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Abstract
In earlier work (Marinescu and Savale in Math Ann. https://doi.org/10.1007/s00208-
023-02750-3, 2023) the authors proved the Bergman kernel expansion for semi-
positive line bundles over a Riemann surface whose curvature vanishes to at most
finite order at each point. Here we explore the related results and consequences of
the expansion in the semi-positive case including: Tian’s approximation theorem for
induced Fubini-Studymetrics, leading-order asymptotics and composition for Toeplitz
operators, asymptotics of zeroes for random sections, and the asymptotics of holomor-
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1 Introduction

Geometric quantization is a procedure to relate classical observables (smooth func-
tions) on a phase space (a symplectic manifold) to quantum observables (bounded
linear operators) on the corresponding quantum space (sections of a line bundle). In
the case when the line bundle in question is positive, and consequently the underlying
manifold Kähler, a well-known quantization recipe is that of Berezin-Toeplitz [5, 28,
34]. Showing the validity of the quantization procedure involves proving that it has
the right properties in the semiclassical limit. Key to the proof is the analysis of the
semiclassical limit of the Bergman kernel [14, 16, 29, 30, 38]. In earlier work [32] the
authors proved the Bergman kernel expansion in the case when the underlying line
bundle is only semi-positive, with curvature vanishing at finite order at each point, on a
Riemann surface. It is the purpose of this article to explore the corresponding applica-
tions of the expansion therein to results in geometric quantization in the semi-positive
case. These include the Tian’s approximation theorem for induced Fubini-Study met-
rics, leading-order asymptotics and composition for Toeplitz operators, asymptotics
of zeroes for random sections, and the asymptotics of holomorphic torsion.

We now state our results more precisely. Let Y 2 be a compact Riemannian surface
equipped with an integrable complex structure J and Hermitian metric hTY . Consider
holomorphic,Hermitian line and vector bundles

(
L, hL

)
,
(
F, hF

)
onY and let∇L ,∇F

be the corresponding Chern connections. Denote by RL = (∇L
)2 ∈ �2 (Y ; iR) the

corresponding curvature of the line bundle. The order of vanishing of RL at a point
y ∈ Y is now defined

ry − 2 = ordy
(
RL

)
:= min

{
l|J l

(
�2T ∗Y

)
� j ly R

L �= 0
}

, ry ≥ 2, (1.1)

where j l RL denotes the lth jet of the curvature. We shall assume that this order of
vanishing is finite at any point of the manifold i.e.,

r := max
y∈Y ry <∞. (1.2)

The function y 	→ ry being upper semi-continuous then gives a decomposition of the

manifold Y = ⋃r
j=2 Y j ; Y j :=

{
y ∈ Y |ry = j

}
with each Y≤ j := ⋃ j

j ′=0 Y j ′ being

open. Furthermore, the curvature is assumed to be semi-positive: RL (w, w̄) ≥ 0, for
all w ∈ T 1,0Y .

Associated to the above one has the Kodaira Laplacian

�q
k : �0,q

(
Y ; F ⊗ Lk

)
→ �0,q

(
Y ; F ⊗ Lk

)
, 0 ≤ q ≤ 1,

acting on tensor powers. The kernel of the Kodaira Laplacian ker�q
k = Hq (X; F⊗

Lk
)
is cohomological and corresponds to holomorphic sections. The Bergman kernel

�
q
k

(
y, y′

)
is the Schwartz kernel of the orthogonal projector �

q
k : �0,q

(
Y ; F ⊗ Lk

)
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→ ker�q
k . Its value on the diagonal is

�
q
k (y, y) =

Nq
k∑

j=1

∣∣s j (y)
∣∣2 , Nq

k := dim Hq
(
X; F ⊗ Lk

)
,

for an orthonormal basis
{
s j
}Nq

k
j=1 of Hq

(
X; F ⊗ Lk

)
. Under these assumptions one

has H1
(
X; F ⊗ Lk

) = 0 for k � 0. We now first recall our theorem from [32] on
the asymptotics of the Bergman kernel �k := �0

k .

Theorem 1.1 [32, Theorem 3] Let Y be a compact Riemann surface and (L, hL)→ Y
a semi-positive line bundle whose curvature RL vanishes to finite order at any point.
Let (F, hF )→ Y beanotherHermitian holomorphic vector bundle. Then theBergman
kernel �k := �0

k has the pointwise asymptotic expansion on diagonal

�k (y, y) = k2/ry

⎡

⎣
N∑

j=0
c j (y) k

−2 j/ry
⎤

⎦+ O
(
k−2N/ry

)
, ∀N ∈ N. (1.3)

Here c j are sections of End (F), with the leading term c0 (y) = �gTYy , j
ry−2
y RL ,J TYy

(0, 0) > 0 being given in terms of the Bergman kernel of the model Kodaira Laplacian
on the tangent space at y (A.8).

To explain our first consequence of the above, note that the cohomology H0(Y ; F⊗
Lk) is endowedwith an L2 product induced by hTY , hL and hF . This induces a Fubini-

Study metric ωFS on the projective space P
[
H0

(
Y ; F ⊗ Lk

)∗]
. The Kodaira map is

now defined

�k : Y → P

[
H0

(
Y ; F ⊗ Lk

)∗]
,

�k (y) :=
{
s ∈ H0

(
Y ; F ⊗ Lk

)
|s (y) = 0

}
. (1.4)

It is well known that the map is holomorphic. We now have the semi-positive version
of Tian’s approximation theorem.

Theorem 1.2 Let Y be a compact Riemann surface and (L, hL), (F, hF ) be holomor-
phic Hermitian line bundles on Y such that (L, hL) is semi-positive and its curvature
vanishes at most at finite order. Then the Fubini-Study forms induced by the Kodaira
map (1.4) converge uniformly on Y to the curvature RL of the line bundle with speed
k−1/3

∥∥∥∥
1

k
�∗kωFS − i

2π
RL

∥∥∥∥
C0(Y )

= O
(
k−1/3

)

as k →∞.

123



138 Page 4 of 41 G. Marinescu, N. Savale

For the next application we consider the Toeplitz quantization of functions on Y ,
or more generally sections of F . The Toeplitz operator T f ,k operator corresponding
to a section f ∈ C∞ (Y ;End (F)) is defined via

T f ,k : C∞
(
Y ; F ⊗ Lk

)
→ C∞

(
Y ; F ⊗ Lk

)

T f ,k := �k f �k, (1.5)

where f denotes the operator of pointwise composition by f . Each Toeplitz operator
above further maps H0

(
Y ; F ⊗ Lk

)
to itself. A generalized Toeplitz operator, see 5.6,

acting on H0
(
Y ; F ⊗ Lk

)
is defined as one having an asymptotic expansion in k−1

with coefficients being the Toeplitz operators (1.5) as above. Our next result is now as
follows.

Theorem 1.3 Let (L, hL) and (F, hF ) be Hermitian holomorphic line bundles on a
compact Riemann surface Y and assume that (L, hL) is semi-positive line bundle and
its curvature RL vanishes to finite order at any point. Given f , g ∈ C∞ (Y ;End (F)),
the Toeplitz operators (5.1) satisfy

lim
k→∞

∥
∥T f ,k

∥
∥ = ‖ f ‖∞ := sup

y∈Y
u∈Fy\0

| f (y)u|hF
|u|hF

, (1.6)

T f ,kTg,k = T f g,k + OL2→L2

(
k−1/r

)
. (1.7)

Moreover, the space of generalizedToeplitz operators supported on the subset Y2 where
the curvature is positive form an algebra under operator addition and composition.

For our next result, we consider the asymptotics of zeroes of random sections
associated to tensor powers. To state the result first note that the natural L2 metric on
H0

(
Y ; F ⊗ Lk

)
gives rise to a probability density μk on the sphere

SH0
(
Y ; F ⊗ Lk

)
:=

{
s ∈ H0

(
Y ; F ⊗ Lk

)
| ‖s‖ = 1

}
,

of finite dimension χ
(
Y ; F ⊗ Lk

) − 1 (2.15). We now define the product probabil-
ity space (�,μ) := (

�∞k=1SH0
(
Y ; F ⊗ Lk

)
,�∞k=1μk

)
. To a random sequence of

sections s = (sk)k∈N ∈ � given by this probability density, we then associate the
random sequence of zero divisors Zsk = {sk = 0} and view it as a random sequence
of currents of integration in the space �′0,0 (Y ) of currents of bidimension (0, 0). Note
that we can introduce a large class of probability measures as in [4] on the space of
holomorphic sections for which our results still hold.

We now have the following.

Theorem 1.4 Let (L, hL) and (F, hF ) be Hermitian holomorphic line bundles on a
compact Riemann surface Y and assume that (L, hL) is semi-positive line bundle
and its curvature RL vanishes to finite order at any point. Then for μ-almost all
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s = (sk)k∈N ∈ �, the sequence of currents

1

k
Zsk⇀

i

2π
RL

converges weakly to the semi-positive curvature form.

Our final result concerns the asymptotics of holomorphic torsion. Below τ L :=
RL (w, w̄) in terms of an orthonormal section w of T 1,0Y .

Theorem 1.5 Let (L, hL) and (F, hF ) be Hermitian holomorphic line bundles on a
compact Riemann surface Y and assume that (L, hL) is semi-positive line bundle and
its curvature RL vanishes to finite order at any point. The holomorphic torsion satisfies
the asymptotics

ln Tk := −1

2
ζ ′k (0) = −k ln k

∫

Y

[
τ L

8π

]
− k

∫

Y

[
τ L

8π
ln

(
τ L

2π

)]
+ o (k)

as k →∞.

All of our results above arewell known in the casewhen the line bundle L is positive.
In the positive case, the leading term of the Bergman kernel expansion Theorem 1.1
was first shown in [37] and thereafter improved to a full expansion in [14, 38] as a
consequence of the Boutet de Monvel–Sjöstrand parametrix [13] for the Szegő kernel
of a strongly pseudoconvex CR manifold. Subsequently a different geometric method
for the expansion was developed in [16, 29] inspired by the analytic localization
method of [7]. The application of the Bergman kernel to induced Fubini-Study metrics
Theorem 1.2 is also found in [37] in the positive case. The construction of the full
Toeplitz algebra, along with the properties of Toeplitz operators, was first done in [11]
as an application of the Boutet de Monvel–Guillemin calculus of Toeplitz operators
[12]. The equidistribution result for random sections in the positive case was first done
in [36], and [18, 19] also gave the speed of convergence of the zero divisors. Finally, the
asymptotics of holomorphic torsion for positive line bundles is due to Bismut-Vasserot
[8].

In the semi-positive case our results are mostly new. The Bergman kernel expansion
Theorem 1.1 was shown by the authors in their earlier work [32]. The corresponding
problem for the Szegő kernel of a weakly pseudoconvex CR manifold in dimension
three was solved by the second author in [24]. The expansion proved in [32, Theorem
3] is, however, only pointwise along the diagonal. In order to obtain the approximation
for Fubini-Study metrics Theorem 1.2 one needs to prove uniform estimates on the
Bergman kernel and its derivatives. The composition for Toeplitz operators supported
on the subset where the curvature is positive in Theorem 1.3 was shown earlier by
the first author in [23, Theorem 1.4] under the assumption of a small spectral gap for
the Kodaira Laplacian. A more general result, than the equidistribution for zeroes of a
random holomorphic section of a semi-positive line bundle, was obtained in [18, Sec.
4] using L2 estimates for the ∂̄-equation of a modified positive metric.

