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Optimal convergence speed of Bergman
metrics on symplectic manifolds

WEN Lu, XIAONAN MA, AND GEORGE MARINESCU

It is known that a compact symplectic manifold endowed with a
prequantum line bundle can be embedded in the projective space
generated by the eigensections of low energy of the Bochner Lapla-
cian acting on high p-tensor powers of the prequantum line bundle.
We show that the Fubini-Study forms induced by these embeddings
converge at speed rate 1/p? to the symplectic form. This result
implies the generalization to the almost-Ké&hler case of the lower
bounds on the Calabi functional given by Donaldson for Kéhler
manifolds, as shown by Lejmi and Keller.
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0. Introduction

A very useful tool in the study of canonical Kéhler metrics is the use of
Bergman metrics to approximate arbitrary Kahler metrics in a given integral
cohomology class, see e.g., [7, 111 [I7].

Let (X,w) be a compact Kéhler manifold endowed with a Hermitian
holomorphic line bundle (L,hY) such that gRL = w. Since the bundle
L is positive, Kodaira’s theorem shows that high powers LP give rise to
holomorphic embeddings ®, : X — P(H°(X, LP)*). The Bergman form wy
at level p is defined as the rescaled induced Fubini-Study form %@;’;wFS, where
W, is the natural Fubini-Study form on P(H®(X, LP)*). Tian [I7] showed
that w, converges to w in the €? topology with speed rate p Y2 asp — oo,
that is, there exists C' > 0 such that for any p € N* we have

C

(0.1) — 0 (W) — < o2

‘1
p P

€2

This was improved by Ruan [I5] to convergence in "> with speed rate p—?

(see also [13, Theorem 5.1.4]). Tian’s result was motivated by a problem of
Yau [18].

The process described above can be seen in the general framework of
quantization. The Bergman forms w, can be thought as quantization at
level p of the original Kéhler form w. The number 1/p is to be thought of
as analogous to Planck’s constant and in the semiclassical limit p — oo the
quantized objects w, converge to the original Kahler one.

The proof of the convergence in [15] [17] is based on the diagonal expan-
sion of the Bergman kernel up to second order. A full diagonal asymptotic
expansion of the Bergman kernel in powers of p in the ¥*° topology was ob-
tained by Catlin [5] and Zelditch [19] as an application of Boutet de Monvel
and Sjostrand’s work [4], see also [0, [14] for different approaches and gen-
eralizations. We refer to [13] for a comprehensive study of several analytic
and geometric aspects of Bergman kernel. One advantage of the expansion
in the €°° topology is that it easily implies the convergence of the Bergman
forms wy, to w with speed rate p~2, see [13} (5.1.23)]. This convergence speed
is optimal. Note that the scalar curvature is up to a multiplicative constant
the coefficient of the second term of the Bergman kernel expansion. The pur-
pose of this paper is to extend this optimal result to the case of symplectic
manifolds.

The Bergman kernel of a holomorphic line bundle L on a complex man-
ifold is the smooth kernel of the orthogonal projection from the space of
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square integrable sections on the space of holomorphlc sectlons or equiva-
lently, on the kernel of the Kodaira Laplacian O = " " 4 " 8L n L.
In order to find a suitable notion of “holomorphic section” of a prequantum
line bundle on a compact symplectic manifold, Guillemin and Uribe [9] in-
troduced a renormalized Bochner Laplacian A, ¢ (cf. (0.5))) which reduces to
20" in the Kihler case.

We describe this construction in detail. Let (X,w) be a compact sym-
plectic manifold of real dimension 2n. Let (L, h”) be a Hermitian line bundle
on X, and let V¥ be a Hermitian connection on (L, h%) with the curvature
RE = (VE)2. We will assume throughout the paper that (L,h", V1) is a
prequantum line bundle of (X,w), i.e.,

\ /71RL _

(0.2) -

We choose an almost complex structure J such that w is J-invariant and
w(+,J-) > 0. The almost complex structure J induces a splitting 7X @ C =
TAOX ¢ TOD X where THOX and TV X are the eigenbundles of J
corresponding to the eigenvalues v/—1 and —y/—1, respectively.

Let g"X(-,-) := w(-,J-) be the Riemannian metric on TX induced by
w and J. The Riemannian volume form dvx of (X,g”™) has the form
dvyx = w"/n!. The L?-Hermitian product on the space (X, LP) of smooth
sections of LP on X, with L? := L®P is given by

(0.3) <31,52>:/X<51,82>(x)dvx(x)

Let VT be the Levi-Civita connection on (X, ¢”*) with curvature R,
and let VL” be the connection on L? induced by V. Let {e;} be a local or-
thonormal frame of (T X, g7X). The Bochner Laplacian acting on (X, L)
is given by

0.4 AV =S [(VE - V.

k

Given ® € ¥°°(X,R), the renormalized Bochner Laplacian is defined by
(0.5) Apo =AY —2mnp + @.
By [9], [12, Corollary 1.2], there exists C, > 0 independent of p such that

(0.6) Spec(Apo) C [-Cp,Cr] U [d4mp — Cp, +00),
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where Spec(A) denotes the spectrum of the operator A. Since A, ¢ is an
elliptic operator on a compact manifold, it has discrete spectrum and its
eigensections are smooth. Let H,, be the direct sum of eigenspaces of A, ¢
corresponding to the eigenvalues lying in [-C7,, Cr]. In mathematical physics
terms, the operator A, ¢ is a semiclassical Schrodinger operator and the
space H,, is the space of its bound states as p — oco. The space H,, proves
to be an appropriate replacement for the space of holomorphic sections
H°(X, LP) from the Kihler case. In particular, we have for p large enough
(cf. [13] (8.3.3)]),

(0.7) dim H,, = / TA(THO X )P,
X

where Td(TM9X) is the Todd class of T X, which corresponds to the
Riemann-Roch-Hirzebruch formula from complex geometry.

