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Abstract
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1 Introduction

Geometric quantization is a procedure to relate classical observables (smooth func-
tions) on a phase space (a symplectic manifold) to quantum observables (bounded
linear operators) on the corresponding quantum space (sections of a line bundle). In
the case when the line bundle in question is positive, and consequently the underlying
manifold Kidhler, a well-known quantization recipe is that of Berezin-Toeplitz [5, 28,
34]. Showing the validity of the quantization procedure involves proving that it has
the right properties in the semiclassical limit. Key to the proof is the analysis of the
semiclassical limit of the Bergman kernel [14, 16, 29, 30, 38]. In earlier work [32] the
authors proved the Bergman kernel expansion in the case when the underlying line
bundle is only semi-positive, with curvature vanishing at finite order at each point, on a
Riemann surface. It is the purpose of this article to explore the corresponding applica-
tions of the expansion therein to results in geometric quantization in the semi-positive
case. These include the Tian’s approximation theorem for induced Fubini-Study met-
rics, leading-order asymptotics and composition for Toeplitz operators, asymptotics
of zeroes for random sections, and the asymptotics of holomorphic torsion.

We now state our results more precisely. Let Y2 be a compact Riemannian surface
equipped with an integrable complex structure J and Hermitian metric 27 . Consider
holomorphic, Hermitian line and vector bundles (L, hL), (F JhE ) onY andlet VL, vF

be the corresponding Chern connections. Denote by RY = (VL)2 € Q2 (Y;iR) the
corresponding curvature of the line bundle. The order of vanishing of R at a point
y € Y is now defined

ry — 2 = ordy (RL) ‘= min [1|Jl (AZT*Y) 5 jIRE # o}, ry =2, (L)

where j'RL denotes the [th jet of the curvature. We shall assume that this order of
vanishing is finite at any point of the manifold i.e.,

Fi=maxry < o0. (1.2)
yey

The function y + r, being upper semi-continuous then gives a decomposition of the
manifold Y = (Jj_, ¥;; Y; := {y € Y|ry = j} with each Y<; := U§/:0 Y, being
open. Furthermore, the curvature is assumed to be semi-positive: RL (w, w) > 0, for

allw e 710y,
Associated to the above one has the Kodaira Laplacian

Of @™ (viFe 1) > @ (v;FeLr), 0=q=1,

acting on tensor powers. The kernel of the Kodaira Laplacian ker DZ =H1(X; F®
Lk ) is cohomological and corresponds to holomorphic sections. The Bergman kernel
1Y (y, y') is the Schwartz kernel of the orthogonal projector I} : Q%4 (Y; F ® L*)
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— ker DZ. Its value on the diagonal is

2
)

NY
HZ (y,y)=2‘sj (y) N,? := dim H? (X;F®Lk),
j=I

q
for an orthonormal basis {s; }7i , of HY (X; F ® L¥). Under these assumptions one
has H!' (X; F ® L*) = 0 for k > 0. We now first recall our theorem from [32] on
the asymptotics of the Bergman kernel IT; := 1'[2.

Theorem 1.1 [32, Theorem 3] Let Y be a compact Riemann surface and (L, hL) —Y
a semi-positive line bundle whose curvature R™ vanishes to finite order at any point.
Let (F, hf) — Y be another Hermitian holomorphic vector bundle. Then the Bergman
kernel T1 := H2 has the pointwise asymptotic expansion on diagonal

N
M (o) =k | ey k7 | 40 (k—zN/r.v) . VNeN. (13)
j=0
ry=2
Here cj are sections of End (F), with the leading term co (y) = mes iy RESY
(0, 0) > 0 being given in terms of the Bergman kernel of the model Kodaira Laplacian
on the tangent space at y (A.8).

To explain our first consequence of the above, note that the cohomology H°(Y; F®
L*) is endowed with an L? product induced by 27", kX and h¥ . This induces a Fubini-
Study metric wrg on the projective space P [H "(v;Fe® Lk)*]. The Kodaira map is
now defined

DY — ]P’[HO (Y; F®Lk>*],
Dy (y) = {s cH° (y; F®Lk> Is () :o}. (1.4)

It is well known that the map is holomorphic. We now have the semi-positive version
of Tian’s approximation theorem.

Theorem 1.2 Let Y be a compact Riemann surface and (L, by, (F, k') be holomor-
phic Hermitian line bundles on Y such that (L, h*) is semi-positive and its curvature
vanishes at most at finite order. Then the Fubini-Study forms induced by the Kodaira
map (1.4) converge uniformly on Y to the curvature R of the line bundle with speed

k—1/3
1 * i L —-1/3
—@kaS — —R =0 (k )

k 2

o)

as k — oo.
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For the next application we consider the Toeplitz quantization of functions on Y,
or more generally sections of F. The Toeplitz operator Ty ; operator corresponding
to a section f € C* (Y; End (F)) is defined via

Tyx:C® (Y F@LY) - c®(v: FoLb)
Ty := I fTg, (1.5)

where f denotes the operator of pointwise composition by f. Each Toeplitz operator
above further maps H° (Y T F® Lk) to itself. A generalized Toeplitz operator, see 5.6,
acting on H° (Y T F® Lk) is defined as one having an asymptotic expansion in k!
with coefficients being the Toeplitz operators (1.5) as above. Our next result is now as
follows.

Theorem 1.3 Let (L, h%) and (F, h*) be Hermitian holomorphic line bundles on a
compact Riemann surface Y and assume that (L, h*) is semi-positive line bundle and
its curvature R™ vanishes to finite order at any point. Given f, g € C*® (Y; End (F)),
the Toeplitz operators (5.1) satisfy

|fulpr

Iim ||Tri| =1 flleo := (1.6)
k— 00 ” f “ e °] yey |1/l|hF
ueFy\0
TyiTox = Trox + Opa, p2 (k—l/’) . (1.7)

Moreover, the space of generalized Toeplitz operators supported on the subset Y, where
the curvature is positive form an algebra under operator addition and composition.

For our next result, we consider the asymptotics of zeroes of random sections
associated to tensor powers. To state the result first note that the natural L? metric on
H° (Y T F® Lk) gives rise to a probability density i on the sphere

sH'(viFert) ={sen® (viFer*) sl =1},

of finite dimension x (Y T F® Lk) — 1 (2.15). We now define the product probabil-
ity space (€2, pn) := (l'[,filSHO (Y; F® Lk) , H,fil,uk). To a random sequence of
sections s = (sx)reny € S2 given by this probability density, we then associate the
random sequence of zero divisors Z;, = {sx = 0} and view it as a random sequence
of currents of integration in the space 526‘0 (Y) of currents of bidimension (0, 0). Note
that we can introduce a large class of probability measures as in [4] on the space of
holomorphic sections for which our results still hold.
We now have the following.

Theorem 1.4 Let (L, h%) and (F, hF) be Hermitian holomorphic line bundles on a
compact Riemann surface Y and assume that (L, h") is semi-positive line bundle
and its curvature R vanishes to finite order at any point. Then for p-almost all
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s = (Sk)reN € 2, the sequence of currents

converges weakly to the semi-positive curvature form.

Our final result concerns the asymptotics of holomorphic torsion. Below t% :=

R (w, w) in terms of an orthonormal section w of 710y .

Theorem 1.5 Let (L, h%) and (F, h¥) be Hermitian holomorphic line bundles on a
compact Riemann surface Y and assume that (L, h) is semi-positive line bundle and
its curvature R vanishes to finite order at any point. The holomorphic torsion satisfies
the asymptotics

1, 12 th 12

as k — oo.

All of our results above are well known in the case when the line bundle L is positive.
In the positive case, the leading term of the Bergman kernel expansion Theorem 1.1
was first shown in [37] and thereafter improved to a full expansion in [14, 38] as a
consequence of the Boutet de Monvel-Sjostrand parametrix [13] for the Szeg6 kernel
of a strongly pseudoconvex CR manifold. Subsequently a different geometric method
for the expansion was developed in [16, 29] inspired by the analytic localization
method of [7]. The application of the Bergman kernel to induced Fubini-Study metrics
Theorem 1.2 is also found in [37] in the positive case. The construction of the full
Toeplitz algebra, along with the properties of Toeplitz operators, was first done in [11]
as an application of the Boutet de Monvel-Guillemin calculus of Toeplitz operators
[12]. The equidistribution result for random sections in the positive case was first done
in [36], and [18, 19] also gave the speed of convergence of the zero divisors. Finally, the
asymptotics of holomorphic torsion for positive line bundles is due to Bismut-Vasserot
[8].

In the semi-positive case our results are mostly new. The Bergman kernel expansion
Theorem 1.1 was shown by the authors in their earlier work [32]. The corresponding
problem for the Szegd kernel of a weakly pseudoconvex CR manifold in dimension
three was solved by the second author in [24]. The expansion proved in [32, Theorem
3]s, however, only pointwise along the diagonal. In order to obtain the approximation
for Fubini-Study metrics Theorem 1.2 one needs to prove uniform estimates on the
Bergman kernel and its derivatives. The composition for Toeplitz operators supported
on the subset where the curvature is positive in Theorem 1.3 was shown earlier by
the first author in [23, Theorem 1.4] under the assumption of a small spectral gap for
the Kodaira Laplacian. A more general result, than the equidistribution for zeroes of a
random holomorphic section of a semi-positive line bundle, was obtained in [18, Sec.
4] using L? estimates for the d-equation of a modified positive metric.

