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Email: wlu@hust.edu.cn, xiaonan.ma@imj-prg.fr, gmarines@math.uni-koeln.de

Received December 8, 2016; accepted February 24, 2017; published online March 21, 2017

Abstract We prove an estimate for Donaldson’s Q-operator on a prequantized compact symplectic manifold.

This estimate is an ingredient in the recent result of Keller and Lejmi (2017) about a symplectic generalization

of Donaldson’s lower bound for the L2-norm of the Hermitian scalar curvature.

Keywords Q-operator, quantization, symplectic manifold

MSC(2010) 53D50

Citation: Lu W, Ma X, Marinescu G. Donaldson’s Q-operators for symplectic manifolds. Sci China Math, 2017,

60: 1047–1056, doi: 10.1007/s11425-016-9047-6

1 Introduction

The Q-operator is an integral operator whose kernel is the square norm of the Bergman kernel of a

positive line bundle (see (1.8) and (1.9)). It was introduced by Donaldson [5] in order to find explicit

numerical approximations of Kähler-Einstein metrics on projective manifolds, and have attracted much

attention recently (see [1, 6, 8–10,16]).

Using the full asymptotic expansion of the Bergman kernel [2], Liu and Ma [10, Theorem 0.1] verified

a statement of Donaldson [5, Subsection 4.2] about the relation of the asymptotics of QKp to the heat

kernel. Such statement was needed for the convergence of the approximation procedure in [5]. In [6],

Liu and Ma improved the statement to a Cm-estimate for QKp on Kähler manifolds, as a crucial step

towards the result of [6] about the convergence of the balancing flow to the Calabi flow. This is a

parabolic analogue of Donaldson’s theorem relating balanced embeddings to metrics with constant scalar

curvature [3]. Besides, such results also turn out to be important in Cao and Keller’s work [1] on Calabi’s

problem.

The purpose of this paper is to extend the Cm-estimates of the operators QKp to the case of symplectic

manifolds. This result, together with [11], plays an important role in the recent work of Keller and

Lejmi [8] about a lower bound for the L2-norm of the Hermitian scalar curvature. Such a lower bound

was obtained in the Kähler case by Donaldson [4]. Our proof is based on the asymptotic expansion of

the (generalized) Bergman kernel, which in our case is the kernel of the spectral projection on lower

∗Corresponding author



1048 Lu W et al. Sci China Math June 2017 Vol. 60 No. 6

lying eigenstates of the normalized Bochner Laplacian. We refer the readers to the monograph [14] (see

also [12,15]) for more information on the Bergman kernel on symplectic manifolds.

Let us describe our result in detail. Let (X,ω) be a compact symplectic manifold of real dimension 2n.

Let (L, hL) be an Hermitian line bundle on X, and let ∇L be an Hermitian connection on (L, hL)

with curvature RL = (∇L)2. Let (E, hE) be an auxiliary Hermitian vector bundle with Hermitian

connection ∇E . We assume throughout the paper that (L, hL) satisfies the pre-quantization condition

√
−1

2π
RL = ω. (1.1)

We choose an almost complex structure J on TX (i.e., J ∈ End(TX) and J2 = −1) such that ω is

J-invariant and ω(·, J ·) > 0. The almost complex structure J induces a splitting

TX ⊗R C = T (1,0)X ⊕ T (0,1)X,

where T (1,0)X and T (0,1)X are the eigenbundles of J corresponding to the eigenvalues
√
−1 and −

√
−1,

respectively.

