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ABSTRACT

We study the asymptotic behavior of the generalized Bergman ker-
nel of the renormalized Bochner-Laplacian on high tensor powers of
a positive line bundle on a symplectic manifold of bounded geom-
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etry. First, we establish the off-diagonal exponential estimate for the
generalized Bergman kernel. As an application, we obtain the rela-
tion between the generalized Bergman kernel on a Galois covering
of a compact symplectic manifold and the generalized Bergman ker-
nel on the base. Then we state the full off-diagonal asymptotic
expansion of the generalized Bergman kernel, improving the remainder
estimate known in the compact case to an exponential decay. Finally,
we establish the theory of Berezin-Toeplitz quantization on symplectic
orbifolds associated with the renormalized Bochner-Laplacian.

Berezin-Toeplitz quantiza-
tion; Bergman kernel;
Bochner-Laplacian; bounded
geometry; symplectic
manifold; orbifold

AMS SUBJECT
CLASSIFICATION
Primary 58J37;
Secondary 53D05

1. Introduction

In this article, we consider a smooth symplectic manifold (X, ) of dimension 2n. Let
(L, h") be a Hermitian line bundle on X with a Hermitian connection V% : (X, L) —
€ (X, T*X ® L). We assume that L satisfies the prequantization condition:
i
—Rl = o,
2n
where R' = (V1)? is the curvature of the connection V'. Let (E,hF) be a Hermitian
vector bundle on X with Hermitian connection V¥ and its curvature R”.
Let ¢'* be a Riemannian metric on X and V'¥ be the Levi-Civita connection of
(X,g™). Let Jo : TX — TX be a skew-adjoint operator such that

(L.1)

o(u,v) =¢™(Jou,v), u,veTX. (1.2)
Consider the operator J : TX — TX given by
T =h(-12)"" (1.3)
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Then J is an almost complex structure compatible with @ and g%, that is,
g% (Ju, Jv) = g™(u,v), o(Ju,Jv) = w(u,v) for any u,v€ TX and o(u,ju)>0 for
any u € TX,u # 0.

Let VV®E . ¢>*(X,I ®F) —» ¢*(X, T"X® I’ ® E) be the connection on L ® E
induced by V! and VE. Denote by A”®F the induced Bochner-Laplacian acting on
€< (X,L? ® E) by

AVEE — (YVEE)" Lok (1.4)

where (VV®E)* . (X, T*X ® I’ ® E) — €™ (X,L? ® E) denotes the formal adjoint of
the operator VZ'®E. The renormalized Bochner-Laplacian is a differential operator A,
acting on ¢°°(X, Lf ® E) by

A, = AYE_pr, (1.5)
where 1 € °°(X) is given by
1(x) = —nTr[Jo(x)](x)], x€X. (1.6)

The renormalized Bochner-Laplacian was introduced by Guillemin and Uribe in [1].
When (X, (u) is a Kahler manifold, it is twice the corresponding Kodaira-Laplacian on
functions ¥ = 9" *9" . The asymptotic of the spectrum of the operator A, as p — oo
was studied in [1-5].

In this article, we will suppose that (X,g"™) is complete and R", R%, J, g™ have
bounded geometry (i.e., they and their derivatives of any order are uniformly bounded
on X in the norm induced by ¢g'*, k", and K%, and the injectivity radius of (X, g™ ) is
positive). We will also assume that

‘L
PR (U8 )
xeX |u| >
ue T.X\{0}

>0. (1.7)

Note that A(x) =inf,cr X0} iRE(u, J(x)u)/ |u\ rx is the smallest eigenvalue of
iRE(-,J(x) ) with respect to g!X, for x € X. Thus (1 7) is a condition of uniform posi-
tivity of R* with respect to g'*.

Since (X,g™) is complete, the Bochner-Laplacian and the renormalized Bochner-
Laplacian A, are essentially self-adjoint, see Theorem 2.4. We still denote by A, the
unique self-adjoint extension of A, : ¢°(X, I’ ® E) — 6:°(X, L ® E) acting on com-
pactly supported smooth sections, and by ¢(A,) its spectrum in L*(X, L’ ® E). First, we
state the following spectral gap property for the operator A, which is a direct conse-
quence of [6, Lemma 1].

Theorem 1.1. Let (X,®) be a symplectic manifold with a prequantum line bundle
(L, VE, hY). Let g™ be a complete Riemannian metric on X and let ] be the almost com-
plex structure defined by (1.3). Let (E,VE hE) be an auxiliary vector bundle on X. We
assume that R", RY, ], ¢'* have bounded geometry and (1.7) holds. Then there exists
Cr > 0 such that for any p € N the spectrum of the renormalized Bochner-Laplacian (1.5)
satisfies

a(Ap) C [=Cr, CL] U [2pptg—Cr, +00). (1.8)
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When X is compact and E is the trivial line bundle, this theorem (with a not precised
constant y) is the main result of Guillemin and Uribe [1]. For a general vector bundle
E, it was proved by Ma and Marinescu [4, Corollary 1.2], cf. also [5, Theorem 8.3.1],
with the geometric constant i, given by (1.7). The analogous theorem for the spin®
Dirac operator on a manifold of bounded geometry is stated in [6, Lemma 1]. Theorem
1.1 can be directly derived from this result, following the proof of [4, Corollary 1.2] (see
also [4, Corollary 4.7] for the case of a covering of a compact manifold), thus we will
not repeat this proof here. Note that there are cases when the renormalized Bochner-
Laplacian has a spectral gap even if the curvature R" degenerates at finite order [7,
Remark 22].

For a Borel set B C R, we denote by £(B,A,) the spectral projection corresponding
to the subset B. Consider the spectral space H, C L*(X,L? ® E) of A, corresponding to
[—CL, C1],

H, := Range E([-C,CL], Ay). (1.9)

If X is compact, the spectrum of A, is discrete and H, is the subspace spanned by
the eigensections of A, corresponding to eigenvalues in [-Cp, C]. Let

Py, := E([-CL, CL], Ap) : L*(X, 1P © E) — H,, (1.10)

be the orthogonal projection. Let 7; and 7, be the projections of X x X on the first and

second factor. The Schwartz kernel of the operator Py, with respect to the Riemannian

volume form dvx is a smooth section P,(-,-) € €>(X x X, nj(L? ® E) @ n5(L” Q E)"),

see [5, Remark 1.4.3]. It is called the generalized Bergman kernel of A, in [8], since it
generalizes the Bergman kernel on complex manifolds.

Theorem 1.2. Under the assumptions of Theorem 1.1, there exists ¢ > 0 such that for any
k € N, there exists Ci > 0 such that for any p € N, x,x’ € X, we have

[Py (x, %) < CypHre VAL (1.11)

Here d(x,x’) is the geodesic distance and |P,(x, )|« denotes the pointwise %*-semi-
norm of the section P, at a point (x,x’) € X x X, which is the sum of the norms
induced by k", h¥ and g"* of the derivatives up to order k of P, with respect to the con-
nection V”®F and the Levi-Civita connection VX evaluated at (x,x’).

For the Bergman kernel of the spin“ Dirac operator associated to a positive line bun-
dle on a symplectic manifold of bounded geometry, the same type of exponential esti-
mate is proved in [6, Theorem 1] (see also the references therein for the previous
results). In [6], the authors use the methods of [5, 8, 9] based on the spectral gap prop-
erty of the spin® Dirac operator, finite propagation speed arguments for the wave equa-
tion, the heat semigroup and rescaling of the spin“ Dirac operator near the diagonal,
which is inspired by the analytic localization technique of Bismut-Lebeau [10]. It is
important in [6] that the eigenvalues of the associated Laplacian are either 0 or tend to
+00. In the current situation, the renormalized Bochner-Laplacian has possibly different
bounded eigenvalues, which makes difficult to use the heat semigroup technique. So we
replace the heat semigroup technique by a different approach, which was developed by
the first author in [11]: We follow essentially the general strategy of [5, 8, 9] but use
weighted estimates with appropriate exponential weights as in [12] instead of the use of



1040 Y. A. KORDYUKOV ET AL.

the heat semigroup and finite propagation speed arguments. In [13], this approach is
used to prove asymptotic decay of order O(e “v?) for eigenfunctions of a self-adjoint
Toeplitz operator with discrete wells associated with the renormalized Bochner-
Laplacian in the classically forbidden region.

As an application of our proof of Theorem 1.2, we obtain the relation between the
generalized Bergman kernel on a Galois covering of a compact symplectic manifold and
the generalized Bergman kernel on the base as an analog of [6, Theorem 2] for the
Bergman kernel of the spin® Dirac operator.

Theorem 1.3. Let (X,w) be a compact symplectic manifold. Let (L, V' ht), (E, VE, hE),
g™ be given as above. Consider a Galois covering m: X — X and let T be the group of
deck transformations. Denote by @, (L, Vi, hi), (E, VE, hE), gTX be the lifts of the above
data to X. Let AP be the renormalized Bochner-Laplacian acting on %>(X,L’ ® E) and
f’p(-, -) be the generalized Bergman kernel of AP. There exists py € N such that for any
p > p1 we have for any x,x € X,

Zf’p()}x,x’) = P,(n(x),n(x')). (1.12)
yell

This type of results has a long history. In the category of complex manifolds it
appeared in connection with the theory of automorphic forms and Poincaré series in
the works of Selberg and Godement. Earle [14] gave a proof when X is a bounded sym-
metric domain (under some hypothesis on the variation of Bergman kernels). The
second and third authors proved (1.12) for the Bergman kernels associated to the spin®
Dirac operator on a symplectic manifold, in particular, in the Kahler case [6, Theorem
2]. Lu and Zelditch [15] independently proved (1.12) for the Bergman kernels on
Kéhler manifolds when E = C.

As another application of the technique developed in this article, we extend the
results on the full off-diagonal asymptotic expansion of the generalized Bergman kernels
of the renormalized Bochner-Laplacians associated to high tensor powers of a positive
line bundle over a compact symplectic manifold, obtained in [11, 16], to the case of
manifolds of bounded geometry and slightly improve the remainder estimate in the
asymptotic expansions, proving an exponential estimate O(e~%V?) instead of O(p~>)
(see Theorem 4.3 below).

