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Abstract. We consider a general Hermitian holomorphic line bundle L on a
compact complex manifold M and let �q

p be the Kodaira Laplacian on (0, q)
forms with values in Lp. We study the scaling asymptotics of the heat kernel
exp(−u�q

p/p)(x, y).
The main result is a complete asymptotic expansion for the semi-classic-

ally scaled heat kernel exp(−u�q
p/p)(x, x) along the diagonal. It is a gener-

alization of the Bergman/Szegö kernel asymptotics in the case of a positive
line bundle, but no positivity is assumed. We give two proofs, one based on
the Hadamard parametrix for the heat kernel on a principal bundle and the
second based on the analytic localization of the Dirac-Dolbeault operator.
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1. Introduction

Let (M,J) be a complex manifold with complex structure J , and complex
dimension n. Let L and E be two holomorphic vector bundles on M such that
rk(L) = 1; the bundle E plays the role of an auxiliary twisting bundle. We fix
Hermitian metrics hL, hE on L, E. Let Lp denote the pth tensor power of L.
The purpose of this article is to prove scaling asymptotics of various heat kernels
on Lp ⊗ E as p → ∞. We present the scaling asymptotics from two points of
view. The first one (Theorem 1.1) gives scaling asymptotics of the Kodaira heat
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kernels and is based on the analytic localization technique of Bismut-Lebeau [5],
adaptating the arguments from [19, §1.6, §4.2]. The second (Theorem 1.2) gives
scaling asymptotics of the heat kernels associated to the Bochner Laplacian, and is
an adaptation of the Szegö kernel asymptotics of [20]. It is based on lifting sections
of Lp to equivariant functions on the associated principal S1 bundle Xh → M , and
obtaining scaling asymptotics of heat kernels from Fourier analysis of characters
and stationary phase asymptotics. Either method can be applied to any of the
relevant heat kernels and it seems to us of some interest to compare the methods.
We refer to [6,19–21] for background from both points of view of analysis on higher
powers of line bundles.

To state our results, we need to introduce some notation. Let ∇E , ∇L be
the holomorphic Hermitian connections on (E, hE), (L, hL). Let RL, RE be the
curvatures of ∇L, ∇E . Let gTM be a J-invariant Riemannian metric on M , i. e.,
gTM (Ju, Jv) = gTM (u, v) for all x ∈ M and u, v ∈ TxM . Set

(1.1) ω :=

√
−1

2π
RL, Θ(·, ·) := gTM (J ·, ·).

Then ω,Θ are real (1, 1)-forms on M , and ω is the Chern-Weil representative of
the first Chern class c1(L) of L. The Riemannian volume form dvM of (TM, gTM )

is Θn/n!. We will identify the 2-form RL with the Hermitian matrix ṘL ∈
End(T (1,0)M) defined by

(1.2)
〈
ṘLW,Y

〉
= RL(W,Y ) , W, Y ∈ T (1,0)M.

The curvature RL acts as a derivation ωd ∈ End(Λ(T ∗(0,1)M)) on Λ(T ∗(0,1)M).
Namely, let {wj}nj=1 be a local orthonormal frame of T (1,0)M with dual frame

{wj}nj=1. Set

(1.3) ωd = −
∑
l,m

RL(wl, wm)wm ∧ iwl
, τ (x) =

∑
j

RL(wj , wj) .

Consider the Dolbeault-Dirac operator

Dp =
√
2

(
∂
Lp⊗E

+ ∂
Lp⊗E,∗

)
,(1.4)

and the Kodaira Laplacian

�p = 1
2D

2
p = ∂

Lp⊗E
∂
Lp⊗E,∗

+ ∂
Lp⊗E,∗

∂
Lp⊗E

.(1.5)

For p ∈ N, we denote by

Ej
p := Λj(T ∗(0,1)M)⊗ Lp ⊗ E, Ep = ⊕jE

j
p ,(1.6)

and let hp the induced Hermitian metric on Ep .
The operator D2

p = 2�p is a second order elliptic differential operator with

principal symbol σ(D2
p)(ξ) = |ξ|2 IdEp

for ξ ∈ T ∗
xM , x ∈ M . The heat operator

exp(−uD2
p) is well defined for u > 0. Let exp(−uD2

p)(x, x
′), where x, x′ ∈ M , be

its smooth kernel with respect to the Riemannian volume form dvM (x′). Then

exp(−uD2
p)(x, x

′) ∈ (Ep)x ⊗ (Ep)
∗
x′ ,(1.7)

especially

exp(−uD2
p)(x, x) ∈ End(Ep)x = End(Λ(T ∗(0,1)M)⊗ E)x,(1.8)
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where we use the canonical identification End(Lp) = C for any line bundle L on M .
Note that D2

p preserves the Z-grading of the Dolbeault complex Ω0,•(M,Lp ⊗ E),
so

exp(−uD2
p|Ω0,j )(x, x′) =

∞∑
k=1

e−uλj
k,pϕj

k,p(x)⊗ ϕj
k,p(x

′)∗ ∈ (Ej
p)x ⊗ (Ej

p)
∗
x′ ,(1.9)

where {λj
k,p : k � 1} is the spectrum ofD2

p|Ω0,j and {ϕj
k,p : k � 1} is an orthonormal

basis of L2(M,Ej
p) consisting of eigensections of D2

p|Ω0,j with D2
pϕ

j
k,p = λj

k,pϕ
j
k,p ,

cf. [19, (D.1.7)]. Thus

exp(−uD2
p)(x, x) ∈

⊕
j

End(Λj(T ∗(0,1)M)⊗ E)x .

We will denote by det the determinant on T (1,0)M . The following gives the scaling
asymptotics for the Kodaira-Laplacian heat kernel.

Theorem 1.1. Assume that M is compact. For T > 0, and any k,m ∈ N we
have as p → ∞

(1.10) exp

(
−u

p
D2

p

)
(x, x) =

m∑
r=0

(
p

u

)n−r

e∞ r(u, x) +

(
p

u

)n−m−1

Rm+1

(
u

p
, u, x

)
uniformly for 0<u<T and x∈M , in the C k-norm on C∞(M,End(Λ(T ∗(0,1)M)⊗
E)), i. e., the reminder term Rm+1(

u
p , u, x) is uniformly bounded for 0 < u < T ,

x ∈ M , p ∈ N∗. For any r ∈ N, the coefficient e∞ r(u, x) is smooth at u = 0 and
the principal term is given by

e∞0(u, x) =
1

(2π)n
det(uṘL

x ) exp(2uωd,x)

det(1− exp(−2uṘL
x ))

⊗ IdE .(1.11)

The leading term of the scaling asymptotics has been known for some time
in connection with the Demailly holomorphic Morse inequalities [12]. Bismut [4]
and Demailly [13] used the heat kernel to prove these inequalities, based on the
principal term of the scaling asymptotics above. The new feature of Theorem 1.1 is
the complete asymptotic expansion in the C ∞ sense, and the computability of the
coefficients. It is a kind of generalization, in terms of both statement and proof, of
the Bergman/Szegö kernel expansion on the diagonal given in [11], [20] in the case
of positive Hermitian holomorphic line bundles. The main feature of the heat kernel
expansion is its generality: it does not require that (L, hL) be a positive line bundle,
nor even that (M,Θ) be a Kähler manifold. In the general case, the Bergman/Szegö
kernel is difficult to analyze and the heat kernel is a good substitute. Note that for
u > 0 fixed, Theorem 1.1 was obtained in [14, (1.4)], [19, (4.2.4)].

Let us give another form of the principal term (1.11) in order to recover De-
mailly’s formula [13, Theorem 4.4]. Let us choose {wj}nj=1 to be an orthonormal

basis of T (1,0)M such that

ṘL(x) = diag(α1(x), . . . , αn(x)) ∈ End(T (1,0)
x M) .(1.12)

The elements α1(x), . . . , αn(x) are called the eigenvalues of RL with respect to Θ.
Then

(1.13) ωd(x) = −
∑
j

αj(x)w
j ∧ iwj

, τ (x) =
∑
j

αj(x).
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We have by [19, (1.6.4)]

(1.14) e∞0(u, x) = un
n∏

j=1

αj(x)
(
1 + (exp(−2uαj(x))− 1)wj ∧ iwj

)
2π(1− exp(−2uαj(x)))

⊗ IdE .

Here we use the following convention: if an eigenvalue αj(x) of Ṙ
L
x is zero, then its

contribution to det(ṘL
x )/ det(1− exp(−2uṘL

x )) is 1/(2u).
Remark that the operator D2

p = 2�p preserves the Z-grading of the Dolbeault

complex Ω0,•(M,Lp⊗E). We will denote by �q
p the restriction of �p to Ω

0,q(M,Lp⊗
E). We set

(1.15) eqp(u, x) = Tr exp

(
−2u

p
�q

p

)
(x, x) = Trq exp

(
−u

p
D2

p

)
(x, x) .

where Trq is the trace of an operator acting on Eq
p. By taking the trace Trq of

(1.10) we obtain

(1.16) eqp(u, x) =

m∑
r=0

(
p

u

)n−r

eq∞ r(u, x) +

(
p

u

)n−m−1

Rq
m+1

(
u

p
, u, x

)
,

where

eq∞ r(u, x) = Trq e∞ r(u, x) , Rq
m+1

(
u

p
, u, x

)
= Trq Rm+1

(
u

p
, u, x

)
.

We obtain thus from (1.14),

(1.17) eq∞0(u, x) = rk(E)(4π)−n
( ∑

|J|=q

eu(α�J−αJ )
) n∏

j=1

uαj(x)

sinh(uαj(x))
·

We use the following notation for a multi-index J ⊂ {1, . . . , n}:

αJ =
∑
j∈J

αj , �J = {1, . . . , n} \ J .

It is understood that
α

sinhαu
=

1

u
, when α = 0 .

1.1. Scaling asymptotics of the heat kernel of the associated principal
bundle. We now state a closely result of the scaling asymptotics of the heat kernel
for the Bochner Laplacian∇∗

p∇p. The method also applies to the Kodaira Laplacian
but we only present it in this case. For simplicity, we do not twist by a vector
bundle E.