Let gTX(·, ·) := ω(·, J ·) be the Riemannian metric on TX induced by ω and J . The Riemannian

volume form dvX of (X, gTX) has the form dvX = ωn/n!. We denote by Lp := L⊗p the tensor powers

of L for p ∈ N and by

hL
p

:= (hL)⊗p, hL
p⊗E = hL

p

⊗ hE ,

the induced Hermitian metrics on Lp and Lp ⊗ E, respectively. The L2-Hermitian product on the space

C∞(X,Lp ⊗ E) of smooth sections of Lp ⊗ E on X is given by

⟨s1, s2⟩ =
∫
X

⟨s1(x), s2(x)⟩hLp⊗EdvX(x). (1.2)

Let ∇TX be the Levi-Civita connection on (X, gTX), and let ∇Lp⊗E be the connection on Lp⊗E induced

by ∇L and ∇E . Let {ek} be a local orthonormal frame of (TX, gTX). The Bochner Laplacian acting on

C∞(X,Lp ⊗ E) is given by

∆Lp⊗E = −
∑
k

[(∇Lp⊗E
ek

)2 −∇Lp⊗E
∇TX

ek
ek
]. (1.3)

Let Φ ∈ C∞(X,End(E)) be Hermitian (i.e., self-adjoint with respect to hE). The renormalized Bochner

Laplacian is defined by

∆p,Φ = ∆Lp⊗E − 2πnp+Φ. (1.4)

By [7] and [13, Corollary 1.2], there exists CL > 0 independent of p such that

Spec(∆p,Φ) ⊂ [−CL, CL] ∪ [4πp− CL,+∞), (1.5)

where Spec(A) denotes the spectrum of the operator A. Since ∆p,Φ is an elliptic operator on a compact

manifold, it has discrete spectrum and its eigensections are smooth. Let

Hp :=
⊕

λ∈[−CL,CL]

Ker(∆p,Φ − λ) ⊂ C∞(X,Lp ⊗ E) (1.6)

be the direct sum of eigenspaces of ∆p,Φ corresponding to the eigenvalues lying in [−CL, CL]. In mathe-

matical physics terms, the operator ∆p,Φ is a semiclassical Schrödinger operator and the space Hp is the

space of its bound states as p→ ∞. By [14, Theorem 8.3.1],

dimHp =

∫
X

Td(T (1,0)X)ch(Lp ⊗ E), (1.7)

where Td(·) and ch(·) denote the Todd class and the Chern character of the corresponding complex vector

bundle. The formula (1.7) agrees with the Riemann-Roch-Hirzebruch theorem and Kodaira vanishing
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theorem in the Kähler case. The space Hp proves to be an appropriate replacement for the space of

holomorphic sections H0(X,Lp ⊗ E) from the Kähler case.

Let PHp be the orthogonal projection from C∞(X,Lp ⊗ E) onto Hp. The kernel PHp(x, x
′) of PHp

with respect to dvX(x′) is called a generalized Bergman kernel [15]. Note that

PHp(x, x
′) ∈ (Lp ⊗ E)x ⊗ (Lp ⊗ E)∗x′ .

Set

Vol(X, dvX) =

∫
X

dvX .

Following Donaldson [5, Section 4], we set

Kp(x, x
′) = |PHp(x, x

′)|2, Rp := (dimHp)/Vol(X, dvX). (1.8)

Let Kp and QKp be the integral operators associated to Kp which is defined by for f ∈ C∞(X),

(Kpf)(x) =

∫
X

Kp(x, y)f(y)dvX(y), QKp =
1

Rp
Kpf. (1.9)

The operator QKp has been studied by Donaldson [5], Liu and Ma [6, Appendix; 10], and Ma and

Marinescu [16, Section 6] in the case of Kähler manifolds.

The main result of this paper is as follows. For Kähler manifolds it was obtained by Liu and Ma [6,

Appendix; 10].

Theorem 1.1. For any integer m > 0, there exists a constant C > 0 such that for any f ∈ C∞(X),

∥QKp(f)− f∥Cm(X) 6
C

p
∥f∥Cm+2(X). (1.10)

Moreover, (1.10) is uniform in the following sense. Consider QKp as a function of the parameters

gTX , hL,∇L, hE ,∇E and Φ, i.e.,

QKp = QKp(g
TX , hL,∇L, hE ,∇E ,Φ).