Finally, we study the theory of Berezin-Toeplitz quantization on symplectic orbifolds
by using as quantum spaces the spectral spaces H,, especially we show that the set of
Toeplitz operators forms an algebra. Ma and Marinescu obtained first Berezin-Toeplitz
quantization on symplectic orbifolds by using as quantum spaces the kernel of the spin®
Dirac operator, in particular, on compact complex orbifolds [17, Theorems 6.13, 6.16].
Let us note also that Hsiao and Marinescu [18] constructed a Berezin-Toeplitz quantiza-
tion for eigenstates of small eigenvalues in the case of complex manifolds. For a com-
prehensive introduction to this subject see [5, 19, 20].

The article is organized as follows. In Section 2, we collect some necessary back-
ground information on differential operators and Sobolev spaces on manifolds of
bounded geometry. In Section 3, we remind some results on weighted estimates on
manifolds of bounded geometry and prove Theorems 1.2 and 1.3. Section 4 is devoted
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to the full off-diagonal asymptotic expansions. In Section 5 we study Berezin-Toeplitz
quantization on symplectic orbifolds.

2. Preliminaries on differential operators and Sobolev spaces

In this section, we collect some necessary background information on differential opera-
tors and Sobolev spaces on manifolds of bounded geometry. We refer the reader to [6,
12] for more information. The novel point is that our constructions are adapted to a
particular sequence of vector bundles L? ® E,p € N. This concerns with a specific
choice of the Sobolev norm as well as with a slightly refined form of the Sobolev
embedding theorem. We will keep the setting described in Introduction.

2.1 Differential operators

Let F be a vector bundle over X. Suppose that F is Euclidean or Hermitian depending
on whether it is real or complex and equipped with a metric connection V7. The Levi-
Civita connection VX on (X, g™) and the connection V¥ define a metric connection
VF (X (T X)Y @ F) — (X, (T*X)®(j+1> ®F) on each vector bundle
(T*X)® ® F for j € N, that allows us to introduce the operator

(V) 6(X, F) — (X, (T'x)" @ ]—')

for every ¢ € N. Any differential operator A of order g acting in ¥ (X, F) can be written as
q

A= a (V) (2.1)
=0
where a, € (X, (TX)®") and the endomorphism - : (TX)® ® ((T*X)*' @ F) — F is
given by the contraction.
If 7 has bounded geometry, we denote by %%(X,F) the space of sections u €
%*(X, F) such that

l
ull g = sup [(VF) u(x)| < oo, (2.2)
b xeX <k

where |- |, is the norm in (T:X)® ® F, defined by g™* and h”. We also denote by
BD1(X, F) the space of differential operators A of order q in %.°(X,F) with coeffi-
cients a; in €3°(X, (TX)®").

Usually, we will deal with families of differential operators of the form

{A, € BDU(X,If ® E),p e N*}.

We will say that such a family {A, € BDY(X, L’ ® E),p € N} is bounded in p, if

q 1 l
Ay = Z Ay (\/ﬁ VLP®E> . apy €GY (X, (Tx)@“), (2.3)
(=0

and, for any £ =0,1,...,q, the family {a,,,p € N*} is bounded in the Frechet space
€, (X, (TX)®"). An example of a bounded in p family of differential operators is given

by {}%Ap :pe N}
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2.2 Sobolev spaces

Denote by dvy the Riemannian volume form of (X,g"X). The L*-norm on L*(X,[? ® E)
is given by

[ullyo = J |u(x)[Pdvx(x), uel*(X,I[F QE). (2.4)
X

For any integer m >0, we introduce the norm || -
mula

||p.m on €°(X, L ® E) by the for-

2
dvx(x), ue H™X,I’QE). (2.5)

=" | 1(%W"®E)éu<x>

(=0 JX

The completion of € °(X,L’ ® E) with respect to [|-||,, is the Sobolev space
H™(X,L? ® E) of order m. Denote by (-,-),, the corresponding inner product on
H™(X,[? ® E). For any integer m <0, we define the norm in the Sobolev space
H™(X,[? ® E) by duality. For any bounded linear operator A:H"(X,[’ ® E) —
H™ (X, ® E), m,m’ € Z, we will denote its operator norm by ||A\|;“"m’.

One can easily derive the following mapping properties of differential operators in
Sobolev spaces.

Proposition 2.1. Any operator A € BDY(X, LP ® E) defines a bounded operator
A:H™M(X,I? ® E) — H"(X,[? ® E)

for any m € N. Moreover, if a family {A, € BDY(X,1? ® E),p € N} is bounded in p,
then for any m € N, there exists C,, > 0 such that, for all p € N,

NApull, < Callullypygr  w € H" (X, LP @ E). (2.6)

2.3 Sobolev embedding theorem

We will need a refined form of the Sobolev embedding theorem adapted to the
sequence L ® E,p € N.

Proposition 2.2 ([6], Lemma 2). For any k,m € N with m >k + n, we have an embed-
ding

H"(X,I[? ®E) C 65X, I @ E). (2.7)
Moreover, there exists Cy, >0 such that, for any p € N* and u € H*(X, L’ Q E),

[l < Conip "] (2.8)

For any x € X and v € (L ® E),, we define the delta-section 6, € ¥~ (X, ® E) as
a linear functional on %7°(X,L? ® E) given by

<5v7 §0> = <V7 g0<x>>hlp®57 ® € (g?o(Xa Lp @ E) (29)

Proposition 2.3. For any m>n and v € I’ ® E, 6, € H "™ (X, ¥ ® E) with the following
norm estimate



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e 1043

|sTlpp /2|9, ||, —m < 00 (2.10)
v|=1

Proof. By Proposition 2.2 and the definition of the Sobolev norm, we have

Oy, @
B, n<C sup 9

< Cp"?|w). (2.11)
petonxpap) 19l

2.4 The renormalized Bochner-Laplacian
Let us first note the following basic result.

Theorem 2.4. Let (X,w) be a symplectic manifold with a prequantum line bundle
(L, V', hY). Let g™ be a complete Riemannian metric on X and let (E,V* h¥) be an
auxiliary vector bundle.

(i)  The space €°(X,LP ® E) is dense in the graph norm of the maximal extension
of VV'®F and €°(X, T*X ® LP ® E) is dense in the graph norm of the maximal
extension of (VY'®E)*,

(i)  The Hilbert space adjoint of the maximal extension of VY ®E coincides with the
maximal extension of (VV'#E)*,

(iii) The Bochner-Laplacian AY®E = (VVE)" WV geting on 4°(X, 1P @ E) is
essentially selfadjoint. In particular, the renormalized Bochner-Laplacian A, act-
ing on €°(X,LP ® E) is essentially selfadjoint.

Proof. Assertion (i) is a form of the Andreotti-Vesentini Lemma [5, Lemma 3.3.1]. The
proof is obtained by replacing 9" in [5, Lemma 3.3.1] with V¥®E. Assertions (ii) and
(iii) are obtained by adapting in the same way the proofs of [5, Corollary 3.3.3] and [5,
Corollary 3.3.4], respectively (valid for ((9 )* and the Kodaira-Laplacian [T°). O

Now we establish some additional properties of the family {;;A ,p € N} of differen-
tial operators, which is bounded in p.

Theorem 2.5. There exist C;,Cs >0 such that for any p € N*, u,u' € €°(X,LF ® E),

1 2 2
< I;Apu,u> > {lul By —Callu 2 212)
p,O

‘<1Apu, u'>
p .0

Proof. These estimates follow immediately from the identity
—(tu, ”>p,o- (2.14)

1 1
—-A u,u> :H—VU’M
<P ? p,0 \/p p,0 0O

Let 0 be the counterclockwise oriented circle in C centered at 0 of radius .

< Gsllull, [1],, - (2.13)

2
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Theorem 2.6. There exists py € N such that for any A €6 and p > p, the operator
}v—}%Ap is invertible in L*(X,LP ® E), and there exists C> 0 such that for all /. € 6 and

P > po we have
~1)]0.0 -1
) [ e J3)
p » p

Proof. We will closely follow the proof of [9, Theorem 4.8] or [8, Theorem 1.7] (cf. also
the proof of [10, Theorem 11.27]). The first estimate follows from Theorem 1.1 and the
spectral theorem. By (2.12), we have, for 1y < —C;,

1
<< —Ap—/10>u,u> > ||u||12,.1, (2.16)
p p,0 '

therefore, the resolvent (/o— ,%Ap)% exists and

1 —1
lo——A
<° p P)

Now we can write, for A € 0 and 4y < —C,,

1 ! 1 o\t 1 \! 1 !
<;x.—1—>Ap> = (AO—I—)AP> —(/l—j,()> <i—1—)Ap> (}VO—I;AP> . (218)

Thus for A € §, we get from the first estimate of (2.17), and (2.18),

1 -1
J—=A
’( pp)

Changing the last two factors in (2.18) and applying (2.19), we get

1 71
J——A
|(-5%)

The proof of Theorem 2.6 is completed. O

—1,1

<C. (2.15)

p

1,1
<1 (2.17)

p

-1,0
<1+ ClA—Jol. (2.19)

p

-1,1
<1+ [A=2| (1 + C|A=1]). (2.20)

P

3. Proof of main results

This section is devoted to the proofs of Theorems 1.2 and 1.3. First, we describe a class of
exponential weight functions as in [12]. Then we prove norm estimates in weighted
Sobolev spaces for the resolvent (i—1A,) ™. Here we follow general constructions of [5,
8, 9], which are inspired by the analytic localization technique of Bismut-Lebeau [10, §11].
Next, we derive pointwise exponential estimates for the Schwartz kernel of the operator
()»—I%Ap)fm and its derivatives of an arbitrary order, using a refined form of the Sobolev
embedding theorem stated in Proposition 2.2. Finally, we use the formula as in [8, (1.55)]

1 [ s 1.\
- — — > .
Py, zmjf G pAJ A, m>1, (3.1)

that allows us to complete the proofs of Theorems 1.2 and 1.3.
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3.1 Weight functions

Recall that d denotes the distance function on X. By [12, Proposition 4.1], there exists a
“smoothed distance” function d € (X x X), satisfying the following conditions:

1. there is r> 0 such that
|(~1(x,y)—d(x,y)| <r, xy€kX, (3.2)
2. for any k> 0, there exists Ci >0 such that, for any multi-index f with || =k,
|06d(x,y)| < Cr, x,y€X, (3.3)

where the derivatives are taken with respect to normal coordinates defined by the expo-
nential map at x.

Actually, we will work with a sequence of smoothed distance functions gip, pEN, to
remove small distances effects of smoothing. As one can easily see from the proof of
[12, Proposition 4.1], for any 7 € (0, 1], there exists a function d € (X x X), satisfy-
ing (3.2) with r = y and (3.3) with C; = ay ke >01is independent of y. Let us briefly
describe its construction.