As above, we denote by (M,Θ) a compact complex n-manifold with Hermitian

metric Θ, with volume form dvM = Θn

n! , and let (L, hL) → M be a holomorphic

line bundle with curvature RL. Let ∇p denote the Chern connection associated to
hL on Lp.

Denote by L∗ the dual line bundle and let D∗
h be the unit disc bundle of L∗ with

respect to the dual metric hL∗
. The boundaryX = Xh = ∂D∗

h is then a principal S1

bundle π : X → M over M . The powers Lp of L are the line bundles Lp = X×χp
C

associated to the characters χp(e
iθ) = eipθ of S1. Sections s of Lp naturally lift

to L∗ as equivariant functions ŝ(λ)(x) = λ(s(π(x)), and the lifting map identifies
L2(M,Lp) with the space L2

p(X) of equivariant functions on X transforming by
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eipθ under the S1 action on X, which we denote by eiθ · x. The Chern connection
induces an S1-invariant vertical 1-form β, defining a connection on TX (see §2.1).

We define the Bochner Laplacian ΔLp

on Lp by ΔLp

= ∇∗
p∇p where ∗ is taken

with respect to dvM . Under the lifiting identificiation L2(M,Lp) � L2
p(X), ΔLp

corresponds to restriction to L2
p(X) of the horizontal Laplacian ΔH = d∗HdH , where

dH is the horizontal differential on X for the connection β.
The lifting identification induces an identifiction of heat kernels, which takes

the following form on the diagonal: Let x ∈ X, z ∈ M and π(x) = z. Then

(1.18) exp

(
−u

p
ΔLp

)
(z, z) =

∫
S1

e−(u/p)ΔH (eiθx, x)e−ipθdθ.

Using this formula, we prove

Theorem 1.2. Assume that M is compact. With the above notations and
assumptions, there exist smooth coefficients eH∞,r(u, z) so that for T > 0, and any
k,m ∈ N we have as p → ∞

exp

(
−u

p
ΔLp

)
(z, z) =

m∑
r=0

(
p

u

)n−r

eH∞ r(u, z) +

(
p

u

)n−m−1

Rm+1

(
u

p
, u, z

)
.

(1.19)

uniformly for 0 < u < T and z ∈ M , in the C k-norm on C ∞(M), i. e., the reminder
term Rm+1(

u
p , u, z) is uniformly bounded for 0 < u < T , z ∈ M , p ∈ N∗.

In view of (1.18) we could also state this result as giving the scaling asymptotics
of the pth Fourier component of the horizontal heat kernel. As discussed in §3.1,
the reason for using (1.18), is that there exists a rather concrete Hadamard style
parametrix for e−uΔH (x, y), involving the Hadamard heat kernel coefficients Φj of
a principal bundle, computed in [3, Theorrem 5.8]. All the properties stated in the
theorem follow from standard facts about the stationary phase method and from the
properties of the coefficients Φj . The principal term is given by (cf. (1.1)–(1.11)):

eH∞0(u, x) =
1

(2π)n
det(uṘL

x ) exp(−uτ )

det(1− exp(−2uṘL
x ))

·(1.20)

Recall that τ is the trace of the curvature RL defined in (1.3). The subleading term
is given by

(1.21)
( p

4πu

)n [
uΦ1(x, 2u) +

∂2

∂θ2
Φ0(x, iθ + 2u)

∣∣
θ=0

]
.

Let us compare the expansions (1.10) of the Kodaira Laplacian and (1.19) of the
Bochner Laplacian. Note that by Lichnerowicz formula (4.3) we have D2

p = ΔLp −
p τ + O(1) on Ω0,0(M,Lp). Consider the rescaled operator L̃ 0,u

2 corresponding to
u
pΔ

Lp

analogous to L 0,u
2 as in §4; the analogue of (4.15) is L̃ 0,u

2 = −
∑

i(∇0,u,ei)
2.

Thus the difference between (1.20) and (1.11) for (0, 0)-forms is the factor exp(−uτ ).
If one uses the Lichnerowicz formula to express the Kodaira Laplacian in terms

of the horizontal (Bochner) Laplacian, one may then apply the Duhamel formula
to express the heat kernel of the Kodaira Laplacian in terms of that of the Bochner
Laplacian. Alternatively, one may go through the parametrix construction as in
[3, Theorem 5.8] but with the Kodaira Laplacian. The transport equations change
because of the extra curvature term. We omit the details since we are already
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giving a proof of Theorem 1.1 by another method. We also leave to the reader the
adaptation of the analytic localization proof of Theorem 1.1 to obtain Theorem 1.2.

1.2. Relation to the holomorphic Morse inequalities. The original ap-
plication of the scaling asymptotics was to estimating dimensions hq(Lp ⊗ E) :=
dimHq(M,Lp⊗E) of holomorphic sections [4,12,13,19]. We follow the exposition
of [19,21].

LetM(q) ⊂ M be the subset in which
√
−1RL has precisely q negative eigenval-

ues and n−q positive eigenvalues. Set M(� q) =
⋃q

i=0 M(i), M(� q) =
⋃n

i=q M(i).

The holomorphic Morse inequalities of J.-P. Demailly [12] give asymptotic es-
timates for the alternating sums of the dimensions hq(Lp ⊗ E) as p → ∞.

Theorem 1.3. Let M be a compact complex manifold with dimM = n, and
let (L, hL), (E, hE) be Hermitian holomorphic vector bundles on M , rk(L) = 1. As
p → ∞, the following strong Morse inequalities hold for every q = 0, 1, . . . , n:

(1.22)

q∑
j=0

(−1)q−jhj(Lp ⊗ E) � rk(E)
pn

n!

∫
M(�q)

(−1)q
(√

−1
2π RL

)n

+ o(pn) ,

with equality for q = n (asymptotic Riemann-Roch-Hirzebruch formula).
Moreover, we have the weak Morse inequalities

(1.23) hq(Lp ⊗ E) � rk(E)
pn

n!

∫
M(q)

(−1)q
(√

−1
2π RL

)n

+ o(pn).

It was observed by J.-M. Bismut [4] that the leading order scaling asymp-
totics of the heat kernel could be used to simplify the proof of these inequalities.
Bismut’s probability arguments were replaced by classical heat kernel methods by
J.-P. Demailly [13] and by T. Bouche [7,8]. Since one obviously has

(1.24) hq(Lp ⊗ E) ≤
∫
M

eqp(u, x)dvM

for any u, we can let p → ∞ to obtain

(1.25) lim sup
p→∞

p−nhq(Lp ⊗ E) ≤
∫
M

u−neq∞0(u, x)dvM

and then let u → ∞ to obtain the weak Morse inequalities,

(1.26) lim sup
p→∞

p−nhq(Lp ⊗ E) ≤ rk(E)(−1)q
1

n!

∫
M(q)

(√
−1
2π RL

)n

.

In the last step we used that

(1.27) As u → +∞,
euαuα

sinhuα
=

2uα

1− e−2uα
∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2uα+O(ue−2αu) , α > 0 ,

1 , α = 0 ,

O(ue−2|α|u), α < 0 .
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In the case of q = 0 we have:
(1.28)

e0∞0(u, x) ∼ rk(E)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(4π)−n(2u)r
∏

i,αi(x)>0 αi(x), αi(x) ≥ 0 ∀i, r = �{i : αi(x) > 0} ,

1 αi(x) = 0 , ∀i,

0 ∃i : αi(x) < 0.

For general q the asymptotics depends in a more complicated way on the eigenvalues
of

√
−1RL. Assume first that x ∈ M(q) so

√
−1RL is non-degenerate at x and let

J−(x) denote the set of q indices for which αj(x) < 0, resp. J+(x) denote the set
of indices for which αj(x) > 0. The only term α�J − αJ which makes a non-trivial
asymptotic contribution is the one for which J = J−(x). Hence

u−neq∞0(u, x) ∼ rk(E)(4π)−nu−n
∏
j

eu|αj(x)| uαj(x)

sinh(uαj(x))

∼ rk(E)(−1)q
∏
j

αj(x)

2π
·

(1.29)

Now assume that the curvature is degenerate at x, with n− negative eigevalues, n0

zero eigenvalues and n+ positive eigenvalues. Since we must change the sign of q
eigenvalues and since any negative eigenvalue causes the whole product to vanish
in the u → ∞ limit, the asymptotics are trivial unless n− ≤ q and n− + n0 ≥ q.
If n− = q there is only one term in the J sum, namely where J = J−(x). If
n− < q then we may choose any q − n− indices of zero eigenvalues to flip. There
are

(
n0

q−n−

)
such indices. Hence in the degenerate case with n− ≤ q, n− +n0 ≥ q we

have

u−neq∞0(u, x) ∼ rk(E)u−n

(
n0

q − n−

)
(4π)−n

∏
j∈J+(x)∪J−(x)

eu|αj(x)| uαj(x)

sinh uαj(x)

∼ rk(E)u−n0

(
n0

q − n−

)
(4π)−n(−1)n−

∏
j∈J+(x)∪J−(x)

(2αj(x)).

(1.30)

Thus, in order to obtain the local Morse inequalities, one first takes the limit
p → ∞ and then u → ∞. A natural question is whether one can let u → ∞, p → ∞
simultaneously in the scaling asymptotics of Theorem 1.1. Suppose that

√
−1RL

has rank ≤ n − s at all points. Then one would conjecture that hq(Lp ⊗ E) ≤
ε(p)spn−s as p → ∞ where ε(p) is any function such that ε(p) ↑ ∞ as p → ∞.
Let u(p) = p

ε(p) . Suppose that u(p)/p = 1/ε(p) could be used as a small parameter

in the expansion of Theorem 1.1. The principal term is of order ( p
u(p) )

nu(p)n−s =

ε(p)spn−s and one would hope that the remainder is of order ε(p)s+1pn−1−s. Our
remainder estimate in Theorem 1.1 is not sharp enough for this application.

Let us close by recalling the proof of the strong Morse inequalities (1.22) (cf.