Let M be a subset of the infinite dimensional manifold D of all compatible tuples gTX , hL,∇L, hE ,∇E

and Φ. Assume that

(i) the covariant derivatives in the direction X of order ℓ 6 2n+m+ 6 of elements of M form a set

of tensors on X ×M which is bounded in the C 0-norm calculated in the direction of M;

(ii) the projection of M on the space of Riemannian metrics is bounded below in the C 0- norm.

Then there exists C = Cm(M) such that (1.10) holds for all tuples of parameters from M. Moreover,

the Cm-norm in (1.10) can be taken on X ×M.

The organization of this paper is as follows. In Section 2, we establish the asymptotic expansion of the

generalized Bergman kernel which extends [14, Subsection 8.3]. In Section 3, we prove Theorem 1.1.

2 Asymptotic expansion of the generalized Bergman kernel

In this section, we assume that gTX is an arbitrary J-invariant Riemannian metric on X. Let ∆Lp⊗E

be the Bochner Laplacian acting on C∞(X,Lp ⊗ E) associated with gTX and ∇Lp⊗E . Let Φ ∈
C∞(X,End(E)) be Hermitian.

Let dvX be the Riemannian volume form on (X, gTX). Now the Hermitian product on C∞(X,Lp⊗E)

is induced by hL, hE and dvX .

We identify the two form RL with the Hermitian matrix ṘL ∈ End(T (1,0)X) such that for W,Y

∈ T (1,0)X,

RL(W,Y ) = ⟨ṘLW,Y ⟩. (2.1)
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Set

τ = Tr |T (1,0)XṘ
L, µ0 = inf

u∈T (1,0)
x X, x∈X

RLx (u, u)/|u|2gTX > 0. (2.2)

Note that if gTX = ω(·, J ·), then τ = 2πn and µ0 = 2π.

Then the renormalized Bochner Laplacian is defined as

∆p,Φ = ∆Lp⊗E − τp+Φ. (2.3)

By the same references as those in Section 1, there exists CL > 0 independent of p such that

Spec(∆p,Φ) ⊂ [−CL, CL] ∪ [2µ0p− CL,+∞). (2.4)

Thus Hp in (1.6) is still well-defined and (1.7) holds.

Let PHp(x, x
′) be the smooth kernel of the orthogonal projection PHp from C∞(X,Lp ⊗ E) onto Hp

with respect to dvX(x′). In this section, we study the asymptotics of PHp(x, x
′) as p→ ∞.

Let aX be the injectivity radius of (X, gTX). We fix ε ∈ (0, aX/4). Let d(x, y) denote the Riemannian

distance from x to y on (X, gTX). By [14, Proposition 8.3.5] and the argument after [14, Proposition 8.3.5],

we get for any l,m ∈ N and 0 < θ < 1, there exists C > 0 such that

|PHp(x, x
′)|Cm(X×X) 6 Cp−l, if d(x, x′) > εp−

θ
2 . (2.5)

Now we still need to understand the asymptotics of PHp(x, x
′) for d(x, x′) 6 εp−

θ
2 .

We recall first the procedure of [15, Subsection 1.2] and [14, Subsection 8.3].

Denote by BX(x, ε) and BTxX(0, ε) the open balls in X and TxX with center x and radius ε, respec-

tively. We identify BTxX(0, ε) with BX(x, ε) by using the exponential map of (X, gTX).

We fix x0 ∈ X. For Z ∈ BTx0X(0, ε), we identify LZ , EZ and (Lp ⊗ E)Z to Lx0 , Ex0 and (Lp ⊗ E)x0

by parallel transport with respect to the connections ∇L,∇E and ∇Lp⊗E along the curve

γZ : [0, 1] ∋ u→ expXx0
(uZ).

Then under our identification, PHp(Z,Z
′) is a function on Z,Z ′ ∈ Tx0X, |Z|, |Z ′| < ε. We denote it by

PHp,x0(Z,Z
′). Let π : TX ×X TX → X be the natural projection from the fiberwise product of TX

on X. Then we can view PHp,x0(Z,Z
′) as a smooth function over TX ×X TX by identifying a section

s ∈ C∞(TX ×X TX, π∗(End(E)))

with the family (sx)x∈X , where sx = s |π−1(x).