The paper is organized as follows. In Sect.2 we begin with some standard pre-
liminaries. These include the relevant spectral gap properties for the Bochner and
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Kodaira Laplacians in Sects. 2.1 and 2.2, respectively. In Sect. 3 we recall the proof
of the pointwise Bergman kernel expansion from [32]. In Sect. 3.1 we further derive
uniform estimates on semi-positive Bergman kernels that are necessary for the appli-
cations in this article. In Sect. 4 we use the uniform Bergman kernel estimates to prove
the semi-positive version of Tian’s theorem Theorem 1.2. In Sect. 5 we prove the anal-
ogous expansion for the kernel of a Toeplitz operator and the corresponding theorem
Theorem 1.3 on Toeplitz quantization. In Sect. 6 we prove the equidistribution result
Theorem 1.4 for random sections. In the final Sect.7 we prove the asymptotic result
for holomorphic torsion Theorem 1.5. The final appendix Section A describes facts
on model Laplacians and Bergman kernels that are used throughout the article.

2 Preliminaries

Here we begin with some preliminary notions. Let Y be a compact Riemann surface.
It is equipped with an integrable complex structure J and Hermitian metric 277 on
its complex tangent space. Also denote by g7 the associated Riemannian metric on
TY.Nextlet (L, h%), (F, h¥) be an auxiliary pair of Hermitian, holomorphic bundles
where L is of rank one. We denote by VX, V¥ the corresponding Chern connections
and RL, R their corresponding curvatures. The order of vanishing ry of the curvature
R atapoint y € Y is now defined as in (1.1). And we assume that the curvature R”
vanishes at finite order at any point of Y, i.e.,

‘= ma 0. 2.1
r yE;(ry < 2.1)

The curvature RY of V% is a (1, 1) form which is further assumed to be semi-positive

iRl (v, Jv) =0, YveTY orequivalently
RY (w,w) >0, vweT"Vy. (2.2)

We note that semi-positivity implies that the order of vanishing r, — 2 € 2Ny of
the curvature R at any point y is even. Semi-positivity and finite order of vanishing
imply that there are points where the curvature is positive (the set where the curvature
is positive is in fact an open dense set). Hence

degL = f ci(L) = l—RL > 0,
Y Y 2

so that L is ample.
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2.1 sRand Bochner Laplacians

Associated to the above data one has the Bochner Laplacian on tensor powers defined
by

%k
Ap = (vF®Lk) vFeLt . coo (Y; F® Lk) — ™ (Y; F® L") . @23)

for each k € N, with the adjoint above being taken with respect to the corresponding
metrics and the Riemannian volume form.

Each Bochner Laplacian (2.3) above is the Fourier mode of a sub-Riemannian (sR)
Laplacian on the unit circle bundle of L. To elaborate, denote by X = S'L — Y the
unit circle bundle of the line bundle L. Further let E := HX C T X be the horizontal
distribution induced by V. The distribution carries the metric g¥ = 7*g”" pulled
back from the base. We also denote by the same notation the pullback of (F, hf, VF)
from Y to X. The finite order of vanishing for the curvature RL in (1.2) is equivalent
to the bracket generating condition for the distribution E: the Lie brackets in C*° (E)
generates all vector fields C*° (T X) [32, Prop. 6]. As such the triple (X, ECTX, gE)
is a sub-Riemannian (sR) manifold. Furthermore the maximum order of vanishing for
the curvature » (1.2) is then the degree of non-holonomy of the distribution E, i.e., the
number of brackets required to generate the missing vertical direction. A volume form
on X is defined via ux = p rv A e* with igry denoting the Riemannian volume
form on Y and e* being the dual one form to the generating e € C* (T X) of the circle
action on X.

The sub-Riemannian Laplacian on X

AgE 1y C®(X;F)— C*®(X; F)

*
Age = (ng»F)M o V85 F (2.4)
X

being the composition of the sR gradient defined via
ve'F L c® (X, E) > C®(X;E® F),
hEF (VgE‘Fs,v(X)s’) i (st,s’), (2.5)
forallv e C®(X; E),s' € C®(X; F), where ht-F := gF @ hf, with its adjoint
taken with respect to py. Under the bracket generating condition, the sR Laplacian

satisfies the sharp subelliptic estimate of Rothschild and Stein with a gain of % deriva-
tives

1WsBue = C[(Age 05 05) +llgslia ] Vs eC¥OGF)  26)

forall ¢, ¥ € C2° (X), with ¢ = 1 on the support spt (1), and where r is again given
by (1.2) and corresponds to the maximum step size of the distribution E.
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138 Page8of41 G. Marinescu, N. Savale

Next, the unit circle bundle of L being X, the pullback C = n*L — X is canon-
ically trivial via the identification 7*L 3 (x,[) — x~'/ € C. Pulling back sections
then gives the identification

C® (X; F) = ®rezC™ (Y; F® L") . @2.7)

Each summand on the right-hand side corresponds to an eigenspace of VI with
eigenvalue —ik. While horizontal differentiation 4/’ on the left corresponds to dif-
.. . . Lk . .
ferentiation with respect to the tensor product connectionV* " on the right-hand side.
Pick an invariant density iy on X inducing a density py on Y. This now defines the
sR Laplacian A,z ., acting on sections of F. By invariance the sR Laplacian com-
mutes [A,z . e] = 0 with the generator of the circle action and hence preserves
the decomposition (2.7). It acts via

Age p oy = Prez Dk (2.8)

on each component where Ay is the Bochner Laplacian (2.3) on the tensor powers
F ® L*, with adjoint being taken with respect to oTY -

Using the description of the Bochner Laplacian as the Fourier mode of the sR
Laplacian (2.8),in [32, Thm. 1] a general leading asymptotic result for the first positive
eigenvalues was proved. Here we recall a simple argument for its lower bound.

Proposition 2.1 There exist constants c1,cy > 0, such that one has Spec (Ay) C
[clkz/’ — 2, oo) for each k.

Proof The subelliptic estimate (2.6) on the circle bundle is

1/r

2
Jos"s|

< sl < C [(AgE’FMs,s)jL ||s||§2], Vs € C%° (X: F).

Letting s = 7*s’ be the pullback of an orthonormal eigenfunction s’ of Ay with
eigenvalue A on the base gives k*/" < C (A + 1) as required. O

2.2 Kodaira Laplacian and its Spectral Gap
Related to the Bochner Laplacian (2.3) is the Kodaira Laplacian on tensor powers.

Namely, with (Q%* (X; F ® LX) ; 9;) denoting the Dolbeault complex the Kodaira
Laplace and Dirac operators acting on Q%* (X cF QLK ) are defined

1 - - —
Ok := 5 (Dp)* = 9 d; + 35 3 (2.9)
Dy i= 2 (3 + 3}) . (2.10)

Clearly, Dy, interchanges while (J; preserves Q%91 We denote DkﬂE = Dilqoon
and Dg/ - Uklqo.o1. The Clifford multiplication endomorphism ¢ : 7Y —
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End (A%*) is defined via ¢ (v) := ﬁ(vl’o A —i1), v € TY, and extended to
the entire exterior algebra A*TY via ¢(1) = 1, ¢ (vi Av2) := ¢ (v1) ¢ (v2), for
orthonormal vy, v, € TY.

1,0 . o . .
Denote by V7Y, VTY the Levi-Civita and Chern connections on the real and

. 0,1 . . -
holomorphic tangent spaces as well as by V7 ¥ the induced connection on the anti-

holomorphic tangent space. Denote by ® the real (1, 1) form defined by contraction
of the complex structure with the metric © (., .) = g’¥ (J.,.). This is clearly closed

d® = 0 (or Y is Kihler) and the complex structure is parallel VI¥J = 0 or VI¥ =
VT]VOY @ VT],()Y

With the induced tensor product connection on A%* @ F ® L* being denoted via
vA  eFoL: , the Kodaira Dirac operator (2.10) is now given by the formula

0,% k
Dy = co VA TOFOLY

Next we denote by RY the curvature of V¥ and by « the scalar curvature of g77 .
Define the following endomorphisms of A%*

® (RF) — RF (w, ) wij
© (RL) = RL (w, ) wig
o (K) 1= KWiy
.= RF (w, w)

t = RY (w, w) (2.11)
in terms of an orthonormal section w of T1-°Y. The Lichnerowicz formula for the
above Dirac operator ([29] Thm 1.4.7) simplifies for a Riemann surface and is given
by

20 = D = (A eraLt)” gaterert
1
tk [Zw (RL) . rL] ¥ [2w (RF) - rF] +50 . 2.12)
We now have the following.

Proposition 2.2 Let Y be a compact Riemann surface, (L, h') — Y a semi-positive
line bundle whose curvature R™ vanishes to finite order at any point. Let (F, h¥) — Y
be a Hermitian holomorphic vector bundle. Then there exist constants c1, ¢ca > 0, such
that

1Des 1 = (1" = ) ls
foralls € Q0.1 (Y; F® Lk).
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138 Page 10 of 41 G. Marinescu, N. Savale

Proof Writing s = |s| w € Q*! (Y; F ® L¥) in terms of a local orthonormal section
w gives

<[2a) (RL> _ rL] s, s> = RL (w, ) |5 > 0 (2.13)
from (2.2), (2.11). This gives

1 Des |2 = (Dis. s)

= ([(9erert) At erest | g g (r) 1]

1
+ [Zw <RF) — ‘L'F:I + Ea) (/c)i| s, s>
* * %
2 <(VAO’ ®F®Lk> VAO' ®F®Lk5,s> —¢p ||s||2 z (Cle,/r _ C2> ||S||2

from Proposition 2.1, (2.12), and (2.13). O

We now derive as a corollary a spectral gap property for Kodaira Dirac/Laplace oper-
ators Dy, [y corresponding to Proposition 2.1.