[19, §1.7]). As before, we denote by Trq exp
(
−u

pD
2
p

)
the trace of exp

(
−u

pD
2
p

)
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acting on Ω0,q(M,Lp ⊗ E). Then we have (using notation (1.15))

Trq exp

(
−u

p
D2

p

)
=

∫
M

eqp(u, x)dvM (x).(1.31)

By a linear algebra argument involving the spectral spaces [19, Lemma 1.7.2] we
have for any u > 0 and q ∈ N with 0 � q � n,

q∑
j=0

(−1)q−jhj(Lp ⊗ E) �
q∑

j=0

(−1)q−j Trj exp

(
−u

p
D2

p

)
,(1.32)

with equality for q = n. Note that in the notation of (1.3),

exp
(
− 2uαj(x0)w

j ∧ iwj

)
= 1 +

(
exp(−2uαj(x0))− 1

)
wj ∧ iwj

.(1.33)

We denote by TrΛ0,q the trace on Λq(T ∗(0,1)M). By (1.33),

TrΛ0,q [exp(2uωd)] =
∑

j1<j2<···<jq

exp
(
− 2u

q∑
i=1

αji(x)
)
.(1.34)

Thus by (1.10),

det(ṘL/(2π))

det(1− exp(−2uṘL))
TrΛ0,q

[
exp(2uωd)

]
is uniformly bounded in x ∈ M , u > 1, 0 � q � n. Hence for any x0 ∈ M ,
0 � q � n,

lim
u→∞

det(ṘL/(2π)) TrΛ0,q

[
exp(2uωd)

]
det(1− exp(−2uṘL))

(x0) = 1M(q)(x0)(−1)q det
( ṘL

2π

)
(x0) ,

(1.35)

where 1M(q) is the characteristic function of M(q). From Theorem 1.1, (1.31) and
(1.32), we have

lim sup
p→∞

p−n

q∑
j=0

(−1)q−jhj(Lp ⊗ E)

� rk(E)

∫
M

det(ṘL/(2π))
∑q

j=0(−1)q−j TrΛ0,j

[
exp(2uωd)

]
det(1− exp(−2uṘL))

dvM (x) ,

(1.36)

for any q with 0 � q � n and any u > 0. Using (1.35), (1.36) and dominated
convergence, we get

lim sup
p→∞

p−n

q∑
j=0

(−1)q−jhj(Lp ⊗ E) � (−1)q rk(E)

∫
⋃q

i=0 M(i)

det
( ṘL

2π

)
(x) dvM (x).

(1.37)

But (1.12) entails

det
( ṘL

2π

)
(x)dvM (x) =

∏
j

αj(x)

2π
dvM (x) =

1

n!

(√−1

2π
RL

)n
.(1.38)

Relations (1.37), (1.38) imply (1.22).
Let us finally mention that the original proof of Demailly of the holomor-

phic Morse inequalities is based on the asymptotics of the spectral function of the
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Kodaira Laplacian �q
p as p → ∞, the semiclassical Weyl law, cf. [12], [19, The-

orem3.2.9]; see also [16] for the lower terms of the asymptotics of the spectral
function.

1.3. Organization and notation. We end the introduction with some re-
marks on the organization and notation.

We first prove Theorem 1.2. The proof involves the construction of a Hadamard
parametrix for the heat kernel of a principal S1 bundle adapted from [3], and in
particular involves the connection, distance function and volume form on the S1

bundle Xh → M . The geometric background is presented in §2, and then the proof
of Theorem 1.2 is given in §3. The main complication is that the heat kernel must
be analytically continued to L∗, which is an important but relatively unexplored
aspect of heat kernels. The proof of Theorem 1.1 is then given in §4.

We now record some basic definitions and notations.
1.3.1. The complex Laplacian. Let F be a holomorphic Hermitian vector bun-

dle over a complex manifold M . Let Ωr,q(M,F ) be the space of smooth (r, q)-forms

on X with values in F . Since F is holomorphic the operator ∂
F

: C ∞(M,F ) →
Ω0,1(M,F ) is well defined. A connection ∇F on F is said to be a holomorphic con-

nection if ∇F
Us = iU (∂

F
s) for any U ∈ T (0,1)M and s ∈ C ∞(X,F ). It is well-known

that there exists a unique holomorphic Hermitian connection ∇E on (F, hF ), called
the Chern connection.

The operator ∂
F

extends naturally to ∂
F
: Ω•,•(M,F ) −→ Ω•,•+1(M,F ) and

(∂
F
)2 = 0. Let ∇F be the Chern connection on (F, hF ). Then we have a decom-

position of ∇F after bidegree

∇F = (∇F )1,0 + (∇F )0,1 , (∇F )0,1 = ∂
F
,

(∇F )1,0 : Ω• , •(M,F ) −→ Ω•+1 , •(M,F ) .
(1.39)

The Kodaira Laplacian is defined by:

(1.40) �F =
[
∂
F
, ∂

F,∗ ]
.

Recall that the Bochner Laplacian ΔF associated to a connection ∇F on a bundle
F is defined (in terms of a local orthonormal frame {ei} of TM) by

(1.41) ΔF := −
2n∑
i=1

(
(∇F

ei)
2 −∇F

∇TM
ei

ei

)
,

where∇TM is the Levi-Civita connection on (TM, gTM ). Moreover, ΔF =(∇F )∗∇F ,
where the adjoint of ∇F is taken with respect to dvM (cf. [19, (1.3.19), (1.3.20)]) .

1.3.2. Notational appendix.

• (M,J) is a complex manifold with complex structure J .

• gTM is a J-invariant Riemannian metric on M , Θ(·, ·) := gTM (J ·, ·).
• dvM is the Riemannian volume form of (TM, gTM ).

• (L, hL,∇L) is a holomorphic line bundle with Hermitian metric hL and
Chern connection ∇L; (E, hE,∇E) is a holomophic vector bundle E with
Hermitian metric hE and Chern connection ∇E on M .
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• ω :=
√
−1
2π RL; ṘL ∈ End(T (1,0)M) is the associated Hermitian endomor-

phism (1.2); the derivation ωd and the trace τ (x) of RL are defined in
(1.3).

• Dolbeault-Dirac operator Dp =
√
2
(
∂
Lp⊗E

+ ∂
Lp⊗E,∗)

.

• Kodaira Laplacian �p = 1
2D

2
p = ∂

Lp⊗E
∂
Lp⊗E,∗

+ ∂
Lp⊗E,∗

∂
Lp⊗E

.

• �q
p is the resetriction of �p to Ω0,q(M,Lp ⊗ E).

• ∇p is the Chern connection of (Lp, hLp

). The Bochner Laplacian ΔLp

on

Lp is ΔLp

= ∇∗
p∇p where ∗ is taken with respect to dvM .

• Xh = X = ∂D∗
h where D∗

h ⊂ L∗ is the unit co-disc bundle. Then ΔLp

can
be identified with the horizontal Laplacian ΔH on X.

2. Heat kernels on the principal S1 bundle

In this section, we prepare for the proof of Theorem 1.2 by reviewing the ge-
ometry of the principal S1 bundle Xh → M associated to a Hermitian holomorphic
line bundle. The geometry is discussed in more detail in [9, 10, 20] but mainly
under the assumption that (L, hL) is a positive Hermitian line bundle. We do not
make this assumption in Theorem 1.2.

As above, we denote by (M,Θ) a compact complex n-manifold with a Hermitian

metric Θ and then dvM = Θn

n! is its Riemannian volume form. We consider a

Hermitian holomorphic line bundle (L, hL) → M with curvature RL. Denote the

eigenvalues of ṘL relative to Θ by α1(x), . . . , αn(x) (cf. (1.12)).
Denote by L∗ the dual line bundle and let D∗

h be the unit disc bundle of L∗

with respect to the dual metric hL∗
. The boundary X = ∂D∗

h is then a principal S1

bundle π : X → M over M , and we denote the S1 action by eiθ ·x. We may express
the powers Lp of L as Lp = X ×χp

C where χp(e
iθ) = eipθ. Sections L2(M,Lp) of

Lp can be naturally identified with the space L2
p(X) equivariant functions on X

transforming by eipθ under the S1 action on X.

Remark 2.1. The condition that (L, hL) be a positive line bundle is equivalent
to the condition that D∗

h be a strictly pseudo-convex domain in L∗, or equivalently
that Xh be a strictly pseudo-convex CR manifold. These assumptions are used
in [10] to construct parametrices for the Szegö kernel, but are not necessary to
construct parametrices for the heat kernels.

2.1. Geometry on a circle bundle. The Hermitian metric hL on L induces
a connection β = (hL)−1∂hL on the S1 bundle X → M , which is invariant under
the S1 action and satisfies β( ∂

∂θ ) = 1. Here, ∂
∂θ denotes the generator of the

action. We denote by Vx = R
∂
∂θ its span in TxX and by Hx = kerβ its horizontal

complement. We further equip X with the Kaluza-Klein bundle metric G, defined
by declaring the vertical and horizontal spaces orthogonal, by equipping the vertical
space with the S1 invariant metric and by equipping the horizontal space with the
lift of the metric gTM . More precisely, it is defined by the conditions: H⊥V ,
π∗ : (Hx, Gx) → (Tπ(x)M, gTM

π(x)) is an isometry and | ∂
∂θ |G = 1. The volume form of

the Kaluza-Klein metric on X will be denoted by dv.
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Set H∗
x := V o

x , and V ∗
x = Ho

x. Here, F o denotes the annihilator of a subspace
F ⊂ E in the dual space E∗. By definition we have V ∗

x = Rβx. The vertical, resp.
horizontal components of ν ∈ T ∗

xX are given by:

(2.1) νV :=
〈
ν,

∂

∂θ

〉
βx, νH = ν − νV .

There also exists a natural pullback map π∗ : T ∗M → T ∗X. It is obvious that
π∗T ∗

xM ⊂ V o
x and as the two sides have the same dimension we see that π∗T ∗

xM =
H∗

xX. We write π∗ with a slight abuse of notation for the inverse map π∗ : H∗
xX →

T ∗
xM.

This duality can also be defined by the metric G, which induces isomorphisms

G̃x : TxX → T ∗
xX, G̃(X) = G(X, ·). We note that by definition of G, βx = G( ∂

∂θ , ·)
hence G̃ : Vx → V ∗

x . Similarly, G̃x : Hx → H∗
x .