Let a* be the injectivity radius of (X,g"™). We denote by BX(x,r) and B™X(0,r) the
open balls in X and T,X with center x and radius r, respectively. For any x, € X, we
identify B"0*(0,a*) with B¥(xo,a*) via the exponential map exp} : Ty, X — X. One
can show that, for ¢ € (0,a%), the geodesic distance on B¥(xy,¢) is equivalent to the
Euclidean distance on B™X(0,¢) uniformly on x, € X : there exists C >0 such that for
any xo € X and Z, W € B™%(0, ¢),

X (z,w) < d (expx (2), expffo(w)) < Cd™*(Z,W). (3.4)

By [12, Lemma 2.3], for ¢ < a* /2, there exists a covering {B*(x;, ¢ €)}iey of X and N €
N such that every intersection of N+ 1 balls BX(x;, 2¢) is empty. Purthermore, by [12,
Lemma 2.4], there exists a partition of unity Z —, ¢; = 1 subordinated to this covering
such that suppe; C B¥(x;,¢) for any j and, for any k € N, there exists Cy such that
0% ¢;(x)| < Cx for any j, x € B*(xj,¢) and |u| <k, where the derivatives are computed
with respect to the normal coordinates on BX(xj,¢). Choose a function 0 € 2°(R*")
such that 6(x) =0 if |x|>1,6(x) >0 for any x € R and [;..0(x) dx = 1. For any
0>0, put

05(x) = 02"0(67'x), xeR™. (3.5)
The function d is defined by

d(x,y) = Z@ x)J 95((expf;)_l(x)—z>d(exp;§(z),y) dz. (3.6)

Using the formula

o0

d(x,y) = Z b (x)JRzn 05 <( exp fj) - (x)—z) d(x,y) dz, (3.7)

the triangle inequality, the fact that supp 05 C B(0,0) and (3.4), we get
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|d(x y—=dx )| < i JRzn <(exp )l(x)—z)d(x, expfé(z)) dz < Cs. (3.8)

Choosing 6 < C™'y, we obtain (3.2) with r = 7.
Differentiating (3.6) with respect to x, for any multi-index f with |f| =k, we get

dPd(x,y) = ZC/”Z 0;¢;(x J znaf_f [95((expi§)71(x)—z)}d(expf;(z),y)dz
=p 1

with some constants Cg,>0. Taking into account that Z (l)] and
Jren0s(x)dx = 1, it is easy to see that, for k>0,

> cﬁfz Oz (x J 0L 105((expy) " (x)—2)ldz = 0.
<p j=

As above, using these formulas, the triangle inequality, the fact that supp 65 C B(0,0)
and (3.4), for any multi-index f with |f| =k > 0, we infer

|83/c;£l(xay)| < Z CBIZ

<p =1

o) |

8ffr {95((expx) (x)—z ”d X, expx( z))dz < Cﬂélfk.

For 0 chosen as above, this gives~(3.12) with Cx = 9", ¢ >0 is indeEendent of 7.
We will use such a function d for y = %, p € N, denoting it by d,. So it satisfies
the conditions:

1. we have

|ap(x,y)—d(x,y)| < for any x,y € X; (3.9)

1
\/p 3
2. for any k> 0, there exists ¢ >0 such that, for any multi-index f with |f] = k,

k ~
|<%) Gfdp(x,yﬂ < %, for any x,y € X. (3.10)

For any o € R,p € N" and y € X, we introduce a weight function f, ,, € 4*°(X) by
fupy(x) = ™ for x € X, (3.11)
where ap,y is a smooth function on X given by
ap,y(x) = ap(x,y), for x € X. (3.12)

We don’t introduce explicitly the weighted Sobolev spaces associated with f,, .
Instead, we will work with the operator families for p € N*,0 € R,y € X,

Apay = fapyA f (X, I ®E) — ¢ (X, If QE) (3.13)

defined by an operator family {A, : ¢°(X,Lf ® E) — ¢ (X, ® E),p € N*}. In par-
ticular, the desired exponential estimate of the Bergman kernel will be derived from the
fact that the operator f%NPHPf;;y is a smoothing operator in the scale of Sobolev spaces.
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3.2 Weighted estimates for the renormalized Bochner-Laplacian

Observe that, for v € (X, TX),

T A ()] 319

Therefore, V' € BD'(X, L? ® E). Moreover, for any a>0 and v € 4;°(X, TX), the
family
1

{ﬁvfff yeX, o < a\/f)}

is a family of operators from BD'(X,L? ® E), uniformly bounded in p.

This immediately implies that, if Q € BDY(X, L? ® E), then, for any « € R and y € X,
the operator f,,,Qf,,, is in BDY(X,L ® E). Moreover, for any a>0, the family
rpyQfspy 1 ¥ € X, |ef <ay/p} is a family of operators from BD(X, L# ® E), uniformly
bounded in p.

Now the operator Ay, := fy,,Apf, ), has the form

Apoy = Ay + 0Apy + 0By, (3.15)

where A, € BD'(X,I? ® E) and By, € BD’(X,L” ® E). Moreover, for any a>0, the
families {ﬁAP;y :p €N',y € X} and {B,, : p € N,y € X} are uniformly bounded in p.

If {¢j,j=1,...,2n} is a local frame in TX on a domain U C X, and functions I'; €
€< (U),i,j,k=1,...,2n, are defined by VeTlek = Zir}kei, then we have

A, = —g"2) [vg" BEgUOE rfk(z)vgjm} —p1(2), (3.16)
where (gfk(Z))j’k is the inverse of the matrix ((e;, ¢)(Z)); ;and
Apy = —&(2) [VWEV“’@E - rfk(z)v”®5] —pt(2). (3.17)

a.ye - oLyiek o.yser

In particular,

2n

Re Apyy = Ap—0 Z & (Z)e; (ZlPJ,) ex (Eipﬁy) = Ap—oc2|Vc~ip7y|§(Z). (3.18)
jk=1

From (3.17), we easily get

Apy = — igjk (2) (261' (;lp’y) Vﬁ: e (ek (ap,y» _rfk (2)e (ap-y» )

k=1
Bpy =~ igj “(2)e; (aw) ek (aN> '
k=1

By Proposition 2.1, for any m € N, there exists C, > 0 such that, for any p € N*,y €
X and u € H"(X,[? ® E),

(3.19)

[1Apytllp s < Conp*l[1llps 1Byl < Conlltll (3.20)

We have the following extension of Theorem 2.5.
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Theorem 3.1. There exist Cy,Cy,C3>0 such that for any pe N",a € R,y € X and
u,u € (X, ® E),

1 o 2
Re <—Ap;a7yu71/l> > ||“||127,1_<C2+C0_>||u||Pa0’
p p.0 p

1 || o2
K;mmww>wfsaowmmwmf+&Ewmw+;wmuonwug.

Proof. Using Theorem 2.5, (3.15), (3.18), and (3.20), we get

1 1 o 2
Re ( —Ap,u,u 2 Dpuu ) —Co—|lull,o
P po p po P (3.22)

2
2 o 2
> [ull,— (Cz + Co;) el

(3.21)

and

1
.\ N—_—h u'>
‘<P e 2.0

1 1 1
< '<—Apu, u’> + || <—Ap’yu, u/> + o? <—Bp_yu, u'> (3.23)
p 0 p 0 p 0
< & (1l sl 2L 1l sl 0+ el ol 0 ).
]

3.3 Weighted estimates for the resolvent

Theorems 3.2-3.4 are the weighted analogs of [9, Theorems 4.8-4.10], [8, Theorems
1.7-1.9] which are inspired by [10, §11]. Now we extend Theorem 2.6 to the setting of
weighted spaces.

Theorem 3.2. There exist ¢>0, C>0 and po€N such that, for all
A €0,p > po,|o| <cy/p,y € X, the operator A—%Ap;a,y is invertible in L*(X, L ® E), and

we have
’ <A——1A > 1 070<C H(i——lA ) 1
A 300 = Y 30
p pio.y P Py

Proof. Let us denote in this proof

1 1 -1 1 1 -1
R(7,-Ay) = (2=2A, ), R(A4=Dpuy) = (A==Apy ] -
<PP> < p") <p”> < p”)

By Theorem 2.6, (3.15) and (3.20), it follows that, for all A € J,p € N*, « € R and
y € X, we have

—1,1

<C. (3.24)

p
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e (38 88

< C(|o<|\/pHR<,1,§Ap)(:’l +o? R(i,‘%Ap>leo> < (4 ). (3.25)
Choose ¢ >0 such that C(c + c2) < 1. Then, if |o < c\/p, we have
o ) o)L o

Therefore, for all 2 € 6,p € N*, « € R, |a| < ¢ /p, and y € X, the operator l——AP;W
is invertible in L, and we have

o) ) (i0) (e (e )

(3.27)
Therefore, by (2.15), (3.26) and (3.27), we get
1,1
(i) < ()
1 0,1 oo 1 1 1 j—1110,0
) Bl gl poe)
p P j=1 p p p ' p
. | X 1o (3.28)
X (;Ap;%y — I_)A‘D)R(;L,P?Apm’y)
p
<C+CY 27 =2cC
j=1
Since || - |[;° <[] |, "', (3.28) entails (3.24). 0

In the sequel, we will keep notation ¢ for the constant given by Theorem 3.2, which will
be usually related with the interval (—c,/p, ¢\/p) of admissible values of the parameter a.

Remark 3.3. Observe that, for any A€ J,p > py, « € R and y € X, the operators
()»—}%Ap;a_y)*l and (/I—I—l)Ap)*l are related by the identity

1 -1 N
(A—EAp;acA,y) = fupy </1—1—)Ap> fy_pl’y, (3.29)

which should be understood in the following way. If o<0, then, for any s¢&
%*(X,L? ® E), the expression fx,p_,},(/l—zl)Ap) o S makes sense and defines a function
in L?(X,I? ® E). Thus, we get a well-defined operator

-1
f%va(’{_%Ap) fopy  €Z(X, 1P @E) — (X, I? @ E), (3.30)

and one can check that f,p,(A—;A,)" fapyu = (A— })pr)*lu for any u € €°(X,LF ®
E). So (3.29) means that the operator f,,,(/ —’%Ap)_lf“_py extends to a bounded oper-

ator in L*(X,L? ® E), which coincides with (/"L_I%Ap;%y) . If >0, then, for any u €
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L*(X,LP ® E), the expression fa’py()u—ll)Ap)*l]‘m »yu makes sense as a distribution on X.