Corollary 2.3 Under the hypotheses of Proposition 2.2 there exist constants c1, ¢3 > 0,
such that Spec (g) C {0} U [clk2/’ —c3, oo) for each k. Moreover, ker D, = 0 and
H' (Y; F® Lk) = 0 for k sufficiently large.

Proof From Proposition 2.2, it is clear that
Spec (D}() - [clkz/’ — e, oo) (2.14)

for some c1, ¢ > 0 giving the second part of the corollary. Moreover, the eigenspaces
of D,%| o001 With non-zero eigenvalue being isomorphic by Mckean-Singer, the first
part also follows. O

Since L is ample, we know also by the Kodaira-Serre vanishing theorem that
H! (Y T F® Lk) vanishes for k sufficiently large. If F is also a line bundle this fol-
lows from the well-known fact that for a line bundle E on Y we have H! (Y; E) =0
whenever deg E > 2g — 2. Itis, however, interesting to have a direct analytic proof. Of
course, the vanishing theorem for a semi-positive line bundle works only in dimension
one, see Remark 2.4.

The vanishing H' (Y T F® Lk) = 0 for k sufficiently large gives

dim H° (Y; F®Lk> —x (Y; F®Lk)
=/ch (F®Lk>Td(Y)
Y

:k[rk(F)/cl (L)]+/c1 (F)+1—g,  (2.15)
Y Y
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by Riemann-Roch, with x (Y; F ® L¥), ch (F ® L¥), Td (Y), g denoting the holo-
morphic Euler characteristic, Chern character, Todd genus, and genus of Y, respec-
tively.

Remark 2.4 The argument for Proposition 2.2 breaks down in higher dimensions since
there are more components to [2a) (RL) — L ] in the Lichnerowicz formula (2.12)
where semi-positivity is insufficient to control. Indeed, there is a known counterexam-
ple to the existence of a spectral gap for semi-positive line bundles in higher dimensions
due to Donnelly [20].

3 Bergman Kernel Expansion

In this section we now first recall the expansion for the Bergman kernel proved in [32,
Sec 4.1]. First recall that the Bergman kernel is the Schwartz kernel ITx (y1, y2) of the
projector onto the nullspace of [y

Hk :COO (Y,F@Lk> —)ker(Dk|Coc(Y:F®Lk)), (31)
with respect to the L? inner product given by the metrics g7, h¥, and h%. Alternately,
if 51, 82, ..., sn, denotes an orthonormal basis of eigensections of H 0 (X F® Lk)
then

Ni
e (1, y2) = ) s; (n) @55 ()™ (32)
j=1

We wish to describe the asymptotics of I along the diagonalin ¥ x Y.
Consider p € Y, and fix orthonormal bases {e1, ez (= Je1)}, {{}, {f, }Ekz(f) forT,Y,
L, F, respectively, and let {w = \L@ (e1 —ien) } be the corresponding orthonormal
frame for Tyl’OY. Using the exponential map from this basis obtain a geodesic coor-
dinate system on a geodesic ball B, (p). Further parallel transport these bases along

. . . 1,0 .
geodesic rays using the connections V7' Y VL V¥ to obtain orthonormal frames for
Ty, L, F on By, (p). In this frame and coordinate system, the connection on the
tensor product again has the expression

vAYrSL — g 4 oA 4 af i kat
1

0,* 0,%
ap” = dp(pykRj\k (py))

af py*RY, (py))
aj

0

1
Jy o
/0 dp (o3 RE () (3.3)
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138 Page 12 of 41 G. Marinescu, N. Savale

in terms of the curvatures of the respective connections. We now define a modified
frame {, &,} on R? which agrees with {e, e2} on B, (p) and with {dy,, 9, } outside
By, (p). Also define the modified metric gTY and almost complex structure J on R2
to be standard in this frame and hence agreeing with g”*, J on B, (p). The Christoffel
symbol of the corresponding modified induced connection on A%*now satisfies

ar™ =0 outside B (p) .

With r, — 2 € 2Ny being the order of vanishing of the curvature RL as before, we
may Taylor expand the curvature as

> Rpgay*dypdyg +0 (') with (3.4)

la|=r—2

—_RL
_RO

iRf (e1,e2) > 0. (3.5)

Further we may define the modified connections VF, VL via
[yl F
=d
+ X ( % a

1
L—q+ /d,o,oyk<RL>_k(py) dyj, where
0 J

=a
J

PO A

. . = A 0% k .
as well as the corresponding tensor product connection VA ®F®L" wwhich agrees
. 0. k . L=
with VAT®F8LY o B, (p). Clearly the curvature of the modified connection V%

is given by RL(3.6) and is semi- positive by (3.5). Equation (3.6) also gives RE =
RL + 0 ( " V_l) and that the (r} - 2) th derivative/jet of R™ is non- vanishing at all

points on R? for

0<o<cl|jm 2R (y)‘ . 3.7)

Here ¢ is a uniform constant depending on the C"~2 norm of R. We now define the
modified Kodaira Dirac operator on R? by the similar formula

Dy = c o VAM®FOLY (3.8)
agreeing with Dy on B, (p) . This has a similar Lichnerowicz formula
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B} =20 = (VA erelt ) gaterett Loy (RE) - 2] 39)

+ [Zw (RF) — fF] + %w (®) (3.10)

the adjoint being taken with respect to the metric g7¥ and corresponding volume
form. Also the endomorphisms RF JEF FL and w (k) are the obvious modifica-
tions of (2.11) defined using the curvatures of V¥, V£, and g7", respectively. The
above-mentioned (3.9) again agrees with LI on B, (p) while the endomorphisms

RF, ¥, w (k) all vanish outside B, (p). Being semi-bounded from below (3.9) is
essentially self-adjoint. A similar argument as Corollary 2.3 gives a spectral gap

Spec (ik) c{0ju [clkz/’«" . oo) . 3.11)

- -1
Thus for k£ > 0, the resolvent (Dk — z) is well defined in a neighborhood of the

origin in the complex plane. On account on the local elliptic estimate, the projector [Ty
from L2 (Rz; Ag’* ®F ® L;@k) onto ker (ﬂk> then has a smooth Schwartz kernel

with respect to the Riemannian volume of 77 .
We are now ready to prove the Bergman kernel expansion Theorem 1.1, the proce-
dure is similar to [16].

Proof of Theorem 1.1 First choose ¢ € S (R;) even satisfying ¢ € C. (—%, %) and

@ (0) = 1. For ¢ > 0, set ¢1 (s) = 1[¢,00) (5) @ (5). On account of the spectral gap
Corollary 2.3, and as ¢ decays at infinity, we have

@ (Dy) — T = @1 (Dy)  with
| DEer (PO 2, 2= 0 (k™) (3.12)

for a € N. Combining the above with semiclassical Sobolev and elliptic estimates
gives

lo (Dr) — Ml ciyxyy = O (k) , (3.13)

forall/ € No. Next we may write ¢ (Dg) = 5
Since Dy = Dy on B, (p) and ¢ € C. (—
argument to conclude

0 (D) (23) = ¢ (Dr) (. 0).
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By similar estimates as (3.12) for Dy we now have a localization of the Bergman
kernel

M (., y) =0 (k~°), onB,(p)°
Mg (., y) = Tk (,0) =0 (k™°), on By (p). (3.14)
It thus suffices to consider the Bergman kernel of the model Kodaira Laplacian (3.9)
on R?.

Next with the rescaling/dilation §-1/-y = (k_l/ryl, e, k_l/’y,,_l), the rescaled
Kodaira Laplacian

0= k=" (8-11r), Ok (3.15)
satisfies

O
¢ (—kz/r,) (v.y) =k @) (yk‘/ ", y/kl/’y) (3.16)

for ¢ € S (R). Using a Taylor expansion via (3.6), (3.8) the rescaled Dirac operator
has an expansion

N
[ = Zk*/’/’ymj + kT 2NED/INES VN (3.17)
j=0
Here each
Llj = ajipg (¥) 9y, 0y, +bj;p (¥) 3y, +¢; () (3.18)

is a (k-independent) self-adjoint, second-order differential operator while each

Bj= Y ya[a;’.‘;pq(y;k)aypayq—I—b?;p(y;k)ayp+c‘]’-’(y;k)] (3.19)
la|=N+1

is a k-dependent self-adjoint, second-order differential operator on R?. Furthermore
the functions appearing in (3.18) are polynomials with degrees satisfying

degaj=j, degh; <j+ry,—1ldegc; <j+2r,—2
degbj — (j— 1) =degcj — j =0 (mod2)

and whose coefficients involve

aj : < j — 2 derivatives of RTY

bj : < j — 2 derivatives of R”, RA™
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< j +r — 2 derivatives of R"

. . 0,%
¢j: < j — 2 derivatives of R, R*

< j + r — 2 derivatives of R"
while the coefficients a¥ Fip (y k), b"‘ (y k), c (y; k) of (3.19) are uniformly (in

k) C*° bounded. Using (3 3), (A4), (A 8), and (A 9) the leading term of (3.17) is
computed

Llo = Dg”)j:rzRLJTY (3.20)
in terms of the model Kodaira Laplacian on the tangent space 7Y (A.8).
In light of the spectral gap (3.11), equation (3.16) specializes to
e (v, ) = R0nE (Y, ki) (3.21)

as a relation between the Bergman kernels of ﬁk, (1. Next, the expansion (3.17) along
with local elliptic estimates gives