Let {ei}i be an oriented orthonormal basis of Tx0X, and let {ei}i be its dual basis. For ε > 0 small

enough, we extend the geometric objects from BTx0X(0, ε) to R2n ≃ Tx0X where the identification is

given by

(Z1, . . . , Z2n) ∈ R2n 7→
∑
i

Ziei ∈ Tx0X, (2.6)

such that ∆p,Φ is the restriction of a renormalized Bochner-Laplacian on R2n associated with an Hermitian

line bundle with positive curvature. In this way, we replace X by R2n.

At first, we denote by L0 and E0 the trivial bundles with fiber Lx0 and Ex0 on X0 = R2n. We still

denote by ∇L,∇E and hL, etc. the connections and metrics on L0 and E0 on B
Tx0X(0, 4ε) induced by the

above identification. Then hL and hE are identified to the constant metrics hL0 = hLx0 and hE0 = hEx0 .

Let ρ : R → [0, 1] be a smooth even function such that

ρ(v) = 1 if |v| < 2, ρ(v) = 0 if |v| > 4. (2.7)

Let φε : R2n → R2n be the map defined by φε(Z) = ρ(|Z|/ε)Z. Then Φ0 = Φ ◦ φε is a smooth function

on X0. Let g
TX0(Z) = gTX(φε(Z)) be the metric on X0. Set ∇E0 = φ∗

ε∇E . Then ∇E0 is the extension
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of ∇E on BTx0X(0, ε). Denote by R =
∑
i Ziei = Z the radial vector field on R2n. We define the

Hermitian connection ∇L0 on (L0, hL0) by

∇L0 |Z = φ∗
ε∇L +

1

2
(1− ρ2(|Z|/ε))RLx0

(R, ·). (2.8)

Let RL0 denote the curvature of ∇L0 and {ei}i be an orthonormal frame of (TX0, g
TX0). Let J0 be an

almost complex structure on X0 compatible with gTX0 and
√
−1
2π RL0 such that J0 = J on BTx0X(0, 2ε)

and J0 = Jx0 outside BTx0X(0, 4ε). Set (see (2.2))

τ0 =

√
−1

2

∑
i

RL0(ei, J0ei). (2.9)

Let

∆X0

p,Φ0
= ∆Lp

0⊗E0 − pτ0 +Φ0

be the renormalized Bochner-Laplacian on X0 associated to the above data as in (1.4). By [15, (1.23)],

there exists CL0 > 0 such that

Spec(∆X0

p,Φ0
) ⊂ [−CL0 , CL0 ] ∪ [µ0p− CL0 ,+∞). (2.10)

Let SL be a unit vector of L0. Using SL and the above discussion, we get an isometry Lp0 ≃ C. Let P0,Hp

be the spectral projection of ∆X0

p,Φ0
from C∞(X0, L

p
0 ⊗ E0) ≃ C∞(X0, E0) corresponding to the interval

[−CL0 , CL0 ], and let P0,Hp(x, x
′) be the smooth kernel of P0,Hp with respect to the volume form dvX0(x

′).

By [15, Proposition 1.3] (for q = 0 therein), for any l,m ∈ N, there exists Cl,m > 0 such that for

x, x′ ∈ BTx0X(0, ε), we have

|(P0,Hp − PHp)(x, x
′)|Cm(X×X) 6 Cl,mp

−l, (2.11)

where the Cm-norm is induced by ∇TX ,∇L,∇E , hL, hE and gTX .

Let dvTX be the Riemannian volume form on (Tx0X, g
Tx0X). Let κ(Z) be the smooth positive function

defined by the equation

dvX0(Z) = κ(Z)dvTX(Z), (2.12)

with κ(0) = 1. Denote by ∇U the ordinary differentiation operation on Tx0X in the direction U . Denote

by t = 1√
p . For s ∈ C∞(R2n, E0) and Z ∈ R2n, set

(Sts)(Z) = s(Z/t), ∇t = tS−1
t κ

1
2∇L0κ−

1
2St,

Lt = S−1
t κ

1
2 t2∆X0

p,Φ0
κ−

1
2St.