The paper is organized as follows. In Sect. 2 we begin with some standard pre-
liminaries. These include the relevant spectral gap properties for the Bochner and
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Kodaira Laplacians in Sects. 2.1 and 2.2, respectively. In Sect. 3 we recall the proof
of the pointwise Bergman kernel expansion from [32]. In Sect. 3.1 we further derive
uniform estimates on semi-positive Bergman kernels that are necessary for the appli-
cations in this article. In Sect. 4 we use the uniform Bergman kernel estimates to prove
the semi-positive version of Tian’s theorem Theorem 1.2. In Sect. 5 we prove the anal-
ogous expansion for the kernel of a Toeplitz operator and the corresponding theorem
Theorem 1.3 on Toeplitz quantization. In Sect. 6 we prove the equidistribution result
Theorem 1.4 for random sections. In the final Sect. 7 we prove the asymptotic result
for holomorphic torsion Theorem 1.5. The final appendix Section A describes facts
on model Laplacians and Bergman kernels that are used throughout the article.

2 Preliminaries

Here we begin with some preliminary notions. Let Y be a compact Riemann surface.
It is equipped with an integrable complex structure J and Hermitian metric hTY on
its complex tangent space. Also denote by gTY the associated Riemannian metric on
TY . Next let (L, hL), (F, hF ) be an auxiliary pair of Hermitian, holomorphic bundles
where L is of rank one. We denote by ∇L , ∇F the corresponding Chern connections
and RL , RF their corresponding curvatures. The order of vanishing ry of the curvature
RL at a point y ∈ Y is now defined as in (1.1). And we assume that the curvature RL

vanishes at finite order at any point of Y , i.e.,

r := max
y∈Y ry <∞. (2.1)

The curvature RL of ∇L is a (1, 1) form which is further assumed to be semi-positive

i RL (v, Jv) ≥ 0, ∀v ∈ TY or equivalently

RL (w, w̄) ≥ 0, ∀w ∈ T 1,0Y . (2.2)

We note that semi-positivity implies that the order of vanishing ry − 2 ∈ 2N0 of
the curvature RL at any point y is even. Semi-positivity and finite order of vanishing
imply that there are points where the curvature is positive (the set where the curvature
is positive is in fact an open dense set). Hence

deg L =
∫

Y
c1(L) =

∫

Y

i

2π
RL > 0,

so that L is ample.
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2.1 sR and Bochner Laplacians

Associated to the above data one has the Bochner Laplacian on tensor powers defined
by


k :=
(
∇F⊗Lk

)∗ ∇F⊗Lk : C∞
(
Y ; F ⊗ Lk

)
→ C∞

(
Y ; F ⊗ Lk

)
, (2.3)

for each k ∈ N, with the adjoint above being taken with respect to the corresponding
metrics and the Riemannian volume form.

Each Bochner Laplacian (2.3) above is the Fourier mode of a sub-Riemannian (sR)
Laplacian on the unit circle bundle of L . To elaborate, denote by X = S1L → Y the
unit circle bundle of the line bundle L . Further let E := HX ⊂ T X be the horizontal
distribution induced by ∇L . The distribution carries the metric gE = π∗gTY pulled
back from the base. We also denote by the same notation the pullback of

(
F, hF ,∇F

)

from Y to X . The finite order of vanishing for the curvature RL in (1.2) is equivalent
to the bracket generating condition for the distribution E : the Lie brackets in C∞ (E)

generates all vector fieldsC∞ (T X) [32, Prop. 6]. As such the triple
(
X , E ⊂ T X , gE

)

is a sub-Riemannian (sR) manifold. Furthermore the maximum order of vanishing for
the curvature r (1.2) is then the degree of non-holonomy of the distribution E , i.e., the
number of brackets required to generate the missing vertical direction. A volume form
on X is defined via μX := μgTY ∧ e∗ with μgTY denoting the Riemannian volume
form on Y and e∗ being the dual one form to the generating e ∈ C∞ (T X) of the circle
action on X .

The sub-Riemannian Laplacian on X


gE ,μX
: C∞ (X; F)→ C∞ (X; F)


gE ,μX
:=

(
∇gE ,F

)∗
μX
◦ ∇gE ,F (2.4)

being the composition of the sR gradient defined via

∇gE ,F : C∞ (X; E)→ C∞ (X; E ⊗ F) ,

hE,F
(
∇gE ,Fs, v ⊗ s′

)
:= hF

(
∇F

v s, s′
)

, (2.5)

for all v ∈ C∞ (X; E) , s′ ∈ C∞ (X; F) , where hE,F := gE ⊗ hF , with its adjoint
taken with respect to μX . Under the bracket generating condition, the sR Laplacian
satisfies the sharp subelliptic estimate of Rothschild and Stein with a gain of 1

r deriva-
tives

‖ψs‖2H1/r ≤ C
[〈


gE ,F,μϕs, ϕs
〉+ ‖ϕs‖2L2

]
, ∀s ∈ C∞ (X; F) (2.6)

for all ϕ,ψ ∈ C∞c (X), with ϕ = 1 on the support spt (ψ), and where r is again given
by (1.2) and corresponds to the maximum step size of the distribution E .
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Next, the unit circle bundle of L being X , the pullback C ∼= π∗L → X is canon-
ically trivial via the identification π∗L � (x, l) 	→ x−1l ∈ C. Pulling back sections
then gives the identification

C∞ (X; F) = ⊕k∈ZC∞
(
Y ; F ⊗ Lk

)
. (2.7)

Each summand on the right-hand side corresponds to an eigenspace of ∇F
e with

eigenvalue −ik. While horizontal differentiation dH on the left corresponds to dif-
ferentiation with respect to the tensor product connection∇Lk

on the right-hand side.
Pick an invariant density μX on X inducing a density μY on Y . This now defines the
sR Laplacian 
gE ,F,μX

acting on sections of F . By invariance the sR Laplacian com-
mutes

[

gE ,F,μX

, e
] = 0 with the generator of the circle action and hence preserves

the decomposition (2.7). It acts via


gE ,F,μX
= ⊕k∈Z
k (2.8)

on each component where 
k is the Bochner Laplacian (2.3) on the tensor powers
F ⊗ Lk , with adjoint being taken with respect to μgTY .

Using the description of the Bochner Laplacian as the Fourier mode of the sR
Laplacian (2.8), in [32, Thm. 1] a general leading asymptotic result for the first positive
eigenvalues was proved. Here we recall a simple argument for its lower bound.

Proposition 2.1 There exist constants c1, c2 > 0, such that one has Spec (
k) ⊂[
c1k2/r − c2,∞

)
for each k.

Proof The subelliptic estimate (2.6) on the circle bundle is

∥∥∥∂
1/r
θ s

∥∥∥
2 ≤ ‖s‖2H1/r ≤ C

[〈

gE ,F,μX

s, s
〉+ ‖s‖2L2

]
, ∀s ∈ C∞ (X; F) .

Letting s = π∗s′ be the pullback of an orthonormal eigenfunction s′ of 
k with
eigenvalue λ on the base gives k2/r ≤ C (λ+ 1) as required. ��

2.2 Kodaira Laplacian and its Spectral Gap

Related to the Bochner Laplacian (2.3) is the Kodaira Laplacian on tensor powers.
Namely, with

(
�0,∗ (X; F ⊗ Lk

) ; ∂̄k
)
denoting the Dolbeault complex the Kodaira

Laplace and Dirac operators acting on �0,∗ (X; F ⊗ Lk
)
are defined

�k := 1

2
(Dk)

2 = ∂̄k ∂̄
∗
k + ∂̄∗k ∂̄k (2.9)

Dk :=
√
2
(
∂̄k + ∂̄∗k

)
. (2.10)

Clearly, Dk interchanges while �k preserves �0,0/1. We denote D±k = Dk |�0,0/1

and �0/1
k = �k |�0,0/1 . The Clifford multiplication endomorphism c : TY →

123
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End
(
�0,∗) is defined via c (v) := √

2
(
v1,0 ∧ −iv0,1

)
, v ∈ TY , and extended to

the entire exterior algebra �∗TY via c (1) = 1, c (v1 ∧ v2) := c (v1) c (v2), for
orthonormal v1, v2 ∈ TY .

Denote by ∇TY ,∇T 1,0Y the Levi-Civita and Chern connections on the real and
holomorphic tangent spaces as well as by ∇T 0,1Y the induced connection on the anti-
holomorphic tangent space. Denote by � the real (1, 1) form defined by contraction
of the complex structure with the metric �(., .) = gTY (J ., .). This is clearly closed
d� = 0 (or Y is Kähler) and the complex structure is parallel ∇TY J = 0 or ∇TY =
∇T 1,0Y ⊕∇T 1,0Y .

With the induced tensor product connection on �0,∗ ⊗ F ⊗ Lk being denoted via
∇�0,∗⊗F⊗Lk

, the Kodaira Dirac operator (2.10) is now given by the formula

Dk = c ◦ ∇�0,∗⊗F⊗Lk
.

Next we denote by RF the curvature of ∇F and by κ the scalar curvature of gTY .
Define the following endomorphisms of �0,∗

ω
(
RF

)
:= RF (w, w̄) w̄iw̄

ω
(
RL

)
:= RL (w, w̄) w̄iw̄

ω (κ) := κw̄iw̄

τ F := RF (w, w̄)

τ L := RL (w, w̄) (2.11)

in terms of an orthonormal section w of T 1,0Y . The Lichnerowicz formula for the
above Dirac operator ([29] Thm 1.4.7) simplifies for a Riemann surface and is given
by

2�k = D2
k =

(
∇�0,∗⊗F⊗Lk

)∗ ∇�0,∗⊗F⊗Lk

+ k
[
2ω

(
RL

)
− τ L

]
+

[
2ω

(
RF

)
− τ F

]
+ 1

2
ω (κ) . (2.12)

We now have the following.

Proposition 2.2 Let Y be a compact Riemann surface, (L, hL) → Y a semi-positive
line bundle whose curvature RL vanishes to finite order at any point. Let (F, hF )→ Y
be aHermitian holomorphic vector bundle. Then there exist constants c1, c2 > 0, such
that

‖Dks‖2 ≥
(
c1k

2/r − c2
)
‖s‖2

for all s ∈ �0,1
(
Y ; F ⊗ Lk

)
.
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Proof Writing s = |s| w̄ ∈ �0,1
(
Y ; F ⊗ Lk

)
in terms of a local orthonormal section

w̄ gives

〈[
2ω

(
RL

)
− τ L

]
s, s

〉
= RL (w, w̄) |s|2 ≥ 0 (2.13)

from (2.2), (2.11). This gives

‖Dks‖2 =
〈
D2
k s, s

〉

=
〈[(
∇�0,∗⊗F⊗Lk

)∗ ∇�0,∗⊗F⊗Lk + k
[
2ω

(
RL

)
− τ L

]

+
[
2ω

(
RF

)
− τ F

]
+ 1

2
ω (κ)

]
s, s

〉

≥
〈(
∇�0,∗⊗F⊗Lk

)∗ ∇�0,∗⊗F⊗Lk
s, s

〉
− c0 ‖s‖2 ≥

(
c1k

2/r − c2
)
‖s‖2

from Proposition 2.1, (2.12), and (2.13). ��
We now derive as a corollary a spectral gap property for Kodaira Dirac/Laplace oper-
ators Dk , �k corresponding to Proposition 2.1.

Corollary 2.3 Under the hypotheses of Proposition 2.2 there exist constants c1, c2 > 0,
such that Spec (�k) ⊂ {0} ∪

[
c1k2/r − c2,∞

)
for each k. Moreover, ker D−k = 0 and

H1
(
Y ; F ⊗ Lk

) = 0 for k sufficiently large.