@@= =@ =07 = 0y posa (K77 1z 2)

foreachs € R. More generally, welet I; := {p = (po, P1»--) |pa €N, Y py = j}
denote the set of partitions of the integer j and define

=Y =007 M [By, ¢ - B0 (3.22)

PEIj

Then by repeated applications of the local elliptic estimate using (3.17) we have

) Zk Inci | = 0y o (k—(N-H)/Fy |Imz|—2Nry—2) ’
lo«,

loc

(3.23)

for each N € N,s € R. A similar expansion as (3.17) for the operator
B+ DM (@ - z), M € N, also gives

@+D™M@E -9 - Zk e,

= Oy yrirom (k‘(N“)/’y [lmz|~2V=2) (3.24)

loc
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z _ —(N+1)/ry —2Nry=2\ =+ _
for operators Cj’M = OHI%C_)H]212+2M (k v |Img| ), j=0,....,N,
with

-M -1
z _ (A0 2 (0) o
Com = (AgE,F,u + 1) (AgE,F,u Z) )

For M > 0 sufficiently large, Sobolev’s inequality gives an expansion for the cor-
responding Schwartz kernels in (3.24) in C L(K), for all I € Ny and compact subset
K C R?xR?. Next, plugging the above resolvent expansion into the Helffer—Sjostrand
formula [17, eq. 8.3] as before gives

N

@ (@) — Zk_j/ryc.(f -0 (k—(N-H)/Vy)

Jj=0 C[(K)

for all [, N € Ny and for some (k-independent) C‘f € C*(K),j=0,1,..., with

leading term C = ¢ (Clp) = ¢ (Dg” =2 ) . As ¢ was chosen supported

Jy
near 0, the spectral gap property (3.11) gives

RL’JTY

N
nt - S kil —0 (k*(N“)/”) (3.25)
Jj=0 CI(K)

. . . O ory Iy=2pL TY
for some C; € C*®(K), j =0,1,..., with leading term Cy = IT ¢ "/ R

The expansion is now a consequence of (3.13), (3.14), and (3.21). Finally, in order to
show that there are no odd powers of k~//"7, one again notes that the operators [ j
(3.18) change sign by (—1)/ under 8_;x := —x. Thus the integral expression (3.22)
corresponding to Cj. (0, 0) changes sign by (—1)7 under this change of variables and
must vanish for j odd. O

Next we show that a pointwise expansion on the diagonal also exists for derivatives
of the Bergman kernel. In what follows we denote by j's/j'~ls € S'T*Y ® E the
component of the /-th jet of a section s € C*° (E) of a Hermitian vector bundle E that
lies in the kernel of the natural surjection J LE) = JIE1(E).

Theorem 3.1 For each | € Ny, the [-th jet of the on-diagonal Bergman kernel has a
pointwise expansion

N
JH 1/ Tk (v )] = KD | e (py k20
j=0

+0 (k-@N=I=DIn ) (3.26)
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forall N € N, in j'End (F) /j'"" End (F) = S'T*Y ® End (F), with the leading

term
Try—2 Try—2
o (y) = j! [ngfy’l,v' RLJTY (0. 0)} /il [Hg}f,y,]y. RLJTY o, 0)]
being given in terms of the l-th jet of the Bergman kernel of the Kodaira Laplacian

(A.8) on the tangent space at y.

Proof The proof is a modification of the previous. First note that a similar localization
M (y,y) — i (y,y) = O (k™) (3.27)

to (3.14) is valid in C’, for all / € Ny, and for y in a uniform neighborhood of y. Next
differentiating (3.21) with y = y’ gives

0 Tli (v, y) = kEHDm g (yi /e i/, (3.28)

foralla € N(z). Finally, the expansion (3.25) being valid in C’, for all [ € Ny, may be
differentiated and plugged into the above with y = 0 to give the theorem. O

Remark 3.2 The expansion (1.3) is the same as the positive case on Y (points where
ry = 2) and furthermore uniform in any C !topology on compact subsets of Y5 cf.
[29, Theorem 4.1.1]. In particular the first two coefficients for y € Y, are given by

1
co(y) =& RSN 0,0y = — 1L

271
c1(y) = = TL[ AlntL+4rF]_

The derivative expansion on Y> is also known to satisfy co =c1 = ... =cf,_;7 =0
=

(i.e., begins at the same leading order k [29, Theorem 4.1.1]) with the leading term

given by

lL —1_L
/—] T,

[%} =

3.1 Uniform Estimates on the Bergman Kernel

The expansions for the Bergman kernel Theorem 1.1 and its derivatives Theorem
3.1 are not uniform in the point on the diagonal. For applications in the later sec-
tions we need to give uniform estimates on the Bergman kernel. Below we set
Cpy = inf vy 1€ R"7" (0, 0) for each 0 7& RV € S"2v* @ A2V, 1 > 2.

Furthermore, the Bergman kernel mé - avREIY (O, 0) of the model operator (A.8) is

extended (continuously) by zero from Y, to Y.
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Lemma 3.3 The Bergman kernel satisfies

[ inf e i RS o, 0)} [1+ 0 (DIKY" < T (y. y)

< |:sup n& RS (o, 0)} [1+o0(D)]k, (3.29)
yeyY

with the o (1) terms being uniforminy €Y.

Proof Note that Theorem 1.1 already shows that there exists constants Cyp, Cq, C» ...
such that

_ 2/ry
M (v 9) = G (|77 72RH6) T = ey (3.30)

forall y € Y, with

CyIC(

being a (y-dependent) constant given in terms of the norm of the first non-vanishing
jet. The norm of this jet affects the choice of ¢ needed for (3.7), which in turn affects
the C®°-norms of the coefficients of (3.19) via (3.6). We first show that this estimate
extends to a small (| 7 2RE (y) ]—dependent) size neighborhood of y. To this end, for
any ¢ > 0 there exists a uniform constant ¢, depending only on ¢ andH RL| cr such
that

j2RE (y)‘_l =0 -1 (D) (3.31)
[ 2RE()] ’

JP TR ()], (3.32)

SO TRE ()| = (=)

forally € B, |n-2ge| (¥)

We begin by rewriting the model Kodaira Laplacian [, (3.9) near y in terms of
geodesic coordinates centered at y. In the region

Ty—2
Y € B, |jn2ge| ()N {Co (|78 | k) = k2mmerts” kAT, 0)}
(3.33)
a rescaling of (J; by 8172, now centered at y, shows
i @y, y) = k1% R4 0,0) + 0 L (1)

772 RE)|

gl _(/)'QIZL T
= k[ jORE )| T TEOTY 0,00 40,y ()

L JTY

Try—2
> K2/rps i R 0,0) + O (3.34)

e D
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as in (3.30). The first line above follows as in the Bergman kernel expansion Theorem
1.1, along with its leading coefficient. The last line follows from (3.33) together with
(3.32). Now, in the region

. . 2/3
Y€ B jjrpe OO0 {01 (|7'R 5 /1R | k)
> 2l TR (0, o)

> Co (|8 w)[K)]
a rescaling of (J; by 8173 centered at y similarly shows

My (y,y) = k3 [1 +0 (kZ/r—2/3)] sy AR /iR ] 0.0)

+ O, .. (1
[/ 2 RE ()] M
fQRL/J&(l)RL TY

TY
— K2/3 [1 10 (kZ/r—2/3)] ‘j)}RL/j)?RL I'Igy A RE/9RE] Y 0.0)

+ 0211 (D (3.35)

‘2/3

L JTY

Ty—2
> (1—g)k2mns i BRI 0.0)+ 0 1 (3.36)

[/ 2 RE(y)

Next, in the region

ve Bz onfc (2Rt o Rt o)1)

TY Sy pL gTY
> kz/ryngy Jy R ,Jy (0’ O)

: . . 2/3
> max [Co (|7°r k) €1 (|5 RE ) /i°RE )| ) “
arescaling of Ok by &;-1/4 centered at y shows

Mg (y,y) = k'/2 [1 +0 (kz/’—l/Q)] s iR RN (0, 0) 0|20+ (D
RL I RL
8y n Jy”

i2
J
12 eyt
‘ LR R0, 0)

=K1+ 0 (K12)] | i2RE /) RE
O n2gr iyt (D

ry Ty=2 .
> —e)knms i RN 0,00+ 0 (3.37)

i 2RE(y)| ! ey

@ Springer



138 Page 20 of 41 G. Marinescu, N. Savale

Continuing in this fashion, we are finally left with the region

ry—2

Y € B, ;2| ()N {"z/r’“g; RS 0,0

2/(ry—1
i7RE ) 1R ) k) )]} .

> max [co (‘jORL (y)‘ k) s Cryos (

In this region we have

RN /P RE @) = (-0 )

=2 pL (y)‘ L0 (kZ/r) —2/(ry— 1))

following (3.32) with the remainder being uniform. A rescaling by §, -1/, then giving
a similar estimate in this region, we have finally arrived at

TY Jy2npL GTY
Me(yy) = (1= o) /T F 0,00 40y (D

forally € B, L/ 2RL| ).
Finally a compactness argument finds a finite set of points {y j} such that the

corresponding B 73R ‘ (vj)’s cover Y. This gives a uniform constant cle >0

such that

I (v, y) = (1 —¢e) [lnf e RIS

yeY,

(©. 0)} =i,
forall y € Y, ¢ > 0 proving the lower bound (3.29). The argument for the upper
bound is similar. O

We now prove a second lemma giving a uniform estimate on the derivatives of the

i eIV jIRE/jORE JTY
Bergman kernel. Again below, the model Bergman kernel 15y */» y& o0y (0,0)
and its relevant ratio

H:Jll_[gyTY lRL/jORL ]TY:I (O 0)‘

Hgy jleL/jORL JTY (O’ 0)

are extended (continuously) by zero from {y| JIRE/jORE £ O} toY.