(2.13)

It follows from (2.10) and (2.13) that for t small enough (see [15, (1.43)]),

Spec(Lt) ⊂ [−CL0t
2, CL0t

2] ∪
[
1

2
µ0,+∞

)
. (2.14)

Let δ be the counterclockwise oriented circle in C of center 0 radius 1
4µ0. By (2.14), there exists t0 > 0

such that the resolvent (λ− Lt)
−1 exists for λ ∈ δ and t ∈ (0, t0].

We denote by ⟨·, ·⟩0,L2 and ∥·∥0,L2 the scalar product and the L2-norm on C∞(X0, E0) induced by gTX0

as in (1.2). For s ∈ C∞(X0, E0), set

∥s∥2t,0 = ∥s∥20 =

∫
R2n

|s(Z)|2hE0dvTX(Z),

∥s∥2t,m =
m∑
l=1

2n∑
i1,...,il=1

∥∇t,ei1
· · · ∇t,eil

s∥2t,0. (2.15)



1052 Lu W et al. Sci China Math June 2017 Vol. 60 No. 6

We denote by ⟨·, ·⟩ the inner product on C∞(X0, E0) corresponding to ∥ · ∥t,0. Let Hm
t be the Sobolev

space of order m with norm ∥ · ∥t,m. Let H−1
t be the Sobolev space of order −1 and let ∥ · ∥t,−1 be the

norm on H−1
t defined by

∥s∥t,−1 = sup
0̸=s′∈H1

t

|⟨s, s′⟩t,0|/∥s′∥t,1.

If A ∈ L (Hm,Hm′
), then we denote by ∥A∥m,m

′

t the norm of A with respect to the norms ∥ · ∥t,m
and ∥ · ∥t,m′ .

Let P0,t be the orthogonal projection from (C∞(X0, E0), ∥ · ∥0) onto the space of the direct sum

of eigenspaces of Lt corresponding to the eigenvalues lying in [−CL0t
2, CL0t

2]. Let P0,t(Z,Z
′) =

P0,t,x0(Z,Z
′) (with Z,Z ′ ∈ X0) be the smooth kernel of P0,t with respect to dvTX(Z ′). Denote by

Cm(X) the Cm-norm for the parameter x0 ∈ X. By [14, (4.2.9)], we have the following extension

of [15, Theorem 1.10] (for q = 0).

Claim. For any r,m′,m ∈ N, there exists C > 0 such that for t ∈ (0, t0] and Z,Z
′ ∈ Tx0X,

sup
|α|+|α′|6m′

∣∣∣∣ ∂|α|+|α′|

∂Zα∂Z ′α′

∂r

∂tr
P0,t(Z,Z

′)

∣∣∣∣
Cm(X)

6 C(1 + |Z|+ |Z ′|)Mr,m′,m (2.16)

with

Mr,m′,m = 2n+ 2 + 2r +m′ + 2m. (2.17)

We will sketch the proof of the claim. The readers are referred to [2], [14, Chapter 4] and [15, Section 1]

for more details. In fact, by (2.14), for any k ∈ N∗ (see [15, (1.55)]),

P0,t =
1

2π
√
−1

∫
δ

λk−1(λ− Lt)
−kdλ. (2.18)

For m ∈ N, let Qm be the set of operators {∇t,ei1
· · · ∇t,eij

}j6m. By [15, (1.58)],∥∥QP0,tQ
′∥∥0,0
t

6 Cm, for Q,Q′ ∈ Qm. (2.19)

Let ∥ · ∥m be the usual Sobolev norm on C∞(Rn, E0) induced by hE0 and the volume form dvTX(Z).