Proof From Proposition 2.2, it is clear that

Spec
(
�1

k

)
⊂

[
c1k

2/r − c2,∞
)

(2.14)

for some c1, c2 > 0 giving the second part of the corollary. Moreover, the eigenspaces
of D2

k

∣∣
�0,0/1 with non-zero eigenvalue being isomorphic by Mckean-Singer, the first

part also follows. ��
Since L is ample, we know also by the Kodaira-Serre vanishing theorem that
H1

(
Y ; F ⊗ Lk

)
vanishes for k sufficiently large. If F is also a line bundle this fol-

lows from the well-known fact that for a line bundle E on Y we have H1 (Y ; E) = 0
whenever deg E > 2g−2. It is, however, interesting to have a direct analytic proof. Of
course, the vanishing theorem for a semi-positive line bundle works only in dimension
one, see Remark 2.4.

The vanishing H1
(
Y ; F ⊗ Lk

) = 0 for k sufficiently large gives

dim H0
(
Y ; F ⊗ Lk

)
= χ

(
Y ; F ⊗ Lk

)

=
∫

Y
ch

(
F ⊗ Lk

)
Td (Y )

= k

[
rk (F)

∫

Y
c1 (L)

]
+

∫

Y
c1 (F)+ 1− g, (2.15)
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by Riemann-Roch, with χ
(
Y ; F ⊗ Lk

)
, ch

(
F ⊗ Lk

)
, Td (Y ), g denoting the holo-

morphic Euler characteristic, Chern character, Todd genus, and genus of Y , respec-
tively.

Remark 2.4 The argument for Proposition 2.2 breaks down in higher dimensions since
there are more components to

[
2ω

(
RL

)− τ L
]
in the Lichnerowicz formula (2.12)

where semi-positivity is insufficient to control. Indeed, there is a known counterexam-
ple to the existence of a spectral gap for semi-positive line bundles in higher dimensions
due to Donnelly [20].

3 Bergman Kernel Expansion

In this section we now first recall the expansion for the Bergman kernel proved in [32,
Sec 4.1]. First recall that the Bergman kernel is the Schwartz kernel �k (y1, y2) of the
projector onto the nullspace of �k

�k : C∞
(
Y ; F ⊗ Lk

)
→ ker

(
�k |C∞(Y ;F⊗Lk)

)
, (3.1)

with respect to the L2 inner product given by the metrics gTY , hF , and hL . Alternately,
if s1, s2, . . . , sNk denotes an orthonormal basis of eigensections of H0

(
X; F ⊗ Lk

)

then

�k (y1, y2) =
Nk∑

j=1
s j (y1)⊗ s j (y2)

∗ . (3.2)

We wish to describe the asymptotics of �k along the diagonal in Y × Y .
Consider p ∈ Y , and fix orthonormal bases {e1, e2 (= Je1)}, {l},

{
f j
}rk(F)

j=1 for TpY ,

L p, F , respectively, and let
{
w := 1√

2
(e1 − ie2)

}
be the corresponding orthonormal

frame for T 1,0
y Y . Using the exponential map from this basis obtain a geodesic coor-

dinate system on a geodesic ball B2� (p). Further parallel transport these bases along

geodesic rays using the connections∇T 1,0Y ,∇L ,∇F to obtain orthonormal frames for
T 1,0Y , L , F on B2� (p). In this frame and coordinate system, the connection on the
tensor product again has the expression

∇�0,∗⊗F⊗Lk = d + a�0,∗ + aF + kaL

a�0,∗
j =

∫ 1

0
dρ

(
ρyk R�0,∗

jk (ρy)
)

aF
j =

∫ 1

0
dρ

(
ρyk RF

jk (ρy)
)

aLj =
∫ 1

0
dρ

(
ρyk RL

jk (ρy)
)

(3.3)
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in terms of the curvatures of the respective connections. We now define a modified
frame {ẽ1, ẽ2} on R2 which agrees with {e1, e2} on B� (p) and with

{
∂x1, ∂x2

}
outside

B2� (p). Also define the modified metric g̃T Y and almost complex structure J̃ on R
2

to be standard in this frame and hence agreeing with gTY , J on B� (p). The Christoffel
symbol of the corresponding modified induced connection on �0,∗now satisfies

ã�0,∗ = 0 outside B2� (p) .

With ry − 2 ∈ 2N0 being the order of vanishing of the curvature RL as before, we
may Taylor expand the curvature as

RL =
∑

|α|=r−2
Rpq,α y

αdypdyq

︸ ︷︷ ︸
=RL

0

+O
(
yr−1

)
with (3.4)

i RL
0 (e1, e2) ≥ 0. (3.5)

Further we may define the modified connections ∇̃F , ∇̃L via

∇̃F = d + χ

( |y|
2�

)
aF

∇̃L = d +

⎡

⎢
⎢⎢⎢
⎣

∫ 1

0
dρ ρyk

(
R̃L

)

jk
(ρy)

︸ ︷︷ ︸
=ãLj

⎤

⎥
⎥⎥⎥
⎦
dy j , where

R̃L = χ

( |y|
2�

)
RL +

[
1− χ

( |y|
2�

)]
RL
0 . (3.6)

as well as the corresponding tensor product connection ∇̃�0,∗⊗F⊗Lk
which agrees

with ∇�0,∗⊗F⊗Lk
on B� (p). Clearly the curvature of the modified connection ∇̃L

is given by R̃L (3.6) and is semi-positive by (3.5). Equation (3.6) also gives R̃L =
RL
0 + O

(
�ry−1

)
and that the

(
ry − 2

)
-th derivative/jet of R̃L is non-vanishing at all

points on R
2 for

0 < � < c
∣∣∣ jry−2RL (y)

∣∣∣ . (3.7)

Here c is a uniform constant depending on the Cr−2 norm of RL . We now define the
modified Kodaira Dirac operator on R

2 by the similar formula

D̃k = c ◦ ∇̃�0,∗⊗F⊗Lk
, (3.8)

agreeing with Dk on B� (p) . This has a similar Lichnerowicz formula
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D̃2
k = 2�̃k :=

(
∇̃�0,∗⊗F⊗Lk

)∗ ∇̃�0,∗⊗F⊗Lk + k
[
2ω

(
R̃L

)
− τ̃ L

]
(3.9)

+
[
2ω

(
R̃F

)
− τ̃ F

]
+ 1

2
ω (κ̃) (3.10)

the adjoint being taken with respect to the metric g̃T Y and corresponding volume
form. Also the endomorphisms R̃F , τ̃ F , τ̃ L , and ω (κ̃) are the obvious modifica-
tions of (2.11) defined using the curvatures of ∇̃F , ∇̃L , and g̃T Y , respectively. The
above-mentioned (3.9) again agrees with �k on B� (p) while the endomorphisms
R̃F , τ̃ F , ω (κ̃) all vanish outside B� (p). Being semi-bounded from below (3.9) is
essentially self-adjoint. A similar argument as Corollary 2.3 gives a spectral gap

Spec
(
�̃k

)
⊂ {0} ∪

[
c1k

2/ry − c2,∞
)

. (3.11)

Thus for k � 0, the resolvent
(
�̃k − z

)−1
is well defined in a neighborhood of the

origin in the complex plane. On account on the local elliptic estimate, the projector �̃k

from L2
(
R
2;�0,∗

y ⊗ Fy ⊗ L⊗ky
)
onto ker

(
�̃k

)
then has a smooth Schwartz kernel

with respect to the Riemannian volume of g̃T Y .
We are now ready to prove the Bergman kernel expansion Theorem 1.1, the proce-

dure is similar to [16].

Proof of Theorem 1.1 First choose ϕ ∈ S (Rs) even satisfying ϕ̂ ∈ Cc
(−�

2 ,
�
2

)
and

ϕ (0) = 1. For c > 0, set ϕ1 (s) = 1[c,∞) (s) ϕ (s). On account of the spectral gap
Corollary 2.3, and as ϕ1 decays at infinity, we have

ϕ (Dk)−�k = ϕ1 (Dk) with
∥∥Da

kϕ1 (Dk)
∥∥
L2→L2 = O

(
k−∞

)
(3.12)

for a ∈ N. Combining the above with semiclassical Sobolev and elliptic estimates
gives

|ϕ (Dk)−�k |Cl (Y×Y ) = O
(
k−∞

)
, (3.13)

for all l ∈ N0. Next wemaywrite ϕ (Dk) = 1
2π

∫
R
eiξDk ϕ̂ (ξ) dξ via Fourier inversion.

Since Dk = D̃k on B� (p) and ϕ̂ ∈ Cc
(−�

2 ,
�
2

)
, we may use a finite propagation

argument to conclude

ϕ (Dk) (., y) = ϕ
(
D̃k

)
(., 0) .
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By similar estimates as (3.12) for D̃k we now have a localization of the Bergman
kernel

�k (., y) = O
(
k−∞

)
, on B� (p)c

�k (., y)− �̃k (., 0) = O
(
k−∞

)
, on B� (p) . (3.14)

It thus suffices to consider the Bergman kernel of the model Kodaira Laplacian (3.9)
on R2.

Next with the rescaling/dilation δk−1/r y =
(
k−1/r y1, . . . , k−1/r yn−1

)
, the rescaled

Kodaira Laplacian

� := k−2/ry
(
δk−1/r

)
∗ �̃k (3.15)

satisfies

ϕ

(
�̃k

k2/ry

)
(
y, y′

) = k2/ryϕ (�)
(
yk1/ry , y′k1/ry

)
(3.16)

for ϕ ∈ S (R). Using a Taylor expansion via (3.6), (3.8) the rescaled Dirac operator
has an expansion

� =
⎛

⎝
N∑

j=0
k− j/ry� j

⎞

⎠+ k−2(N+1)/ryEN+1, ∀N . (3.17)

Here each

� j = a j;pq (y) ∂yp∂yq + b j;p (y) ∂yp + c j (y) (3.18)

is a (k-independent) self-adjoint, second-order differential operator while each

E j =
∑

|α|=N+1
yα

[
aα
j;pq (y; k) ∂yp∂yq + bα

j;p (y; k) ∂yp + cα
j (y; k)

]
(3.19)

is a k-dependent self-adjoint, second-order differential operator on R
2. Furthermore

the functions appearing in (3.18) are polynomials with degrees satisfying

deg a j = j, deg b j ≤ j + ry − 1,deg c j ≤ j + 2ry − 2

deg b j − ( j − 1) = deg c j − j = 0 (mod 2)

and whose coefficients involve

a j : ≤ j − 2 derivatives of RTY

b j : ≤ j − 2 derivatives of RF , R�0,∗
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≤ j + r − 2 derivatives of RL

c j : ≤ j − 2 derivatives of RF , R�0,∗

≤ j + r − 2 derivatives of RL

while the coefficients aα
j;pq (y; k) , bα

j;p (y; k) , cα
j (y; k) of (3.19) are uniformly (in

k) C∞ bounded. Using (3.3), (A.4), (A.8), and (A.9) the leading term of (3.17) is
computed

�0 = �
gTY , j

ry−2
y RL ,J TY

(3.20)

in terms of the model Kodaira Laplacian on the tangent space TY (A.8).
In light of the spectral gap (3.11), equation (3.16) specializes to

�̃k
(
y′, y

) = k2/ry��
(
y′k1/ry , yk1/ry

)
(3.21)

as a relation between the Bergman kernels of �̃k , �. Next, the expansion (3.17) along
with local elliptic estimates gives

(�− z)−1 − (�0 − z)−1 = OHs
loc→Hs+2

loc

(
k−1/ry |Imz|−2

)

for each s ∈ R. More generally, we let I j :=
{
p = (p0, p1, . . .) |pα ∈ N,

∑
pα = j

}

denote the set of partitions of the integer j and define

Cz
j =

∑

p∈I j
(z −�0)

−1 [�α

[
�pα (z −�0)

−1]] . (3.22)

Then by repeated applications of the local elliptic estimate using (3.17) we have

(z −�)−1 −
⎛

⎝
N∑

j=0
k− j/ryCz

j

⎞

⎠ = OHs
loc→Hs+2

loc

(
k−(N+1)/ry |Imz|−2Nry−2

)
,

(3.23)

for each N ∈ N, s ∈ R. A similar expansion as (3.17) for the operator
(�+ 1)M (�− z), M ∈ N, also gives

(�+ 1)−M (�− z)−1 −
N∑

j=0
k− j/ryCz

j,M

= OHs
loc→Hs+2+2M

loc

(
k−(N+1)/ry |Imz|−2Nry−2

)
(3.24)

123



138 Page 16 of 41 G. Marinescu, N. Savale

for operators Cz
j,M = OHs

loc→Hs+2+2M
loc

(
k−(N+1)/ry |Imz|−2Nry−2), j = 0, . . . , N ,

with

Cz
0,M =

(

̂

(0)
gE ,F,μ

+ 1
)−M (


̂
(0)
gE ,F,μ

− z
)−1

.

