

0*sV 0 = §*0*0Son D, (4.90)

where S is as in Theorem 4.30.

For the proof we need the following.
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Lemma 4.32 Suppose that the R-action is not free. Fix p € X. Let D = U x T be a
BRT chart defined near p with BRT coordinates x = (x, xop11), X' = (x1, ..., Xon),
x(p) =0. Fix Dg € D, p € Dy, and » € R. Then,

S’I@U =0 on Dy,

where Iéu and S are as in Lemma 4.29 and Theorem 4.30, respectively.

Proof From (4.75), we may assume Dy is small so that
[0y,,.19(x, y)| > C, for every (x, y) € Dy, 4.91)
where C > 0 is a constant. Let g € €°°(Dg). From (4.81) and (4.89), we have

(SR, 2)(x)

, , 5 S 5~d
_ L Z AP g ) gy Wt =Y )+ Ty m B )Y~ Xy m 6

X T (=n2 )1 = x G2ep1)DE (€™ . ™) 0 u)dTadn2nt1dyzns1dvx (u) on Dy,
(4.92)
where we also write u = (', up+1), ' = (uy, ..., uz,), to denote the BRT coor-
dinates x. Since upn4+1 # Yon+1, for every (u', uzn11) € Do, yantr1 € Supp (1 —

X (y2n+1)), we can integrate by parts in 172,41 and rewrite (4.92):

(SR, )(x)

= i Z /ei"p(x"‘)a(x, u, 1)

2
(m1,....mq)eZd

i(Wan+1 — Yan+1)
« ei<uzn+1—yzn+1,nzn+1>+i(2‘}:1 mjB) Y1 —i Y4y m;0;

161 S, eied) o u'YdTadnani1dyans1dvx (i) on Dy.
(4.93)

X T3 (—n2041) (1 — x (V2041))8((e

Let

A('xs u/a y2n+l)

— /el'tso()wl)+l'(L12n+1—y2n+1,772n+1)a(x7 u, )(1 = x Yans1)) 1

E(Uon+1 — Yon+1)
X Ty (—N2n41)dnons1dusy1dt.

By (4.91) there exists ¢ > 0 such that

|3u2,,+1(l't90(X, u) + (U241 — Yont1, N2n+1))| = cf,
fort > |Al, n2n41 € Supp 7, (—1n2n+1)
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for every (x, u) € Dy x Dg. Hence, we can integrate by parts in u2,41 and 12,41 and
deduce that

Ax, i, Yon+1) € €° (Do x Dy x R)and A(x, ', Y2n+1)is a Schwartz function in yo,4 1.

(4.94)
We have
(SR, 8)(x)
! ! iy mj By —imi61—...—imaby
~or ) AQx, u’, yongr)e ==t I (4.95)
(my,..., md)EZd
x g((€, ..., e"%) o u"Ydv(u)dysns1dTy,

where dvy (u) = dv(u')duz,+1. From (4.94) and (4.95), we have

~ A . . . . 2
I3Rs8lpes <C Y /‘/ oimO—imals g (0 it Ou,)’ o)
Td

(my,....mq)eZd

. . . . 2
=c Y /‘/ e imibi—mimiba o (G101 % ou)‘ T(u)dvx (1)
Td

(my,....mq)eZd

~ . . . . 2
¢ Z /‘/Ed e—lmlel—,.4—lmd0dg((elel ’’’’’ el@,} 014)‘ dUX(M)

(mi,....mq)eZd

IA

< Collgll?,
(4.96)

where || - | p,,s denotes the standard Sobolev norm of order s on Dy, C, C, C‘o >0
are constants, T € %&o(D), T = 1 near Dg. From (4.96), we deduce that

S'I%U : L%(Do) — H;} . (Do)is continuous, for every s € N.

Let Ay : €°°(X) = ¥°°(X) be the standard Laplacian on X induced by (- |-).
Since (- |-) is T¢ invariant, Ax is T¢ invariant. Fix s € N. Let

Gy : €°(Do) — 6.° (Do)

be a parametrix of A% on Do and G is properly supported on Dy. Hence, there is a
properly supported smoothing operator

Fy : (Do) — €>°(Do)

such that
g = (A% Gy + Fy)g on Dy, (4.97)

for all g € €°°(Do). Now, on Dy,
SRy, g = SRy, (A% Gyg) + SRy, (Fyg). (4.98)
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Since Fj is smoothing, we have
ISRz, (Fs@)llpg.s < Cligl—s. (4.99)

where C > 0 is a constant. Now, we can integrate by parts and repeat the proof of
(4.95) and show that