Let IP(’H;) be the projective space associated to the dual space of Hp;
we identify P(#;) with the Grassmannian of hyperplanes in ;. The base
locus of H,, is the set BI(H,) = {z € X : s(z) = 0 for all s € H, }. We define

the Kodaira map
(0.8) @, : X\BI(H,) = P(Hy), @p(x) = {se€Hp:s(z)=0},

which sends z € X \BI(#) to the hyperplane of sections vanishing at z. Note
that H, is endowed with the induced L? Hermitian product so there
is a well-defined Fubini-Study metric g,, on P(#H})) with the associated form
W -
The symplectic Kodaira embedding theorem [14, Theorem 3.6], [I3], The-
orem 8.3.12], states that for large p the Kodaira maps &, : X — P(H,) are
embeddings and the Bergman forms converge to the symplectic form with
speed rate p~!. We note that in this case the near-diagonal expansion of the
Bergman kernel is essential for the proof, in contrast to the the Kéhler case,
where the diagonal expansion already implies the result. Let us also observe
that [14, Theorem 3.6] and [13, Theorem 8.3.12] are valid in a more general
context, namely when g7 is an arbitrary J-invariant Riemannian metric.
There exists in the literature another replacement of the notion of holo-
morphic section, see e. g., [2, [16]. It is based on a construction by Boutet de
Monvel and Guillemin [3] of a first-order pseudodifferential operator Dy on
the circle bundle of L*. The associated Szego kernels are well defined modulo
smooth operators on the associated circle bundle, even though Dy, is neither
canonically defined nor unique. Indeed, Boutet de Monvel-Guillemin define
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the Szegd kernels first, and construct the operator Dy from the Szegd ker-
nels. For these spaces the Bergman forms converge to the symplectic form
with speed rate p~!, too.

The main result of this paper is as follows.

Theorem 0.1. Let (X,w) be a compact symplectic manifold and (L, h")
be a Hermitian line bundle endowed with a Hermitian connection VY such
that gRL = w holds. Let J be an almost complex structure on T X such
that g' X (-,-) := w(-,J-) is a J-invariant Riemannian metric on TX. Then
for any £ € N, there exists Cy > 0 such that

(0.9) -0 (W) —w

‘1
p P

gt P

where ®,, is the Kodaira map defined by the space H, of bound states of
the renormalized Bochner Laplacian Ay, ¢ associated with gtX, VE @ in .

The proof is based on the near diagonal expansion of the Bergman kernel
of H, from [13} [14]. The sharp bound of &(p~2) is due to some remarkable
cancellations of the coefficients in this expansions, reminiscent of the local
properties of the curvature of Kéhler metrics.

The main motivation for approximating Kéhler metrics by Fubini-Study
metrics arises from questions about the existence and uniqueness of Kéhler
metrics of constant scalar curvature, or more generally, Kédhler-Einstein met-
rics, see [7, 8, [17), 18]. It is natural to study such questions also in the sym-
plectic framework, for example, it is interesting to generalize to the almost-
Kahler case the lower bounds on the Calabi functional given by Donaldson
[8]. This is done by Lejmi and Keller [10]. Theorem plays a crucial role
in their proof in the symplectic case.

The organization of this paper is as follows. In Section [I], we recall the
formal calculus on C" for the model operator . (cf. (1.2))), which is the
main ingredient of our approach. In Section [2, we review the asymptotic
expansion of the generalized Bergman kernel. In Section [3] we reduce the
proof of Theorem [0.1] to Theorem In Section [4, we prove Theorem
and thus finish the proof of Theorem

We shall use the following notations. For a = (a1, ...,a,) € N*, z € C",
we set [af =377 aj, ol =][;(q;!) and 2% := 2{" -+ z3». Moreover, when
an index variable appears twice in a single term, it means that we are sum-
ming over all its possible values.
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1. Kernel calculus on C"

In this section, we recall the formal calculus on C™ for the model operator
Z introduced in [14} § 1.4}, [13, §4.1.6] (with a; = 27 therein). This calculus
is the main ingredient of our approach.

Let us consider the canonical coordinates (Z1, . . ., Z2,) on the real vector
space R?". On the complex vector space C" we consider the complex coor-
dinates (z1,...,2,). The two sets of coordinates are linked by the relation

z2j=ldoj1+V—129;,j=1,...,n.
We consider the LZ-norm

1/2
(1.1) Il = </ | - PdZ) on R?",
R2n

where dZ = dZ; ...dZs, is the Lebesgue measure. We define the differential
operators:

0 _ 0
bj = _2872’]' +7z;, bj_ = 2875]'—’_7‘-2]‘7

(1.2) n
b=(bi,...,bn), L= bib,
j=1

which extend to closed densely defined operators on (L?(R*"),|| - |/z2). As
such, bj is the adjoint of b; and .Z" defines as a densely defined self-adjoint
operator on (L?(R?"), | - ||z2). The following result was established in [14]
Theorem 1.15] (cf. also [13, Theorem 4.1.20]).

Theorem 1.1. The spectrum of £ on L?(R*") is given by

(1.3) Spec(Z) = {4n|a| : a € N"},

and an orthogonal basis of the eigenspace of 4w|a| is given by

(1.4) b0 | 2Pexp [ =7 ) lzl?/2| |, with B € N".
J
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In particular, an orthonormal basis of Ker(.Z) is

1/2
(1.5) {qb[g(z) = <7T;I> BT 121/2 . B e Nn} ‘

Let P(Z,7') denote the kernel of the orthogonal projection &7 :
L?*(R?*™) — Ker(.Z) with respect to dZ’. Set 2+ =1d — £.
Obviously 2(Z,Z') = 35 dp(2)¢s(2'), so we infer from 1j that

n
™ —
(1.6) P(2,2) =exp | =5 > (1% + |5 - 227))
j=1

By and , we obtain
(1.7) (o 2)(2,2') =0, (;2)(2,2') =2n(z; —7,)P(Z,Z").

The following commutation relations are very useful in the computations.
Namely, for any polynomial g(z,%) in z and Z, we have

[bj, b’j] = b]b; - b;rb] = _47T5jk7
[bj, 0] = [b), ;] =0,
_ 0 _
(18) [9(272)7bj] = 2872]'9(2’ Z)>
0
— + . —
[g(zaz)abj] - _Qaizjg(zvz)'

For a polynomial F in Z,Z', we denote by F.%? the operator on L?(R?")
defined by the kernel F(Z,Z')%?(Z,Z’) and the volume form dZ.

In the calculations involving the kernel &(-,-), we prefer however to
use the orthogonal decomposition of L?(IR?") given in Theorem [I.1] and the
fact that &2 is an orthogonal projection, rather than integrating against the
expression of Z(-,+). This point of view leads to streamlined com-
putations and to a better understanding of the operators involved. As an
example, Theorem implies that

(zP2)(2,2"), if|al=0,
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We will also identify 2 to _; Zja%j and Z to ), Eja%j when we consider z
and Z as vector fields, and

) _
(1.10) R_zjjzjazj_erz_Z.