For M � 0 sufficiently large, Sobolev’s inequality gives an expansion for the cor-
responding Schwartz kernels in (3.24) in Cl (K ), for all l ∈ N0 and compact subset
K ⊂ R

2×R2.Next, plugging the above resolvent expansion into theHelffer–Sjöstrand
formula [17, eq. 8.3] as before gives

∣
∣∣∣∣∣
ϕ (�)−

N∑

j=0
k− j/ryCϕ

j

∣
∣∣∣∣∣
Cl (K )

= O
(
k−(N+1)/ry

)

for all l, N ∈ N0 and for some (k-independent) Cϕ
j ∈ C∞ (K ), j = 0, 1, . . ., with

leading term Cϕ
0 = ϕ (�0) = ϕ

(
�

gTY , j
ry−2
y RL ,J TY

)
. As ϕ was chosen supported

near 0, the spectral gap property (3.11) gives

∣∣∣
∣∣∣
�� −

N∑

j=0
k− j/ryC j

∣∣∣
∣∣∣
Cl (K )

= O
(
k−(N+1)/ry

)
(3.25)

for some C j ∈ C∞ (K ), j = 0, 1, . . ., with leading term C0 = �
�

gTY , j
ry−2
y RL ,JTY .

The expansion is now a consequence of (3.13), (3.14), and (3.21). Finally, in order to
show that there are no odd powers of k− j/ry , one again notes that the operators � j

(3.18) change sign by (−1) j under δ−1x := −x . Thus the integral expression (3.22)
corresponding to Cz

j (0, 0) changes sign by (−1) j under this change of variables and
must vanish for j odd. ��
Next we show that a pointwise expansion on the diagonal also exists for derivatives
of the Bergman kernel. In what follows we denote by j l s/ j l−1s ∈ SlT ∗Y ⊗ E the
component of the l-th jet of a section s ∈ C∞ (E) of a Hermitian vector bundle E that
lies in the kernel of the natural surjection J l (E)→ J l−1 (E).

Theorem 3.1 For each l ∈ N0, the l-th jet of the on-diagonal Bergman kernel has a
pointwise expansion

jl [�k (y, y)] / j l−1 [�k (y, y)] = k(2+l)/ry
⎡

⎣
N∑

j=0
c j (y) k

−2 j/ry
⎤

⎦

+O
(
k−(2N−l−1)/ry

)
, (3.26)
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for all N ∈ N, in j lEnd (F) / j l−1End (F) = SlT ∗Y ⊗ End (F), with the leading
term

c0 (y) = j l
[
�gTYy , j

ry−2
y RL ,J TYy (0, 0)

]
/ j l−1

[
�gTYy , j

ry−2
y RL ,J TYy (0, 0)

]

being given in terms of the l-th jet of the Bergman kernel of the Kodaira Laplacian
(A.8) on the tangent space at y.

Proof The proof is a modification of the previous. First note that a similar localization

�k (y, y)− �̃k (y, y) = O
(
k−∞

)
, (3.27)

to (3.14) is valid in Cl , for all l ∈ N0, and for y in a uniform neighborhood of y. Next
differentiating (3.21) with y = y′ gives

∂α
y �̃k (y, y) = k(2+|α|)/ry∂α

y ��
(
yk1/ry , yk1/ry

)
, (3.28)

for all α ∈ N
2
0. Finally, the expansion (3.25) being valid in Cl , for all l ∈ N0, may be

differentiated and plugged into the above with y = 0 to give the theorem. ��
Remark 3.2 The expansion (1.3) is the same as the positive case on Y2 (points where
ry = 2) and furthermore uniform in any Cl -topology on compact subsets of Y2 cf.
[29, Theorem 4.1.1]. In particular the first two coefficients for y ∈ Y2 are given by

c0 (y) = �gTYy , j0y R
L ,J TYy (0, 0) = 1

2π
τ L

c1 (y) = 1

16π
τ L

[
κ −
 ln τ L + 4τ F

]
.

The derivative expansion on Y2 is also known to satisfy c0 = c1 = . . . = c[ l−1
2

] = 0

(i.e., begins at the same leading order k [29, Theorem 4.1.1]) with the leading term
given by

c[ l+1
2

] (y) = 1

2π
j lτ L/

1

2π
j l−1τ L .

3.1 Uniform Estimates on the Bergman Kernel

The expansions for the Bergman kernel Theorem 1.1 and its derivatives Theorem
3.1 are not uniform in the point on the diagonal. For applications in the later sec-
tions we need to give uniform estimates on the Bergman kernel. Below we set
Cr1 := inf|RV |=1 �gV ,RV ,J V (0, 0) for each 0 �= RV ∈ Sr1−2V ∗ ⊗ �2V ∗, r1 ≥ 2.

Furthermore, the Bergman kernel �gTYy , j0y R
L ,J TYy (0, 0) of the model operator (A.8) is

extended (continuously) by zero from Y2 to Y .
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Lemma 3.3 The Bergman kernel satisfies

[
inf
y∈Yr

�gTYy , jr−2y RL ,J TYy (0, 0)

]
[1+ o (1)] k2/r ≤ �k (y, y)

≤
[

sup
y∈Y

�gTYy , j0y R
L ,J TYy (0, 0)

]

[1+ o (1)] k, (3.29)

with the o (1) terms being uniform in y ∈ Y .

Proof Note that Theorem 1.1 already shows that there exists constants C0,C1,C2 . . .

such that

�k (y, y) ≥ Cry−2
(∣∣∣ jry−2RL

∣∣∣ k
)2/ry − cy, (3.30)

for all y ∈ Y , with

cy = c

(∣∣∣ jry−2RL (y)
∣∣∣
−1) = O∣

∣ jry−2RL (y)
∣
∣−1 (1) , (3.31)

being a (y-dependent) constant given in terms of the norm of the first non-vanishing
jet. The norm of this jet affects the choice of � needed for (3.7), which in turn affects
the C∞-norms of the coefficients of (3.19) via (3.6). We first show that this estimate
extends to a small (

∣∣ jry−2RL (y)
∣∣-dependent) size neighborhood of y. To this end, for

any ε > 0 there exists a uniform constant cε depending only on ε and
∥∥RL

∥∥
Cr such

that
∣∣∣ jry−2RL (y)

∣∣∣ ≥ (1− ε)

∣∣∣ jry−2RL (y)
∣∣∣ , (3.32)

for all y ∈ Bcε
∣
∣ jry−2RL

∣
∣ (y) .

We begin by rewriting the model Kodaira Laplacian �̃k (3.9) near y in terms of
geodesic coordinates centered at y. In the region

y ∈ Bcε
∣
∣ jry−2RL

∣
∣ (y) ∩

{
C0

(∣∣∣ j0RL (y)
∣
∣∣ k

)
≥ k2/ry�gTYy , j

ry−2
y RL ,J TYy (0, 0)

}

(3.33)

a rescaling of �̃k by δk−1/2 , now centered at y, shows

�k (y, y) = k�gTYy , j0y R
L ,J TYy (0, 0)+ O∣

∣ jry−2RL (y)
∣
∣−1 (1)

= k
∣∣∣ j0RL (y)

∣∣∣�
gTYy ,

j0y RL

| j0RL (y)| ,J TYy
(0, 0)+ O∣

∣ jry−2RL (y)
∣
∣−1 (1)

≥ k2/ry�gTYy , j
ry−2
y RL ,J TYy (0, 0)+ O∣

∣ jry−2RL (y)
∣
∣−1 (1) (3.34)
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as in (3.30). The first line above follows as in the Bergman kernel expansion Theorem
1.1, along with its leading coefficient. The last line follows from (3.33) together with
(3.32). Now, in the region

y ∈ Bcε
∣∣ jry−2RL

∣∣ (y) ∩
{
C1

(∣∣∣ j1RL (y) / j0RL (y)
∣∣∣ k

)2/3

≥ k2/ry�gTYy , j
ry−2
y RL ,J TYy (0, 0)

≥ C0

(∣∣∣ j0RL (y)
∣
∣∣ k

)}

a rescaling of �̃k by δk−1/3 centered at y similarly shows

�k (y, y) = k2/3
[
1+ O

(
k2/r−2/3

)]
�

gTYy , j1y R
L/ j0y R

L ,J TYy (0, 0)

+ O∣
∣ jry−2RL (y)

∣
∣−1 (1)

= k2/3
[
1+ O

(
k2/r−2/3

)] ∣∣∣ j1y R
L/ j0y R

L
∣
∣∣
2/3

�
gTYy ,

j1y RL / j0y RL

| j1y RL / j0y RL | ,J TYy
(0, 0)

+ O∣∣ jry−2RL (y)
∣∣−1 (1) (3.35)

≥ (1− ε) k2/ry�gTYy , j
ry−2
y RL ,J TYy (0, 0)+ O∣

∣ jry−2RL (y)
∣
∣−1 (1) (3.36)

Next, in the region

y ∈ Bcε
∣∣ jry−2RL

∣∣ (y) ∩
{
C2

(∣∣∣ j2RL (y) / j1RL (y)
∣∣∣ k

)1/2

≥ k2/ry�gTYy , j
ry−2
y RL ,J TYy (0, 0)

≥ max

[
C0

(∣∣∣ j0RL (y)
∣
∣∣ k

)
,C1

(∣∣∣ j1RL (y) / j0RL (y)
∣
∣∣ k

)2/3]}

a rescaling of �̃k by δk−1/4 centered at y shows

�k (y, y) = k1/2
[
1+ O

(
k2/r−1/2

)]
�

gTYy , j2y R
L/ j1y R

L ,J TYy (0, 0)+O∣
∣ jry−2RL (y)

∣
∣−1 (1)

= k1/2
[
1+ O

(
k2/r−1/2

)] ∣∣∣ j2y R
L/ j1y R

L
∣∣∣
1/2

�
gTYy ,

j2y RL / j1y RL

| j2y RL / j1y RL | ,J TYy
(0, 0)

+ O∣
∣ jry−2RL (y)

∣
∣−1 (1)

≥ (1− ε) k2/ry�gTYy , j
ry−2
y RL ,J TYy (0, 0)+ O∣

∣ jry−2RL (y)
∣
∣−1 (1) (3.37)
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Continuing in this fashion, we are finally left with the region

y ∈ Bcε
∣
∣ jry−2RL

∣
∣ (y) ∩

{
k2/ry�gTYy , j

ry−2
y RL ,J TYy (0, 0)

≥ max

[
C0

(∣∣∣ j0RL (y)
∣∣∣ k

)
, . . .,Cry−3

(∣∣∣ jry−3RL (y) / jry−4RL (y)
∣∣∣ k

)2/(ry−1)]}
.