Thus, we get a well-defined operator
1 -1
Japy <?~— EA”> fopy (X P ®E) = (X, L @ E). (3.31)

So (3.29) means that this operator is indeed a bounded operator in L?(X,1” ® E),

which coincides with (1 pAp oy)

Theorem 3.4. For any p € N*,p > pg, A € 0, m € N,y € X and |o| <c,/p with the con-
stant ¢ as in Theorem 3.2, the resolvent (A—— Apsy)”! maps H™(X,I? ®E) to
H™(X,[? @ E). Moreover, for any m € N, there exzsts C, >0 such that for any p >
Po, A €0,y € X and |o| < c\/p,

|O=34)

Proof. The first statement of the theorem is a consequence of a general fact about oper-
ators on manifolds of bounded geometry. The operator (A—1A,, y)_l is a pseudodiffer-
ential operator of order -2, so it maps H"(X,L? ® E) to H™""(X, P ® E). It remains to
prove the norm estimate (3.32).

To prove (3.32), first, we introduce normal coordinates near an arbitrary point x, €
X. As above, we will identify the balls B (0,aX) and B¥(x,,a*) via the exponential
map expx TxOX — X. Furthermore, we choose a trivialization of the bundle L and E
over BX(xo, X), identifying the fibers L, and E, of L and E at Z € BTX(0,aX) =
BX(xo,a*) with L,, and E,, by parallel transport with respect to the connection V! and
V¥ along the curve y; : [0,1]9u — expX (uZ). Denote by V¥'“F and h¥*F the connec-
tion and the Hermitian metric on the tr1v1al line bundle with fiber (I ® E), induced
by this trivialization. Let I'*, T* be the connection forms of V! and V¥ with respect to
some fixed frames for L, E which is parallel along the curve y, : [0,1]Du — exp} (uZ)
under our trivialization of B%*X(0, ¢). Then we have

VY = Vy +pIH(U) + TE(U). (3.33)

m,m+-1

< Cp. (3.32)

p

For any xy € X, fix an orthonormal basis ey,...,e;, in Ty, X. We still denote by
{ej} "', the constant vector fields ¢j(Z) =¢; on B™*(0,¢). One can show that the
restriction of the norm |[[-||,,, to %X(B™*(0,¢), [’ ® E) = €°(B*(xo,¢),[* ® E) is
equivalent uniformly on x) € X and p € N* to the norm ||- given for u €

Ipn
%> (B™%(0,¢),L? @ E) by

1/2

m ¢
||u||; Z Z JT X(\/_> |Véi®5~--VéZ®Eu|2dZ ' (3.34)

(= 0]1,...,][ 1
That is, there exists C,, >0 such that, for any xy € X, p € N* we have
Co lutlly i < MNully o < Conllul[ (3.35)

for any u € ¢>°(B™X(0,¢), ¥ ® E) = ¢>°(BX(x9,¢),? ® E). By choosing an appropri-
ate covering of X by normal coordinate charts, we can reduce our considerations to the
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local setting. Without loss of generality, we can assume that u € %>°(B™%(0,¢), L’ @ E)
for some xy € X and the Sobolev norm of u is given by the norm ||u||;7m given by
(3.34). (Later on, we omit “prime” for simplicity.) We have to show the estimate (3.32),
uniform on x,. That is, we claim that, for any m € N, there exists C,, >0 such that for
any p e N, p>pg, A€ 6,y € X, |af<cy/pand x € X,

-1
|y< W) tllypir < Conlltll, e 4 € € (B"0X(0,8), 1 © ). (3.36)

Proposition 3.5. For any 1 < j; < ... < jx < 2n, the iterated commutator
I Cpee | 1 oreE 1 Crep 1
[ﬁv% s %V% g eeey %Vejk 7;Ap;o¢’y (337)

defines a family of second order differential operators, bounded uniformly on p € N*|y €
X, |a| <c\/p, and xo € X. In particular, there exists C>0 such that for p e N,
o] <cy/P,y € X and u,u’ € €2°(B™%(0,¢), L’ ® E)

U orer { 1 Crrer [ I Crer 1 ] ” />
— V. ==V, Ve &5 = Apa u,u
‘<[ﬁ T vp N/ 20

(3.38)
< Cllull, i [14]],;-
Proof. By (3.15), (3.17), and (3.19), the operator lAp;a,y has the form
1
YL oE IPQE
g
(3.39)

D TSI 4, 2),

where

LSt~ 23 ¢ 2(3)

k=1 =1

ago'y( ) = _glj )
P“J’
J

pay(Z) = —1(Z2)— ZgJ (ej (ek (Elw)) —I5(Z)es ([ip,y) )

Zg Jej (glp,y) €k (ap-y) :

It is easy to see that if ﬁm y 18 ap s bp 2y OF Cpay, the iterated commutator

U oree [ 1 greE YL CE
T T [V -
is a smooth function on B™*(0,¢) with sup-norm, uniformly bounded on p € N*y €
X, |o| <cy/p and xo € X.
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Recall the commutator relations

1 1 1 1
{— vk —VLP@E} — - RL"‘@E(e,-, ej) = R" (ei, ¢)) +}—)RE(el-, ¢)- (3.40)

\/1_) e; ) \/I_) € p

Using these facts, one can see that the iterated commutator (3.37) has the same struc-
ture as 1 Ay, ,. This easily completes the proof. O

Now the proof of (3.36) is completed as in [9, Theorem 4.10] or [8, Theorem 1.9].
Forany 1 <j; <.. <j, <2nwith / =1,...,m, we can write the operator

—1
(Lo (o) (Lo (- 2a) T ew

as a linear combination of operators of the type

1 _p 1 1 1 -1
Vil B v [ Vs (;L—A.M> 1“
l\/ﬁ . L/ﬁ i L/ﬁ * p (3.42)

1 1
qER ®E> <— vff’@E)
<\/p Tk+1 \/ﬁ Te
and of the operator

1 ! 1 1
I =Ny —vg@E) <— vgp@E) <— vgf’®5>. (3.43)
< P ”) (\/1—’ )P VP

Each commutator

-1
[%Vé{zm’ [%v%@ﬂ,.., [%véim’ (}L—%Ap;aw) ]H

is a linear combination of operators of the form

1 -1 1 -1 1 -1
(i—l—)Ap;w> R, (i—l—)Ap;w> R,...Ry <i—]—)Ap;a.},> , (3.44)
where the operators Ry, ..., Ry are of the form
1 LPRE 1 LPQE 1 LPRE 1
[71_) Veil , {ﬁ Vex_z ey 7}_)Vell ,I—)Apmy vl |- (3.45)

By Proposition 3.5, each operator R; defines a bounded operator from H' to H!
with the norm, uniformly bounded on p € N*, |«| < ¢/p,y € X. Therefore, by Theorem
3.2, each operator (3.44) defines a bounded operator from L* to H' with the norm, uni-
formly bounded on p € N*,p > po, |o| <c,/p,y € X. This immediately completes the
proof. O

3.4 Pointwise exponential estimates for the resolvents

In this section, we derive the pointwise estimates for the Schwartz kernel R(;";>(~7 )€
€ (X x X, (I» Q E) @ wy (L ® E)") of the operator (A"—I%Ap)_m. Recall that py €
N*, ¢>0 are given in Theorems 2.6, 3.2.
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Theorem 3.6. For any m, k € N with m>2n+k+ 1, for any p € N*,p > po, and 1 € 6,

we have Rg’_?;)(-, ) e FHX x X, i (1P @ E) @ i (LP ® E)*) and, for any ¢, € (0,c), there

exists Cp, > 0 such that for any p € N*,p > po, L € 9, x,x' € X, we have

|Rgn;> (x%,X) | < Cupp™*re VP, (3.46)

Proof. By (3.29), for any m € N,p € N*, p > py, A € ,y € X and || < c,/p, we have

1\ o1 -m
Fapy (A—pAp> f%;y = <A—ppr> . (3.47)

As in Remark 3.3, one can show that this formula gives a well-defined operator from
¢ (X, I? ®E) to ¢ (X, QE).

Since A, is formally self-adjoint with respect to [|-|[,,, we have A=A, ,,.
Using this fact and Theorem 3.4, we easily get that, for any m; € Z, there exists
Cynm, > 0 such that, for all p € N*,p > py, A € d,y € X, and |«| <c,/p, we have

|(=52)

The Schwartz kernel R)p”( ) EF(X x X, mH(IlP ® E) @ ni(LP ® E)") of the oper-
ator (/1 Apauy)” " is related to the Schwartz kernel Rsl,p)(W -) of the operator
()»—};Ap)_m by the formula

—m || my,m+m

< Coum, - (3.48)

P

R(’;)”(x, x) = e“dw(")Rﬁp) (x, 2 )e ) x € X. (3.49)

For x,x',y € X and v € (L’ ® E) ,, we can write

dpy (%) RE:';) (x, xr)efoa?lp,y(x/)v — << J— Il? pr> m(sV) (x) € (I’ ® E),. (3.50)
In particular, putting y = x’, we get for x,x' € X and v € (I’ ® E) .,

ORI (3, Yooty = (( P Il) APW,> _m5v> (x) € (I’ © B),. (3.51)

By (3.9), it follows that, for 0 <« <c,/p and ¥’ € X, we have an estimate edp () <
. It is in this place that we need to use the smoothed distance function d, depending
on p. Assummg 0 <a <c,/p, by Propositions 2.2, 2.3, and (3.51), we get, for m >2n +

1, that R i )( x') is continuous and
;b_ - p o x/> 51/
< p %

/1__ o,x! 61}
( p" )

S CZPn/Z sup ||5V||p,n+1—m S C3Pn-
VE(LPRE) 4 ,lv|=1

sup ¢?dpa0(¥) R%) (x,x)

xx'eX

<€ sup
ve(LPRE) 4 ,|v|=1

<Cp"?  sup (3.52)

ve(LPQE) 4 ,|v|=1

pantl
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Similarly, for any Q; € BD*(X,If ® E) and Q, € BD*(X,L’ ® E),k; + k, = k, by
the argument after (3.14), we get with m >2n+k+ 1,

sup d(* '[(Qi ® Q)R; )(x,X’)I

xx'eX

<€ sup
vE(LPQE) 4 ,|v|=1

1 —m
Fyupw Qi <)v—1—)Ap> QFy 0y

= sup

ve(LPRE) 4 v|=1

1 —m
Ql;zx,p,x’ (ﬂv_pAp;o(,x/> Q;;a.p’x/év

@0
617

< Cp'? sup

1 —m
Ql;mp#’ <;“_ 1_7 AP;W“) QZ;a,P-,x/(SV

vE(LPRE) y,|v|=1 p.n+l
—m
< C2p<"+kl)/2 Supvé(U@E)Xr.M:l (/L_%AP%%X/) Q;;x,p,xléV
p.ntki+1

k *
< C3p(n+ 072 supve(U’@E)xr.M:l ||QZ;a,p,x/éV‘|p7n—m+k1+l

k k
< C4P(n+ /2 SUP e(1rE) 4 |vj=1 ||5V||p,n7m+k+l < Csp" /2,

(3.53)