2. Asymptotic expansion of the generalized Bergman kernel

Let a® be the injectivity radius of (X, g?*). We denote by BX(z,¢) and
BT:X(0,¢) the open balls in X and T, X with center z and radius ¢, respec-
tively. Then the exponential map T, X > Z — expX (Z) € X is a diffeomor-
phism from B7=X(0,¢) onto BX (x,¢) for ¢ < a*. From now on, we identify
BT:X(0,¢) with BX(z,¢) via the exponential map for ¢ < a”X.

We fix 29 € X. For Z € BT* we identify (Lz,h%) to (Lg,, hk) by
parallel transport with respect to the connection V¥ along the curve 7y :
[0,1] > u — expy (uZ).

In general, for functions in normal coordinates, we will add a subscript
xo to indicate the base point xg € X. Similarly, Py, (z,y) induces in terms
of the above trivialization (note that End(L%,) = C) a smooth function

{(2,2"Y e TX xxTX :|Z|,|Z'| <€} 2 (Z,2') — Py, 4,(2,2") € C,

which also depends smoothly on the parameter xg.
Let us choose an orthonormal basis {w;}7_; of ngi’o)X . Then egj_1 =

%(wj +w;) and eg; = %(wj —wj), j=1,...,n, forms an orthonormal
basis of T}, X. We use coordinates on T, X ~ R?" given by the identification

2n
(2.1) R¥ 3 (Z1,..., Zon) — Y Zje; € Tn, X.
j=1
In the sequel we also use complex coordinates z = (z1, ..., 2,) on C* ~ R?",

Let dvrx be the Riemannian volume form on (75, X, g7=0X). Let g, :
T., X = R, Z — kg, (Z) be a smooth positive function defined by

(2.2) dvx(Z) = kao(Z)dvrx(Z), ke, (0) =1,

where the subscript xg of k,,(Z) indicates the base point zy € X.
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Rescaling A, 4 and Taylor expansion. For s € ¥°(R*",C), Z ¢
R?" | Z| < ¢, and for t = f’ set

(2.3) (Si3)(2) = s(Z]t), & :=S;7 w20, 0k71/2S,.

For U € T;,X, we denote Vi the ordinary differential in direction U. Set

1
VO,. = vo + §R£ (Za ')a
(2.4) on

Lo=- (Vo) 2mr_Zb bf =

J=1

By [14, Theorem 1.4], there exist second order differential operators O, such
that we have an asymptotic expansion in ¢ when ¢ — 0,

(2.5) L=Lp+ Y O, + 0"
r=1
Moreover,
2 1
(2.6) Ol(Z) = — g (8jRL)$U (R, ei)ZjVO,ei - § (&-RL)% (R, 61'),
and
(2.7)

1
Oo(Z) = g<B§OX(R, )R, ej>x Vo, Vo,

+ §<R£O)((R,ej)ej,ei>xo—;ZI:Q(@"‘RL) —T(R ei)| Vo,
1 N A 1
- Ve lX_:Q(a REY,. (R, ez) -5 21: ZJ: )ao (R, €:)Z;

_ %[,%, (RIX(R, )R, e>m} + B,

From and (2.3), as in [13, Remark4.1.8], .%; is a formally self-adjoint
elliptic operator with respect to ||+ [z on R*" and is a smooth family of
operators with respect to the parameter xg € X. Thus ., % and O, in
are formally self-adjoint with respect to ||+ ||zz.
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By [13, Theorem 8.3.8], the following asymptotic expansion of the gen-
eralized Bergman kernel holds.

Theorem 2.1. There exist polynomials J.(Z,Z') in Z,Z" with the same
parity as r and of degree deg J,.(Z,Z") < 3r, such that if we define

(2.8) F(2,2) = J.(2,2)P(2,2), Jo=1,

then for any k,£,m € N, q > 0, there exists C > 0 such thatifp > 1, Z, 7' €
Tz X and |Z],|Z'| < %, we have

(2.9) sup

] +]a’|<m

oze0z \ 0?7

glal+a’l /1
(5

k
- Y AL @2 )

r=0

where €4(X) is €'-norm for the parameter xo € X.

Moreover, by [13, (4.1.93), (8.3.45)], .#1 and %, are given by (cf. [13|
(8.3.65)], [14, (1.111)])

F=-PrL10 2 - 20,27 Pt
Fy = LN+, 20,2 — 7 PO, P
+ PO\ LI PO LTI Pt — 2O, 7 Pt
+ 2t 02O\ LN PE - 20, 72210, 2.

(2.10)

From Theorem 2.1} we get in particular [I3, Theorem 8.3.3]: there exist b, €
% >°(X,R) such that for any k,¢ € N, there exists Cj ¢ > 0 such that

k
1
(2.11) — Py, (x,2) =Y be(a)p"| < Crep
p r=0 @t

and
(2.12) bo(xo) = e9}](0,0) = 1, br(.%'o) = ,9’2,1(0, 0), 9’2T+1(0, 0) =0.
3. Proof of Theorem [0.1]

In this section we reduce Theorem to Theorem Let us fix g € X.
As in section [2| we identify a small geodesic ball BX(zg,¢) to BT=X by
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means of the exponential map and we trivialize L by using a unit frame
er,(Z) which is parallel with respect to V¥ along the curve [0,1] > u — uZ
for Z € BT=X(0,¢).

Set dy, := dimH,, and for v = (v1,...,v4,) € C%, set ||v]|* = Z;l”:l v 2.
We can now express the Fubini-Study form in the homogeneous coordinate
[v] = [v1,...,vq4,] € P(H}) as

d

V=1 .- YA N I
1 ——001 = - . .
(3.1) d0log (||v]*) B jEZl dvj N\ du;

27 27
1 &
— W Z @jvkdvj A dvg | .
Jik=1

Let {s;} be an orthonormal basis of H,, and let {s’} be its dual basis.
We write locally s; = fje%p, then by , as in [13, (5.1.17)], we have

dp
(3.2) O (z) = [Z filw)s’| € P(H;).
j=1

Set

dp
(3.3) fPlay) =Y fi@)fily) and |fP(2)]” = f2(x,2).
=1
Then
(34) Py, (z.y) = fPlz,y)ef" (@) @ €57 (y)", | fP(@)|* = Py, (e, 2).