In this region we have

∣∣∣ jry−2RL (y) / jry−3RL (y)
∣∣∣ ≥ (1− ε)

∣∣∣ jry−2RL (y)
∣∣∣+ O

(
k2/ry−2/(ry−1)

)

following (3.32) with the remainder being uniform. A rescaling by δk−1/ry then giving
a similar estimate in this region, we have finally arrived at

�k (y, y) ≥ (1− ε) k2/ry�gTYy , j
ry−2
y RL ,J TYy (0, 0)+ O∣

∣ jry−2RL (y)
∣
∣−1 (1)

for all y ∈ Bcε
∣∣ jry−2RL

∣∣ (y).

Finally a compactness argument finds a finite set of points
{
y j
}N
j=1 such that the

corresponding B
cε
∣
∣∣ j

ry j −2RL
∣
∣∣

(
y j
)
’s cover Y . This gives a uniform constant c1,ε > 0

such that

�k (y, y) ≥ (1− ε)

[
inf
y∈Yr

�gTYy , jr−2y RL ,J TYy (0, 0)

]
k2/r − c1,ε

for all y ∈ Y , ε > 0 proving the lower bound (3.29). The argument for the upper
bound is similar. ��
We now prove a second lemma giving a uniform estimate on the derivatives of the

Bergman kernel. Again below, the model Bergman kernel �gTYy , j1y R
L/ j0y R

L ,J TYy (0, 0)
and its relevant ratio

∣∣∣
[
j l�gTYy , j1y R

L/ j0y R
L ,J TYy

]
(0, 0)

∣∣∣

�gTYy , j1y RL/ j0y RL ,J TYy (0, 0)

are extended (continuously) by zero from
{
y| j1y RL/ j0y R

L �= 0
}
to Y .

Lemma 3.4 The l-th jet of the Bergman kernel satisfies

∣∣∣ j l [�k (y, y)]
∣∣∣ ≤ kl/3 [1+ o (1)]

⎡

⎣sup
y∈Y

∣∣∣
[
j l�gTYy , j1y R

L/ j0y R
L ,J TYy

]
(0, 0)

∣∣∣

�gTYy , j1y R
L/ j0y R

L ,J TYy (0, 0)

⎤

⎦�k (y, y)

with the o (1) term being uniform in y ∈ Y .
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Proof The proof follows a similar argument as the previous lemma. Given ε > 0 we
find a uniform cε such that (3.32) holds for each y ∈ Y and y ∈ Bcε

∣
∣ jry−2RL

∣
∣ (y). Then

rewrite the model Kodaira Laplacian �̃k (3.9) near y in terms of geodesic coordinates
centered at y. Again, let the constants C0,C1,C2 . . . be such that (3.30) holds. In the
region

y ∈ Bcε
∣
∣ jry−2RL

∣
∣ (y) ∩

{
C0

(∣∣∣ j0RL (y)
∣∣∣ k

)
≥ k2/ry�gTYy , j

ry−2
y RL ,J TYy (0, 0)

}

a rescaling of �̃k by δk−1/2 , now centered at y, shows

∂α�k (y, y) = k

2π

(
∂ατ L (y)

)
+ O∣

∣ jry−2RL (y)
∣∣−1 (1)

following remark 3.2 as ry = 2. Dividing the above by (3.34) gives

|∂α�k (y, y)|
�k (y, y)

≤
∣∣∂ατ L (y)

∣∣

τ L (y)
+ O∣

∣ jry−2RL (y)
∣
∣−1

(
k−1

)

≤ k|α|/3
⎡

⎣sup
y∈Y

∣
∣∣
[
j |α|�gTYy , j1y R

L/ j0y R
L ,J TYy

]
(0, 0)

∣
∣∣

�gTYy , j1y R
L/ j0y R

L ,J TYy (0, 0)

⎤

⎦�k (y, y)

+ O∣∣ jry−2RL (y)
∣∣−1

(
k−1

)

Next, in the region

y ∈ Bcε
∣
∣ jry−2RL

∣
∣ (y) ∩

{
C1

(∣∣∣ j1RL (y) / j0RL (y)
∣∣∣ k

)2/3

≥ k2/ry�gTYy , j
ry−2
y RL ,J TYy (0, 0) ≥ C0

(∣∣∣ j0RL (y)
∣∣∣ k

)}

a rescaling of �̃k by δk−1/3 centered at y similarly shows

∂α�k (y, y) = k(2+|α|)/3 [1+ O
(
k2/r−2/3

)] [
∂α�

gTYy , j1y R
L/ j0y R

L ,J TYy

]
(0, 0)

+ O∣
∣ jry−2RL (y)

∣
∣−1

(
k(1+|α|)/3)

as in Theorem 3.1. Dividing this by (3.36) gives

|∂α�k (y, y)|
�k (y, y)

≤ k|α|/3 (1+ ε)

∣∣∣
[
∂α�

gTYy , j1y R
L/ j0y R

L ,J TYy

]
(0, 0)

∣∣∣
[
�gTYy , j1y RL/ j0y RL ,J TYy

]
(0, 0)

+ O∣
∣ jry−2RL (y)

∣
∣−1

(
k(|α|−1)/3)
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≤ k|α|/3 (1+ ε)

⎡

⎣sup
y∈Y

∣∣
∣
[
j |α|�gTYy , j1y R

L/ j0y R
L ,J TYy

]
(0, 0)

∣∣
∣

�gTYy , j1y R
L/ j0y R

L ,J TYy (0, 0)

⎤

⎦

+ O∣
∣ jry−2RL (y)

∣
∣−1

(
k(|α|−1)/3) .

Continuing in this fashion as before eventually gives

|∂α�k (y, y)|
�k (y, y)

≤ k|α|/3 (1+ ε)

⎡

⎣sup
y∈Y

∣∣∣
[
j |α|�gTYy , j1y R

L/ j0y R
L ,J TYy

]
(0, 0)

∣∣∣

�gTYy , j1y R
L/ j0y R

L ,J TYy (0, 0)

⎤

⎦

+ O∣
∣ jry−2RL (y)

∣
∣−1

(
k(|α|−1)/3)

for all y ∈ Y , y ∈ Bcε
∣
∣ jry−2RL

∣
∣ (y), for all α ∈ N

2
0. By compactness one again finds a

uniform c1,ε such that

|∂α�k (y, y)|
�k (y, y)

≤ k|α|/3 (1+ ε)

⎡

⎣sup
y∈Y

∣∣∣
[
j |α|�gTYy , j1y R

L/ j0y R
L ,J TYy

]
(0, 0)

∣∣∣

�gTYy , j1y R
L/ j0y R

L ,J TYy (0, 0)

⎤

⎦+ c1,ε

for all y ∈ Y , proving the lemma. ��

4 Induced Fubini-StudyMetrics

A theorem of Tian [37], with improvements in [14, 38] (see also [29, S 5.1.2, S 5.1.4]),
asserts that the induced Fubini-Study metrics by Kodaira embeddings given by kth
tensor powers of a positive line bundle converge to the curvature of the bundle as k
goes to infinity. In this Section we will give a generalization for semi-positive line
bundles on compact Riemann surfaces.

Let us review first Tian’s theorem. Let (Y , J , gTY ) be a compact Hermitian man-
ifold, (L, hL), (F, hF ) be holomorphic Hermitian line bundles such that (L, hL) is
positive. We endow H0(Y ; F⊗ Lk)with the L2 product induced by gTY , hL , and hF .

This induces a Fubini-StudymetricωFS on the projective spaceP
[
H0

(
Y ; F ⊗ Lk

)∗]

and a Fubini-Study metric hFS on O(1) → P

[
H0

(
Y ; F ⊗ Lk

)∗]
(see [29, S 5.1]).

Since (L, hL) is positive the Kodaira embedding theorem shows that the Kodaira maps

�k : Y → P

[
H0

(
Y ; F ⊗ Lk

)∗]
(see (4.7)) are embeddings for k � 0. Moreover,

the Kodaira map induces a canonical isomorphism �k : F ⊗ Lk → �∗kO(1) and we
have (see e.g., [29, (5.1.15)])

(�∗khFS)(y) = �k(y, y)
−1hF⊗Lk

(y), y ∈ Y . (4.1)

123



Geometric Quantization... Page 23 of 41 138

This implies immediately (see e.g., [29, (5.1.50)])

1

k
�∗kωFS − i

2π
RL = i

2πk
RF − i

2πk
∂̄∂ ln�k (y, y) . (4.2)

Applying now the Bergman kernel expansion in the positive case one obtains Tian’s
theorem, which asserts that we have

1

k
�∗kωFS − i

2π
RL = O

(
k−1

)
, k →∞, in any C�-topology. (4.3)

Let us also consider the convergence of the induced Fubini-Study metric�∗khFS to the
initial metric hL . For this purpose we fix a metric hL0 on L with positive curvature. We
can then express hL = e−ϕhL0 ,�

∗
khFS = e−ϕk (hL0 )k⊗hF , where ϕ, ϕk ∈ C∞(Y ) are

the global potentials of the metrics h and �∗khFS with respect to hL0 and (hL0 )k ⊗ hF .
Note that

R(L,hL ) = R(L,hL0 ) + ∂∂ϕ, R(Lk ,�∗k hFS) = kR(L,hL0 ) + R(F,hF ) + ∂∂ϕk,

and i
2π R(L,�∗k hFS) = �∗kωFS . Then (4.1) can be written as

1

k
ϕk(y)− ϕ(y) = 1

k
ln�k(y, y), y ∈ Y . (4.4)

We obtain by (1.3) that

∣∣
∣
1

k
ϕk − ϕ

∣∣
∣
C0(Y )

= O
(
k−1 ln k

)
, k →∞, (4.5)

that is, the normalized potentials of the Fubini-Study metric converge uniformly on Y
to the potential of the initial metric hL with speed k−1 ln k. Moreover,

∣∣∣
1

k
∂ϕk − ∂ϕ

∣∣∣
C0(Y )

= O
(
k−1

)
,

∣∣∣
1

k
∂∂ϕk − ∂∂ϕ

∣∣∣
C0(Y )

= O
(
k−1

)
, k →∞,

(4.6)

and we get the same bound O
(
k−1

)
for higher derivatives, obtaining again (4.3). Note

that if gTY is the metric associated to ω = i
2π RL , then we have a bound O(k−2) in

(4.3) and (4.6).
We return now to our situation and consider that Y is a compact Riemann surface

and (L, hL), (F, hF ) be holomorphic Hermitian line bundles on Y such that (L, hL)

is semi-positive and its curvature vanishes at finite order. An immediate consequence
of Lemma 3.3 is that the base locus

Bl
(
F ⊗ Lk

)
:=

{
y ∈ Y |s (y) = 0, s ∈ H0

(
Y ; F ⊗ Lk

)}
= ∅
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is empty for k � 0. This shows that the subspace

�k,y :=
{
s ∈ H0

(
Y ; F ⊗ Lk

)
|s (y) = 0

}
⊂ H0

(
Y ; F ⊗ Lk

)
,

is a hyperplane for each y ∈ Y . One may identify the Grassmannian G
(
dk − 1; H0

(
Y ; F ⊗ Lk

))
, dk := dimH0

(
Y ; F ⊗ Lk

)
, with the projective space P

[
H0 (Y ; F⊗

Lk
)∗]

by sending a non-zero dual element in H0
(
Y ; F ⊗ Lk

)∗
to its kernel. This

now gives a well-defined Kodaira map

�k : Y → P

[
H0

(
Y ; F ⊗ Lk

)∗]
,

�k (y) :=
{
s ∈ H0

(
Y ; F ⊗ Lk

)
|s (y) = 0

}
. (4.7)

It is well known that the map is holomorphic.