By [14, (4.29)], there exists C > 0 such that for s ∈ C∞(X0, E0) with supp(s) ⊂ BTx0X(0, q), m > 0,

1

C
(1 + q)−m∥s∥t,m 6 ∥s∥m 6 C(1 + q)m∥s∥t,m. (2.20)

Now (2.19) and (2.20) together with Sobolev inequalities imply that for Q,Q′ ∈ Qm,

sup
|Z|,|Z′|6q

|QZQ′
Z′P0,t(Z,Z

′)| 6 C(1 + q)2n+2. (2.21)

Combining [15, (1.35)] and (2.21) yields (2.16) for r = m′ = 0. To obtain (2.16) for r > 1 and m′ = 0,

note that by (2.18),

∂r

∂tr
P0,t =

1

2π
√
−1

∫
δ

λk−1 ∂
r

∂tr
(λ− Lt)

−kdλ. (2.22)

For k, r ∈ N∗, let

Ik,r =

{
(k, r) = (ki, ri)

∣∣∣∣ j∑
i=0

ki = k + j,

j∑
i=1

ri = r, ki + ri ∈ N∗
}
. (2.23)

Then there exist akr ∈ R such that

Ak
r(λ, t) = (λ− Lt)

−k0 ∂
r1Lt

∂tr1
(λ− Lt)

−k1 · · · ∂
rjLt

∂trj
(λ− Lt)

−kj ,
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∂r

∂tr
(λ− Lt)

−k =
∑

(k,r)∈Ik,r

akrA
k
r(λ, t). (2.24)

We can now carry on nearly word by word the corresponding part of the proof of [15, Theorem 1.10] to

finish the proof of (2.16). We finish the proof of the claim.

Set (see [14, (4.1.65)])

Fr =
1

2π
√
−1r!

∫
δ

λk−1
∑

(k,r)∈Ik,r

akrA
k
r(λ, 0)dλ,

Fr,t =
1

r!

∂r

∂tr
P0,t − Fr.

(2.25)

Let Fr(Z,Z
′) (Z,Z ′ ∈ Tx0X) be the smooth kernel of F with respect to dvTX(Z ′). Then Fr(Z,Z

′)

∈ C∞(TX×X TX, π∗End(E)). By the proof of (2.16), we observe that Fr verifies the similar inequalities

to (2.16), i.e., to replace the factor ∂r

∂trP0,r in (2.16) by Fr. Using this observation, (2.16) and (2.25), we

obtain the extension of [15, Theorem 1.12]. There exists C > 0 such that for t ∈ (0, t0] and Z,Z
′ ∈ Tx0X,

|Fr,t(Z,Z
′)| 6 Ct1/(2n+1)(1 + |Z|+ |Z ′|)2n+2. (2.26)

By (2.25) and (2.26), we have (see [15, (1.78)])

1

r!

∂r

∂tr
P0,t |t=0 = Fr. (2.27)

By (2.16), (2.27) and the Taylor expansion

G(t)−
k∑
r=0

1

r!

∂rG

∂tr
(0)tr =

1

k!

∫ t

0

(t− s)k
∂k+1G

∂sk+1
(s)ds, (2.28)

we obtain the extension of [15, Theorem 1.13]. For any k,m,m′ ∈ N, there exists C > 0 such that for

t ∈ (0, t0], Z,Z
′ ∈ Tx0X and for |α|+ |α′| 6 m′,∣∣∣∣ ∂|α|+|α′|

∂ZαZ ′α′

(
P0,t −

k∑
r=0

Frt
r

)
(Z,Z ′)

∣∣∣∣
Cm(X)

6 Ctk+1(1 + |Z|+ |Z ′|)Mk+1,m′,m . (2.29)

By (2.12) and (2.13), for Z,Z ′ ∈ R2n (see [15, (1.112)]),

P0,Hp(Z,Z
′) = t−2nκ−

1
2 (Z)P0,t(Z/t, Z

′/t)κ−
1
2 (Z ′). (2.30)