By , and , we get

(3.5)
d, d,
@7 (wrs)(xo) = \/? !]fiP dej Adf; - \fi|4 Z fifrdf A dfk] (o)
=1 k=1
V-1

= V| otao)| e, (2. 0)

7o) ot ) A dy S ()|

9y
T=Y=1xo

where !m:y:% means the pull-back by the diagonal map 7: X — X x X,
o — (xo, xo).
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By (3.4), Py, (z,y) is represented by fP(x,y) under our trivialization
of L. Since we work with normal coordinates, we get from (2.2)) (cf. [I3]
(4.1.101)))

(3.6) K(Z)=1+0(2Z).
By (2.9), (2.12), (3.5) and (3.6), we get
(3.7)

1 *

Z;q)p(wFS)(w())

V-1

1 1

_ 1 1
+p 1/2 [%dmdyﬁl - J?g(dxyl /\ dyfo + dxy(] /\ dyﬁl)] (0, 0)
g,

1 F9 2.%.
+p—1[%dxdy% 22 1y Fo + i 2720, F0 A dy T

1
92(d Fo N dyFo + dp Ty N dy Ty + dpFy Nd JO)](O,O)

Fa 1
ﬁad =d Jl JO2 (dxﬁo AN dyﬁ\g
+ dgp T N dyJQ + dpFo N dyJ1 + dgp F3 N dyyo)

2.7
—I—Jz(dﬂo/\dt%l—f—dﬁl/\dfo)}( )}—i—ﬁ(p%.

0

—3/2
+p /|;%d$dy93

From (1.6) and (2.8]), we obtain
(3.8) d.%0(0,0) = dy%y(0,0) = 0.

As J, is a polynomial in Z, Z’ with the same parity as r, we know from (|1.6))
and (2.8) that for a, o’ € N?", there exists a polynomial J, o o in Z, Z’ with
the same parity as r — |a| — |@/| such that

glal+la’]
YA YA

In particular, (3.9) yields

(3.10)  dydy 1 (0,0) = dpdy F5(0,0) = 0, dyF2(0,0) = dg.F2(0,0) = 0.

(3.9) F(2,2") = (Jraa P) (2, 2).
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By (T.6) and (£:8), we get

YL 4,4, 70)0.0) = ¥ (ded, 2)0,0)
= LSz Az = o)

=1

Substituting ([2:12), 3:8), (B-I0) and (B1T) into (B7) yields

(3.11)

1. VI B
(3.12) ;q)p(wFS)(fEO) = w(l'o) + ?(dmdyyg —dyF1 N dyﬁl)(oj 0)p 1

— by(wo)w(wo)p~ ' + O(p?).

Recall that for a tensor 1, VX1 is the covariant derivative of 1) induced
by the Levi-Civita connection VZX. We will denote by (-, -) the C-bilinear
form on TX ®g C induced by g”7X.

The following observation [I3], (8.3.54)] is very useful.

Lemma 3.1. For U eT, X, V{](J 1s  skew-adjoint and the tensor
((VXJ)-,-) is of type (T*(LO)X)®3 & (T*(O’l)X)®3.

Lemma 3.2. We have

(3.13) (d271)(0,0) = (dy-71)(0,0) = 0.

Proof. By and (2.6), we have (cf. [13] (8.3.51)])

(3.14) 0 = —% [<(V%J)R, £> b — b, <(V%j)7z, £>] ,
J = —2mV/—1J.

From Theorem [1.1] (1.7), (3.14) and Lemma [3.1] we get (cf. [13] (8.3.67)])
(3.15)
(z*lﬂLolgz) (2, 2')

() ) o ) o

_ _\/?W [<(V§J)Zf,z> + <(VX;J)Z,,Z>] P(Z,7").
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Note that if K is an operator on (R?", || - ||12) with smooth kernel K (Z, Z')
with respect to dZ’, then the kernel K*(Z, Z") of the adjoint K* of K, with
respect to dZ’, is given by

(3.16) K*(2,7") = K(Z',2).

As Z, Oy are formally self-adjoint with respect to || - || 72, thus 220, ¢~ 22+
is the adjoint of #~12+0; 2. From Lemma (3.15) and (3.16)), we get

(3.17) <901$—19¢>(Z Z')
[<(V,J) )+ (V)= '>]QZ(Z,Z’)

0

X

<<V83 ) 9. 92 > (2jzrz) + zjznz) P(2,2).

As the coefficients of 2(Z,Z’) in (3.15)) and (3.17)) are polynomials of degree

3, from ([2.10)), (3.15) and (3.17)), we get (3.13]). The proof of Lemma is

completed. O

Theorem 3.3. The following identity holds,

V-1
2

Lemma Theorem and (3.12) yield Theorem

4. Proof of Theorem [3.3

(3.18) (dwdny)(0,0) = bl(l‘o)w(l‘o).

This section is devoted to the proof of Theorem We will compute the
contribution of each term in (2.10]) to .%#5. Set

L =¢'2to, ' 2t0,2, I, =-L'PL0,2,
(4.1) I =20, ' 0,27 2L, I, = -20,2 Pt
Iy =2+ 2710, 20,97 '\ 2L, Iy = -0, L 22+0,2.

For j € {1,...,6}, let I;(Z, Z') be the smooth kernel of the operator I; with
respect to dZ’. By (2.10)),

6
(4.2) (dady75)(0,0) =Y (dadyI;)
j=1
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?K
In the context of (3.16]), by denoting b;;, = W(Z, Z") o we have
* O*°K* .
(43)  (dzdzK*)(0,0) =" dZ; A dZy 97,07 (Z,Z')| 5y
.k
= Z (Bk] — 7jk)de A dZy,
i<k

= —(dzdz K)(0,0).