For any xy € X, fix an orthonormal basis ey, ..., 5, in Ty, X. As above, we extend it to
a frame ey, ..., ez, on BX(0,¢) as constant vector fields on T, X. One can show (see, for

instance, [12, Proposition 1.5]) that the norm || - ||« on %}(X, [? ® E) is equivalent uni-
formly on p € N* to the norm || - ||£6/k given for u € 65(X,L? ® E) by
/ P®E PQE
= sup s [V )| g

That is, there exists Cy > 0 such that, for any p € N* and u € 45(X, L? ® E), we have
G lulls < llulls < Cillull. (3.59)

Let ¢ € €>°(R*") be any function supported in the ball B(0,¢) such that ¢ =1 on
B(0,¢/2). Consider the function ¢, € %>°(BX(xo,¢)), corresponding to ¢ under the
isomorphisms %°°(B(0,¢)) = °°(B™%(0,¢)) = 4>°(B*(x,¢)) induced by the basis
er,...,ean and the exponential map expff0 . The family {¢, ,x € X} is bounded
in €;°(X).

By (3.55), it follows that there exists Cx > 0 such that, for any x,x’ € X, we have

IR (x,) | < G sup |(Qu @ Q)R (x,.4)], (3.56)

1,Q2

with the supremum taken over all pairs (Q;, Q,), where Q; € BDk (X,l? ® E) and Q, €
BD* (X, L ® E), k; + k, < k, have the form

P P P
Ql = V%@E . L ®E¢xa QZ LP®E . L ®E¢x’ (357)

e‘k eJk

and iy, ..., ik, j15 -5k, € {1, ...,2n}, that immediately completes the proof of (3.46). [
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3.5 Proof of theorems 1.2 and 1.3
In this section, we complete the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Let k € N. Take an arbitrary m > 2n + k + 1. By (3.1), we have

Py(x,x') = 27[1J A 1R (x x') di. (3.58)
5

By Theorem 3.6, it implies immediately the %*-estimate in Theorem 1.2 with ¢>0
given by that theorem. O

Proof of Theorem 1.3. First, we observe that, for 7 € ¥>(X) and 7 € ¥>(X) given by
(1.6), we have T = m*t. Next, the quantities fi, and f, defined by (1.7) are equal. In
particular, fi,>0. By Theorem 1.1, there exists constant C; >0 such that for any
peN

G(Ap) U 0<Ap) C [-Cr, CL] U [2ppy—Cr, +00). (3.59)

Recall that 6 denotes the counterclockwise oriented circle in C centered at 0 of
radius .

For any p,m € N,p > po, and 4 €4, denote by R, p) X xX,n(I' 9E) ®
(L' @ E)*) and Rﬁ " e @ (X x X, (P RE)® nZ(LP ®E)") the Schwartz kernels
of the operators (A—; A ») " and (i—%A )", respectively. Recall that, for any x’, they
satisfy the identities

1- " m , 1 " m
(i_‘AP> R () = by, <”_‘Ap) R(x') = by (3.60)
p ’ p ’
Moreover, u = R(;;)(-, x’) is the unique distributional solution of the equation
1 m
(i—}—)Ap) U= 0y. (3.61)

Let m>2n + 1. Then, by elliptic regularity and Sobolev embedding theorem, R( ")

and R are continuous. We claim that there exists p; € N such that for any p > p1
and x, x €X,

SR (x,2) = R (n(x), 7). (3.62)
yell ’

By [21], there exists K> 0 such that }_ e~ 0¥ < 4 oo for any a>K and x,x’ €
X. Put p; > K%/ + po. Then, by Theorem 3.6, for any p>p; and x,%’ € X, the series
in the left-hand side of (3.62) is absolutely convergent with respect to ¢°-norm and its
sum

x) = ZRE{;)(W, x) (3.63)

yell

is a I'-invariant continuous section on X x X. So we can write
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597 (0, ) = 8" (n(x), n(x)) with 8" € €°(X x X, (1 ® E) © 73 (I © E)").

Ap P
(3.64)
Moreover, by (3.60), for any x' € X, SE_’;) (+,x') satisfies the identity
1< \" ~(m
(x——Ap) 5 () = b0 (3.65)
p P
Therefore, for any x’ € X, Sﬁﬁ>(~,x’ ) satisfies the identity
(i_ 1Al”)m S(;;)(', x) = oy (3.66)
p :

By the uniqueness of the solution of (3.61), it follows that S%) = Rgf;). This com-
pletes the proof of (3.62).

Since, by Theorem 3.6, the series in the left-hand side of (3.62) is absolutely conver-
gent with respect to the ¢°-norm uniformly in /4 € §, we can integrate it term by term
over d. Using (3.58) and (3.62), for any p>p; and x,x’ € X, we get

- 1 —(m
Sper Pplyxx) = J‘/lm_lR(i;(yx, X) di
L (3.67)
= %LAW‘IR%) (n(x),n(x)) di = P,(n(x),n(x)).
The proof of Theorem 1.3 is completed. O

4. Full off-diagonal asymptotic expansion

In this section, we study the full off-diagonal asymptotic expansion in the geometric
situation of our article described in the Introduction.

In the case of a compact Kahler manifold the asymptotic expansion of the Bergman ker-
nel P,(x,x) restricted to the diagonal was initiated by Tian [22], who proved the expansion
up to first order. Catlin [23] and Zelditch [24] proved the asymptotic expansion of P,(x;, x)
up to arbitrary order, see [5] for the numerous applications of these results.

On the other hand, the off-diagonal expansion of the Bergman kernel has many
applications. In the case of complex manifolds the expansion of P,(x,x’) holds in a
fixed neighborhood of the diagonal (independent of p), see [9], [5, Theorem 4.2.1].
Such kind of expansion is called full off-diagonal expansion. As already noted in [5,
Problem 6.1, p. 292] the proof of the full off-diagonal expansion holds also for complex
manifolds with bounded geometry.

In the case of the Bergman kernel associated to the renormalized Bochner-Laplacian
considered in the present article, it was shown in [8, Theorem 1.19] that the off-diag-
onal expansion holds in a neighborhood of size 1/,/p of the diagonal. This is called
near off-diagonal expansion. Moreover, it was shown in [5, p. 329] that the Bergman
kernel is O(p~>) outside a neighborhood of size p~’, for any 0 € (0,1/2). These esti-
mates are used in the proof of the Kodaira embedding theorem for symplectic
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manifolds [8, Theorem 3.6]. In [16] a less precise estimate than [8, Theorem 1.19] was
obtained in a neighborhood of size p~, 0 € (0,1/2), which is however enough to derive
the Berezin-Toeplitz quantization for the quantum spaced H, in [25]. Finally, in [11]
the full off-diagonal expansion for the Bergman kernel associated to the renormalized
Bochner-Laplacian was proved by combining [8, §1] and weight function trick in [12].

In this section, we extend the results on the full off-diagonal asymptotic expansion to
the case of manifolds of bounded geometry. Moreover, using the technique of weighted
estimates of the previous sections, we slightly improve the remainder in the asymptotic
expansions. We will keep the setting described in Introduction.

Consider the fiberwise product TXxxTX = {(Z,Z') € T(,X X T, X : xo € X}. Let 7 :
TXxxTX — X be the natural projection given by n(Z,Z') = xo. The kernel P,,(x,x’)
(of the operator (A,)7Py,) induces a smooth section Py, (Z,Z') of the vector bundle
7*(End(E)) on TXxxTX defined for all xo € X and Z,Z’ € T,, X with |Z|,|Z| < a*.

We will follow the arguments of [8, 11]. We will use the normal coordinates near an
arbitrary point xy € X introduced in the proof of Theorem 3.4. Let {e;} be an oriented
orthonormal basis of Ty X. It gives rise to an isomorphism X, := R* = T, X.

Consider the trivial bundles L, and E, with fibers L,, and E,, on X,. Recall that we
have the Riemannian metric g'* on B™*(0,a%) as well as the connections V*, V¥ and
the Hermitian metrics k", h* on the restrictions of Ly, E, to BTX(0,a¥) induced by the
identification BT0X(0,a*) = BX(x;,a¥). In particular, h*, h® are the constant metrics
hto = hlw kP = kB, For ¢ € (0,a%/4), one can extend these geometric objects from
BT0X(0,¢) to Xy 2 T\, X in the following way.

Let p : R — [0,1] be a smooth even function such that p(v) =1 if |v| <2 and p(v) =
0 if |[v| > 4. Let ¢, : R*" — R*" be the map defined by ¢,(Z) = p(|Z|/¢)Z. We equip X,
with the metric g™ (Z) = g(¢,(Z)). Set V¥ = ¢ VE. Define the Hermitian connection
Vo on (Ly, k) by (cf. [9, (4.23)], [8, (1.21)])

Vil = g0 43 (1-p2(21/6) R, (R, ), (@)

where R(Z) = ), Zjej € R = T;X,.
By [9, (4.24)], [8, (1.22)], if ¢ is small enough, then the curvature R™ is positive and
satisfies the following estimate for any x, € X,

iR (u, o 4
ueTy X\ {0} |u|grx 5

TXo and iR™. From now

Here J%o is the almost complex structure on X, defined by g
on, we fix such an ¢>0.
Let dvrx be the Riemannian volume form of (T, X, g™%). Let k be the smooth posi-

tive function on X, defined by the equation
dVXO (Z) = K(Z)dVTx(Z>, Z € X,. (4.3)

Let Aff“ = ALg@E‘]—pTO be the associated renormalized Bochner-Laplacian acting on
%> (Xo, L5 ® Ep). Then (cf. [8, (1.23)] there exists Cy, > 0 such that for any p
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8
G(A;(O) C [-Cy,, Cp | U {gp,uo — Cy,, —|—oo>. (4.4)

Consider the subspace HO in 4 (Xy, L} ® Ey) =~ 6°(R*"E,,) spanned by the eigen-
sections of A correspondlng to eigenvalues in [—Cy,, Cr,]. Let Py be the orthogonal
projection onto Hg The smooth kernel of (Ap )quO with respect "to the Riemannian
volume form dvy, is denoted by P0 o(Z,Z'). As proved in [8, Proposmon 1.3], the ker-
nels Py, . (Z,Z') and PO 2(2:2) are asymptotlcally close on B™X(0,¢) in the > -top-
ology, as p — oo.