2.2. Distance function on X. To construct a parametrix for the heat kernel,
we will need a formula for the square d2(x, y) of the Kaluza-Klein geodesic distance
function on a neighborhood of the diagonal of X ×X.

We first describe the geodesic flow and exponential map of (X,G). It is con-
venient to identify TX ≡ T ∗X as above, and to consider the (co-)geodesic flow on
T ∗X. This is the Hamiltonian flow of the metric function |ξ|2G = |ξH |2G + |ξV |2.
We note that |ξV |2 = 〈ξ, ∂

∂θ 〉2 and that |ξH |2G = |π∗ξH |2gTM . Henceforth we put

pθ(x, ξ) := 〈ξ, ∂
∂θ 〉. The Hamiltonian flow of pθ is the lift to T ∗X of the S1 action

on X, i. e., V u(x, ξ) = (eiux, eiuξ) where eitξ denotes derived action of S1 on X.
We also denote the Hamiltonian flow of |ξH |2G by Gt

H(x, ξ).
Let U ⊂ M denote a trivializing open set for X → M , and let μ : U → X

denote a local unitary frame. Also, let zi, z̄i denote local coordinates in U . Together
with μ they induced local coordinates (zi, z̄i, θ) on π−1(U) ∼ U × S1 defined by
x = eiθ · μ(z, z̄). Thus, zi is the pull-back π∗zi while θ depends on a slice of the S1

action. They induce local coordinates (z, pz, θ, pθ) on T ∗(π−1(U)) ⊂ T ∗X by the
rule ηx = pzdz+pθdθ. Here we simplify the notation (z, z̄) for local coordinates to z
until we need to emphasize the complex structure. As a pullback, dz ∈ H∗

z and the
notation pzdz for a form η on M and its pullback to X are compatible. We also note
that the canonical symplectic form σ on T ∗X is given by σ = dz ∧ dpz + dθ ∧ dpθ.
Hence the Hamiltonian vector field Ξpθ

of pθ is given by Ξpθ
= ∂

∂θ .

It follows that the Poisson bracket {|ξH |G, pθ} = ∂
∂θ |ξH |G = 0, so pθ is a

constant of the geodesic motion and G̃u = G̃u
H ◦V u = V u ◦G̃u

H . In local coordinates
the Hamiltonian |ξ|2G has the form

(2.2) |ξ|2G = H(z, pz, pθ) + p2θ

and the equations of the Hamiltonian flow of |ξ|2G are:

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

żj = ∂H/∂pjz

ṗzk = ∂
∂zk

H

θ̇ = 2pθ

ṗθ = 0.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

186 XIAONAN MA, GEORGE MARINESCU, AND STEVE ZELDITCH

These equations decouple and we see that

(2.4) Gu(z, pz, θ, pθ) = Gu
H(z, pz, θ, pθ) · ei2upθ .

Let dM (x, y) be the distance on M from π(x) to π(y). We claim:

Lemma 2.2. In a neighborhood of the diagonal in X×X, the distance function
satisfies the identity

(2.5) d(x, eiθ0x) = θ20

Indeed, by definition d(x, y)2 = |ξ|2G = |ξH |2+p2θ where expx ξ = y. The identity
holds because the fiber is totally geodesic.

2.3. Volume density of the Kaluza-Klein metric. The heat kernel para-
metrix also involves the volume form of (X,G). Hence we consider Jacobi fields
and volume distortion under the geodesic flow. Following [3, Section 5.1], we define

(2.6) J(x, a) : TxX → Texpx aX

as the derivative da expx of the exponential map of the Kaluza-Klein metric at
a ∈ TxX. We identify Hx ≡ TxM and Vx ≡ R. For completeness we sketch the
proof.

Proposition 2.3 ([3, Theorem 5.4]). Let a = a ∂
∂θ . The map J(x, a) preserves

the subspaces Hx and Vx. Moreover

J(x, a)|Hx
=

1− e−τ(ωx·a)/2

τ (ωx · a)/2 ,

J(x, a)|Vx
= Id .

Here, τ is defined as in the proof of [3, Proposition 5.1]. Namely, for a vector

space V , τ :
∧2 V � so(V ) is defined by

(2.7) 〈τ (α)ei, ej〉 = 2〈α, ei ∧ ej〉.

Proof. We need to compute d
du

∣∣
u=0

expx(a+uξH). Let Y (s)= d
du

∣∣
u=0

expx s(a+

uξH). Then Y (s) is a Jacobi field along expx(sa) and J(x, a)ξH = Y (1). Hence

D2

ds2
Y +R(T, Y )T = 0

where T = ∂
∂θ is the tangent vector to expx(sa). It is easy to see that Y (s) is

horizontal, hence that

R(T, Y )T =
1

4
τ (ωx · a)2Y.

Using a parallel horizontal frame along expx(sa) we identify Y (s) with a curve in
Hx and find that ( ∂

∂s
+ τ (ω · a)/4

)2

y(s) =
(
τ (ω · a)/4

)2
y(s).

The formula follows. �
We then have

Corollary 2.4 ([3, Corollary 5.5]). We have

det J(x, a) = jH(τ (ωx · a)/2) , where jH(A) = det
( sinh(A/2)

A/2

)
.
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3. Proof of Theorem 1.2

In this section we prove Theorem 1.2 for the heat kernels associated to the
Bochner Laplacians by ΔLp

= ∇∗
p∇p on Lp where ∗ is taken with respect to dvM .

As discussed in the introduction, we use (1.18) to analyze heat kernels on Lp by
identifying them as Fourier coefficients of heat kernels on X.

There is a natural lift of sections of Lp to equivariant functions on X. Under
the identification L2(M,Lp) � L2

p(X), ΔLp

corresponds to the horizontal Laplacian
ΔH = d∗HdH , where dH is the horizontal differential on X. We then add the vertical

Laplacian to define the (Kaluza-Klein) metric Laplacian ΔX = ( ∂
∂θ )

2 +ΔH on X.

Since [( ∂
∂θ )

2,ΔH ] = 0 we have

(3.1) e−uΔLp

= eu(
∂
∂θ )

2

e−uΔX

.

This shows that the equation (1.18) is correct, i. e., if π(x) = z,

(3.2) exp
(
− u

p
ΔLp)

(z, z) = eup
∫
S1

e−(u/p)ΔX

(eiθx, x)e−ipθdθ.

Remark 3.1. The purpose of adding the vertical term ( ∂
∂θ )

2 is that there exists

a simple parametrix for e−uΔX

. Without adding the vertical term, the horizontal
heat kernel is much more complicated and reflects the degeneracies of the horizontal
curvature. The model case of the Heisenberg sub-Laplacian only applies directly
when the line bundle is positive.

The Fourier formula (3.2) shows that from a spectral point of view, the addition
of ( ∂

∂θ )
2 is harmless. But from a Brownian motion point of view it is drastic and

it is responsible for the necessity of analytically continuing the heat kernel to L∗.
For further remarks see §3.7.

3.1. Parametrices for heat kernels. We will use the construction in [3] of a
parametrix for the heat kernel on a principal S1 bundle π : X → M . For remainder
estimates, we use the off-diagonal estimates of Kannai [17], which apply to these
and more general heat kernel constructions.

To get oriented, let us review the general Hadamard (-Minakshisundararam-
Pleijel) parametrix construction on a general Riemannian manifold. Let (Y, g)
denote a complete Riemannian manifold of dimension m and let Δg denote its
(positive) Laplacian. For x close enough to y, the heat kernel of e−uΔg has an
asymptotic expansion as u → 0 of the form

(3.3) e−uΔg(x, y) ∼ 1

(4πu)m/2
e−d(x,y)2/4u

∞∑
j=0

vj(x, y)u
j

where d(x, y) denotes the distance between x and y and where vj are coefficients
satisfying certain well-known transport equations. More precisely, choose a cut-off
function ψ(d(x, y)2), equal one in a neighborhood U of the diagonal. Then there
exist smooth locally defined functions vj(x, y) such that

(3.4) HM (u, x, y) := ψ(d(x, y)2)
1

(4πu)m/2
e−d(x,y)2/4u

M∑
j=0

vj(x, y)u
j ,
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is a parametrix for e−uΔg (x, y), i. e., in U we have

(3.5)
( ∂

∂u
+Δg

)
HM (u, x, y) = ψ(d(x, y)2)

1

(4πu)m/2
e−d(x,y)2/4uΔgvM (x, y)uM .

It follows by the off-diagonal estimates of Kannai ([17, (3.11)]) that

(3.6) e−uΔg (x, y)−HM (u, x, y) = O(uM−m/2) e−d(x,y)2/4u

for (u, x, y) satisfying: u < inj(x) and y ∈ B(x, inj(x)). Here, inj(x) is the injectivity
radius at x and B(x, r) is the geodesic ball of radius r centered at x.

3.2. Heat kernels on S1 bundles and R bundles. We apply the heat kernel
parametrix construction to the principal S1 bundle X = Xh → M equipped with
the Kaluza-Klein metric. As a special case where M = pt, this gives a heat kernel
parametrix on the circle S1. It is standard to express the heat kernel on S1 as the
projection over Z of the heat kernel on R, since the distance squared is globally
defined on R but not on S1. It thus simplies the analysis of the distance function

to consider the principal R bundle π̃ : X̃ → M , where X̃ is the fiberwise universal
cover of X. We thus express the heat kernel on X as the projection to X of the

heat kernel e−uΔX̃

(x̃ + iθ, x̃) on X̃, where X̃ is equipped with the Kaluza-Klein

metric, so that p : X̃ → X is a Riemannian Z-cover. We use additive notation for
the R action on the fiber of X̃, i. e., in place of the S1 action eiθ · x on X we write

x̃+ iθ on X̃.
A key point in the formula (3.2) is that in Theorem 1.2 we only use the heat

kernel at points (x, y) where π(x) = π(y). The same is true when we lift to X̃.
Although we need to construct a heat kernel parametrix off the diagonal, it is only
evaluated at such off-diagonal points. Hence it is sufficient to use a base cut-off, of
the form ψ(dM (x, y)2) where as above, dM (x, y) is the distance on M from π(x) to
π(y). This cutoff is identically equal to one on points (x, y) on the same fiber.