Combining (2.11), (2.29) and (2.30), we obtain∣∣∣∣ ∂|α|+|α′|

∂ZαZ ′α′

(
1

pn
PHp,x0(Z,Z

′)−
k∑
r=0

Fr(
√
pZ,

√
pZ ′)κ−

1
2 (Z)κ−

1
2 (Z ′)p−

r
2

)∣∣∣∣
Cm(X)

6 Cp−
k−m′+1

2 (1 +
√
p|Z|+√

p|Z ′|)Mk+1,m′,m . (2.31)

Now we fix k0,m
′ and m. Take

k = k0 +m′ + 2 and θ = 1/(2Mk+1,m′,m). (2.32)

Then for |α|+ |α′| 6 m′ and |Z|, |Z ′| < p−
1
2+θ, we have∣∣∣∣ ∂|α|+|α′|

∂ZαZ ′α′

(
1

pn
PHp,x0(Z,Z

′)−
k∑
r=0

Fr(
√
pZ,

√
pZ ′)κ−

1
2 (Z)κ−

1
2 (Z ′)p−

r
2

)∣∣∣∣
Cm(X)

6 Cp−
k0
2 −1. (2.33)

To sum up, we have finished the proof of the following result.
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Theorem 2.1. For any k0,m
′,m ∈ N, there exists C > 0 such that for |α| + |α′| 6 m′ and |Z|, |Z ′|

< p−
1
2+θ with

θ =
1

2(2n+ 8 + 2k0 + 3m′ + 2m)
, (2.34)

we have∣∣∣∣ ∂|α|+|α′|

∂ZαZ ′α′

(
1

pn
PHp,x0(Z,Z

′)−
k∑
r=0

Fr(
√
pZ,

√
pZ ′)κ−

1
2 (Z)κ−

1
2 (Z ′)p−

r
2

)∣∣∣∣
Cm(X)

6 Cp−
k0
2 −1, (2.35)

where k = k0 +m′ + 2.

We choose {wj}nj=1 an orthonormal basis of T
(1,0)
x0 X such that

ṘLx0
= diag(a1, . . . , an) ∈ End(T (1,0)

x0
X). (2.36)

Then e2j−1 = 1√
2
(wj + wj) and e2j =

√
−1√
2
(wj − wj) , j = 1, . . . , n, form an orthonormal basis of Tx0X.

We use the coordinates on Tx0X ≃ R2n induced by {ei} as in (2.6) and in what follows we also introduce

the complex coordinates z = (z1, . . . , zn) on Cn ≃ R2n. Set

P(Z,Z ′) =
n∏
j=1

aj
2π

exp

[
− 1

4

n∑
j=1

aj(|zj |2 + |z′j |2 − 2zjz
′
j)

]
. (2.37)

By [15, Theorem 1.18], there exist Jr(Z,Z
′) polynomials in Z and Z ′ with the same parity as r and

degree 6 3r such that

Fr(Z,Z
′) = Jr(Z,Z

′)P(Z,Z ′), J0(Z,Z
′) = 1. (2.38)

3 Proof of Theorem 1.1

Now gTX(·, ·) := ω(·, J ·), thus aj = 2π in (2.37).

Recall that the classical heat kernel on Cn is e−u∆(Z,Z ′) = (4πu)−ne−
1
4u |Z−Z′|2 . Then

|P(Z,Z ′)|2 = e−π|Z−Z′|2 = e−
∆
4π (Z,Z ′). (3.1)

Note that |PHp,x0(Z,Z
′)|2 = PHp,x0(Z,Z

′)PHp,x0(Z,Z
′). By (1.8), (2.35), (2.38) and (3.1), there exist

polynomials J ′
r(Z,Z

′) in Z and Z ′ such that for |Z|, |Z ′| < p−
1
2+θ with θ in (2.34),∣∣∣∣ 1

p2n
Kp,x0(Z,Z

′)−
(
1 +

k∑
r=1

p−
r
2 J ′

r(
√
pZ,

√
pZ ′)

)
e−πp|Z−Z′|2

∣∣∣∣
Cm(X)