Theorem 4.1 Let Y be a compact Riemann surface and (L, hL), (F, hF ) be holomor-
phic Hermitian line bundles on Y such that (L, hL) is semi-positive and its curvature
vanishes at most at finite order. Then the normalized potentials of the Fubini-Study
metric converge uniformly on Y to the potential of the initial metric hL with speed
k−1 ln k as in (4.5). Moreover,

∣∣∣
1

k
∂ϕk − ∂ϕ

∣∣∣
C0(Y )

,

∣∣∣
1

k
∂ϕk − ∂ϕ

∣∣∣
C0(Y )

= O
(
k−2/3

)
, k →∞, (4.8)

and

∣∣∣
1

k
∂∂ϕk − ∂∂ϕ

∣∣∣
C0(Y )

= O
(
k−1/3

)
, k →∞, (4.9)

especially

1

k
�∗kωFS − i

2π
RL = O

(
k−1/3

)
, k →∞, (4.10)

uniformly on Y . On compact sets of Y2 the estimates (4.3) and (4.6) hold.

Proof The proof follows from (4.2), (4.4), and the uniform estimate of Lemma 3.4 on
the derivatives of the Bergman kernel. ��
As we noted before, the bundle L satisfying the hypotheses of Theorem 4.1 is ample,
so for k � 0 the Kodaira map is an embedding and the induced Fubini-Study forms
1
k�

∗
kωFS are indeed metrics on Y . Due to the possible degeneration of the curvature

RL the rate of convergence in (4.10) is slower than in the positive case (4.3).
One can easily prove a generalization of Theorem 4.1 for vector bundles (F, hF )

of arbitrary rank (see [29, S 5.1.4] for the case of a positive bundle (L, hL)). We have

then Kodaira maps �k : Y → G

(
rk (F) ; H0

(
Y ; F ⊗ Lk

)∗)
into the Grassmannian
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of rk (F)-dimensional linear spaces of H0
(
Y ; F ⊗ Lk

)∗
and we introduce the Fubini-

Study metric on the Grassmannian as the curvature of the determinant bundle of the
dual of the tautological bundle (cf. [29, (5.1.6)]). Then by following the proof of [29,
Theorem 5.1.17] and using Lemma 3.4 we obtain

1

k
�∗kωFS − rk (F)

i

2π
RL = O

(
k−1/3

)
, k →∞, (4.11)

uniformly on Y .

5 Toeplitz Operators

A generalization of the projector (3.1) and Bergman kernel (3.2) is given by the notion
of a Toeplitz operator. The Toeplitz operator T f ,k operator corresponding to a section
f ∈ C∞ (Y ;End (F)) is defined via

T f ,k : C∞
(
Y ; F ⊗ Lk

)
→ C∞

(
Y ; F ⊗ Lk

)
, T f ,k := �k f �k, (5.1)

where f denotes the operator of pointwise composition by f . Each Toeplitz operator
above further maps H0

(
Y ; F ⊗ Lk

)
to itself.

We now prove the expansion for the kernel of a Toeplitz operator generalizing
Theorem1.1. For positive line bundles the analogous resultwas proved in [15,Theorem
2] for compact Kähler manifolds and F = C and in [29, Lemma 7.2.4 and (7.4.6)],
[31, Lemma 4.6], in the symplectic case.

Theorem 5.1 Let Y be a compact Riemann surface, (L, hL)→ Y a semi-positive line
bundle whose curvature RL vanishes to finite order at any point. Let (F, hF ) → Y
be a Hermitian holomorphic vector bundle. Then the kernel of the Toeplitz operator
(5.1) has an on-diagonal asymptotic expansion

T f ,k (y, y) = k2/ry

⎡

⎣
N∑

j=0
c j ( f , y) k

−2 j/ry
⎤

⎦+ O
(
k−2N/ry

)
, ∀N ∈ N

where the coefficients c j ( f , ·) are sections of End(F) with leading term

c0 ( f , y) = �gTYy ,RTY
y ,J TYy (0, 0) f (y) .

Proof Firstly from the definition (5.1) and the localization/rescaling properties (3.14),
(3.21) one has

T f ,k (y, y) =
∫

Y
dy′�k

(
y, y′

)
f
(
y′
)
�k

(
y′, y

)

=
∫

Bε(y)
dy′ �̃k

(
0, y′

)
f
(
y′
)
�̃k

(
y′, 0

)+ O
(
k−∞

)
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=
∫

Bε(y)
dy′ k4/ry��

(
0, y′k1/ry

)
f
(
y′
)
��

(
y′k1/ry , 0

)
+ O

(
k−∞

)

=
∫

k1/ry Bε(y)
dy′ k2/ry�� (

0, y′
)
f
(
y′k−1/ry

)
�� (

y′, 0
)+ O

(
k−∞

)
.

(5.2)

Next as in Section A, ϕ (�) (., 0) ∈ S (V ) for ϕ ∈ S (R) in the Schwartz class via a
finite propagation argument. Thus plugging (3.25) and a Taylor expansion

f
(
y′k−1/ry

)
=

∑

|α|≤N+1

1

α!
(
y′
)α

k−α/ry f (α) (0)+ O
(
k−(N+1)/ry

)

into (5.2) above gives the result with the leading term again coming from (3.20).
Finally and as in the proof of Theorem 1.1, there are no odd powers of k− j/ry as the
corresponding coefficients are given by odd integrals (the integrands change sign by
(−1) j under δ−1x := −x) which are zero. ��
We now show that the Toeplitz operators (5.1) can be composed up to highest order
generalizing the results of [11] in the Kähler case and F = C and [29, Theorems
7.4.1–2], [31, Theorems 1.1 and 4.19] in the symplectic case.

Theorem 5.2 Given f , g ∈ C∞ (Y ;End (F)), the Toeplitz operators (5.1) satisfy

lim
k→∞

∥∥T f ,k
∥∥ = ‖ f ‖∞ := sup

y∈Y
u∈Fy\0

| f (y)u|hF
|u|hF

, (5.3)

T f ,kTg,k = T f g,k + OL2→L2

(
k−1/r

)
. (5.4)

Proof The first part of (5.3) is similar to the positive case. Firstly,
∥
∥T f ,k

∥
∥ ≤ ‖ f ‖∞ is

clear from the definition (5.1). For the lower bound, let us consider y ∈ Y2 where the
curvature is non-vanishing and u ∈ Fy , |u|hF = 1. It follows from the proof of [29,
Theorem 7.4.2] (see also [2, Proposition 5.2, (5.40), Remark 5.7]) that

| f (y) (u)|hF + Oy,u

(
k−1/2

)
≤ ∥∥T f ,k

∥∥ . (5.5)

If ‖ f ‖∞ = | f (y0) (u0)|hF is attained at a point y0 ∈ Y2, it follows immediately from
(5.5) that

‖ f ‖∞ + O
(
k−1/2

)
≤ ∥∥T f ,k

∥∥ ,

so one obtains the lower bound. Next let ‖ f ‖∞ = | f (y0) (u0)|hF be attained at
y0 ∈ Y \ Y2, a vanishing point of the curvature. As Y \ Y2 ⊂ Y is open and dense
one may find for any ε > 0 a point yε ∈ Y \ Y2 and uε ∈ Fyε , |uε|hF = 1, with
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‖ f ‖∞ − ε ≤ | f (yε) (uε)|hF . Combined with (5.5) this gives

‖ f ‖∞ − ε + Oε

(
k−1/2

)
≤ ∥∥T f ,k

∥∥ , and

‖ f ‖∞ − ε ≤ lim inf
k→∞

∥∥T f ,k
∥∥ .

Since ε > 0 is arbitrary, this implies ‖ f ‖∞ ≤ lim infk→∞
∥∥T f ,k

∥∥ proving the lower
bound.

Next, to prove the composition expansion (5.4) it suffices to prove a uniform kernel
estimate

∥∥[T f ,kTg,k − T f g,k
]
(., y)

∥∥
L2 = O

(
k−1/r

)
, ∀y ∈ Y .

To this end we again compute in geodesic chart centered at y

T f ,kTg,k (., 0) =
∫

Y×Y
dy1dy2 �k (., y1) f (y1)�k (y1, y2) g (y2) �k (y2, 0)

= OL2
(
k−∞

)+
∫

Bε(y2)
dy1

∫

Bε(y)
dy2 �̃k

(., y1) f (y1) �̃k (y1, y2) g (y2) �̃k (y2, 0)

= OL2
(
k−∞

)+
∫

Bε(y2)
dy1

∫

Bε(y)
dy2k

6/ry
{
�� (

k1/ry ., k1/ry y1
)

f (y1) �� (
k1/ry y1, k

1/ry y2
)
g (y2)�� (

k1/ry y2, 0
)}

= OL2
(
k−∞

)+
∫

k1/ry Bε(y2)
dy1

∫

k1/ry Bε(y)
dy2k

2/ry
{
�� (

k1/ry ., y1
)

f
(
y1k

−1/ry
)

�� (y1, y2) g
(
y2k

−1/ry
)

�� (y2, 0)
}

= OL2

(
k−1/ry

)
+

∫

k1/ry Bε(y2)
dy1

∫

k1/ry Bε(y)
dy2k

2/ry
{
�� (

k1/ry ., y1
)

�� (y1, y2) f g
(
y2k

−1/ry
)

�� (y2, 0)
}

= OL2

(
k−1/ry

)
+

∫

Bε(y2)
dy1

∫

Bε(y)
dy2 �̃k (., y1) �̃k (y1, y2)

f g (y2) �̃k (y2, 0)

= OL2

(
k−1/ry

)
+ T f g,k

with all remainders being uniform in y ∈ Y . Above we have again used the local-
ization/rescaling properties (3.14), (3.21). As well as the first-order Taylor expansion
f
(
y1k−1/ry

) = f
(
y2k−1/ry

)+O‖ f ‖C1

(|y1 − y2| k−1/ry
)
and the off-diagonal decay

of �� (., y2) ∈ S
(
R
2
)
. ��

Remark 5.3 Similar to the previous Remark 3.2, we can recover the usual algebra
properties of Toeplitz operators when f , g are compactly supported on the set Y2
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where the curvature RL is positive. In particular we define a generalized Toeplitz
operator to be a sequence of operators Tk : L2(Y , F ⊗ Lk) −→ L2(Y , F ⊗ Lk),
k ∈ N, such that there exist K � Y2, h j ∈ C∞c (K ;End (F)), C j > 0, j = 0, 1, 2, . . .
satisfying

∥∥
∥Tk −

N∑

j=0
k− j Th j ,k

∥∥
∥ ≤ CN k−N−1, ∀N ∈ N. (5.6)

Then this class is closed under composition and one may define a formal star product
on C∞c (Y2)

[[
k−1

]]
, via

f ∗k−1 g =
∞∑

j=0
C j ( f , g) k

− j ∈ C∞c (Y2)
[[
k−1

]]
where

T f ,k ◦ Tg,k ∼
∞∑

j=0
TC j ( f ,g)k

− j ,

(cf. [11, 15, 31]). Furthermore

T f ,k ◦ Tg,k = T f g,k + OL2→L2

(
k−1

)

[T f ,k , Tg,k] = i

k
T{ f ,g},k + OL2→L2(k−2)

for all f , g ∈ C∞c (Y2;End (F)), with {·, ·} being the Poisson bracket on the Kähler
manifold (Y2, i RL).