The following proposition is adapted from [3, Theorems 2.30].

Proposition 3.2. There exist smooth functions Φ̃� on X̃ × iR such that

e−uΔX̃

(x̃, x̃+ iθ) = (4πu)−(n+1/2)
M∑
�=0

u�Φ̃�(x̃, iθ)j̃(x̃, iθ)
−1/2e−|θ|2/4u +RM (x̃, iθ)

where j̃(x̃, iθ) is the volume density j(x̃, ỹ) at ỹ = x̃ + iθ in normal coordinates
centered at x̃ and where

Φ̃0(x̃, iθ) = 1 ,

RM (x̃, iθ) � (4πu)−(n+1/2+M)e−|θ|2/4u .

Proof. By [3, Theorem2.30], and by [17, (3.11)], there exist smooth v�(x̃, ỹ)
such that in U ,
(3.7)

e−uΔX̃

(x̃, ỹ) = HM (x̃, ỹ) +RM (x̃, ỹ), where

HM (x̃, ỹ) = (4πu)−(n+1/2)ψ(dM (x̃, ỹ)2)e−d(x̃,ỹ)2/4u
∑M

�=0 u
�v�(x̃, ỹ)j(x̃, ỹ)

−1/2



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SCALING ASYMPTOTICS OF HEAT KERNELS OF LINE BUNDLES 189

with RM (x̃, ỹ) � (4πu)−(n+1/2)e−d(x̃,ỹ)2/4uuM+1. The v� solve the transport equa-
tions,

v�(x̃, ỹ) = −
∫ 1

0

s�−1(Bx̃v�−1)(x̃s, ỹ)ds.

Here, B = j
1
2 ◦ΔX̃j−

1
2 . Now put ỹ = x̃+ iθ and put Φ�(x̃, iθ) = v�(x̃, x̃+ iθ). The

stated estimate follows from the off-diagonal estimates (3.6) of [17]. �

We now project the heat kernel on X̃ to X to get:

Proposition 3.3. The heat kernel on X is given by

(3.8) e−uΔX

(x, eiθx) =
∑
n∈Z

e−uΔX̃

(x̃, x̃+ iθ + in) .

Here, p(x̃) = x. Moreover,

(3.9)

e−uΔX

(x, eiθx) = HM (u, x, eiθx) +RM (x, θ), where

HM (u, x, eiθx) = (4πu)−(n+1/2)×[∑M
�=0

∑
n∈Z

e−(θ+n)2/4uu�Φ̃�(x̃, iθ + in)j̃(x̃, iθ + in)−1/2
]
,

and where for x̃ with π(x̃) = x,

RM (x̃, iθ) � (4πu)−(n+1/2+M)
∑
n∈Z

e−|θ+n|2/4u.

Proof. Both statements hold because X̃ → X is locally isometric, and there-

fore the heat kernel and parametrix on X are Poincaré series in those on X̃. �

3.3. Stationary phase calculation of the asymptotics. We now use the
heat kernel parametrix (3.9) to calculate the scaled heat kernel asymptotics by the
stationary phase method. Our calculation of the coefficients is based on Theorem
5.8 of [3]. We therefore rewrite Proposition 3.3 in the form stated there.

Remark 3.4. The notation in [3] for the ‘Hadamard’ coefficients Φj is some-
what different in their Theorems 2.26 and 5.8. In the latter, the volume half-density
factor in the qt(x, y) factor in [3, Theorem 2.26] is absorbed into the Φj of [3, The-

orem 5.8], and therefore Φ0(y, y) changes from I to det−
1
2 (J(x, a)) in [3, Theorem

5.8]. Since we are using their computation of the heat kernel expansion, we follow
their notational conventions.

We thus rewrite Proposition 3.3 in the form of of [3, Theorem 5.8] and combine
with (3.2) to obtain,
(3.10)

exp

(
−u

p
∇∗

p∇p

)
(z, z) ∼

( p

4πu

)n+ 1
2

epu
∫ asympt

R

∞∑
j=0

p−jujΦj(x, iθ)e
−pθ2/4ue−ipθdθ,

where (cf. (2.3))

(3.11) Φ0(x, a) = (det J(x, a))−
1
2
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and where
∫ asympt

R
is the notation of [3, (5.5)] for the asymptotic expansion of the

integral. The integral is an oscillatory integral with complex phase

(3.12) −|θ|2/4u− iθ,

with a single non-degenerate critical point at θ = −2ui with constant Hessian. We
would like to apply the method of stationary phase to the integral, but the critical
point is complex and in particular does not lie in the contour of integration. This
is not surprising: the integral must be exponentially decaying to balance the factor
of epu in front of it. Therefore, we must deform the contour to |z| = 2t. However,
then we no longer have the heat kernel in the real domain, but rather the analytic

continuation of the heat kernel of e−tΔX

in the fiber direction. Thus we first need
to discuss the analytic continuation of the heat kernel in the fiber.

3.4. Analytic continuation of heat kernels. In this section, we analyze the

analytic continuation of the kernel e−uΔX

(eiθx, x) and its Hadamard parametrix in
the eiθ variable from S1×X to C

∗×X. Despite the fact that the metric hL is only
C∞ and not real analytic, the heat kernel always has an analytic continuation in
the variable eiθ, as the next Proposition shows.

The S1 action eiθ · x on X extends to a holomorphic action of C∗ on L∗ which
we denote by ez · μ for μ ∈ L∗. When μ = x ∈ X we denote it more simply by
ez · x. We also write z = t+ iθ with t = 2u when the heat kernel is at time u.

Proposition 3.5. The kernel e(u, x, θ) := e−uΔX

(x, eiθx) on X × g extends

for each (u, x) ∈ R+ ×X to an entire function e(u, x, z) := e−uΔX

(x, ezx) on gC,
with g = Lie(S1) � R.

Proof. This is most easily seen using the Fourier/eigenfunction expansion of
the heat kernel,

(3.13) e−uΔX

(x, y) =
∑
p∈Z

∞∑
j=1

e−λpjuφpj(x)φ̄pj(y).

Thus

(3.14) e(u, x, θ) = e−uΔX

(x, eiθx) =
∑
p∈Z

∞∑
j=1

eipθe−λpju|φpj(x)|2,

hence the analytic continuation must be given by

(3.15) e−uΔX

(x, ezx) =
∑
p∈Z

∞∑
j=1

epze−λpju|φpj(x)|2.

The only question is whether the sum convergences uniformly to a holomorphic

function of z. As above, we write ΔX = ΔH + ∂2

∂θ2 . Since
[
ΔH , ∂2

∂θ2

]
= 0, the

eigenvalues have the form λpj = p2 + μpj with {μpj} ⊂ R+ the spectrum of the
horizontal Laplacian ΔH on the space L2

p(X). Thus

(3.16) e−uΔX

(x, ezx) =
∑
p∈Z

epze−p2ue−uLp

(x, x) ,

where e−uLp

(x, y) :=
∫
S1 e

−ipθe−uΔH (x, eiθx)dθ. But

|e−uLp

(x, x)| =
∣∣∣ ∫

S1

e−ipθe−uΔH (x, eiθx)dθ
∣∣∣ ≤ ∫

S1

e−uΔH (x, eiθx)dθ = e0(u, x) ,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SCALING ASYMPTOTICS OF HEAT KERNELS OF LINE BUNDLES 191

where e0(u, x) is a continuous function of (u, x). The proposition follows from the

fact that
∑

p∈Z
epze−p2u convergences uniformly on compact sets in |z|. �

3.5. Analytic continuation of parametrices. Next we consider the ana-
lytic continuation of the parametrix. We first observe that the connection β extends
to L∗ by the requirement that it be C∗ invariant. Thus, T�L

∗ = H� ⊕ V� where
V� = C

∂
∂λ where λ · x denotes the C∗ action. Using the metric G we may identify

TX with T ∗X and similarly decompose T ∗X and T ∗L∗ into horizontal and vertical
spaces. The vertical space V ∗

� is spanned by α�.

Proposition 3.6. The fiber distance squared function d2(x̃, x̃+ iθ) admits an
analytic extension in θ to C satisfying

(3.17) d(x̃, x̃+ iθ + iλ)2 = (iθ + iλ)2.

Moreover, the Hadamard coefficients vj(x̃, x̃ + iθ) (3.7) admit holomorphic exten-
sions to iθ + iλ.

Proof. As mentioned above, the holomorphic continuation of the S1 action
is the action of C∗ on T ∗L∗. The first statement about the distance function is
obvious since the distance squared function on the fiber is real analytic (this is why

we lifted the heat kernel from X to X̃).
The second statement is also obvious for v0 = 1. We then prove it for the

higher vk’s inductively, using the formula

(3.18) vk+1(x, y) =

∫ 1

0

skBxvk(xs, y)ds

The geodesic xs from x to y stays in the ‘domain of holomorphy’. Moreover,
Bx = j

1
2ΔXj−

1
2 so it suffices to show that ΔX admits a fiberwise holomorphic

continuation. But clearly, the fiber analytic extension of ΔX is ΔH + (λ ∂
∂λ )

2.
Hence vk+1(x, e

zy) is well-defined and holomorphic in z. Since j �= 0 for such (x, y)
it possesses a holomorphic square root and inverse. �

Corollary 3.7. The functions Φi(x, θ) on X̃×R extend to holomorphic func-

tions Φi(x, z) on X×C. Since e−uΔX

(x, eiθ ·x) and its parametrices admit analytic
continuations, it follows that the remainder RM (u, x, eiθ · x) admits an analytic
continuation.

The main lemma in the proof of Thereom 1.2 is the following expression for
the scaled, analytically continued heat kernel. Note that the parameter u appears
twice: once as the time parameter and once as the dilation factor in L∗.

Lemma 3.8.

e−(u/p)ΔX̃

(x̃, x̃+ θ − 2iu) = Cn

(
p
u

) dim X
2

ep(iθ+2u)2/4u ∑M
k=0

(
u
p

)k

Φ̃k(x̃, iθ + 2u)

+RM (u/p, x̃, iθ − 2iu+ x̃)

where RM (u/p, x̃, iθ − 2iu+ x̃) = O
(
e−pθ2/u

(
u
p

)− dim X
2 +M

epu
)
.