(SR, Ay Gyg)(x)

1 (5w, : :
-— X /As(x,u',}’2n+1)€l(z-’=lm’ﬁj)yZ"H_lmlel_m_lmdgd (4.100)

X (Gsg) (™, ..., &%) o u'ydv(u)dysn1dTy,
where
Ag(x, ', your1) € €°(Dg x Dy x R)is a Schwartz function in yp,, 1.  (4.101)

From (4.100), (4.101), and noticing that G : Hcgrznsp (D) — HCOOmp (D) is continuous,
we can repeat the proof of (4.96) and conclude that

13R:, (5% Gy 1 pos < ClIGsgll < Ciligl—s, (4.102)
where C, C| > 0 are constants. From (4.97), (4.98), (4.99), and (4.102), we get that
Sk, -

Heomp (Do) — Hiy, (Do)is continuous for every s € N.

Hence, SI%U is smoothing on Dy. m|

Theorem 4.33 Suppose that the R-action is not free. Assume that g o is complete and
there is C > 0 such that

VEIRY > 2CV=1YL, QV=12Y" Ay > CO% A .

Let D = U x Z € X be a BRT chart with BRT coordinates x = (x1, ..., xXay41)- Let
reR A < —C. Then,

o
(0,25 (x. y) = fo D53y, 1)dt on D, (4.103)

where ¢ € €°(D x D) and s(x,y,t) € S (D x D x R+) are as in (4.79).
Proof From (4.81), (4.90), and Lemma 4.32, we see that on D,

0.5 =8"0%, 0,5

Using this observation, we can repeat the proof of [19, Theorem 5.8] and obtain the
conclusion. O
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Theorem 4.34 Let us consider an arbitrary R-action. Assume that g ¢ is complete
and there is C > 0 such that

VIR = ocyT12, V=18 Awp = COL A wp.
<z X
Let D = U x I be a BRT chart with BRT coordinates x = (xy, ..., Xop+1). Let A € R,
A < —C. Then,
(I — QT§)25<°) =0 onD. (4.104)
Proof From (4.88), we have
0 < 0
(I — Q,3)5< ) = S(I — Q,5)5< ). (4.105)

From Lemma 4.32, we have

S — Qrf) =S5 - Qrf) on Dy.
Since WF (1 — fo) (T~ =@ and WF () = diag (¥~ x X7), we have

S — QT)%) =0 on Dy, (4.106)

~ ~

where WF (I — Q_2) denotes the wave front set of I — 0. and

WF' (§) = {(x,&,y,n) € T*D x T*D; (x,&,y, —n) € WF ().
From (4.105) and (4.106), we get
(I — Qr;)S(O) - L2(X) — €*°(D)is continuous (4.107)

and hence
SO — 0.2):6'(D) — L*(X)is continuous. (4.108)

From (4.107) and (4.108), we get
(I - Qrf)S(O)(I ~0.2) : '(D) — €*(D)is continuous.
The theorem follows. O

We can now prove the main result of this work.

Theorem 4.35 (=Theorem 1.2) Let the R-action be arbitrary. Assume that g ¢ is com-
plete and there is C > 0 such that

VEIRE > 220VTT2, V1D Awy = COY Ay,
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Let D € X be a local coordinate patch with local coordinates x = (x1, ..., Xop+1).
Then,

o0
SO, y) = / YV g(x, y, 1)ydt on D, (4.109)
0

where ¢ € €°°(D x D) satisfies (4.75), s(x, y,t) € S (D x D x ]R+) and the leading
term so(x, y) of the expansion (2.4) of s(x, y, t) satisfies

1
so(x, x) = Enf"*l |det L,|, forallx € D. (4.110)

Proof Let A € R, A < —C. From Theorem 4.34, we have
(I =20, + Qrf)S(O) =0 onD. (4.111)

We can repeat the proofs of Theorems 4.28 and 4.33 and get

o0
QTfS(O) E/ POV (x, y, 1) onD,
0
(4.112)
0 sO = > ip(x,y)tg ¢ D
o =, e s(x,y,t) onD,

where ¢ € €°°(D x D), §(x,y,1),5(x,y,1) € S (D x D x R+) are as in (4.79).
From (4.111) and (4.112), the theorem follows. O

Proof of Theorem 1.3 The proof is analogous to the proof of Theorem 1.2 by using
Theorem 4.15 instead of Theorem 4.13. O

Proof of Corollary 1.4 Let K be a compact set of X. Fix x € K. From Theorem 1.2
and the fact that the Szegd kernel is smoothing away the diagonal, we can repeat the
proof of [19, Theorem 1.10] and deduce that there are open neighborhoods V, C U,
of x and global smooth L? CR functions (foxs fix, -+, fn.,x) = Fx such that
Fy : U, — CM7*!lis an embedding and supg\p, [fox| < %, infy,_ |fo.x| > 1. There
exists x, x2, ..., %y € Ksuchthat K C V, UV, UV, C U, UUy UUy,UUy,.