In the next theorem, we improve the O(p~>°)-estimate for the norms of the differ-
ence between Py, (Z,Z') and P) (Z,Z') of [8, Proposition 1.3], proving an exponential
decay estimate. This is essentially the main new result of this section.

Theorem 4.1. There exists co >0 such that, for any k € N, there exists C, > 0 such that
forp e N*\xo € X and Z,Z' € BX(0,¢),

Py (Z,2))=P) (Z,Z))| o < Cre VP (4.5)

Proof. As in Section 3.4, Rg": €EC (X xX,n{(l» RE) @ n;(L* ® E)*) denotes the
Schwartz kernel of the operator (A— I%Ap)fm. We also denote by

Xo7

S (XO x Xo, ! (Lh @ Ep) @ m}(Lh Eo)*> (4.6)

the Schwartz kernel of the operator (A— pA;(“)*m. For m>2n+ 1, the distributional
sections R! p)( x') and R (Z Z') are continuous sections.

Recall that d denotes the geodesic distance on X and d% the geodesic distance on X,.
By construction, d coincides with d% on BX(xo,2¢) x BX(xo,2¢) = BX(0,2¢) x
BX(0,2¢). Let y € €2°(B*(0,4¢)), ¥ = 1 on B (0, 3¢).

Consider a function y € ¥*°(R) such that y(r) =1 for |r| < ¢ and y(r) = 0 for |r| >
2¢. For any a € R and W € X, we introduce a weight function qﬁi"w € € (Xo) by

(f)i”W(Z) = exp [oc)((dXO(Z, W))], Z € Xy. (4.7)

Consider the operators
-1
A w = SR AR (6) (48)

With the same arguments as in Theorem 3.4, one can show that
Theorem 4.2. There exist ¢o>0 and py € N* such that, for any p € N*,p > py, L €

0, W € Xy and |a| <coy/p, the operator A—lAXaW is invertible in L°. Moreover, for any

m € N, the resolvent (A— ;Ag‘; w) " maps H™ to H™' with the following norm estimates:

-1
Xo
(ﬂ P W)

where C> 0 is independent of p € N*,p > po, L € 6, W € X, and x, € X.
For any Z, W € B%(0,2/2), we have d*(Z, W) <&z and, therefore, ¢}, (Z) = e*. For
m>2n+ 1, we have

m,m+1

<C, (4.9)

p
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(m) Xo,(m)
sup |Ri,p (27 W)_Ri,p (27 W)‘
Z,WeBX0(0,¢/2)

<e VP sup
Z,WeB%0(0,¢/2)

% @ (VDR W) = K" (2, wip(w) )|

X 1 - 1 X -

0 lﬁ(/l—Ap> — (ﬂ»—A 0) lﬁ) o,
20v/P,W P

X, 1 o , Lo\ "
Ean(W(58) - () v

By construction, we have for any u € ¢2°(B*(0, 2¢), Ey,)

1
< emovP sup
W € B%(0,¢/2),
ve (Lg ®EO)wv |V| =1

< Cp'rerovk sup
W € B%(0,¢/2),
veE (L@ Ey)y v =1

p.n+l1

(4.10)

Apu(Z) = A u(Z) (4.11)

Then, for any u, we have

<’1_;1,A§0>mlﬂ<i—%Ap> - l(z—})Ajf’)m, 4 (z—})Ap) Tt yu  (4.12)

and

p
) m ) m L o\-m (4.13)
= (A—;Ajf’) l(@-}-}Aﬁo) ,w] (;L—I—)Ap) u.

Now, for any p € N*, 1€ and W € X,, by Theorem 4.2 and (4.13), we have for
m>2n+1,v e (L5 ®Ey),,|v| =1,

<c‘

o aw (w (z— %Ap> (- %Aj,‘o)"ﬂp) 3
e (58) "] () o

Since the operator [(i—}%Aﬁ")m, u,b} vanishes on BX(0,3¢), for any W € B%(0,¢) we
have d*o(W,Z) > 2¢ and, therefore, ¢i‘;ﬁ~w(2) =1 on the support of {(l—’%A‘fﬂ)m’ lp}
Hence, for W € B%(0,¢), by (4.14), we get

patl (4.14)

pntl—-m
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‘ - (w(i—éwm - (z-;}@fo)'ﬁp)&v

p,n+1
By A% 1A 4.15
<C [(z pAp) ,w](x pAp) 5 (4.15)
pntl-m
< CH (z— ;,Ap)* 5, < Cl0ulppirm < CP
p.n+1
and, finally, by (4.10) and (4.15), we get

sup  [RY)(Z, W)—RS™ (2, W)| < Cipe VP < CretP (4.16)

Z,WeB%(0,¢/2)

Using (3.58), we complete the proof for k=0. The proof of the case of arbitrary k
can be given similarly to the proof of Theorem 3.6. O

Now we can proceed as in [8, 11]. We only observe that all the constants in the esti-
mates in [8, 11] depend on finitely many derivatives of gTX, Wt Vi, HE, VE, J and the
lower bound of g". Therefore, by the bounded geometry assumptions, all the estimates
are uniform on the parameter x; € X. We will omit the details and give only the final
result, stating the full off-diagonal asymptotic expansion of the generalized Bergman
kernel P, as p — oo (see Theorem 4.3 below).

The almost complex structure J, induces a decomposition Ty X®RrC =
T)E;’O)X@T)(Cg’l)X, where T)(C;"O)X and T)(Cg"l)X are the eigenspaces of J,, corresponding to
eigenvalues i and - i, respectively. Denote by detc the determinant function of the com-
plex space Tij"’)x. Put

T x, = —2mi)y. (4.17)
Then J,, : T — T)(C;’O)X is positive, and Jy, : Ty, X — Ty, X is skew-adjoint [8,

0

(1.81)] (cf. [10, (4.114)]). We define a function P = P,, € €°(Ty, X x Ty, X) by

detcJ 1 1/2 1
z,7) = = ——((7%) (2-2),(z-2)) +=(TuZ,Z ) 4.18
P2 = ey (-5 (2) 22 2 )
It is the Bergman kernel of the second order differential operator £, on ¢*°(T,,X,C)
given by

2n 2
11
Lo=— Jz_; <vej +5 R, (Z ej)> —1(Xp), (4.19)
Vu the ord7i”r.17ary operator of differentiation in the direction U on the space
€ (Ty,X,C). Thus, P is the smooth kernel (with respect to dvry) of the orthogonal
projection in L?(T,, X, C) to the kernel of L.
Let k be the function defined in (4.3).

Theorem 4.3. There exists ¢ € (0,aX) such that, for any j,m,m’ € N,j > 2q, there exist
positive  constants C, ¢ and M such that for any p>1l,xo€X and
2,7 € Ty X,|Z|,|Z'| <& we have
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ol 1 J PN _r
sup W o Pq’pm] (Z, Z/) — Zqur’xo (\/1327 \/I—)Z/) K Z(Z)K Z(Z/)p 3tq
Jor| 4o | <m p r=2q &"(X)
< Cp—H;HJF‘I(l +\/PlZ| + \/1_7|Z'|)M exp (—c/moplZ—2'|) + Ole=oovP),
(4.20)
where
Fprio(2,2)) = Jgrx,(Z2,Z )Py, (2,2)), (4.21)

Jorxo(Z,Z") are polynomials in Z,Z', depending smoothly on xo, with the same parity as r
and deg J;rx, < 3r.

Here 4™ (X) is the "'-norm for the parameter x, € X. Note that the summation in
(4.20) starts from r = 2gq and (4.21) due to [8, Th 1.18].

5. Berezin-Toeplitz quantization on orbifolds

After the pioneering work of Berezin, the Berezin-Toeplitz quantization achieved gener-
ality for compact Kahler manifolds and trivial bundle E through the works [26-28]. We
refer to [5, 8, 19, 20] for more references and background. The theory of Berezin-
Toeplitz quantization on Kahler and symplectic orbifolds was first established by Ma
and Marinescu [17, Theorems 6.14, 6.16] by using as quantum spaces the kernel of the
spin® Dirac operator. Especially, they showed that the set of Toeplitz operators forms an
algebra. The main tool was the asymptotic expansion of the Bergman kernel associated
with the spin® Dirac operator of Dai-Liu-Ma [9].

In this Section, we establish the corresponding theory for the renormalized Bochner-
Laplacian on symplectic orbifolds. In [5, §5.4] one can find more explanations and
references for Sections 5.1 and 5.2. For related topics about orbifolds we refer to [29].

This Section is organized as follows. In Section 5.1 we recall the basic definitions
about orbifolds. In Section 5.2 we explain the asymptotic expansion of Bergman kernel
on symplectic orbifolds, which we apply in Section 5.3 to derive the Berezin-Toeplitz
quantization on symplectic orbifolds.

5.1 Basic definitions on orbifolds

We define at first a category M, as follows: The objects of M; are the class of pairs (G,
M) where M is a connected smooth manifold and G is a finite group acting effectively
on M (i.e., if g € G such that gx = x for any x € M, then g is the unit element of G). If
(G, M) and (G',M’) are two objects, then a morphism @ : (G,M) — (G, M) is a family
of open embeddings ¢ : M — M’ satisfying:

(i)  For each ¢ € ®@, there is an injective group homomorphism 4, : G — G that
makes ¢ be /,-equivariant.
(i) For g€ G, ¢ € @, we define g : M — M’ by (g¢)(x) = go(x) for x € M. If
(80)(M) 1 (M) # 0, then g € 2,(G).
(iii) For ¢ € @, we have ® = {gp : g € G'}.
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Definition 5.1. Let X be a paracompact Hausdorff space. A m-dimensional orbifold
chart on X consists of a connected open set U of X, an object (Gy, U) of M, with
dimU = m, and a ramified covering Ty : U — U which is Gy-invariant and induces a
homeomorphism U ~ U/Gy. We denote the chart by (Gy, U)->U.

A m-dimensional orbifold atlas V on X consists of a family of m-dimensional orbifold
charts V(U) = ((Gy, U)->U) satisfying the following conditions:

(i) The open sets U C X form a covering U with the property:

For any U,U’' €Y and x € UN U, there is U’ € U such that x€ U" C UNU".
(5.1)

(i) for any U,V €U, U C V there exists a morphism ¢y : (Gy, U) — (Gy, V),
which covers the inclusion U C V and satisfies ¢y = @y © @yy for any
U,V Weld, withUCVCW.