Since the operators O, from ([2.5) are formally self-adjoint with respect to
Il - lz2, (4.1)) implies that I; and I are the adjoints of I3 and Iy, respectively,
as operators acting on (R?", || - ||z2). Hence by (4.3)),

(4.4) (dpdyl3)(0,0) = —(dydyI1)(0,0), (dpdyls)(0,0) = —(dzdy12)(0,0).
4.1. Evaluation of (d.d,I;)(0,0) for j =1,3,5,6

To simplify the notation, for polynomials Q1, Q2 in Z, Z’, we will denote

(4.5) (1 2)(2,2") ~ (Q2)(2,2)),

if the constant coefficient and the coefficient of ZJ'~ forall jin Q1 — @2 as a
polynomial in Z are zero; we denote

(4.6) (@ 2)(2,2") = (22)(2.2),

if the constant coefficient and the coefficients of Z;, Z}, Z; Z; for all j, k in

@1 — Q2 are zero.
Set
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From Lemma (1.7), (3.14), and (3.15)), we get

(4.8)
(013—1 @iol,@) (2,2")

- Lgr{ <<(v§,])z, é?az,;>bi+ —b <(V§J)z, 8821>>
X (bjlfrk <<VX J> Z, a‘zj> +b; <(V§J)z’, a(zj>> 32’}(2, Z'

~ ;{ [<(v§J)z, ;Zi>bj —b; <(V§J)z, a(;>]
% bjby <<v§ka> 7, azj> 9’}(27 Z')

. ;{ <(V§J)z, aii> <<VX J) 7 (;Zj> bjbjbkﬁ}w, 2,

where in the last relation ~ of (4.8)) we used

b; <(V§J)z, 8‘Z> P = {((VEJ)z, —2n7) 2.

By Theorem and 1D we get b;rbjbk = bjbk;b;r + 477(5ijbk +
5ikbj) and

4.9 LAP (2020706, D) = An L P (2424 (855by + Oibi) P
) J J
= An L P ((0ibk + Sinby) 22 P)
= (5z]bk + 5ikbj)zszt@.

By (L.7), (1.8), (4.1), (4.8) and (4.9) we obtain
1 _
(4.10) I,(Z,Z') ~ 5 st P55 ((igbrzs 2 + dinbjzs20)212) (2, Z')

1 _ _
= 5/@1‘/@5{ — 20;i0ks2t — 20i;0kt2s + 20i52524(Z, — Z))

— 2002t — 2050052 + 2O zez(Z) — z;.)]z;@(z, z.
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Recall that Zg; is anti-symmetric on ¢ and ¢, thus the contribution of

—2040kt2s — 20,1012 in (4.10)) is zero. Thus (4.10) yields
2
(4.11) (2,7 ~ -3 Hsri Pqi (0ik0js + 0ij0ks) 202, P (2, Z).

By Lemma [3.1] (1.6), and (4.11), we get

2 _
(412) (dady1)0,0) = —5 Foir ( iy + Fyig)dor A 2.
From and , we get
(4.13) (dpdyl3)(0,0) = (dpdyl1)(0,0).

By ([0). (BT9). ET7) and (1), we set

2

(4.14) (2,7 ~ ”9{ <<(v§ DE + (V2 J)z”,z> @)

<<<VX / ) 52 bn > 57z 29’) }<Z, 7)

*2< 59)05%) (75 ) o)
@ o (2'2) 22! )}(Z,Z')
~”9< 57057 () o)

P(Z, Z’)(,@o (zsztz]zk,@))( ,0),

where in the last equation we use Z?(0,0) = 1, since we need to compute
the constant coefficient of & in & o (Z 24 25 2y ).

By (L.7) and (1.8), we get

1
(fsfthzky)(Z, 0) = R(ijkbsbt@)(z, 0),

2j21bsby = bsbyzjzy, + 2055be 2y + 204bs 2,
+ 25ksbt2'j + 25ktbszj + 45jt5k:s + 45]'55]41‘»

(4.15)
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From Theorem and (4.15)), we get

1
(4.16) (32 o (zsztzjzkﬁ)) (0,0) = mmﬁaks + 48;5611) 2(0,0)

1
= ﬁ(éjtéks + 5js5kt)-

From and , we obtain
1
(4.17) (dxdyl5)(0,0) = _§/jir(/€ﬁ + /ﬁa)d'zr N dzg.

By (T5). (BTD) and (TT), we set

w1 022 7r2<<vx J> 2 <<v§i DEFCY

Thus by (4.7)), (4.16]) and (4.18)), we get

1
(4.19) (dmdyIG)(O, 0) = _§/jrk/§qf(5jt5ks + (5j55kt)dzr Ndz,

1 _
o i (S + Hiig)der N dZg.
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4.2. Evaluation of (d,d,I2)(0,0): part I

Recall that by [14, Lemma2.1] we have

(4.20)
0, = {;bibj <Rfox ( ’61-) R’aazg'>

bz )]

Sl (o) 2t )

~(w (R 5E) koo |

_Qﬂr<(VXVXJ)(RR)aazZ 8zz>

4<RTX ((i’(jz]) ;ZZ’;%> }32

) [_;z <RTX (R ai) R, aazj> + ZT}(V?{J)RP + %} 2.
Set
(4.21)

1
(2,7 = 3 (Z—lﬂLbibj <R§’0X <R aié) R, 62j> @) (2,2)),
1

In(2,2') = 5 (.z—lgzibi[ S (0°RM (R 8‘2)]@) (2.7,
|la|=2 '

a!

4 0o 0
123(Z7 Z/) = 3{g_lbj<RTX (827 82) R

o\ 0 0
_ pTX /
R (R 8zz> aZi,azj>9}(Z,Z),

1o4(2,2') = 27/~ ( A <(vX v¥) (ng, 82> @) (2,2,
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Is(2,7') = torg(grx (g, 2\ R, 2\ 2 (2,7
5 ) 3 7821/ 7821 ) )

2
(2 2 (VIR 2)(2.2).

Ix(Z,7") = 9

By Theorem 1.1, 2L{RTX %,%)%,%>9:@L®109:O. Thus

. and (4.21)) yield

(4.22) —1(Z,7") ZIQJ (2,2).

We evaluate first the contribution of Iy, j = 1,3,5,6, in (d,d,I2)(0,0). We
recall the following well-known symmetry properties of the curvature RTX:
for U, VW)Y € T X, we have

<RTX(U, V)W, Y> - <RTX(W, Y)U, v>,
RTX(U, V)W + RTX(V, W)U + RTX(W,U)V =

Using (|1.8) and (| -, we have

(4.23)

(4.24) bib; <RTX < ) R, >
9
A TX
_bzb]<R <8zs z) > 5
9 9
B TX _
- 2bib; <R <825 8zl> 8z> #

0 o 0
5. TX - =
+bib; <R (st’ 8zi) 0z, 0z, > 2t

By (1.7) and , we get

Q
\ 33‘\@

(4.25) 2 E P (2, 7)) = 24 <2b; +z;> 22,7
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By Theorem [1.1] (4.21)), (4.24) and (4.2F)), we get

(4.26) 3101(Z, 7)) = — <RTX < 0 9 > 0 6.> (b b; zszt@)(z, 7'

T 0z, 0%Z; ) 0z O

0
TX
+<R (823 Bzz) 8zt 6z]>
bib;by ,
« Km:,z ) } (2. 7')

i TX 9 !
+4ﬂ'2<R <8Zk ﬁz> yk aj>(bb@>(Z,Z)

+ 127(27 Zl):

where
g 0 o 0
AN TX R B
(4.27) IQ7(Z’ z ) o <R <8257 82’1) th’ 8Zj>
X (z—lﬁibibjzsw) (2,2).