Proof. We first consider the remainder in the real domain. For simplicty we
write points of X̃ as x rather than x̃. The first goal is to obtain a Duhamel type
formula (see (3.26)) for RM . The derivation of this formula is valid for Laplacians
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on all Riemannian manifolds (X,G), and we therefore use the general notation Δ
for a Laplacian and HM for the Mth Hadamard parametrix.

We first note that the remainder

(3.19) RM (u, x, y) := e−uΔ(x, y)−HM (u, x, y)

solves the initial value problem

(3.20)

⎧⎪⎨⎪⎩
( ∂
∂u −Δ)RM (u, x, y) = AM (u, x, y) +BM (dψ, x, y),

RM (0, x, y) = 0.

where
(3.21)

AM (u, x, y) = (4πu)−(dim X
2 +M)ψ(dM (x, y)2)e−d(x,y)2/4uj(x, y)−1/2ΔxuM (x, y)

and where BM (dψ, x, y) is the sum of the terms in which at least one derivative
falls on ψ. Put

G(u, x, y) = φ(dM (x, y)2)
1

(4πu)
dimX

2

e−d(x,y)2/4uj(x, y)−
1
2

where φ is supported in a neighborhood of the diagonal, with φ ≡ 1 on suppψ, and
put

(3.22) RM (u, x, y) = G(u, x, y)SM (u, x, y).

The equation for RM then becomes

(3.23)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
G(u, x, y)−1( ∂

∂u −ΔX)G(u, x, y)SM (u, x, y)
= uM

(
ψ(dM (x, y)2)ΔX

x vM (x, y) + bM (dψ, x)
)
,

SM (0, x, y) = 0.

One easily calculates (cf. [3, Proposition 2.24]) that

G(u, x, y)−1
( ∂

∂u
−ΔX

)
G(u, x, y) =

∂

∂u
+ u−1∇R + j

1
2Δj−

1
2 .

Here, ∇R is the directional derivative along the radial vector field from x.
Multiplying through by u to regularize the equation, and changing variables to

t = log u, we get
(3.24)⎧⎪⎨⎪⎩

( ∂
∂t +∇R + tBx)SM (t, x, y) = eMt(ψ(dM (x, y)2)ΔxvM (x, y) + bM (dψ, x)),

SM (−∞, x, y) = 0.

The solution is given by

(3.25) SM (u, x, y) =

∫ u

0

∫
X

e−(u−s)ΔX

(x, a)AM(s, a, y)dv(a)ds

+

∫ u

0

∫
X

e−(u−s)ΔX

(x, a)BM (s, a, y)dv(a)ds.

We now specialize to X̃ and ΔX̃ or equivalently X and ΔX . Our goal is
to estimate the analytic contiuation of the remainder. When dealing with the
parametrix, it is convenient to work on X̃ since its distance-squared function is real
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analytic along the fibers. When estimating the remainder RM it is convenient to
work on X because it is compact.

In the case of X we obtain the Duhamel type formula,

(3.26) RM (u, x, eiθx) =

∫ u

0

∫
X

e−(u−s)ΔX

(x, y)AM (s, y, eiθx)dv(y)ds

+

∫ u

0

∫
X

e−(u−s)ΔX

(x, y)BM (s, y, eiθx)dv(y)ds.

The same formula is valid on X̃ but there we write the R action additively.
We observe that since ψ(dM (x, y)2) is constant along the fibers ofX → M , both

AM (s, y, eiθx) and BM (s, y, eiθx) admit holomorphic continuations in the variable
eiθ. As above, we continue to ez with z = 2u+ iθ for the heat kernel at time u. For
instance,

(3.27) AM (u, y, ezx)

= (4πu)−(dim X
2 +M)

∑
n∈Z

ψ(dM (x̃, ỹ + n)2)ed(ỹ,e
z x̃+n)2/4uΔX̃

ỹ

× vM (ỹ, ezx̃+ n)j(ỹ, ezx̃+ n)−1/2 .

It follows that the analytic continuation of RM (u, x, eiθx) may be expressed as

RM (u, x, ezx) =

∫ u

0

∫
X

e−(u−s)ΔX

(x, y)AM (s, y, ezx)dv(y)ds

+

∫ u

0

∫
X

e−(u−s)ΔX

(ezx, y)BM (s, y, x)dv(y)ds .

(3.28)

Dilating the time variable and setting z = 2u+ iθ gives

RM (u/p, x, eiθ+2ux) =
1

p

∫ u

0

∫
X

e−((u−s)/p)ΔX

(x, y)AM (s/p, y, eiθ+2ux)dv(y)ds

+

∫ u/p

0

∫
X

e−((u−s)/p)ΔX

(x, y)BM (s/p, y, eiθ+2ux)dv(y)ds .

(3.29)

The desired estimate on RM would follow if we could establish that

(i)
∣∣∣ ∫ u

0

∫
X

e−((u−s)/p)ΔX

(x, y)AM (s/p, y, eiθ+2ux)dv(y)ds
∣∣∣ � (

u

p

)M+1

epu, and

(ii)
∣∣∣ ∫ u

0

∫
X

e−((u−s)/p)ΔX

(x, y)BM (s/p, y, eiθ+2ux)dv(y)ds
∣∣∣ � (

u

p

)M+1

epu.

(3.30)
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We establish (3.30 (i)) using the explicit Gaussian formula

(3.31) AM (s/p, y, eiθ+2ux)

= 4π

(
s

p

)−( dim X
2 +M) ∑

n∈Z

epd(y,e
iθ+2ux+n)2/4s

×ΔX̃
ỹ vM (ỹ, eiθ+2ux̃+ n)j(ỹ, eiθ+2ux̃+ n)−1/2

and the Gaussian upper bound

(3.32) e−uΔX

(u, x, y) ≤ G(u, x, y),

of Kannai [17]. They give that (3.29 (i)) is bounded by

�
(1
p

)− dim X
2 +M+1

sup
(x,y)∈X×X

∣∣ΔX̃
ỹ vM (ỹ, eiθ+2ux̃)

∣∣
∫ u

0

∫
X

sMG((u− s)/p, x, y)|G(s/p, y, e−iθ+2ux)|dv(y)ds.
(3.33)

Here, G(s, x, ez̄y) = s−
dim X

2 e−d(x,ez̄y)2/4s. Its modulus is then equal to |G(s, x, ez̄y)|
= s−

dim X
2 e−Re d(x,ez̄y)2/4s. We can asymptotically estimate the resulting integral∫

X

exp
(
− p

(
d(x, y)2/4(u− s) + Re d(x, eiθ+2uy)2/4s

))
dv(y)

by the stationary phase method. We have,

(3.34) Re d(x, eiθ+2ty)2 = d(x, eiθy)2 − 4t2.

Hence critical points occur at y such that

(3.35) ∇yd(x, y)
2/4(u− s) = −∇yd(y, e

−iθx)2/4s.

Now ∇yd(x, y)
2 is tangent to the geodesic from x to y and ∇yd(y, e

−iθx))2 is
tangent to the geodesic from y to eiθx. Since they are multiples, it follows that
y must lie along the minimizing geodesic from x to eiθx. This is just the curve
γ(u) = eiux, u ∈ [0, θ]. Moreover, d(x, y)/(u− s) = d(y, e−iθx))/s. Hence we have

u/(u− s) = (θ − u)/s ⇐⇒ u
( 1

u− s
+

1

s

)
= −θ

s
⇐⇒ u = − (u− s)

u
θ.

Hence the critical locus is given by: ys = ei
(u−s)

u θx. The value of the phase along
the critical locus equals

(3.36)

d(x, ei
(u−s)

u θx)2/4(u− s) + d(x, e−iθei
(u−s)

u θx)2/4s− 4u2/4s

= d(x, eiθx)2/4u− 4u2/4s =
θ2

u
− u2

s
·

Also, the transverse Hessian of the phase equals 1
u−s+

1
s = u

s(u−s) . Raising it to the

power −dimX
2 cancels the factors of s−

dim X
2 and (u− s)−

dim X
2 and leaves u− dim X

2 .
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Hence ∫ u

0

∫
X

G((u− s)/p, x, y)sM |G(s/p, y, e−iθ+2ux)|dv(y)ds

∼ u− dim X
2 e−pθ2/u

∫ u

0

epu
2/ssMds

� u− dim X
2 e−pθ2/uepuuM+1.

(3.37)

This completes the proof of Lemma 3.8. �

3.6. Completion of proof of Theorem 1.2. We now complete the proof
of Theorem 1.2. We begin with the oscillatory integral (3.9) with complex phase
(3.12) with a single non-degenerate critical point at θ = −2ui and with constant
Hessian. Since the critical point is complex, we deform the contour to |z| = 2t.
Thus, we have (with z = eiθ ∈ S1)

eHp (u, x) := eup
1

2πi

∫
|z|=1

e−(u/p)ΔX

(zx, x)z−p dz

z

= eup
1

2πi

∫
|z|=e2u

e−(u/p)ΔX

(zx, x)z−p dz

z

= eup
∫ 2π

0

e−(u/p)ΔX

(eiθ+2ux, x)e−p(iθ+2u)dθ.

(3.38)

We now plug in the Poincaré series formula of Proposition 3.3 and unfold the sum
over Z to get

(3.39) eHp (u, x) = eup
∫
R

e−(u/p)ΔX̃

(eiθ+2ux, x)e−p(iθ+2u)dθ.

We then substitute the parametrix for e−(u/p)ΔX̃

(eiθ+2ux, x) with remainder from

Lemma 3.8 for e−(u/p)ΔX

(eiθ+2ux, x). Using the notation of [3], we obtain,

eHp (u, x)

=
( p

4πu

)n+ 1
2
epu

∫ asympt

R

( M∑
�=0

p−�u�Φ�(x, iθ + 2u)e−p(θ−2ui)2/4ue−p(iθ+2u) +RM

)
dθ

=
( p

4πu

)n+ 1
2

∫ asympt

R

( M∑
�=0

p−�u�Φ�(x, iθ + 2u)e−pθ2/4u +RM

)
dθ.