It is easy to see that there exists a unique maximal orbifold atlas V,,,, containing V;
Vmax consists of all orbifold charts (Gy, (~J)E>U, which are locally isomorphic to charts
from V in the neighborhood of each point of U. A maximal orbifold atlas V,,,, is called
an orbifold structure and the pair (X, Vi) is called an orbifold. As usual, once we have
an orbifold atlas V on X we denote the orbifold by (X,V), since V determines
uniquely Vay.

Note that if &' is a refinement of U satisfying (5.1), then there is an orbifold atlas V'
such that YUV is an orbifold atlas, hence VUV’ C V,,,. This shows that we may
choose U arbitrarily fine.

Let (X,V) be an orbifold. For each x € X, we can choose a small neighborhood
(Gy, Uy) — U, such that x € U, is a fixed point of G, (it follows from the definition that
such a G, is unique up to isomorphisms for each x € X). We denote by |G,| the cardinal
of G,. If |G¢| =1, then X has a smooth manifold structure in the neighborhood of x,
which is called a smooth point of X. If |G| > 1, then X is not a smooth manifold in the
neighborhood of x, which is called a singular point of X. We denote by X, = {x €
X;|Gx| > 1} the singular set of X, and X,,, = {x € X;|G,| = 1} the regular set of X.

It is useful to note that on an orbifold (X,))) we can construct partitions of unity. First,
let us call a function on X smooth, if its lift to any chart of the orbifold atlas V' is smooth
in the usual sense. Then the definition and construction of a smooth partition of unity
associated to a locally finite covering carries over easily from the manifold case. The point
is to construct smooth Gy-invariant functions with compact support on (Gy, f]).

In Definition 5.1 we can replace M, by a category of manifolds with an additional
structure such as orientation, Riemannian metric, almost-complex structure or complex
structure. We impose that the morphisms (and the groups) preserve the specified struc-
ture. So we can define oriented, Riemannian, almost-complex or complex orbifolds.

Let (X,V) be an arbitrary orbifold. By the above definition, a Riemannian metric on X is
a Riemannian metric g¢'* on X,,, such that the lift of g™ to any chart of the orbifold atlas
V can be extended to a smooth Riemannian metric. Certainly, for any (Gy, U) € V, we
can always construct a Gy-invariant Riemannian metric on U. By a partition of unity argu-
ment, we see that there exist Riemannian metrics on the orbifold (X, V).
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Definition 5.2. An orbifold vector bundle E over an orbifold (X,V) is defined as fol-
lows: E is an orbifold and for U € U, (GE,py, : Ey — U) is a GE-equivariant vector
bundle, (G, Ey) (resp. (Gy = G5 /KE, U), KE = Ker(GE, — Diffeo(U))) is the orbifold
structure of E (resp. X) and morphisms for (G¥, Eyy) are morphisms of equivariant vec-
tor bundles. If G, acts effectively on U for U € U, that is, K& = {1}, we call E a proper
orbifold vector bundle.

Note that any structure on X or E is locally G, or ijx—equivariant.

Remark 5.3. Let E be an orbifold vector bundle on (X, V). For U € U, let E}; be the
maximal KE-invariant sub-bundle of Eyy on U. Then (Gy, E};) defines a proper orbifold
vector bundle on (X, V), denoted by EP".

The (proper) orbifold tangent bundle TX on an orbifold X is defined by (Gy, TU —
U), for U € U. In the same vein we introduce the cotangent bundle T*X. We can form
tensor products of bundles by taking the tensor products of their local expressions in the
charts of an orbifold atlas. Note that a Riemannian metric on X induces a section of

T*X @ T*X over X which is a positive definite bilinear form on T,X at each point x € X.

Let E — X be an orbifold vector bundle and k € NU {oco}. A section s: X — E is
called %* if for each U € U, 5|, is covered by a Gf-invariant ¢* section 5y : U — Ey.
We denote by %*(X, E) the space of * sections of E on X.

If X is oriented, we define the integral [io for a form o over X (i.e., a section of
A(T*X) over X) as follows. If supp(a) C U € U, set

1 ~
JXO( = mJUOCU. (52)

It is easy to see that the definition is independent of the chart. For general o we
extend the definition by using a partition of unity.
If X is an oriented Riemannian orbifold, there exists a canonical volume element dvy on
X, which is a section of A" (T*X), m = dimX. Hence, we can also integrate functions on X.
Assume now that the Riemannian orbifold (X, V) is compact. For x,y € X, put
0.
0] 0.1 = X,5(0) = 1) =

d(x,y) = Infy{ Z,:J %

such that there exist tp =0<t; < --- <t = 1,y([ti-1, ti]) C U,

L

ti-1

UieU, and a € map 7, : [ti1,t;] — U; that covers V|[t,-71,t,-]}'

Then (X, d) is a metric space.

Let us discuss briefly kernels and operators on orbifolds. For any open set U C X
and orbifold chart (Gy, U)EU, we will add a superscript ~ to indicate the correspond-
ing objects on U. Assume that K(x,%') € 4>(U x U, T'E® nﬁfi*) verifies

(&, DK (g7 '%,%') = (1,g7')K(%,g%') for any g € Gy, (5.3)

where (g1, g,) acts on Ex x E. by (g1,8)(81,&) = (9161,88)
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We define the operator K : %x(U,E) — ¢>(U,E) by

(K 3)(x) = J K(x,%)5&)dvy (%) for 5 € 67 (U,E). (5.4)
U
Any element g€ Gy acts on %>*(U,E) by: (g-5)(%):=g-5(g"'%), where 5¢
%>*(U,E). We can then identify an element s€ > (U,E) with an element § €
€>(U,E) verifying g -5 =5 for any g € Gy.
With this identification, we define the operator K : 4;°(U,E) — 4> (U, E) by

1 -

(Ks)(x) = WJ K(&,x)5(x)dvy(x') for s € 6°(U,E) , (5.5)
ulJo

where x € 1;;'(x). Then the smooth kernel £(x,x’) of the operator K with respect to

dvy is (cf. [9, (5.18)])

K(x,x') = Z (g, 1)I~C(g*15c,5c’). (5.6)

Let K1, KC, be two operators as above and assume that the kernel of one of I~CI,I€2
has compact support. By (5.2), (5.3), and (5.5), the kernel of K; o I, is given by

(K10 Ky)(x,x') = Z (g, 1)(I~Cl 0 K>) (g7'%,%). (5.7)

gcGy

5.2 Bergman kernel on symplectic orbifolds

Let (X,w) be a compact symplectic orbifold of dimension 2n. Assume that there exists
a proper orbifold Hermitian line bundle (L, k") on X with a Hermitian connection V* :
€ (X,L) — ¢ (X, T"X ® L) satisfying the prequantization condition:

ﬁRL = . (5.8)

where Rt = (V1)? is the curvature of V%. Let (E,hF) be a proper orbifold Hermitian
vector bundle on X equipped with a Hermitian connection V¥ and R” be the curvature
of VE.

Let g¢'* be a Riemannian metric on X. Let A, be the renormalized Bochner-Laplacian
acting on ¢ (X, LF ® E) by (1.5). With the same proof as in [4, Corollary 1.2], we can
establish the spectral gap property.

Theorem 5.4. Let (X,w) be a compact symplectic orbifold, (L, V', hl) be a prequantum
Hermitian proper orbifold line bundle on (X,w) and (E,VE hE) be an arbitrary
Hermitian proper orbifold vector bundle on X. There exists C, > 0 such that for any p

G(Ap) C [—CL, CL] U [ZPMO—CL, +OO>, (5.9)

where i, >0 is given by (1.7).

From now on, we assume p > Cr(24,)”'. We consider the subspace H, C (X, I’ ®
E) spanned by the eigensections of A, corresponding to eigenvalues in [—Cp, C]. We
define the generalized Bergman kernel
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Py(-,) € %”(Xxx,n*;(LP@E)@n;((LP ®E)*)) (5.10)

as the smooth kernel with respect to the Riemannian volume form dvx(x’) of the
orthogonal projection (Bergman projection) Py, from L*(X, L’ ® E) onto H,.

Consider an open set U C X and orbifold chart (Gu, U)X U. Recall that we add a
superscript ~ to indicate the corresponding objects on U. The Riemannian metric g™~
can be lifted to a Gy-invariant Riemannian metric gV on U. We denote by BU(x €)
and B U(O ¢) the open balls in U and T;U with center X and 0 and radius &, respect-
ively. We will always assume that 7y extends to (Gy, V)2V with U cC V and U cC
V.Let U= U\U and U = U \ U. Fix a¥ >0 such that for every open set U C X
and orbifold chart (Gy, f])gU, for every ¢ < a* and for every X € U such that
d(%,0U) < ¢, the exponential map T;USZ— expX(Z) € U is a diffeomorphism from
B:U(0,¢) onto BY(x,¢). Throughout in what follows, & runs in the fixed inter-
val (0,a%/4).

Let f : R — [0, 1] be a smooth even function such that f{v) = 1 for |v|<¢/2, and f(v)

= 0 for |v|>¢. Set
+00 -1 —+00
F(a) = (J f(v)dv) J ™ f(v)dv. (5.11)

Then F(a) is an even function and lies in the Schwartz space S(R) and F(0) = 1. Let
F be the holomorphic function on C such that F(a?) = F(a). The restriction of F to R
lies in the Schwartz space S(R). Then there exists {Cj}fil such that for any k € N, the
function

H
’1-_11

k y 1 (k)
Z ) e = F(0), (5.12)

verifies
f’,ii)(O) =0 for any 0<i<k.
Using the same arguments as in [8], one can show the analog of [8, Proposition 1.2]:

Proposition 5.5. For any k,m € N, there exists Cy , > 0 such that for p>1
~ 1
Fo( 5 ) ) = Role)
\/1_7 P p

Here the €™ norm is induced by V', VE and ht hE g™x.

Using (5.11), (5.12), and the property of the finite propagation speed of solutions of
hyperbolic equations [5, Appendix D.2] (which still holds on orbifolds as pointed out in
[30]) it is clear that for x, x eX, Fk(ﬁ Ap)(x,-) only depends on the restriction of A,
to BX(x, ep71), and Fk(\}.A )(x,x') = 0, if d(x,x') =epi.

Consider an open set U C X with an orbifold chart (Gy, )—>U Let

= {x € U,d(x,0U) <28}.