Lemma 3.4 The [-th jet of the Bergman kernel satisfies

[ med R LR 0, 0|
FU o 1| < K731+ 0 (D] | sup

vey T8 ARMIREITT 0y i (v, y)

with the o (1) term being uniforminy € Y.
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Proof The proof follows a similar argument as the previous lemma. Given ¢ > 0 we
find a uniform ¢, such that (3.32) holds foreach y € Y andy € B |j72RL| (y)- Then

rewrite the model Kodaira Laplacian ﬂk (3.9) near y in terms of geodesic coordinates
centered at y. Again, let the constants Cq, C1, C> ... be such that (3.30) holds. In the
region

Ty—2

TY ) L jTY
Y € By, |jv-2ge) () N {co (‘jORL (y)‘k) S g2l REITY () 0)}
arescaling of Ok by §;-1/2, now centered at y, shows

k
o _ o L B
M 0.y) = 5 (T ) + 0y 2t (D
following remark 3.2 as ry = 2. Dividing the above by (3.34) gives

o oL
0T (v, )| _ [0%T" )] o <k71>
O (y.y) — th(y | 2RE ()|
et R 0,0)
< klol/3 sup‘[] ]( )

TY ;1pL/;0pL JTY
yeY 18y Iy RE/IYREJy (0, 0)

+ 02 ! (k_l)

i (y,y)

Next, in the region

Y € B |jrv-2ge) () 0 {cl (5" 0 /7R ] £)"

Try—2
> ks RSN 0,0y = ¢ (’jORL (y)‘ k)}

a rescaling of (J; by 813 centered at y similarly shows

9TIx (y,y) = K @Hleh/3 [1 +0 (kz/r—2/3)] I:aang;_y’jleL/j)()RL,JyTY:I 0.0)

- (1+\a|>/3)
+ O im-2gi gy (k

as in Theorem 3.1. Dividing this by (3.36) gives

- ’[a“ngfy»fy‘RL/ffRLJy”] (©, 0)’
| k(s Yl < KB (14
i (y,y) [ngy”’fleL/j?RL»fy”] (0,0)

- (\a|71>/3)
+ O m-2g1 ) (k
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\ ([jeme " R R 0, 0))
< K931 + ) sup

ey e ARIREIT (00

+0 k““'*”“) .

|2 RE )| (

Continuing in this fashion as before eventually gives

. TY :1pL,/:0pL jTY
9% Tk (y, y)| 3 ‘[J‘“'“g"' DRI ]‘0’ O)‘
Sklal/ (1+8) Sllp TY ;1pL/;0pL TY
i (v, y) vey T8 B RYRELT o 0)

forally e Y,y e Bcg}j
uniform c; , such that

rv2RL| (y), foralla € N(z). By compactness one again finds a

H:jloz\ Hg;)’)j}! RL/j}(?RL’J)-TY] (0, O)‘

10Tk (v, M| _
= < kB (1 4 e) | sup : : + ¢y
Mg (3, ) ver I8 A RELFREITY (o ) o
for all y € Y, proving the lemma. O

4 Induced Fubini-Study Metrics

A theorem of Tian [37], with improvements in [14, 38] (see also [29, S 5.1.2, S 5.1.4]),
asserts that the induced Fubini-Study metrics by Kodaira embeddings given by kth
tensor powers of a positive line bundle converge to the curvature of the bundle as k
goes to infinity. In this Section we will give a generalization for semi-positive line
bundles on compact Riemann surfaces.

Let us review first Tian’s theorem. Let (Y, J, gTY) be a compact Hermitian man-
ifold, (L, k"), (F, hf) be holomorphic Hermitian line bundles such that (L, %) is
positive. We endow H°(Y; F ® L¥) with the L? product induced by g7, h%, and h¥".

This induces a Fubini-Study metric wrg on the projective space P’ [H 0 (Y; F® Lk ) *]
and a Fubini-Study metric /5 on O(1) — P [HO (Y: F® Lk)*] (see [29, S 5.1]).

Since (L, h™) is positive the Kodaira embedding theorem shows that the Kodaira maps
QY > P [HO (V;FQ® Lk)*] (see (4.7)) are embeddings for k > 0. Moreover,

the Kodaira map induces a canonical isomorphism O : F ® LK — ®7O(1) and we
have (see e.g., [29, (5.1.15)])

©Fhrs)(y) = iy, y) WP (), yev. 4.1
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This implies immediately (see e.g., [29, (5.1.50)])

1 i
EdDszS — —RL =

i
—RF——aal I 4.2
oy Tk T 2010 k). 4.2)

Applying now the Bergman kernel expansion in the positive case one obtains Tian’s
theorem, which asserts that we have

| .
£®Z0)FS — éRL =0 (k_l) , k — oo, inany C*-topology. (4.3)

Let us also consider the convergence of the induced Fubini-Study metric ®;/ g to the

initial metric 2. For this purpose we fix a metric hé on L with positive curvature. We

can then express hl = e“phé, Orhps = e % (hé)k QhF, where ¢, g € C®(Y) are
the global potentials of the metrics 4 and @;:h rs with respect to h(’)‘ and (h(l)‘)k ® ht.
Note that

RLHT) — R(LAg) +30¢, R(Lk’QIth”) — kR + R + 39y,

and ﬁR(L@zh”) = ®fwrs. Then (4.1) can be written as

1 1
z‘/’k()’) p(y) = ln i (y,y), yeY. 4.4

We obtain by (1.3) that

—p — =0k 'Ink), k- oo, (4.5)

‘ k CO(Y)

that is, the normalized potentials of the Fubini-Study metric converge uniformly on Y
to the potential of the initial metric 2” with speed k~! In k. Moreover,

—_ — — -1
o —dg| = Olk ’kaawk 93¢ = 0(k™"), k- oo,

’k o)

(4.6)

and we get the same bound O (k‘l) for higher derivatives, obtaining again (4.3). Note

that if g7V is the metric associated to @ = 5= RL, then we have a bound O (k~2) in
(4.3) and (4.6).

We return now to our situation and consider that Y is a compact Riemann surface
and (L, h%), (F, h') be holomorphic Hermitian line bundles on Y such that (L, h%)
is semi-positive and its curvature vanishes at finite order. An immediate consequence
of Lemma 3.3 is that the base locus

B1<F®Lk> - {er|s(y)=o, seHO<Y;F®Lk)}=®
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is empty for k >> 0. This shows that the subspace
Dy = {s e HO (Y; F® Lk) Is (y) = 0} c H° (Y; F® Lk) ,

is a hyperplane for each y € Y. One may identify the Grassmannian G (dk —1;H°
(Y; F® Lk)), dp = dimH° (Y; F® Lk), with the projective space P [HO Y, F®
Lk)*] by sending a non-zero dual element in H° (Y; F ® L¥)" to its kernel. This
now gives a well-defined Kodaira map

DY — ]P’[HO (Y;F®Lk>*],
O (y) = {s c H° (Y; F®Lk> Is () =o]. “.7)

It is well known that the map is holomorphic.

Theorem 4.1 Let Y be a compact Riemann surface and (L, Ly, (F, hT) be holomor-
phic Hermitian line bundles on Y such that (L, h) is semi-positive and its curvature
vanishes at most at finite order. Then the normalized potentials of the Fubini-Study
metric converge uniformly on Y to the potential of the initial metric h’ with speed
k~'Ink as in (4.5). Moreover;

‘la(pk “ael ‘lg(pk —3p| = 0(kP). k>0, (48
k coyy lk co(y)
and
)lag(pk — 39¢ =0(k™'7), k— o0 (4.9)
k o) ’ ’ '
especially
| .
~@wps — —RE =0 (k—1/3) k> 00, (4.10)
k 2

uniformly on Y. On compact sets of Y» the estimates (4.3) and (4.6) hold.

Proof The proof follows from (4.2), (4.4), and the uniform estimate of Lemma 3.4 on
the derivatives of the Bergman kernel. O

As we noted before, the bundle L satisfying the hypotheses of Theorem 4.1 is ample,
so for k > 0 the Kodaira map is an embedding and the induced Fubini-Study forms
%CDZa) rs are indeed metrics on Y. Due to the possible degeneration of the curvature
REL the rate of convergence in (4.10) is slower than in the positive case (4.3).

One can easily prove a generalization of Theorem 4.1 for vector bundles (F, h")
of arbitrary rank (see [29, S 5.1.4] for the case of a positive bundle (L, h')). We have

then Kodaira maps ®; : ¥ — G <rk (F); HO (Y; F® Lk)*) into the Grassmannian
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of rk (F)-dimensional linear spaces of H 0 (Y; F® LK )>k and we introduce the Fubini-
Study metric on the Grassmannian as the curvature of the determinant bundle of the
dual of the tautological bundle (cf. [29, (5.1.6)]). Then by following the proof of [29,
Theorem 5.1.17] and using Lemma 3.4 we obtain

| .
L Ojwrs =tk (F) 2’—RL —0 (k—1/3), k — o0, 4.11)
T

uniformly on Y.