Note that by Theorem (1.7) and (L.8]),
(4.28) An? LV PLobz7, P
= L7 PLbj (bs + 207, (by + 277,) P

[16 bbbbt+66b(bzt+btz)+ bbz’zg] 2.

Thus, from ([1.7)), (4.6) and (4.28]), we get

(4.29) I/(Z,7") =~ 0.
From and , we get
(4.30)
(biby ?/’)( ) ‘(7 - )( -7)2(2.2)),

(bibjzszt

4

{ Amdjszi(zi — 7)) — 4mdiszy(Z5 — Z5)
+ 4n’2,Z, (zi -z)(z; — Z;)} P(Z,7"),

(bibjzszt@) (Z, Z/> = [451‘155]’5 - 47r6j5zt (Ei — E;) + 45jt5is — 47r5jt25 (fi — 5;)

— 47524 (Ej — E;) — 47z (Ej — 5;)

+ 4252 (25 — Z5) (7 — zg)} P(Z,7"),
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and
(4.31) (bibjbtzs@) (2,2
= [(= 200bib; — 285biby — 2055051 + 2bibibe) 2| (7, 2.

By (1.7), (4.30) and (4.31)), we get
(4.32) (dedy(bib; 2))(0,0) =0,  (dudy(bibjbizs2))(0,0) = 0.

Substituting (3.11f), (4.23)), (4.29)-(4.32)) into (4.26)), we obtain

V=T rx (0 0\ 0
(433)  (dedyT21)(0,0) = —Y—( 2R <6Z] 82)82

o 0 o 0

R (82]‘, 82’1‘) 85," afj >w(x0)
U ggrx (0 0\ 0
+ 3 <2R <6z/ azj 8Zj

+RTX<8 a) 0 a>dzmdzq

L/prx (9 9\ 9
+3<R (azj’azr oz;

0o 0 o 0
RTX (2 2 2 9 Nz Adz,
+ (821'7 82]> 82,«’ 6zq>d7 /\dzq

By (2).

3 o 9\ o
4.34 Sy =( R™X (=
(4:34) 4% <R <82¢’82¢ 0z
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By Theorem and ,

(4.35) (g—lgﬂbjzﬁ)(z 7 =

b
Note that by 1) Zo P = (23 +
T

£z, ) Z,2")
iy > gﬂ] (2,7

1
L)+ izg(zj - z;.)] P(Z,2").

(4.36)

(
(G
- [t

Z]—Z

As in (4.32)), we get

(4.37)

s — %

(duody (L 'b;2:2))(0,0) =

1113

i (b,-zsﬁ) (2,7
1
s

(= 205+ 272, (55 - %)) 2(2.2)).

z;) Z. Thus from Theorem we get

1
idfj A dzs.

From (3.11)), (4.23), (4.34), (4.35) and (4.37)), we get

(4.38)  (dpdyl23)(0,0) = 4V <RTX<
—2RTX (
2R
3 azr 821
o 0
opTX o AdZ
+ 2R (8 (92}) Z,azq>dz Ndzg
_2/R
3 821 azl

AN
8z] 0z; ) 0z
o 0y o\
82’]', 0z; (‘%i’ azj 0

821

QD
Y

9 9
TX
TR <8zi 8zT> 8z1’8zq>dzr/\dzq
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Clearly, by Theorem and (4.21)),

(4.39) —315(2,2") = (@L <RTX <R 8) R, a> 9) (2,2

o 0 0 a 9 o 0
_ TX (Y Y\ Y T (Y Y\ v Y
N <R (azj7 azi> 0 k+R (32k7 azi> azj’ 8zi>

From Theorem (1.1} -, and , we get

(4.40) (@J' o (ijk,@)>(z, Z/) = %(bkzjt@) (Z, Z/)

1
— (~2on+ 5 -) 2(2.2),
and

(4.41) PLo (252 )(Z Z')

<
{;@L[ 3bibs + o bzk+bkz] }
= (

(- %) Zk—zk>+zk< Z)+7 <zk—zk>)@<z,2'>
(z]zk—z z,) P(Z,2").

As in [13] (8.3.56), (8.3.63)], we have

X X _ X 8 X (9
v J\ Z\v Je;|” = <<v J>8Z] (Vazi‘]> 2j>,

(4.42) P PR
rx (0 0\ 0 9\ _ 1 ,x,2
<R <82¢’ 8Zj> 851" 8Zj> N 32}v J’ '
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By (B.11), (#.23), (#.39), (£.40), (4.41) and (T.42), we get

. _1 rx [ 0 O 0
g 0 o 0
Tx (Y Y\ Y v
TR <6zk’8zz> 8zj’8zz->
X (2\/—715jk w(zg) —dzj A d2k>
1
|- e
L/prx (90 09\ 0 0 -
+ 3 <R (827;7 82]' aZj’ 851' 2ﬁw(x0)
Liprx (2 0\ 9
T3 <R <8zi’ azr> oz,

o 0 0 0
_ pTX
i <8zr ’ 8zi> 0z’ 074 >dzr Nz

Then by Lemma [3.1) and (4.21]), we get
d 0
(4.44) OIng(Z, Z') = 82 <<vxa J) (VX J) >

9z (92] 8zt
X (g*lyinzjzsth@) (2,2)).

By Theorem , and , we get

(4.45) (g—lyizizjbs@) (2,7

bs
= EZCL’Z]'@(Z, Z/)
1
4 ( 20; isZj — 2(5]'52'2' + ZiZjbs)Q(Z, Z/),
7

(4.46) (g Lol zizjbsbtgz) (2,7

1
<b b 2izj + Oitbszj + Sjtbszi + 0isbiz; + (5]sbtzz) P(Z,7)

Tor \ 4
1 1 1
= 27r( — 30;j50i — 30j10is + *5itzjbs + §5jtzibs

1 1
+ 25zsz]bt + 5jszzbt + —2;2;bs bt>9(Z, z".