%"”(XXX)<Ck mp k42 2m+2n+1) (5.13)

For any x € Uy, the exponential map expy, is a diffeomorphism from B O (0,2¢)
onto BY(xg,2¢) which is G, -equivariant. Thus we can extend everything from
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BT U1(0,2¢) to X = Txoljl as in Section 4 (cf. [8, §1.2]) which is automatically
Gy, - equlvarlant Let Py , be the spectral projection of the renormalized Bochner-
Laplacian A ° on ¥~ (XO,L ® Ep), corresponding to the interval [-Cp,,Cy], and
Py ,(x,¥) be the Schwartz kernel of Py , with respect to the volume form dvy . Let

P
Px, »(x,y) be the corresponding object on G, \ T, Ui, then, by (5.6), we have
Py p(x%,y) = Y (8 1)Px, ,(g7'%,5). (5.14)
8E€Gy,

By Proposition 5.5, we get the analog of [8, Proposition 1.3]: for any ¢,m € N, there
exists Cy,, >0 such that, for any x,y € B(xo,¢) and p € N*

|Py(%,9)—Px, p(%, )| < Comp " (5.15)

5.3 Berezin-Toeplitz quantization on symplectic orbifolds

We apply now the results of Section 5.2 to establish the Berezin-Toeplitz quantization
on symplectic orbifolds by using as quantum spaces the spaces H,. We use the nota-
tions and assumptions of that Section. We will closely follow and slightly modify the
arguments of [17, §6.3, 6.4].

Thus we have the following definition.

Definition 5.6. A Toeplitz operator is a sequence {Tp}peN of bounded linear operators
T,: L*(X,I” ®E) — L*(X,I’ ® E) , (5.16)

satisfying the following conditions:

i. For any p € N, we have
T, = Py, TyPy,. (5.17)

ii. There exists a sequence g € ¥°°(X,End(E)) such that
Ty = Pi,(>_p'g)Pn, + O(p™™), (5.18)
1=0
that is, for any k > 0 there exists C; > 0 such that
k
‘ Ty—Py, (Zplgl> Py,
1=0

For any section f € %> (X,End(E)), the Berezin-Toeplitz quantization of f is
defined by

< Cp* L (5.19)

Trp: (X,IF Q E) —» L*(X, I’ ®E) , Tjp=P, f Py . (5.20)

The Schwartz kernel of Ty, is given by

Tfp(x,x') = JXPP(X7 V()P (K", %) dvx(x) (5.21)
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Lemma 5.7. For any ¢, >0 and any I,m € N there exists Cj,, . >0 such that
| Ty p (x, xl)|<gM<xXx)<C1,m,aP_l (5.22)
forall p>1 and all (x,x") € X x X with d(x,x") > &.

Proof. By using Proposition 5.5, the proof is exactly the same as the proof of [17
Lemma 4.2]. O

Next we obtain the asymptotic expansion of the kernel Ty, (x,x’) in a neighborhood
of the diagonal. We will use [17, Condition 6.7].

Recall that the (proper) orbifold tangent bundle TX on an orbifold X is defined by a
family of Gy-equivariant vector bundles (Gy, TU — U), for U € U. Consider the fiber-
wise product TXxxTX = {(Z,Z') € T(, X X T, X : %0 € X}. Let m: TXxxTX — X be
the natural projection given by n(Z,Z’) = xo. We say that Q,, € End(E), [z ,ZI}, if for
any U € U, it induces a smooth section Q,, € End(E),, Z, /] of the vector bundle

7*(End(E)) on TUx;TU defined for all X, € U and Z Z’ € T;,U and polynomial
inZ,7' €Ty, U.

Let {Z,},cy be a sequence of linear operators E,: L*(X,Lf ® E) — L*(X,LF ® E)
with smooth kernel Z,(x, y) with respect to dvx(y).

Condition 5.8. Let k € N. Assume that there exists a family {Qry, } o<, <t exs Satisfying
the conditions:

o Q. €End(E), [2,2],2,7 € T5 X,
{Qrx }yex i smooth with respect to the parameter x; € X,

and, for every open set U € U and every orbifold chart (Gy, U)3U, a sequence of ker-
nels

{ép,u(&,&’) € (g‘”(ﬁ x U (" 0 ) @ m (L’ ®E)*>}peN

such that, for every ¢’ >0 and every X, %' € U,

sul(g'%,x) = (1,g )ipu(ic gx') for any g€ Gy(cf.(5.3)),

B, U(~ 5c ) =0(p~) for d(x,x') >¢", (5.23)
) ZgEGU (g’ )'_‘va(g x’x ) + 0(p700>’

and moreover, for every relatively compact open subset V C U, the following relation
is valid for any xo € V :

By (x, x

—n

[1]x

k
P Zpus(2.2) 23 QP (VBZ 2 )p i+ 0(p ) . (520
r=0
which means that there exist & >0 and Cy >0 with the following property: for any me
N, there exist C>0 and M>0 such that for any X € V,p>1 and Z, 7 e
T:,U,|Z|, |Z | <&, we have with x in (4.3),
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'p" Bpu <272/> :(Z zk: (QrzPa) (\/‘T;Z,\/ﬁzl)‘le &(V) (5.25)

< Cp 1+ vpIZI + VpIZ |) exp (—/CoplZ=Z) +O(p~).

Notation 5.9. If the sequence {E,:L*(X,[f®E)— L*(X,[f ®E)},oy satisfies
Condition 5.8, we write

k
P Byl 2,22 3 (QusPa) (VBZ VB2 )5+ O(pF) (5.26)
r=0

As in [17, Lemma 6.9], one can show that the smooth family Q,, € End(E), 1z Z]
in Condition 5.8 is uniquely determined by Z,.

Theorem 5.10. There exist polynomials J,, € End(E), [Z,Z/] such that, for any k €
N,Z, 7' € T, X, |Z|,|Z'| <& we have

k—

p*"pro (z,7) gz (JrxPx,) fZ fz’)p +(’)(p ) (5.27)

r=0

,_.

in the sense of Notation 5.9.

Proof. By Theorem 4.3 for Py, ,(x,7), (5.14) and (5.15), we get Theorem 5.10 as the

analog of [17, Lemmas 4.5, 6.10]. O
From (5.21) and (5.27), we deduce an analog of [17, Lemmas 4.6, 4.7 and 6.10].

Lemma 5.11. Let f € 4> (X,End(E)). There exists a family {Q;x,(f)},en ,ex Such that

a. Qx(f) € End(E), [Z,Z'] are polynomials with the same parity as r,
b, {Qrx ()} enex is smooth with respect to xo € X,
forevery k e N,xg € X, Z,Z' € Ty X, |Z|,|Z'| <¢/2 we have

k
P T (2.2) 2 S (Qua(F)P) (VBZVBZ)p i+ 0(p) . (529)
r=0

in the sense of Notation 5.9.
Here Q, 4, (f) are expressed by

0fx
Qo= > {rl o ag;() JM] . (5.29)
71+T2+|1‘
Especially,
Qo.x (f) = f (x0)- (5.30)

Qi (f) =f(x%0))1x5 + K

s
Joxos afZ (0 )Z,-Io,xo] . (5.31)
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Here, for any polynomials F,G € C[Z,Z'], the polynomial K[F,G| e C[Z,Z'] is
defined by the relation

((FPXO) ° (pro))(zv Z/) = (K[F’ G},Pxo)(zv Z/)v

where ((FPy,) o (GPy,))(Z,Z') is the kernel of the composition (FPy,) o (GPy,) of the
operators FP,, and GP,, in L*(T,,X) with kernels (FP,,)(Z,Z') and (GPy,)(Z,Z'),
respectively.

Now we can proceed by a word for word repetition of the corresponding arguments
in [17]. So we just give statements of the main results.

First, the following analog of [17, Theorem 6.11] provides a useful criterion for a
given family to be a Toeplitz operator.

Theorem 5.12. Let {T, : L*(X,L? ® E) — L*(X,L? ® E)} be a family of bounded linear
operators which satisfies the following three conditions:

i Foranyp €N, Py, Ty, Py, =Tp.
ii. For any ¢ >0 and any | € N, there exists Cy,, >0 such that for all p>1 and all
(x,x') € X x X with d(x,x") > &,

| T, (2, X' )| <Cap ™ (5.32)

iii. There exists a family of polynomials {Q, ., € End(E), [Z,Z']}, cx such that:

a. each Q,,, has the same parity as r,
b. the family is smooth in xo € X and
for every k € N, we have

k
P Ty (2,7)) Z (QrsPro) (VPZ, \/PZ)p 2 + O(p ) (5.33)
r=0

in the sense of (5.26).

Then {T,} is a Toeplitz operator.

Finally, we show that the set of Toeplitz operators on a compact orbifold is closed
under the composition of operators, so forms an algebra (an analog of [17, Theorems
6.13 and 6.16]).

Theorem 5.13. Let (X,w) be a compact symplectic orbifold and (L,V: hl) be a
Hermitian proper orbifold line bundle satisfying the prequantization condition (5.8). Let
(E, VE hE) be an arbitrary Hermitian proper orbifold vector bundle on X.

Given f,g € 4 (X,End(E)), the product of the Toeplitz operators T, and Ty, is a
Toeplitz operator, more precisely, it admits an asymptotic expansion

o)

TrpTep =Y P ' Tergp +OP™™), (5.34)

r=0

where C,(f,g) € ¢ (X,End(E)) and C, are bidifferential operators defined locally on
each covering U of an orbifold chart (Gy, U)=%U. In particular Co(f,g) = fg.
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Iff.g € €°(X), then

v —1 B
[Tf-,P’ Tg,p] = T T{f_’g}’p + O(P 2)_ (535)

For any f € > (X,End(E)), the norm of Ty, satisfies

lim [Ty, = [|fll == sup  [f(x) ()] /[1al e
poo ! TP cex P (5.36)
0#uceE,

Remark 5.14. As mentioned in [17, Remark 6.14], by [17, Theorems 6.13, 6.16], on
every compact symplectic orbifold X admitting a prequantum line bundle (L, V%, hb),
one can define in a canonical way an associative star-product f*g=> " h C(f.g) €
&> (X)[[h]] for every f,g € €>°(X), called the Berezin-Toeplitz star-product by using the
kernel of the spin® Dirac operator. Moreover, C(f,g) are bidifferential operators defined
locally as in the smooth case. Theorem 5.13 shows that one can also use the eigenspaces
of small eigenvalues of the renormalized Bochner-Laplacian.
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