5 Toeplitz Operators

A generalization of the projector (3.1) and Bergman kernel (3.2) is given by the notion
of a Toeplitz operator. The Toeplitz operator Tf ; operator corresponding to a section
f € C*® (Y; End (F)) is defined via

Ty :C™ (Y; F® Lk) - ™ (Y; F® Lk> L Trx=TfM, (5.0)

where f denotes the operator of pointwise composition by f. Each Toeplitz operator
above further maps H (Y; F ® L*) to itself.

We now prove the expansion for the kernel of a Toeplitz operator generalizing
Theorem 1.1. For positive line bundles the analogous result was proved in [ 15, Theorem
2] for compact Kihler manifolds and F = C and in [29, Lemma 7.2.4 and (7.4.6)],
[31, Lemma 4.6], in the symplectic case.

Theorem 5.1 Let Y be a compact Riemann surface, (L, h*) — Y a semi-positive line
bundle whose curvature R™ vanishes to finite order at any point. Let (F,hf) — Y
be a Hermitian holomorphic vector bundle. Then the kernel of the Toeplitz operator
(5.1) has an on-diagonal asymptotic expansion

N
Tra (v y) =K1Y e (fon k| 40 (kizN/r‘v)’ VN eN
j=0
where the coefficients ¢ (f, -) are sections of End(F) with leading term

]TY

co(f.y) =115 RN 0,0) £ (y).

Proof Firstly from the definition (5.1) and the localization/rescaling properties (3.14),
(3.21) one has

Tri(y,y) = /Ydy/ O (v, ') £ () e (', y)

= /B ( )dy’ e (0.) f (3) T (. 0) + O (k)
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— / dy/ k4/ryl—[|3 (07 y/kl/ry) f (y/) I—IE] <y/k]/ry, 0) + 0 (kfoo)
B (y)

- f dy K (0, y') f (y’k_l/ry> = (y/,0) + 0 (k™).
Ky By (y)
(5.2)

Next as in Section A, ¢ (1) (., 0) € S (V) for ¢ € S (R) in the Schwartz class via a
finite propagation argument. Thus plugging (3.25) and a Taylor expansion

PR = X L0 @+ 0 ()

la|<N+1 "

into (5.2) above gives the result with the leading term again coming from (3.20).
Finally and as in the proof of Theorem 1.1, there are no odd powers of k—//7> as the
corresponding coefficients are given by odd integrals (the integrands change sign by
(—1)7 under §_;x := —x) which are zero. O

We now show that the Toeplitz operators (5.1) can be composed up to highest order
generalizing the results of [11] in the Kihler case and F = C and [29, Theorems
7.4.1-2], [31, Theorems 1.1 and 4.19] in the symplectic case.

Theorem 5.2 Given f, g € C*® (Y; End (F)), the Toeplitz operators (5.1) satisfy

. Lf ()ul,F
lim | Tp x| = 1 flls := fy—h, (5.3)
k=00 yey |ue]y,F
ueFy\0
TraTgr =Trgp +Op2p2 (k‘l/’) . (5.4)

Proof The first part of (5.3) is similar to the positive case. Firstly, || Tr x || < I fllsis
clear from the definition (5.1). For the lower bound, let us consider y € Y> where the
curvature is non-vanishing and u € F), |u|,r = 1. It follows from the proof of [29,
Theorem 7.4.2] (see also [2, Proposition 5.2, (5.40), Remark 5.7]) that

|f () @)]pr + Oyu (k*‘/z) <774 - (5.5)

If | flloo = |f (bo) (uo)|F is attained at a point yo € Y2, it follows immediately from
(5.5) that

)

1£lloo + 0 (k772) < | Ty

so one obtains the lower bound. Next let || f|l, = |f (yo) (wo)|,r be attained at
yo € Y \ Y», a vanishing point of the curvature. As Y \ Y> C Y is open and dense
one may find for any ¢ > 0 a point y. € Y \ Y2 and u; € Fy,, |ucl,r = 1, with
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I flloo —€ < |f (V) (ue)|pr. Combined with (5.5) this gives

1fllso =&+ 0 (k72) < | Ty4] . and

[flle —& = likminf 1T -
—00

Since ¢ > 0 is arbitrary, this implies || f||o, < liminfz_ || Trx || proving the lower
bound.

Next, to prove the composition expansion (5.4) it suffices to prove a uniform kernel
estimate

[TraTex = Trer] .92 =0 (k‘l/’) . Vyev.

To this end we again compute in geodesic chart centered at y

TriT (.,0):/
fkogk Y x

=02 (k%) +/ dm_/ dys Ty
Bs(yZ) Be(y)

Gy £ OD g (1, y2) g (02) Tk (32, 0)

=02 (k) +/ dy1/ dy k! {HD (kl/ry., k1/ryyl>
Be(y2) B (y)

fopm (kl/’f"yh kl/’yyz) g () ™ (kl/’yn, 0)}

= 0. (k= +f d / dy k?/r s (kry

Lz( ) K1 By () Y1 K1 BL(y) Y2 [ ( y1)
(k) v g (k=) 1 G, 0]

=0, (k1 / d / dy k2 dmH (k|
L2< )+ Y By () n 1y By () »2 { ( )’1)
M9 o132 £ (26777 ) 17 (3, 00}

=0 (k_l/"') +/ d)’I[ dy> T (., y) T (1, 2)

B By

fg () My (32, 0)
=0 (k_l/r'v) +Tigk

y dyrdy Ty (., y1) f (v1) Ty (y1, ¥2) g (v2) T (32, 0)

with all remainders being uniform in y € Y. Above we have again used the local-
ization/rescaling properties (3.14), (3.21). As well as the first-order Taylor expansion
F (k=) = f vk~ V) + O £l (Iy1 — y21 k~1/7) and the off-diagonal decay
of ¥ (., y2) € S (R?). O
Remark 5.3 Similar to the previous Remark 3.2, we can recover the usual algebra
properties of Toeplitz operators when f, g are compactly supported on the set Y»
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where the curvature R’ is positive. In particular we define a generalized Toeplitz
operator to be a sequence of operators T : L>(Y, F ® L¥) — L*>(Y,F @ L"),
k € N, such that there exist K € Y2, h; € C° (K;End (F)),C; >0,j=0,1,2,...
satisfying

N
H Ti— S kI Ty H <Cyk N1 YN eN. (5.6)
j=0

Then this class is closed under composition and one may define a formal star product
on CX (Y2) [[k‘l]], via

faprg= ic,- (f )k~ € C® (1) [[k‘l]] where

J=0

o0
TyxoTgr~ Z Tejr.ok™
=0

(cf. [11, 15, 31]). Furthermore
TrsoTex =Trex+ Opa.p2 (k”)
i —
[Trae: Tord = L Tirgrie + Op2s 2k %)

forall f, g € CX° (Y2; End (F)), with {-, -} being the Poisson bracket on the Kéhler
manifold (Y2, i RL).

Finally we address the asymptotics of the spectral measure of the Toeplitz operator
(5.1), called Szegd-type limit formulas [12, 21]. The spectral measure of 77 ; is defined
via

upk() =y  Ss—1eS®Ry. (5.7)

reSpec(Ty )

We now have the following asymptotic formula.

Theorem 5.4 The spectral measure (5.7) satisfies

k
wp g~ Ef*RL (5.8)

in the distributional sense as k — oc.

Proof Since Spec (T¢ k) C [ = | flloo s Il flloo | by (5.3), equation (5.8) is equivalent
to

k
wo(Tr)= Y w(k)~gfy[<p0f]RL,

reSpec(Ty 1)
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forall o € C(— [ fllo — 1, I flloo + 1). We first prove that the trace of a Toeplitz
operator (5.1) satisfies the asymptotics

k L
te Ty g~ I fR"™. 5.9)
Y

To this end first note that the expansion of Theorem 5.1 is uniform on compact subsets
K C Y, while |Tf,k (v, y)| = O (k) uniformly in y € Y as in Lemma 3.3. Fur-
thermore, as in [32, Proposition 7], Y>3 is a closed subset of a hypersurface and has
measure zero. Let K; C Y2, j =1, 2, ..., be asequence of compact subsets satisfying
K; CKjy1, ﬁi‘; K j = Y>3. One may then breakup the trace integral

1 1 1
-trTf,k=—/ trTf,k(y,y)Jr—/ tr T (v, y)
k k' Jk; kJnk;
1 1
= REt+0O; | - O(u(Y\K;
e IR0 () o)

from which (5.9) follows on knowing % ij fRL — % Jy FRE, W(Y\K;) =0
as j — oo.
Following this one has

tr T},k = {r Tfl,k + Of (klil/r)

for all/ € N from (2.15), (5.4). A polynomial approximation of the compactly sup-
ported function ¢ € Cé’o(— lflleo =1, I flloo + 1) then gives

tro (Tf,k) =tr Typos .k + o0 (k)

k
=2—/[¢0f]RL+0(k)
T Jy

by (5.9) as required. O

The analogous result for projective manifolds endowed with the restriction of the
hyperplane bundle was originally proved in [12, Theorem 13.13], [21] and for arbitrary
positive line bundles in [6], see also [27]. In [23, Theorem 1.6] the asymptotics (5.9) are
proved for a semiclassical spectral function of the Kodaira Laplacian on an arbitrary
manifold.