4
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By (1.7)), (4.45) and (4.46)), we get

(4.47) (2*1@%@5&@9)(2 Z')
_ bs  _ b
= (Z Lt 2z <27T —I—z5> (2t —I—zt)32> (Z,7"
= ﬁ (z—lﬂinzjbsbt@) (2,2
+ % (ging‘ (ZiZjEQbs + Zinglsbt) 9) (Z, Z/)
1 3 3 1 —_
= W{ - %5@5(2‘3 — %5@:5@‘5 + §5z‘t2’j (zs — 7,)
1 1
+ iéjtzi (?s — f;) + 551523' (?t — E;)
+ %@szi (ze —7;) + gzizj (z—7)(zs — 73) },@(Z, Z")
+ %{ [ — 251'32]' — 25jszi + 27TZiZj(§S — 5;)]52

+ [ — 20425 — 20542 + 2m22(Z — zt)] }W(Z z".

By (B11), (44) and (A7), we get

(4.48)
9(dzdyI26)(0,0)

) )
~((V57) 52 (75.7) g% ) [30uds + i) (2Tt
+ 6itdzj ANdZs + 6jtdzi ANdZs + 51'st]' ANdz; + 6jsdzi A dz;
20102y A A3+ 25502 A 2+ 25dz N dZ + 285z N .

By (i),

(4.49)  (dpdyTs)(0,0)

\ﬁ<< > a(zj (vi‘f) aij + <v§:j J> a(zi>w(wo)

5[((7% J) = @zﬁ) o (T50) )
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Note that for U,V W € TX, <JU,V> =w(U,V), thus (cf. [13

(4.50) (VEHV,W) + ((VEHW,U) +

speed of Bergman metrics 1117

, (8.3.48)]),

(Viy U, V) = dw(U,V,W) = 0.

From Lemma 4.50) and ‘%’2 = %, we have
(4.51) vy T v )2
. oz, 8Z7~ e 0z;

-{(7%
<[5

)as

')

0
8,2] 0zy

8E] 07z,

)

0 o 0

0z’ 0z,

7o) (72 s,

When we sum (4.51]) over r = ¢, we get by (4.42)) (cf. [13] (8.3.58)]),

0 0 1 2
4.52 X T X T = —|V¥J|.
( ) <<vazi ) 0z’ (V ) 0z; > 16|v ‘
By ([4.7) and (4.51)), we get
0 0 0
X X g X
(4.53) <<v J> o (v@zl J) 5+ (Vaiq J) 8zi>
=2 2ir (2 5555 — i)
By Lemma 4.50]) and ‘%!2 = %, we obtain
0 0
X X
(4.54) < (v afz)r J) 821 <v azq J) 321- >
o 0 o 0
_ X X
~[((727) 555~ ((727) 32|

MVX J) 823’62) +<<VX J) 8888”
:4/ij7“(/iﬁ /jz’a)'

By taking the conjugation of (4.51)), we get

0
0z’

(4.55)

((v%.7)

{77)

8‘2(1> =2 Fi5:( Figr — Hiir)

=27 (o7 —

32@) :
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Substituting (4.42)), (4.52)), (4.53), (4.54) and (4.55)) into (4.49) yields

V-1
5
- g/ijr(5/m — 4 F55a)dzr N dZg.

(4.56) (dudyI26)(0,0) = VX TP w(o0)

4.3. Evaluation of (d,d,I2)(0,0): part II

We evaluate now the contribution of Isy, 24 in (dydyl2)(0,0). The definitions
of VXVXJ and RTX imply that for U, V,W,Y € TX (cf. [I3] (8.3.59)]),

(VEVET) gy = (VYT = [RTE W0 ), ],
(4.57) <(VXVXJ) (Y,U)V’W> + <(VXVXJ)(Y,V)W’U>
+ (VYY) 4y UV ) = 0.
Recall that [13] (8.3.71)],
a pL 9 ﬁ
(4.58) Z (0°R") (R’ 821») a!

|a|=2

0
(e )

27 X, 0
—3 <R (2,2)R, 32i>'

By (4.50) and (4.57), we get (cf. [13, (8.3.61)]): for uy,us, uz € THOX,
v1,U9 € T(O’l)X,

(VXY (i y sy (VEVET) @, myyus € TOVX,
(4.59) (VXVYT) myus € THOX,
2v—1 <(VXVXJ)(M,§1)U2,@2> = <(V§1J)UQ, (V%(IJ)@2> .
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In particular, we have

By (4.57) and ( -, we get

(4.61) <(VXVXJ)( o ail>:<[RTX(z,z),J]Z,aii>

:_2F<RTX(Z 7)Z, a‘l>

By (4.57) and (4.59)) we get (cf. [13, (8.3.62)]),

(4.62) <(VX V) ()% aii>

— ; X X 0 B X _
=37 <(Vu1J)u2, (V£ J) = <v£i<]> z>.

By (4.59)), (4.60), (4.61)) and (4.62), we get

0z;

T 0 _
=3 <(V§J)z,3(v§J) 7 (vi‘éy) z>
TX [, == O XoX _ 0
7T<R (2,2)z, 5 > —wr<(v AV J)(E’E)z, 8zz>

Zq

(4.63) —m/-1 < (V¥VY) () Rs 6>
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By (I:21), (E:58) and (E63), we get

(4.64)
G, ¥ B ¥ B
102(2,2") [ << )azk 3(v J) = <V821J> 828>
LT grx (0 9N 0 0 ,
a PV(2, 2
3 <R <6zj 87:5) Dz, 0z (g bizjanz @)( )
o 9\ o 0
_ TX g s Z,7
3 <R (azj’az$> 0%’ 8zz>($ bizjz zt‘@)( Z)
_,ﬁ{ <(VXVXJ)() ,a>@}(z,2’).
By (L.7) and (L.8), we get

bs
(4.65) bizjzkfsﬁ = biZjZk (27‘( + Z;) &

bib 5. 0

Thus, by Theorem. . and , as in , we get
(4.66) (z—lb-zjzkzsgz) (2,2

bibs djs Oks b; _

(16 5%j k+4 2bZ k—|—4 5bizj + 47szzkz’5> P(Z,7")
1

= R( 0s0ik + TOjs 2k, (zz Z) Ors0ij + 7r(5kszj( E;)

— 7T(5ijzk (53 — E/s) — W(siij (fs — f;)
+ 1222 (% — %) (25 — z’s)) P(2,7')
1

+ E( — 25Z-jzk — 2(51'].323‘ + 27szzk (Z — ?g))fgt@(z, Z/).