Finally we address the asymptotics of the spectral measure of the Toeplitz operator
(5.1), called Szegő-type limit formulas [12, 21]. The spectralmeasure of T f ,k is defined
via

u f ,k (s) :=
∑

λ∈Spec(T f ,k)

δ (s − λ) ∈ S ′ (Rs) . (5.7)

We now have the following asymptotic formula.

Theorem 5.4 The spectral measure (5.7) satisfies

u f ,k ∼ k

2π
f∗RL (5.8)

in the distributional sense as k →∞.

Proof Since Spec
(
T f ,k

) ⊂ [− ‖ f ‖∞ , ‖ f ‖∞
]
by (5.3), equation (5.8) is equivalent

to

tr ϕ
(
T f ,k

) =
∑

λ∈Spec(T f ,k)

ϕ (λ) ∼ k

2π

∫

Y
[ϕ ◦ f ] RL ,
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for all ϕ ∈ C∞c
(− ‖ f ‖∞ − 1, ‖ f ‖∞ + 1

)
. We first prove that the trace of a Toeplitz

operator (5.1) satisfies the asymptotics

tr T f ,k ∼ k

2π

∫

Y
f RL . (5.9)

To this end first note that the expansion of Theorem 5.1 is uniform on compact subsets
K ⊂ Y2 while

∣∣T f ,k (y, y)
∣∣ = O (k) uniformly in y ∈ Y as in Lemma 3.3. Fur-

thermore, as in [32, Proposition 7], Y≥3 is a closed subset of a hypersurface and has
measure zero. Let K j ⊂ Y2, j = 1, 2, . . ., be a sequence of compact subsets satisfying
K j ⊂ K j+1, ∩∞j=1Kc

j = Y≥3. One may then breakup the trace integral

1

k
trT f ,k = 1

k

∫

K j

tr T f ,k (y, y)+ 1

k

∫

Y\K j

tr T f ,k (y, y)

= 1

2π

∫

K j

f RL + Oj

(
1

k

)
+ O

(
μ
(
Y \ K j

))

from which (5.9) follows on knowing 1
2π

∫
K j

f RL → 1
2π

∫
Y f RL , μ

(
Y \ K j

)→ 0
as j →∞.

Following this one has

tr T l
f ,k = tr T f l ,k + O f

(
k1−1/r

)

for all l ∈ N from (2.15), (5.4). A polynomial approximation of the compactly sup-
ported function ϕ ∈ C∞c

(− ‖ f ‖∞ − 1, ‖ f ‖∞ + 1
)
then gives

tr ϕ
(
T f ,k

) = tr Tϕ◦ f ,k + o (k)

= k

2π

∫

Y
[ϕ ◦ f ] RL + o (k)

by (5.9) as required. ��
The analogous result for projective manifolds endowed with the restriction of the
hyperplane bundlewas originally proved in [12, Theorem 13.13], [21] and for arbitrary
positive line bundles in [6], see also [27]. In [23, Theorem1.6] the asymptotics (5.9) are
proved for a semiclassical spectral function of the Kodaira Laplacian on an arbitrary
manifold.

5.1 Branched Coverings

We now consider Toeplitz operators and their composition in a particular case of
semi-positive line bundles. Namely, those that arise from pullbacks along branched
coverings. Here f : Y → Y0 is a branched covering of a Riemann surface Y0 with
branch points {y1, . . . , yM } ⊂ Y . The Hermitian holomorphic line bundle on Y is
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pulled back
(
L, hL

) = (
f ∗L0, f ∗hL0

)
from one on Y0. If

(
L0, hL0

)
is assumed

positive, then
(
L, hL

)
is semi-positive with curvature vanishing at the branch points.

In particular, near a branch point y ∈ Y of local degree r
2 one may find holomorphic

geodesic coordinate such that the curvature is given by RL = r2
4 (zz̄)r/2−−1 RL0

f (y) +
O

(
yr−1

)
. We set in the following R0 =: RL0

f (y). The leading term of (1.3) is given by

the model Bergman kernel ��0 (0, 0) of the operator

�0 = bb†, for (5.10)

b = −2∂z + ā (5.11)

b† = 2∂z̄ + a,

a = r

4
z (zz̄)r/2−1 R0. (5.12)

We first compute this model Bergman kernel.

Lemma 5.5 The model Bergman kernel corresponding to the model operator (5.10)
at a branch point is given by

��0
(
z, z′

) = re−2[�(z)+�(z′)]R
2
r
0

2π
G

(
R

2
r
0 zz

′
)

where (5.13)

�(z) := 1

4
(zz̄)r/2 R0 and (5.14)

G (x) :=
r
2−1∑

α=0

xα

�
(
2(α+1)

r

) + x
r
2−1ex

r
2

⎡

⎣

r
2−2∑

α=0

�
(
2(α+1)

r

)
− �

(
2(α+1)

r , x
r
2

)

�
(
2(α+1)

r

)
/
(
2(α+1)

r − 1
)

⎤

⎦

(5.15)

is given in terms of the incomplete gamma function.

Proof From the formulas (5.12), an orthonormal basis for ker (�0) is easily found to
be

sα :=
⎛

⎝ 1

2π

r

�
(
2(α+1)

r

) R
2(α+1)

r
0

⎞

⎠

1/2

zαe−�, α ∈ N0,

with � := 1

4
(zz̄)r/2 R0.

From here the model Bergman kernel is computed

��0
(
z, z′

) =
∑

α∈N0

sα (z) sα (z′)

= 1

2π

∑

α∈N0

r

�
(
2(α+1)

r

) R
2(α+1)

r
0

(
zz′

)α

e−2�. (5.16)
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To compute the above in a closed form, consider the series

F (y) :=
∞∑

α=0

y
α+1
s −1

�
(

α+1
s

)

=
s−1∑

α=0

y
α+1
s −1

�
(

α+1
s

) +
∞∑

α=s

y
α+1
s −1

�
(

α+1
s

)

︸ ︷︷ ︸
F0(y):=

,

for s = r
2 . Differentiating the second term in the series gives F ′0 (y) = F0 (y) +

∑s−2
α=0

(
α+1
s − 1

) y
α+1
s −1

�
(

α+1
s

) , which is anODE that can be solvedwith the initial condition

F0 (0) = 0 to give

F0 (y) =
∞∑

α=s

y
α+1
s −1

�
(

α+1
s

) = ey
[
s−2∑

α=0

�
(

α+1
s

)− �
(

α+1
s , y

)

�
(

α+1
s

)
/
(

α+1
s − 1

)

]

in terms of � (a, z) :=
∫ ∞

z
ta−1e−t dt, Re (z) > 0, (5.17)

the incomplete gamma function. Thus in particular we have computed F (y) :=
y

1
s−1G

(
y

1
s

)
(5.15). Finally noting from (5.16) that

��0
(
z, z′

) = re−2�R
2
r
0

2π
xs−1F

(
xs

)
,

for x = R
2
r
0 zz

′, completes the proof. ��

This gives the first term of the expansion

c0 (y) = ��0 (0, 0) = 1

2π

r

�
( 2
r

) R
2
r
0

at the vanishing/branch point y in this example.

6 Random Sections

In this section we generalize the results of [36] to the semi-positive case considered
here. Let us consider Hermitian holomorphic line bundles (L, hL) and (F, hF ) on a
compact Riemann surface Y . To state the result first note that the natural metric on
H0

(
Y ; F ⊗ Lk

)
arising from gTY , hF , and hL gives rise to a probability density μk
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on the sphere

SH0
(
Y ; F ⊗ Lk

)
:=

{
s ∈ H0

(
Y ; F ⊗ Lk

)
| ‖s‖ = 1

}
,

of finite dimension χ
(
Y ; F ⊗ Lk

)− 1 (2.15). We now define the product probability
space (�,μ) := (

�∞k=1SH0
(
Y ; F ⊗ Lk

)
,�∞k=1μk

)
. To a random sequence of sec-

tions s = (sk)k∈N ∈ � given by this probability density, we then associate the random
sequence of zero divisors Zsk = {sk = 0} and view it as a random sequence of currents
of integration in �′0,0 (Y ). We now have the following.

Theorem 6.1 Let (L, hL) and (F, hF ) be Hermitian holomorphic line bundles on a
compact Riemann surface Y and assume that (L, hL) is semi-positive line bundle
and its curvature RL vanishes to finite order at any point. Then for μ-almost all
s = (sk)k∈N ∈ �, the sequence of currents

1

k
Zsk⇀

i

2π
RL

converges weakly to the semi-positive curvature form.

Proof The proof follows [29, Theorem 5.3.3] with somemodifications which we point
out below. With �k denoting the Kodaira map (4.7), we first have

E
[
Zsk

] = �∗k (ωFS) (6.1)

as in [29, Theorem 5.3.3]. For a given ϕ ∈ �0,0 (Y ), one has

〈
1

k
Zsk −

i

2π
RL , ϕ

〉
=

〈
1

k
Zsk −

1

k
�∗k (ωFS) , ϕ

〉
+ O

(
k−1/3 ‖ϕ‖C0

)

following (4.10) and it thus suffices to show Y ϕ (sk)→ 0, μ-almost surely with

Y ϕ (sk) :=
〈
1

k
Zsk −

1

k
�∗k (ωFS) , ϕ

〉

being the given random variable. But (6.1) gives

E

[∣∣Y ϕ (sk)
∣∣2
]
= 1

k2
E

[〈
Zsk , ϕ

〉2]− 1

k2
E

[〈
�∗k (ωFS) , ϕ

〉2]

= O
(
k−2

)

as in [29, Theorem 5.3.3]. Thus
∫
�
dμ

[∑∞
k=1 |Y ϕ (sk)|2

]
<∞ proving the theorem.

��
The above result may be alternatively obtained using L2 estimates for the ∂̄-equation
of a modified positive metric as in [18, S 4].
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Example 6.2 (Random polynomials) The last theorem has an interesting specialization
to random polynomials. To this end, let Y = CP

1 = C
2
w\ {0} /C∗ with homogeneous

coordinates [w0 : w1]. A semi-positive curvature form for each even r ≥ 2 is given
by

ωr := i

2π
∂∂̄ ln

(|w0|r + |w1|r
)

= i

2π

r2

4

|z|r−2
(
1+ |z|r )2

dz ∧ dz̄, for z = w0

w1
�= 0,

(6.2)

which can be seen to have two vanishing points at the north/south poles of order r−2.
This is the curvature form on the hyperplane line bundle L = O (1) for the metric
with potential ϕ = ln

(|w0|r + |w1|r
)
. An orthogonal basis for H0

(
X , Lk

)
is given

by sα := zα , 0 ≤ α ≤ k, in terms of the affine coordinate z = w0/w1 on the chart
{w1 �= 0} and a C∗ invariant trivialization of L . The normalization is now given by

‖sα‖2 = 1

2π

r2

4

∫

C

|z|2α+r−2
(
1+ |z|r )k+2

= 1

2
r (k + 1)

(
k
2
r α

)

with the binomial coefficient

(
k
2
r α

)
= � (k + 1)

�
( 2
r α + 1

)
�
(
k − 2

r α
)

given in terms of the Gamma function. We have now arrived at the following.