Then K 5 x + (Fy,, -, Fyx,) is an embedding. O
Proof of Corollary 1.5 We proceed as in the proof of Corollary 1.5 by working on a
compact coordinate patch K with coordinates (x, ..., x2,+1) and observing that in
these coordinates a CR (n, 0)-form equals fdzy A ... Adz, with f a CR function on
K. O
5 Examples

We now consider Heisenberg group H = C" x R with CR structure

0 0 0 "
TLOR .= span {— + i—¢(z) } , (GR))
07 0z; " 0xop41) i_
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where ¢ € €>°(C",R). Let (-|-)i be the L? inner product on H induced by the
Euclidean measure dx on R?**1. Let

5 9 9
Sp : L2(H) — {u c L2(H): (ﬁ — i%(x) - +l)u - o}
j / n

be the orthogonal projection with respect to (- | - )p and let Sg(x, y) € 2'(H x H) be
the distribution kernel of Sp. From Theorem 1.2, we deduce

%9

0707k

n
Corollary 5.1 With the notations used above, assume that < ) - is positive
J.k=

definite, at every z € C". Let 0 < A1(z) < ... < Ay(2) be the eigenvalues of
e n
(M) L 1,for every z € C". Suppose that there is C > 0 such that

3707k j

s

2 n
V=133 (—logdet< ¢ ) ) > —Cv/—1003¢ ,
jik=1

0207k (5.2)
1
<C, foreveryz € C".
r1(2)
Let D € H be any open set. Then,
o .
Su(x,y) = / Mg (x, y, H)dt onD, (5.3)
0

where ¢ € €°°(D x D) and s(x,y,t) € S (D x D x R+) are as in Theorem 1.2.

Example 5.2 With the notations used in Corollary 5.1, assume that
¢@) =z + 1), 5.4)

with r(z) € €°(C") and v/=139(|z|> +r(z)) > 0 on C". With this ¢, we can check
the conditions of Corollary 5.1 fulfilled as follows. In fact, in this case, we have

2 n 2 2 n
det( 0°¢ ) =det<M) —14+F@&) >0
Jk=1 Jok=1

0707k 0207k

with some F(z) € €°°(C"). And we have

2 n
VASTY) (— logdet( 09 ) ) = /—109 (—log(1 + F(2))) € @L-'(C).
j.k=1

Z;07g
Since r(z) € €>°(C") and /—133¢ = V—=109(|z|*> + r(z)) > 0, we have a uni-

form lower bound for the smallest eigenvalue, i.e., A1(z) > 1/C; for some C; > 0.
Moreover, we can choose C, > 0 sufficiently large such that

V=109 (—log(1 + F(2))) + Co/—130¢ > 0,
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since the first term /—139 (—log(1 + F(z))) is areal (1, 1)-form with compact sup-
portin C” and the second term /— 193¢ is a real positive (1, 1)-form with a uniformly
positive lower bound for the smallest eigenvalue A;(z) > 1/C; on C”". Finally, we
obtain C := max{Cy, C>} > 0 as desired in (5.2).

With this ¢, it is easy to see that (5.2) hold. This example shows that, after small
perturbation of the Levi form of Heisenberg group, we still can obtain the Szegé kernel
expansion via Corollary 5.1.

Example 5.3 Let (X, 71O x ) be a strictly pseudoconvex, CR manifold of dimension
2n + 1, n > 1, with a discrete, proper, CR action I" such that the quotient X/ T" is
compact. Assume X admits a transversal CR R-actionon X and let ® y be a I'-invariant,
R-invariant, Hermitian metric on X. Then the conclusion of Theorem 1.2 holds. In
fact, the I"-covering manifold is complete and we can find the desired constant C
depending on the fundamental domain U € X given by the I'-action such that (1.7) is
fulfilled. As a consequence, if we consider the circle bundle case in which RL =29,
we could obtain the Bergman kernel expansion for covering manifold [23, 6.1.2].
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