By (4.6) and (4.66)), note that the last line of (4.66) has also the term 2%,
we get

1
(4.67) (z—lbizjzkzﬂ)(z,z’) [ 13 (0350 + 610

1
+ E (53‘521922 + 5k52j§; + 5ijzk2'9 + 5ikzj§;) (@(Z, Z’).
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Again by (T7) and (T3),
— bs —/ bt —/
(468) biZjZSZty = bizj % + Z % + Z P
b;bsby 1 b; _
= | an2 Zj + ?(@sbz'bt + 5jtbibs) + or (bszJ- + 25]-5)2,{e

b.
+ ﬁ (bezj + 2654) 7 + b,;zjz’sz;] P.

By Theorem and (4.68)), we get

_ _ b;bsby
(4.69) < 1bizjzszt33 = [487r5 Zj + 16 3 (5Jsb b + d;jibib )
+ Tor 2(b Zj +45]8)
b;
+ — 6.2 (btz] +45]t)z + in —2;Z zt] 2.

By , and , we get

b; 1
(470) (16 5 (b zj + 45]3)2159) (Z, Z/) ~ E((Sjséi — %EQEQ@(Z, Z/)

By (4.32), (4.69) and (4.70)), we obtain

(4.71) (dzdy (gilbizjfszt{@)) (O, 0) = ﬁ (5jsdzi - 5ijd73) A dZy

+ i(éﬁd?i — (Sz'jd?t) NdZ

47
1
= — (5jsdfi A dzZy + 5jtdfi VAN dgs)
Finally, by Theorem [1.1] . and (| ., as in (4.29), we get

(4.72) .,zﬂ Lp, zjzszt32> (Z,7)

< +z> <§;+z;> <2bt —|—zt> 9) (2,2

bjbsb 1
{g 1, [ Ey W(bjbszg—l—bjbtz;—i—bsbtz;)} 9}(2, 7')
0.

Z

873

Q
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From (3.11)), (4.64), (4.67)), (4.71) and (4.72), we obtain

(4.73)  (dedyI22)(0,0)

)1 x V9 (gx ;)9 x ;) 0
- {871’ <<V J> Ozl <v8 J> 0z; + <vaaziJ 8@

1 0 0N O x(0 0O 0
* 127 <R (821 Bzz> 0z TR (8zj’8zi> 82¢’82j>}

o o\ o o
N dz A dzg
R <3zr oz, ) 2’ 8zq> A

1/ o (0 0\ 0
+ 3 <R (82j7 afj 0z,

dz; 0z, ) 9z; 0z,
Note that by ,
o 0 0 o 0 0
rx (9 O _ pTX g9\ 9
(4'74) o <aZj’ 82j> 8zr o <8zr’ azj> 8zj
o 0 0
Tx (( ¢ O
A (azj’ 8zr> 9z

By (4.23)), (4.42)), (4.52), (.53), ([4.54), ([4.55), ([.73) and ([1.74), we get

(4.75) (dydyI52)(0,0)

o o\ o 0
_ X TX
= —v/—1 [v I+ <R <azj’azi> azi’azj”“’(x(’)

+ Z/jir(5/ﬁq — 4 i5g)dzr N dzg+
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Vs (0 9 0
+6<R <8Zj’(9zr 0%,

o 0 o 0
TX 9
+2R (azr, 8zj> 9z 5%, >dzr Ndzg

g (00 0
+3<R (azj’azj oz,

rx( 0 O o 0
-
+R < 2 Zr) z 07, >dzr Ndzg.

By (4.57)), (4.59) and (4.60)), we get (cf. [I4], (2.28)]),

XoX o 0\ XX o 0
(4.76) <(v v J)(R,Rm?i’a?i =2((VVHJ). V95 9,

- (e e L)

N |

By (4.25) and (4.35)), we get

@) (2794 %52)2.7) = . (60— 72a(z~ 7)) 2(2,2).

472
0

By (B.11), [.42), (&.54), (£.76) and (A.77), we obtain

(4.78)  (dydyT24)(0,0) = <<VXa J) 0 ( )

9z 8z2-

) 2 (o J)
= Yo
+2 Jijr (S5 — Hiig) dor N dZg.
Combining ([1:22), [@-23), ([:33), (138), (@12), (@43), (&50), (&79), (E75)

and (4.78)), we obtain

(4.79)  —(dydyI2)(0,0) = M<RTX (;Zj, 8‘1) 8‘1, 8‘Zj>w(xo)

(0 0 0
2<R (azj’azr oz, 0z, ) 4 N

1
- ﬁ/ﬂ’"(/jﬁ +4 z]q)dZT A qu

> dzs N\ dzy
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By Lemma (4.50), (4.51), (4.54), (4.55),(.57) and (4.62), we get (cf.

[13, (8.3.63)])

(4.80) <R X (ai’(‘i) 82]-’£(I>
- ) )
<

XX XX 0 9
[(v vXJ) —(VIVA) a)] az’az>

N

2 (sz ’OZT) Bzr’azj j q
1 X 0 ¥ 0 X 0 X 0
- - ) - 2] - ) _ a J e —
4 <<vazj J) 0z (VT J) 0z (V oz; J 074 Vazq 07
1
=5 i Mg

Substituting (4.80) into (4.79)) yields

(4.81) (dydyI5)(0,0) = —ﬁ<RTX (;Zj, 81) aazi’ 82j>w(:cg)

1 —
+ 3 S5 (Sig + Sigg) dar N dZg.

4.4. Proof of Theorem [3.3]
By (4.4) and (4.81)), we get
(4.82) (dzdyl4)(0,0) =(dydyI2)(0,0).

Substituting (4.12), (4.13)), (4.17), (4.19), (4.81) and (4.82) into (4.2), we
finally obtain

(4.83) (dydyF>)(0,0) = —g Fjir( Fi5z + F5iq)dzr N dZq + 2(dzdy13)(0,0)

o 0 o 0
_ _oy—{({pTx (L2 29\ ©2 9 .
2 <R (82]" 8Zz> Bzi’ 62]- > w({L‘o)

By [13, Theorem 8.3.4, Lemma 8.3.10],

o 0 o 0 1
s 8(R™ (515 ) g g ) =+ VI = et

The identities (4.83) and (4.84)) yield Theorem [3.3] This concludes the proof
of Theorem [0.11
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