(3.40)

The integral is now a standard Gaussian integral with complex phase (3.12)

(3.41) −(θ − 2ui)2/4u− (iθ + 2u),

which has a unique critical point on the line of integration at θ = 0. We may neglect
the remainder term if we only want to expand to order M in p−1 and apply the
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method of stationary phase (see [15, Theorem 7.7.5]) to obtain,

eHp (u, x) ∼
( p

4πu

)n+ 1
2 |p/u|− 1

2

M−1∑
k=0

∞∑
�=0

p−�−ku� 1

k!

[ ∂

∂θ

]2k
Φ�(x, iθ + 2u)

∣∣∣
θ=0

=
( p

4πu

)n M−1∑
k=0

∞∑
�=0

p−�−ku� 1

k!

[ ∂

∂θ

]2k
Φ�(x, iθ + 2u)

∣∣∣
θ=0

.

(3.42)

All the properties stated in the theorem follow from standard facts about the sta-
tionary phase method and from the properties of the coefficients Φj of [3, Theorem

5.8]. By (3.10), the principal term is given by
( p

4πu

)n
Φ0(x, 2u) or equivalently, by

using (3.11) and Proposition 2.3,

( p

4πu

)n
Φ0(x, 2u) =

( p

4πu

)n
(detJ(x, 2u))−

1
2 =

( p

4πu

)n
det

(
1− e−uτ(ωx)

uτ (ωx)

)− 1
2

(3.43)

This is compatible with (1.20) because for the determinant of functions of τ (ωx)
on TM we have

det

(
1− e−uτ(ωx)

uτ (ωx)

)− 1
2

= det

(
euτ(ωx)/2 − e−uτ(ωx)/2

uτ (ωx)

)− 1
2

= det
∣∣
T (1,0)M

(
uτ (ωx)

euτ(ωx)/2 − e−uτ(ωx)/2

)
,

(3.44)

and because the factor of 2 in (2.7) is not used in the definition of ṘL. To ex-
plain the last equality and to clarify the notation between (3.43)–(3.44) and (1.11),

we recall that τ (ωx) = 2ṘL
x . If we diagonalize ṘL

x as in (1.12) as an element of

End(TM), then under the decomposition TM ⊗R C = T (1,0)M ⊕ T (0,1)M, ṘL
x =

diag(a1, . . . , an,−a1, . . . ,−an). Here we extend ṘL to an element of End(TM⊗RC)
by the formula (1.2), so on T (0,1)M we obtain the negative of the eigenvalues on
T (1,0)M , by the antisymmetry of the 2-form RL. Hence det(e−uτ(ωx)/2) = 1. We
refer [3, p. 152] for a similar calculation.

The subleading term is given by (1.21). This completes the proof of Theo-
rem 1.2.

Remark 3.9. In the Kähler case and for a quantum line bundle L, i. e., if

Θ = ω =
√
−1
2π RL, then a precise formula for e∞ 1(u, x) in terms of curvature was

obtained by Dai, Liu and Ma in [14, (5.14)]:

(3.45) e∞ 1(u, x) =
−un−1

3(1− e−4πu)n

[
u

2
− u

2 tanh2(2πu)

− 2

sinh2(2πu)

( −3

32π
sinh(4πu) +

u

8

)]
rMx ,

with rM the scalar curvature of (M, gTM ). If Θ and (L, hL) are arbitrary, a corre-
sponding formula should follow from (1.21) or from an adaptation of [14, (5.14)],
but it is certainly more involved than (3.45). For the calculation of the second
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coefficient of the expansion of the Bergman kernel for non-positive line bundles
see [18].

3.7. Further remarks. The method of completing the square to convert the
horizontal Laplacian to the full Laplacian on X is quite drastic because it replaces
the horizontal Brownian motion of the original problem with the free Brownian
motion on X. It is a natural question to ask if one can improve Theorem 1.2 if one
has parametrices for the horizontal heat kernels. The rest of the argument would
apply.

In certain model cases, Beals-Greiner-Gaveau construct parametrices for heat
kernels of sub-Laplacians [1,2]. In the case of a positive line bundle, there should
exist a parametrix locally modeled on that of the Heisenberg group, although we
are not aware of a construction at this level of generality. Even so it would not
be useful for the main problems of this article, i. e., for Hermitian line bundles
which are not positive. In the case of a positive line bundle one can construct a
parametrix for the Szegö kernel directly (see [10]; see also [19] for results on the
relation between heat kernels and Szegö kernels). In more general cases, it seems
that the heat kernels have only rarely been constructed.

In situations where one can construct parametrices for the horizontal heat ker-
nels, it seems plausible that one could gain better control over the u dependence
of the remainder term Rr(p, u, x). The original motivation of this article was to
investigate whether there exists a joint asymptotic expansion in (u, p) which would
allow one to set u = pα or ideally u = cp in the asymptotics. One observes that the
expansion occurs in powers of u

p and this seems to be the natural Planck constant

for the problem. In particular, it would be natural to try to respect the Heisenberg
scaling in which ∂

∂θ is of weight 2. But the coefficients and remainder we obtain by
completing the square are not functions of u

p , and we have little control over the

remainder Rr(p, u, x), which might be of exponential growth (or worse) in u. This
reflects the fact that we must analytically continue far out into L∗ to make up for
the brutal addition of ( ∂

∂θ )
2. We would probably not have to continue so far out in

L∗ if we add the first power ∂
∂θ as the Heisenberg scaling would suggest.

4. Proof by localization and rescaling of the Dolbeault-Dirac operator

Before going further let us recall some differential-geometric notions. Let ∇TM

be the Levi-Civita connection on TM and ∇̃TM the connection on TM defined by

∇̃TM = ∇T (1,0)M ⊕∇T (0,1)M , where ∇T (1,0)M is the Chern connection on T (1,0)M

and ∇T (0,1)M is its conjugate (see [19, (1.2.35)]). We set S = ∇̃TM −∇TM .
We denote by ∇B the Bismut connection [19, (1.2.61)] on TM . It preserves

the complex structure on TM by [19, Lemma 1.2.10], thus, as in [19, (1.2.43)], it
induces a natural connection ∇B on Λ(T ∗(0,1)M) which preserves the Z-grading.

Let ∇B,Λ0,•
, ∇B,Λ0,•⊗Lp⊗E be the connections on Λ(T ∗(0,1)M), Λ(T ∗(0,1)M)⊗Lp⊗

E, defined by

∇B,Λ0,•
= ∇B +

〈
S(·)wj , wj

〉
,

∇B,Λ0,•⊗Lp⊗E = ∇B,Λ0,• ⊗ 1 + 1⊗∇Lp⊗E ,
(4.1)

where {wj}nj=1 is a local orthonormal frame of T (1,0)M (cf. [19, (1.4.27)]).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

198 XIAONAN MA, GEORGE MARINESCU, AND STEVE ZELDITCH

Let ΦE be the smooth self–adjoint section of End(Λ(T ∗(0,1)M) ⊗ E) on M
defined by

ΦE = 1
4r

M + c
(
RE + 1

2R
det

)
+

√
−1
2

c
(
∂∂Θ

)
− 1

8

∣∣(∂ − ∂)Θ
∣∣2 ,(4.2)

cf. [19, (1.3.32), (1.6.20)]. The endomorphism ΦE appears as the difference be-
tween the Bochner Laplacian (cf. (1.41)) associated to the Bismut connection

∇B,Λ0,•⊗Lp⊗E and the Dirac operator, cf. [19, Theorem 1.4.7]:

(4.3) D2
p = ΔB,Λ0,•⊗Lp⊗E +ΦE + p cRL .

We start by noting the following analogue of [19, Proposition 1.6.4]. Let f :
R → [0, 1] be a smooth even function such that

f(v) =

{
1 for |v| � ε/2,
0 for |v| � ε.

(4.4)

For u > 0, a ∈ C, set

F u(a) =

∫ +∞

−∞
eiva exp

(
− v2

2

)
f(
√
uv)

dv√
2π

,

Gu(a) =

∫ +∞

−∞
eiva exp

(
− v2

2

)(
1− f(

√
uv)

) dv√
2π

.

(4.5)

The functions F u(a),Gu(a) are even holomorphic functions. The restrictions of
F u,Gu to R lie in the Schwartz space S(R). Clearly,

(4.6) F u(υDp) +Gu(υDp) = exp
(
− υ2

2
D2

p

)
.

For x, x′ ∈ M let F u(υDp)(x, x
′), Gu(υDp)(x, x

′) be the smooth kernels asso-
ciated to F u(υDp), Gu(υDp), calculated with respect to the Riemannian volume
form dvM (x′). Let BM (x, ε) be the open ball in M with center x and radius ε.

Proposition 4.1. For any m ∈ N, T > 0, ε > 0, there exists C > 0 such that
for any x, x′ ∈ M , p ∈ N∗, 0 < u < T ,∣∣∣Gu/p(

√
u/pDp)(x, x

′)
∣∣∣
Cm

� C exp
(
− ε2p

32u

)
.(4.7)

Here the Cm norm is induced by ∇L,∇E, ∇B,Λ0,•
and hL, hE, gTM .

The kernel F u/p

(√
u/pDp

)
(x, ·) only depends on the restriction of Dp to BM (x, ε),

and is zero outside BM (x, ε).

This follows from the proof of [19, Proposition 1.6.4], in particular from [19,
(1.6.16)] with ζ = 1, since under our assumption any polynomial in p, u−1 will

be absorbed by the factor exp(− ε2p
32u ). The second assertion of follows by using

(4.5), the finite propagation speed of the wave operator, cf. [19, Theorem D.2.1
and (D.2.17)].

Thus the problem on the asymptotic expansion of exp
(
− u

pD
2
p

)
(x, x), for 0 <

u < T and p ∈ N, is a local problem and only depends on the restriction of Dp to
BM (x, ε).

To analyze the local problem, we fix x0 ∈ M and work on M0 := R2n � Tx0
M .

From now on, we identify BTx0
M (0, 4ε) with BM (x0, 4ε) by the exponential map.