5.1 Branched Coverings

We now consider Toeplitz operators and their composition in a particular case of
semi-positive line bundles. Namely, those that arise from pullbacks along branched
coverings. Here f : Y — Y is a branched covering of a Riemann surface Yy with
branch points {y{, ..., yy} C Y. The Hermitian holomorphic line bundle on Y is
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pulled back (L,h%) = (f*Lo, f*h*0) from one on Yo. If (Lo, h™0) is assumed
positive, then (L, hL) is semi-positive with curvature vanishing at the branch points.

In particular, near a branch point y € Y of local degree 5 one may find holomorphic
geodesic coordinate such that the curvature is given by RE = % (zz)/?~1 R;?y) +
o (yr’l). We set in the following Ry =: R}Lc?y). The leading term of (1.3) is given by

the model Bergman kernel it (0, 0) of the operator

Clo = bb', for (5.10)
b=-20,+a (5.11)
b' =20: +a,
a= 22 (22)"/>1 Ry, (5.12)

We first compute this model Bergman kernel.

Lemma 5.5 The model Bergman kernel corresponding to the model operator (5.10)
at a branch point is given by

. r672[<1>(z)+<l>(z’)]R% 2
M (z,7) = 5 G <R6 zz’) where (5.13)
1 =\/2
P (z) = 7 (z2)""“ Ry and (5.14)
r-1 @ ) . t-2p (2(ozr+l) T 2(ar+1)’x5)
G (x) ::Z——i—x?_lex2 Z
=r (w) ~ T (2 ar+1)) / (Z(a:rl) _1

is given in terms of the incomplete gamma function.

Proof From the formulas (5.12), an orthonormal basis for ker ([y) is easily found to
be

1/2
1 r 2(a+1)
=|——— R, "’ up=® N
SO{ 27[ 1—1 (2(a+l)> 0 ze ’ [PAS 0>
r
1
with @ := Z(zz)’/2 Ro.
From here the model Bergman kernel is computed
M (2,2) = Y 50 ()50 @)
OlGNo
1 2@t) , _\a«
- T R (zz’) e 2%, (5.16)

r

o 2a+1)) O
2m aeNy F( o ))
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To compute the above in a closed form, consider the series

00 ya%—]
F(y)::ZTLl)

a=0
s—1 el g 00 atl
y s y s
= a+1 + a+1y)’
a:OF(s) a:sF(s)
—— —
Fo(y):=

. Differentiating the second term in the series gives Fj (y) = Fo (y) +
atl

=
fors = 5
P ;% (Dt:rl —1) %, which is an ODE that can be solved with the initial condition

Fy (0) =0 to give

oo e+l j s—2 r (a+1) T (etL )
y s . Y
L = | 4 e oy
oo
in terms of T (a, 2) ::/ 1" le7'dt, Re(z) >0, (5.17)
Z

the incomplete gamma function. Thus in particular we have computed F (y) :=
y%_lG (y%) (5.15). Finally noting from (5.16) that

2
re_m)Ré

n (z,7) = 5

xsfl F (xs) ,

2 _
for x = R zz/, completes the proof. O

This gives the first term of the expansion

1
co(y) =10(0,0) = —
2

r@

at the vanishing/branch point y in this example.

6 Random Sections

In this section we generalize the results of [36] to the semi-positive case considered
here. Let us consider Hermitian holomorphic line bundles (L, h%) and (F, h*) on a
compact Riemann surface Y. To state the result first note that the natural metric on
H® (Y; F ® L¥) arising from 7", h*', and h’ gives rise to a probability density 1k
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on the sphere
SH(viFe 1Y) :={s e HO (i Fo L}) IsI =1},

of finite dimension x (Y; F ® L*) — 1 (2.15). We now define the product probability
space (R, ) := (M2, SH® (Y; F ® L*), T1{2 | 11x). To a random sequence of sec-
tions s = (Sy)reny € 2 given by this probability density, we then associate the random
sequence of zero divisors Zy, = {s;y = 0} and view it as arandom sequence of currents
of integration in 96,0 (Y). We now have the following.

Theorem 6.1 Let (L, h%) and (F, hF) be Hermitian holomorphic line bundles on a
compact Riemann surface Y and assume that (L, h") is semi-positive line bundle
and its curvature R vanishes to finite order at any point. Then for p-almost all
s = (Sk)reN € 2, the sequence of currents

1 i
kK% 2n

converges weakly to the semi-positive curvature form.

Proof The proof follows [29, Theorem 5.3.3] with some modifications which we point
out below. With &, denoting the Kodaira map (4.7), we first have

E[Zy] = @ (wFs) (6.1)

as in [29, Theorem 5.3.3]. For a given ¢ € Q.0 (Y), one has

1 i, 1 1 s
<%Zsk - ER ,(P> = <Ezsk — E(Dlt (wFs) , <P> +0 (k / ||§0||c0)

following (4.10) and it thus suffices to show Y? (s;) — 0, u-almost surely with

. 1 1,
YY (sp) := %Zs" — %(Dk (wFs), @

being the given random variable. But (6.1) gives

Eﬂymﬁﬂﬂ::%Eﬂzw¢f]—éER¢zmmg,@ﬂ
=0 (k?)

as in [29, Theorem 5.3.3]. Thus [, du [> fe, |V¥ (sk)lz] < oo proving the theorem.
o

The above result may be alternatively obtained using L? estimates for the d-equation
of a modified positive metric as in [18, S 4].
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Example 6.2 (Random polynomials) The last theorem has an interesting specialization
to random polynomials. To this end, let ¥ = CP! = (Czw\ {0} /C* with homogeneous
coordinates [wg : wi]. A semi-positive curvature form for each even r > 2 is given
by

o ;:%aélnuwor + lwil")

.2 r—2 (6.2)
:LLdez AdZ, forz =2 %0,
2w 4 (1 + |Z|r) wi

which can be seen to have two vanishing points at the north/south poles of order r — 2.
This is the curvature form on the hyperplane line bundle L = O (1) for the metric
with potential ¢ = In (Jwo|” + |w;|"). An orthogonal basis for H° (X, L¥) is given
by sy := z% 0 < o < k, in terms of the affine coordinate z = wg/w1 on the chart
{wy # 0} and a C* invariant trivialization of L. The normalization is now given by

Isall® = iﬁ/ oot
A e (144t

1

k
e

with the binomial coefficient

( k ) _ Ck+1)
fo) T TGt )T (- )
given in terms of the Gamma function. We have now arrived at the following.

Corollary 6.3 For each evenr > 2, let

ook
(@) =) ca <ga>z“
a=0 r

be a random polynomial of degree k with the coefficients cy being standard i.i.d.
Gaussian variables. The distribution of its roots converges in probability

1 P P U

T T (e

The above theorem interpolates between the case of SU (2)/elliptic polynomials
(r = 2) [10] and the case of Kac polynomials (r = o00) [22, 26, 35]. For recent results
on the distribution of zeroes of more general classes of random polynomials we refer
to [3, 9, 25].
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7 Holomorphic Torsion

In this section we give an asymptotic result for the holomorphic torsion of the semi-
positive line bundle L generalizing that of [8] (see also [29, S 5.5]). First recall that
the holomorphic torsion of L is defined in terms of the zeta function

& (s) = %/Owdtts_ltr [e—ﬂi], Re(s) > 1. 7.1y

The above converges absolutely and defines a holomorphic function of s € C in
this region. It possesses a meromorphic extension to C with no pole at zero and the
holomorphic torsion is defined to be 7x := exp {—1¢; (0)}.

Next, with 7%, @ (RY) as in (2.11) and 7 > 0, set

-1
oL (1 — e_”L) e~1@(RY), 7L (y) >0

(7.2)
; Ly =o.

R (y) =

8- 8-
~|—

Note that the above defines a smooth endomorphism R; (y) € C* (Y ; End (AO**)).
Further, let A; € C* (Y; End (AO’*)) be such that

N
=R =Y Ay =0 (). (1.3)
j=—1

We now have the following uniform small time asymptotic expansion for the heat
kernel [29, Theorem 5.5.9].

Proposition 7.1 There exist Ay ; € C* (Y; End (AO’*)), j=-1,0,1,... satisfying
A j—Aj=0 (k_l), such that for each t > 0

N

1 —Lp2 i _

KB () = 3 Ay )il = o[ = 0 (M) (7.4)
=1

uniformlyiny € Y, k € N.

We now prove the asymptotic result for holomorphic torsion. Below we denote by
x In x the continuous extension of this function from R..o to R>¢ (i.e., taking the value
zero at the origin).

Theorem 7.2 The holomorphic torsion satisfies the asymptotics

1, oL L L
InTi = =35 (0) = —klnk/y[g] —k/Y [gln (E)} +o k)

as k — oo.
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Proof First define the rescaled zeta function Z; (s) := % fooo de 5" r [e*iljz'] =
k='kS ¢y (s) satisfying

¢ (0) = kg (0) — (kInk) g (0). (7.5)

Withay j := [y tr[Ag, j]dy, j = —1,0, ..., and the analytic continuation of the zeta
function being given in terms of the heat trace, one has

& (0) = ago — /Y dy tr[Aol, (7.6)
T

Foy= | dari ke le i —ap i —

& (0) fo { r[e ] ag,—1 ak,O}

=T ar t*lp}’-i-O(%)

o0 t 1
+/ det 'k [e‘%Dk]
T

—ak,_lT_l +T' () a0 (1.7)

following (7.4).
Choosing T = k'~2/", gives

—1 r
[0 < PR el [ 0]

G=Dr. 12 .
<cr ke T ek —al s

3

on account of (2.14), (7.4). The integral on [T, co) of the last expression is uniformly
bounded in k. By dominated convergence we have as k — oo,

E/é 0) —>f dya(y), where
Y
T
a(y) ::/o drt™! {tr[Rz MI—-t[A]t ! =t [Ao]}

+/ drt~ "t [R, ()]
T

—tw[A_ ]+ T (D) tr[Ao]. (7.8)

Finally, using (7.2) one has

.[L
tr [A()] = _LG
tt ol
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with again the extension of the function x In x to the origin being given by continuity
to be zero as before. The proposition now follows from putting together (7.5), (7.6),
(7.7), (7.8), and (7.9). O
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Appendix A: Model operators

Here we define certain model Bochner/Kodaira Laplacians and Dirac operators acting
on a vector space V. First the Bochner Laplacian is intrinsically associated to a triple
(V. g". R) with metric g and tensor 0 # RV € S"72V* @ A2V*, r > 2. We say
that tensor R" is non-degenerate if

R W AT (RV>:O, Vs<r—2 = T,Y 5v=0. (Al

Above i* denotes the s-fold contraction of the symmetric part of RV .