6 Cp−
k0
2 −1, (3.2)

with

J ′
1(0, Z

′) = (J1 + J1)(0, Z
′). (3.3)

For a function f ∈ C∞(X), we denote by fx0(Z) the function f in normal coordinates Z around a

point x0 ∈ X. We have thus a family (fx0) of functions indexed by the parameter x0 ∈ X. Combining

(1.8), (2.5) with θ in (2.34), and (3.2), we obtain∣∣∣∣ 1pnKpf − pn
∫
|Z′|6εp−θ/2

(
1 +

k∑
r=1

p−
r
2 J ′

r(0,
√
pZ ′)

)
e−πp|Z

′|2fx0(Z
′)dvX(Z ′)

∣∣∣∣
Cm(X)

6 Cp−
k0
2 −1|f |Cm(X). (3.4)
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By using Taylor expansion of fx0(Z
′) at 0, we obtain∣∣∣∣pn ∫

|Z′|6εp−θ/2

J ′
r(0,

√
pZ ′)e−πp|Z

′|2fx0(Z
′)dvX(Z ′)

∣∣∣∣
Cm(X)

6 C|f |Cm(X),∣∣∣∣pn ∫
|Z′|6εp−θ/2

e−πp|Z
′|2fx0

(Z ′)dvX(Z ′)− f(x0)

∣∣∣∣
Cm(X)

6 C

p
|f |Cm+2(X).

(3.5)

Finally, by [15, Theorem 1.18] and [15, (1.97), (1.98) and (1.111)], we obtain∫
Z′∈Cn

J1(0, Z
′)|P|2(0, Z ′)dZ ′

=

∫
Z′∈Cn

P(0, Z ′)J1(Z
′, 0)P(Z ′, 0)dZ ′

= (PJ1P)(0, 0) = 0. (3.6)

Combining Taylor expansion of fx0(Z
′) at 0, and (3.6) yields∣∣∣∣pn ∫

|Z′|6εp−θ/2

p−1/2J ′
1(0,

√
pZ ′)e−πp|Z

′|2fx0(Z
′)dvX(Z ′)

∣∣∣∣
Cm(X)

6 C

p
|f |Cm+2(X). (3.7)

Combining (3.4) for k0 = 0, (3.5) and (3.7) yields∣∣∣∣ 1pnKpf − f

∣∣∣∣
Cm(X)

6 C

p
|f |Cm+2(X). (3.8)

Then the desired Cm-estimate (1.10) follows from (1.9) and (3.8). The proof of the uniformity assertion

from Theorem 1.1 is modeled on [14, Subsection 4.1.7] and [15, Subsection 1.5]. First, we notice that in

the proof of (2.16), we only use the derivatives of the coefficients of Lt with order 6 2n+m+m′+ r+2.

Thus, by (2.28), the constants in (2.16) and (2.26) ((2.29) and (2.31), respectively) are bounded, if

with respect to a fixed metric gTX0 , the C 2n+m+m′+r+3 (C 2n+m+m′+k+4, respectively)-norms on X of

the data gTX , hL,∇L, hE ,∇E and Φ are bounded and gTX is bounded below. Note k = k0 + m′ + 2

in (2.35). Then the constants in (2.35) ((3.2), (3.4) and (3.8), respectively) are bounded if with respect to

a fixed metric gTX0 , the C 2n+m+2m′+k0+6 (C 2n+m+k0+6, C 2n+m+k0+6 and C 2n+m+6, respectively)-norm

on X of the data gTX , hL,∇L, hE ,∇E and Φ are bounded and gTX is bounded below. Moreover, taking

derivatives with respect to the parameters we obtain a similar equation to (2.22) (see [15, (1.65)]). Thus

the Cm-norm in (3.8) can also include the parameters of the Cm-norm if the Cm-norms (with respect to

the parameter x0 ∈ X) of derivatives of the above data with order 6 2n+ 6 are bounded. Thus we can

take C in (1.10) independent of gTX . The proof of Theorem 1.1 is completed.
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