For Z ∈ BTx0
M (0, 4ε), we identify

EZ
∼= Ex0

, LZ
∼= Lx0

, Λ(T
∗(0,1)
Z M) ∼= Λ(T ∗(0,1)

x0
M) ,
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by parallel transport with respect to the connections ∇E , ∇L, ∇B,Λ0,•
along the

curve [0, 1] � u �→ uZ. Thus on BM (x0, 4ε), we have the following identifications
of Hermitian bundles

(E,hE) ∼= (Ex0 , h
Ex0 ), (L, hL) ∼= (Lx0 , h

Lx0 , , (Λ(T ∗(0,1)M), hΛ0,•
)∼=(Λ(T ∗(0,1)

x0
M), hΛ0,•

x0 )

(Ep, hp) ∼= (Ep,x0 , h
Ep,x0 ) ,

where the bundles on the right-hand side are trivial Hermitian bundles.

Let ΓE ,ΓL,ΓB,Λ0,•
be the corresponding connection forms of ∇E , ∇L and

∇B,Λ0,•
on BM (x0, 4ε). Then ΓE ,ΓL,ΓB,Λ0,•

are skew-adjoint with respect to hEx0 ,

hLx0 , hΛ0,•
x0 .

Let ρ : R → [0, 1] be a smooth even function such that

ρ(v) = 1 if |v| < 2; ρ(v) = 0 if |v| > 4.(4.8)

Denote by ∇U the ordinary differentiation operator on Tx0
M in the direction U .

From the above discussion,

∇Ep,x0 = ∇+ ρ
(
1
ε |Z|

)(
pΓL + ΓE + ΓB,Λ0,•

)
(Z),(4.9)

defines a Hermitian connection on (Ep,x0
, hEp,x0 ) on R2n � Tx0

M where the iden-
tification is given by

(4.10) R
2n � (Z1, . . . , Z2n) �−→

∑
i

Ziei ∈ Tx0
M.

Here {e2j−1 = 1√
2
(wj+wj), e2j =

√
−1√
2
(wj−wj)}j is an orthonormal basis of Tx0

M .

Let gTM0 be a metric on M0 := R
2n which coincides with gTM on BTx0

M (0, 2ε),
and gTx0

M outside BTx0
M (0, 4ε). Let dvM0

be the Riemannian volume form of
(M0, g

TM0). Let ΔEp,x0 be the Bochner Laplacian associated to ∇Ep,x0 and gTM0

on M0. Set

(4.11) Lp,x0
= ΔEp,x0 − p ρ

(
1
ε |Z|

)
(2ωd,Z + τZ) + ρ

(
1
ε |Z|

)
ΦE,Z .

Then Lp,x0
is a self–adjoint operator with respect to the L2 scalar product induced

by hEp,x0 , gTM0 on M0. Moreover, Lp,x0
coincides with D2

p on BTx0
M (0, 2ε). By

using (4.3) we obtain the analogue of Proposition 4.1 for
√

u
pLp,x0

. Thus by using

the finite propagation speed for the wave operator we get

(4.12)

∣∣∣∣exp(− u

2p
D2

p

)
(x0, x0)− exp

(
− u

2p
Lp,x0

)
(0, 0)

∣∣∣∣ � C exp
(
− ε2p

32u

)
.

Let dvTM be the Riemannian volume form on (Tx0
M, gTx0

M ). Let κ(Z) be the
smooth positive function defined by the equation

dvM0
(Z) = κ(Z)dvTM (Z),(4.13)

with k(0) = 1.

Set Ex0
:= (Λ(T ∗(0,1)M)⊗E)x0

. For s ∈ C ∞(R2n,Ex0
), Z ∈ R2n and t =

√
u√
p ,

set

(Sts)(Z) = s(Z/t),

∇t,u = S−1
t tκ1/2∇Ep,x0κ−1/2St,

L t,u
2 = S−1

t κ1/2t2Lp,x0
κ−1/2St.

(4.14)
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Note that in [19, (1.6.27)] we used the scaling parameter t = 1√
p . In the present

situation we wish to obtain an expansion in the variable p
u , so we need to rescale

the coordinates by setting t =
√
u√
p . Put

∇0,u,• = ∇• +
u
2R

L
x0
(Z, ·),

L 0,u
2 = −

∑
i

(∇0,u,ei)
2 − 2uωd,x0

− uτx0
.(4.15)

Then we have the following analogue of [19, Theorem 4.1.7].

Theorem 4.2. There exist polynomials Ai,j,r (resp. Bi,r, Cr) in the variables
Z and in u, where r ∈ N, i, j ∈ {1, · · · , 2n}, with the following properties:

• their coefficients are polynomials in RTM (resp. RTM , RB,Λ0,•
, RE, Rdet,

dΘ, RL) and their derivatives at x0 up to order r − 2 (resp. r − 2, r − 2, r − 2,
r − 2, r − 1, r) ,

• Ai,j,r is a homogeneous polynomial in Z of degree r and does not depend on
u, the degree in Z of Bi,r is � r + 1 (resp. the degree of Cr in Z is � r + 2), and
has the same parity as r− 1 (resp. r) , the degree in u of Bi,r is � 1, and the degree
in u of Cr is � 2,

• if we denote by

Ou,r = Ai,j,r∇ei∇ej + Bi,r(u)∇ei + Cr(u),(4.16)

then

L t,u
2 = L 0,u

2 +
m∑
r=1

trOu,r + O(tm+1),(4.17)

and there exists m′ ∈ N such that for any k ∈ N, t � 1, 0 < u < T , the derivatives
of order � k of the coefficients of the operator O(tm+1) are dominated by Ctm+1(1+

|Z|)m′
.

Set gij(Z) = gTM0(ei, ej)(Z) = 〈ei, ej〉Z and let (gij(Z)) be the inverse of the
matrix (gij(Z)). We observe that pt = u

t , thus the analogue of [19, (4.1.34)] reads

∇t,u,• =κ1/2(tZ)
(
∇• + tΓA0

tZ +
u

t
ΓL0

tZ + tΓE0

tZ

)
κ−1/2(tZ),

L t,u
2 =− gij(tZ)

(
∇t,u,ei∇t,u,ej − tΓk

ij(tZ)∇t,u,ek

)
− 2uω0,d,tZ − u τ0,tZ + t2ΦE0,tZ .

(4.18)

Comparing with [19, (4.1.34)], the term of ∇t,u,• involving u is u
t Γ

L0

tZ instead of
1
tΓ

L0

tZ therein.
Theorem 4.2 follows by taking the Taylor expansion of (4.18). Using Theorem

4.2 we see that [19, Theorems 1.6.7–1.6.10] (or more precisely [19, Theorems 4.1.9–
4.1.14] with the contour δ ∪ Δ replaced by the contour Γ from [19, Theorems
1.6.7–1.6.10]) hold uniformly for 0 < u < T .

Thus we get the following analogue of [19, Theorem 4.2.8] in normal coordi-
nates.
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Theorem 4.3. There exists C ′′ > 0 such that for any k,m,m′ ∈ N, there exists
C > 0 such that if t ∈]0, 1], 0 < u < T , Z,Z ′ ∈ Tx0

M ,

sup
|α|+|α′|�m

∣∣∣∣∣∣ ∂|α|+|α′|

∂Zα∂Z ′α′

(
exp

(
− L t,u

2

)
−

k∑
r=0

Jr,ut
r
)
(Z,Z ′)

∣∣∣∣∣∣
Cm′ (X)

� Ctk+1(1 + |Z|+ |Z ′|)Mk+1,m,m′ exp(−C ′′|Z − Z ′|2).

(4.19)

Note that we use the operator L t,u
2 and we rescale the coordinates by the

factor t =
√
u√
p , thus the factor u in the right-hand side of the second equation of

[19, (4.2.30)] is 1 here. Moreover, we have (cf. also [19, (1.6.61)] )

J0,u(Z,Z
′) = exp

(
−L 0,u

2

)
(Z,Z ′).(4.20)

We infer from (4.15) (compare [19, (1.6.68)]) that

exp
(
−L 0,u

2

)
(0, 0) =

1

(2π)n
det(uṘL

x0
) exp(2uωd,x0

)

det(1− exp(−2uṘL
x0
))

⊗ IdE .(4.21)

The analogue of [19, (1.6.66), (4.2.37)] is that for Z,Z ′ ∈ Tx0
M ,

exp
(
− u

p
Lp,x0

)
(Z,Z ′) =

(
p

u

)n

exp
(
− L t,u

2

)(Z
t
,
Z ′

t

)
κ−1/2(Z)κ−1/2(Z ′) .(4.22)

By taking Z = Z ′ = 0 in Theorem 4.3, and using (4.22), we get the analogue of
[19, (4.2.39)],

∣∣∣∣∣∣
(
u

p

)n

exp

(
−u

p
D2

p

)
(x0, x0)−

k∑
r=0

Jr,u(0, 0)

(
p

u

)−r/2
∣∣∣∣∣∣
Cm′ (X)

� C

(
p

u

)− k+1
2

.

(4.23)

Finally, by the same argument as in the proof of [19, (4.2.40)], we get for any r ∈ N,

(4.24) J2r+1,u(0, 0) = 0.

Relations (4.20)–(4.24) yield Theorem 1.1 with e∞0(u, x0) given by (1.11).

References

[1] R. Beals, B. Gaveau, and P. Greiner, On a geometric formula for the fundamental solution
of subelliptic Laplacians, Math. Nachr. 181 (1996), 81–163, DOI 10.1002/mana.3211810105.
MR1409074 (97h:35029)

[2] R. Beals, B. Gaveau, and P. C. Greiner, Complex Hamiltonian mechanics and parametri-
ces for subelliptic Laplacians. II, Bull. Sci. Math. 121 (1997), no. 2, 97–149. MR1435337

(98b:35032b)
[3] N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators, Grundlehren der

MathematischenWissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298,
Springer-Verlag, Berlin, 1992. MR1215720 (94e:58130)

[4] J.-M. Bismut, Demailly’s asymptotic Morse inequalities: a heat equation proof, J. Funct.
Anal. 72 (1987), no. 2, 263–278, DOI 10.1016/0022-1236(87)90089-9. MR886814 (88j:58131)

[5] J.-M. Bismut and G. Lebeau, Complex immersions and Quillen metrics, Inst. Hautes Études
Sci. Publ. Math. 74 (1991), ii+298 pp. (1992). MR1188532 (94a:58205)
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