Forv; € V,vp € T, V = V, contraction of the antisymmetric part (denoted by ¢) of
RY gives ty, RV € §"72V*® V*. The contraction may then be evaluated (va RV) (vy)
atv; € V,i.e., viewed as a homogeneous degree r — 1 polynomial function on V. The
tensor RV now determines a one form a®' € Q! (V) via

af @ == [ o (R oo = = (R ) 0. A2

which we may view as a unitary connection VR" = d +iaR" on a trivial Hermitian
vector bundle E of arbitrary rank over V. The curvature of this connection is clearly
RV now viewed as a homogeneous degree  — 2 polynomial function on V valued in
A?V*. This now gives the model Bochner Laplacian

*

Agv gy = (VRV> VR . % (Vi E) > C® (Vi E). (A3)
An orthonormal basis {ej, ez, ..., e,}, determines components R,; o = RV
(e®ep,eq) #0,a € Ngfl, la| = r — 2, as well as linear coordinates (1, ..., yn)
on V. The connection form in these coordinates is given by a}fv = ’; YIY*Rpg -
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While the model Laplacian (A.3) is given

n

. 2
i
Agv gv = — E (Byp + ;yqy"‘qu’a) . (A.4)
g=1

Asin (2.8), the above may now be related to the (nilpotent) sR Laplacian on the product
Sel x V given by

n

. 2
~ l
Agv gv 1= — Z <3y,, + ;y"y“qu,aae) , (A.5)
q=1

and corresponding to the sR structure (Sel x V, ker (d@ + aRV) gV, dGVOlgV)

where the sR metric corresponds to gV under the natural projection 7 : Sel xV —>V.
Note that the above differs from the usual nilpotent approximation of the sR Laplacian
since it acts on the product with S ! The heat kernels of (A.3), (A.5) are now related

PR (y’ y/) — /e_iee_tAngRV (y, 0;y, 9) do. (A.6)

Next, assume that the vector space V' of even dimension and additionally equipped
with an orthogonal endomorphism JV € O (V); (JV)2 = —1. This gives rise to a
(linear) integrable almost complex structure on V, a decomposition V@ C = V-0 @
VO linto +i eigenspaces of J and a Clifford multiplication endomorphism ¢ : V —
End (A*VO'I). We further assume that R" is a (1, 1) form with respect to J (i.e.,
Sky* 5 RV (w1, wp) = 0, for all wy, wy € Vl’o). The (0, 1) part of the connection
form (A.2) then gives a holomorphic structure on the trivial Hermitian line bundle C
with holomorphic derivative dc = 9 + (i aV)O’l. One may now define the Kodaira

Dirac and Laplace operators, intrinsically associated to the tuple (V, gV . RV, J V),
via

Dyv gv v :=v2(dc + 37) (A7)
1 2
ngvaJv ::5 (DgV’RV,JV) (A.8)

acting on C*° (V; A*Vo’l). The above (A.3), (A.8) are related by the Lichnerowicz
formula

Ogv gv g7 = Mg gy +c (iR (A.9)

where ¢ (RV) = qu R;}é"l’_zy,-l_,_yirfzc (ep) c (eq).
Being symmetric with respect to the standard Euclidean density and semi-bounded
below, both A,v pv and (" are essentially self-adjoint on L. The domains of their
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unique self-adjoint extensions are

Dom (Agv’Rv) = {@0 € L2|AgV’RVW € L2} ,
Dom (DgV!RV’JV) = [w € L2|E|gv’RvJv¢ € L2] ,

respectively. We shall need the following information regarding their spectrum.

Proposition A.1 For some ¢ > 0, one has Spec (AgV,RV) C [c, 00). For RV satis-
fying the non-degeneracy condition (A.1) one has EssSpec (Agv’ Rv) = (. Finally,
for dimV = 2 with RY (w,w) > 0, for all w € y 1.0 semi-positive one has
Spec (ng,RvJv) C {0} U [c, 00).

Proof The proof is similar to those of Proposition 2.1 and Corollary 2.3. Introduce
the deformed Laplacian Ay := A,v ;pv obtained by rescaling the tensor RY. From

(Ad) Ay = kz/’%’Agv’Rv%’_l are conjugate under the rescaling #Z : C*®° (V; E) —
C*® (V; E), (Zu) (x) := u (yk'/") implying

Spec (A) = k*/"Spec (A,v gv)
EssSpec (Ax) = k2/’EssSpec (Agvva) (A.10)

By an argument similar to Proposition 2.1, one has Spec (Ax) C [c1k*" — ¢3, 00)
for some ¢i, ¢ > 0 for RV # 0. From here Spec (A,v gv) C [c,00) follows.
Next, under the non-degeneracy condition, the order of vanishing of the curvature

homogeneous curvature R" (of the homogeneous connection a ! (A.2)) is seen to be
maximal at the origin: ord, (RV) < r —2for y # 0. Following a similar subelliptic
estimate (2.6) on V x Sé as in Proposition 2.1, we have

KD )2 < € [(Ag )+ ul3 |, Vue €2 (VA B O),

holds on the complement of the unit ball centered at the origin. Combining the above
with Persson’s characterization of the essential spectrum (cf. [1, 33] Ch. 3)

EssSpec (Ag) = sup | i1”1f] (Agu, u),
ull=
K ueC®(V\Br(0))

we have EssSpec (Ax) C [clkz/(’_l) —cz,oo). From here and using (A.10),
EssSpec (AgV,RV) = { follows.

The proof of the final part is similar following k%/"Spec (I:lgv’ RV. Jv) =
Spec (ng’kRVJv) = Spec (y) C {0} U [clkZ/r —ca, oo), O = ng)kRvJv,
by an argument similar to Corollary 2.3. O

_ _ i it /OJ
Next, the heate "2¢V .8V ¢ v RV 0V and wave eV 2V &Y eV eV RYY operators
being well defined by functional calculus, a finite propagation type argument as in [32,
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egs. 2.15, 2.16] gives ¢ (Agv’Rv) (-0) € S(V), ¢(Ogv gv yv) (,0) € S(V) are
in the Schwartz class for ¢ € S (R). Further, when EssSpec (AgV,RV) = ) any
eigenfunction of A,v v also lies in S (V). Finally, on choosing ¢ supported close to
the origin, the Schwartz kernel I1sV-k".7" (., 0) € S (V) of the projector I1s"-8".7V
onto the kernel of L v gv ;v is also of Schwartz class.

We now state another proposition regarding the heat kernel of A v gv. Below we

denote A (A,v gv) := inf Spec (A,v gv).

Proposition A.2 For each ¢ > O there exist t, R > 0 such that the heat kernel

A
fBR(O) dx [Agv’Rve ! gvﬁ’v] (x,x)

_tAgV,RV

<X (Agvva) +e&

fBR(O) dxe (x, x)

Proof Setting P := A,v gv — Ao (AgV’Rv) it suffices to show

fBR(O) dx [Pe_’P] (x, x) -
e
fBR(O) dx e P (x,x)

for some t, R > (0. With H[Ig_x] denoting the spectral projector onto [0, x], we split
the numerator

/ dx [Pe_tp] (x,x) = / dx [H[I(J),%]Pe_tp] (x,x)
Br(0) Br(0)

* /I;R(o) dx [(1 a H{(’)Ac"]) Peitp] (x,x).

From P > 0, l'[fl())’éts]Pe_”D < 4ge P and (l — 1'[{6146]) Pe'P < ce™3¢ for all

t > 1, we may bound

fBR(O) dx [Pe_tP] (x, x) < ¢ n Ce—3£tRn—l

< (A11)
fBR(O) dx e P (x, x) fBR(O) dx e P (x,x)

forall R, > 1. Next, as 0 € Spec (P) there exists [|[Yell;2 = 1, |[PYell2 < e. It
now follows that H Ve — 1'[{828]1#5 H < % and hence

2

/dyﬂff),ze] (x, ¥) Ye ()

1 1
! ——+/ dx e (1) 5/ dx
2 4 JBg 0 Bg, (0)

<[ ar([amha et om) = [ amfa, e,
Bg, (0) Bg, (0)
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2
for some R, > 0, using (Hfg’zg]) = M ,,) and Cauchy-Schwarz. This gives

e—28t

/ dxe P (x,x) > , t>1.
B, (0) 2

Plugging this last inequality into (A.11) gives

-[BRE(O) dx [Peftp] (x, x)

kag(O) dx e 1P (x, x)

<de + ce_‘”Rf’;_1

from which the theorem follows on choosing ¢ large. O
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