Corollary 6.3 For each even r ≥ 2, let

pk (z) =
k∑

α=0
cα

√(
k
2
r α

)
zα

be a random polynomial of degree k with the coefficients cα being standard i.i.d.
Gaussian variables. The distribution of its roots converges in probability

1

k
Z pk⇀

1

2π

r2

4

|z|r−2
(
1+ |z|r )2

·

The above theorem interpolates between the case of SU (2)/elliptic polynomials
(r = 2) [10] and the case of Kac polynomials (r = ∞) [22, 26, 35]. For recent results
on the distribution of zeroes of more general classes of random polynomials we refer
to [3, 9, 25].
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7 Holomorphic Torsion

In this section we give an asymptotic result for the holomorphic torsion of the semi-
positive line bundle L generalizing that of [8] (see also [29, S 5.5]). First recall that
the holomorphic torsion of L is defined in terms of the zeta function

ζk (s) := 1

� (s)

∫ ∞

0
dt ts−1tr

[
e−t�1

k

]
, Re (s) > 1. (7.1)

The above converges absolutely and defines a holomorphic function of s ∈ C in
this region. It possesses a meromorphic extension to C with no pole at zero and the
holomorphic torsion is defined to be Tk := exp

{− 1
2ζ
′
k (0)

}
.

Next, with τ L , ω
(
RL

)
as in (2.11) and t > 0, set

Rt (y) :=
⎧
⎨

⎩

1
2π τ L

(
1− e−tτ L

)−1
e−tω

(
RL

)
; τ L (y) > 0

1
2π

1
t ; τ L (y) = 0.

(7.2)

Note that the above defines a smooth endomorphism Rt (y) ∈ C∞
(
Y ;End (�0,∗)).

Further, let A j ∈ C∞
(
Y ;End (�0,∗)) be such that

ρN
t := Rt (y)−

N∑

j=−1
A j (y) t

j = O
(
t N+1

)
. (7.3)

We now have the following uniform small time asymptotic expansion for the heat
kernel [29, Theorem 5.5.9].

Proposition 7.1 There exist Ak, j ∈ C∞
(
Y ;End (�0,∗)), j = −1, 0, 1, . . ., satisfying

Ak, j − A j = O
(
k−1

)
, such that for each t > 0

∣∣∣∣∣
∣
k−1e−

t
2k D

2
k (y, y)−

N∑

j=−1
Ak, j (y) t

j − ρN
t

∣∣∣∣∣
∣
= O

(
t N+1k−1

)
(7.4)

uniformly in y ∈ Y , k ∈ N.

We now prove the asymptotic result for holomorphic torsion. Below we denote by
x ln x the continuous extension of this function fromR>0 toR≥0 (i.e., taking the value
zero at the origin).

Theorem 7.2 The holomorphic torsion satisfies the asymptotics

ln Tk := −1

2
ζ ′k (0) = −k ln k

∫

Y

[
τ L

8π

]
− k

∫

Y

[
τ L

8π
ln

(
τ L

2π

)]
+ o (k)

as k →∞.
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Proof First define the rescaled zeta function ζ̃k (s) := k−1
�(s)

∫∞
0 dt ts−1tr

[
e− t

k �1
k

]
=

k−1ksζk (s) satisfying

ζ ′k (0) = kζ̃ ′k (0)− (k ln k) ζ̃k (0) . (7.5)

With ak, j :=
∫
Y tr

[
Ak, j

]
dy, j = −1, 0, . . ., and the analytic continuation of the zeta

function being given in terms of the heat trace, one has

ζ̃k (0) = ak,0 →
∫

Y
dy tr [A0] , (7.6)

ζ̃ ′k (0) =
∫ T

0
dt t−1

{
k−1tr

[
e−

t
k �1

k

]
− ak,−1t−1 − ak,0

}

︸ ︷︷ ︸
=∫ T

0 dt t−1ρ0
t +O

(
T
k

)

+
∫ ∞

T
dt t−1k−1tr

[
e−

t
k �1

k

]

− ak,−1T−1 + �′ (1) ak,0 (7.7)

following (7.4).
Choosing T = k1−2/r , gives

t−1k−1tr
[
e−

t
k �1

k

]
≤ e−

(t−1)
k

[
c1k2/r−c2

]
t−1k−1tr

[
e−

1
k �1

k

]

≤ Ct−1k−1e−
(t−1)
k

[
c1k2/r−c2

]
, t ≥ T ,

on account of (2.14), (7.4). The integral on [T ,∞) of the last expression is uniformly
bounded in k. By dominated convergence we have as k →∞,

ζ̃ ′k (0) −→
∫

Y
dy α (y) , where

α (y) :=
∫ T

0
dt t−1

{
tr [Rt (y)]− tr

[
A−1

]
t−1 − tr [A0]

}

+
∫ ∞

T
dt t−1tr [Rt (y)]

− tr
[
A−1

]
t−1 + �′ (1) tr [A0] . (7.8)

Finally, using (7.2) one has

tr [A0] = − τ L

4π

α (y) = τ L

4π
ln

(
τ L

2π

)
(7.9)
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with again the extension of the function x ln x to the origin being given by continuity
to be zero as before. The proposition now follows from putting together (7.5), (7.6),
(7.7), (7.8), and (7.9). ��

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Model operators

Here we define certain model Bochner/Kodaira Laplacians and Dirac operators acting
on a vector space V . First the Bochner Laplacian is intrinsically associated to a triple(
V , gV , RV

)
with metric gV and tensor 0 �= RV ∈ Sr−2V ∗ ⊗�2V ∗, r ≥ 2. We say

that tensor RV is non-degenerate if

Sr−s−2V ∗ ⊗�2V ∗ � i sv
(
RV

)
= 0, ∀s ≤ r − 2 �⇒ TyY � v = 0. (A.1)

Above i s denotes the s-fold contraction of the symmetric part of RV .
For v1 ∈ V , v2 ∈ Tv1V = V , contraction of the antisymmetric part (denoted by ι) of

RV gives ιv2 R
V ∈ Sr−2V ∗⊗V ∗. The contraction may then be evaluated

(
ιv2 R

V
)
(v1)

at v1 ∈ V , i.e., viewed as a homogeneous degree r −1 polynomial function on V . The
tensor RV now determines a one form aRV ∈ �1 (V ) via

aRV

v1
(v2) := −

∫ 1

0
dρ

(
ιv2 R

V
)

(ρv1) = −1

r

(
ιv2 R

V
)

(v1) , (A.2)

which we may view as a unitary connection ∇RV = d + iaRV
on a trivial Hermitian

vector bundle E of arbitrary rank over V . The curvature of this connection is clearly
RV now viewed as a homogeneous degree r − 2 polynomial function on V valued in
�2V ∗. This now gives the model Bochner Laplacian


gV ,RV :=
(
∇RV

)∗ ∇RV : C∞ (V ; E)→ C∞ (V ; E) . (A.3)

An orthonormal basis {e1, e2, . . . , en}, determines components Rpq,α := RV
(
e α; ep, eq

) �= 0, α ∈ N
n−1
0 , |α| = r − 2, as well as linear coordinates (y1, . . . , yn)

on V . The connection form in these coordinates is given by aRV

p = i
r y

q yαRpq,α.
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While the model Laplacian (A.3) is given


gV ,RV = −
n∑

q=1

(
∂yp +

i

r
yq yαRpq,α

)2

. (A.4)

As in (2.8), the abovemay nowbe related to the (nilpotent) sRLaplacian on the product
S1θ × V given by


̂gV ,RV := −
n∑

q=1

(
∂yp +

i

r
yq yαRpq,α∂θ

)2

, (A.5)

and corresponding to the sR structure
(
S1θ × V , ker

(
dθ + aRV

)
, π∗gV , dθvolgV

)

where the sR metric corresponds to gV under the natural projection π : S1θ ×V → V .
Note that the above differs from the usual nilpotent approximation of the sR Laplacian
since it acts on the product with S1. The heat kernels of (A.3), (A.5) are now related

e−t
gV ,RV
(
y, y′

) =
∫

e−iθe−t
̂gV ,RV
(
y, 0; y′, θ) dθ. (A.6)

Next, assume that the vector space V of even dimension and additionally equipped

with an orthogonal endomorphism J V ∈ O (V );
(
J V

)2 = −1. This gives rise to a
(linear) integrable almost complex structure on V , a decomposition V ⊗C = V 1,0 ⊕
V 0,1 into ±i eigenspaces of J and a Clifford multiplication endomorphism c : V →
End

(
�∗V 0,1

)
. We further assume that RV is a (1, 1) form with respect to J (i.e.,

SkV ∗ � RV (w1, w2) = 0, for all w1, w2 ∈ V 1,0). The (0, 1) part of the connection
form (A.2) then gives a holomorphic structure on the trivial Hermitian line bundle C

with holomorphic derivative ∂̄C = ∂̄ + (
iaV

)0,1
. One may now define the Kodaira

Dirac and Laplace operators, intrinsically associated to the tuple
(
V , gV , RV , J V

)
,

via

DgV ,RV ,J V :=
√
2
(
∂̄C + ∂̄∗

C

)
(A.7)

�gV ,RV ,J V :=
1

2

(
DgV ,RV ,J V

)2 (A.8)

acting on C∞
(
V ;�∗V 0,1

)
. The above (A.3), (A.8) are related by the Lichnerowicz

formula

�gV ,RV ,J V = 
gV ,RV + c
(
i RV

)
(A.9)

where c
(
RV

) =∑
p<q Ri1...ir−2

pq yi1...yir−2c
(
ep

)
c
(
eq

)
.

Being symmetric with respect to the standard Euclidean density and semi-bounded
below, both 
gV ,RV and �V are essentially self-adjoint on L2. The domains of their
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unique self-adjoint extensions are

Dom
(

gV ,RV

) =
{
ψ ∈ L2|
gV ,RV ψ ∈ L2

}
,

Dom
(
�gV ,RV ,J V

) =
{
ψ ∈ L2|�gV ,RV ,J V ψ ∈ L2

}
,

respectively. We shall need the following information regarding their spectrum.

Proposition A.1 For some c > 0, one has Spec
(

gV ,RV

) ⊂ [c,∞). For RV satis-
fying the non-degeneracy condition (A.1) one has EssSpec

(

gV ,RV

) = ∅. Finally,
for dimV = 2 with RV (w, w̄) ≥ 0, for all w ∈ V 1,0 semi-positive one has
Spec

(
�gV ,RV ,J V

) ⊂ {0} ∪ [c,∞) .

Proof The proof is similar to those of Proposition 2.1 and Corollary 2.3. Introduce
the deformed Laplacian 
k := 
gV ,kRV obtained by rescaling the tensor RV . From
(A.4) 
k = k2/rR
gV ,RVR−1 are conjugate under the rescalingR : C∞ (V ; E)→
C∞ (V ; E), (Ru) (x) := u

(
yk1/r

)
implying

Spec (
k) = k2/rSpec
(

gV ,RV

)

EssSpec (
k) = k2/rEssSpec
(

gV ,RV

)
(A.10)

By an argument similar to Proposition 2.1, one has Spec (
k) ⊂
[
c1k2/r − c2,∞

)

for some c1, c2 > 0 for RV �= 0. From here Spec
(

gV ,RV

) ⊂ [c,∞) follows.
Next, under the non-degeneracy condition, the order of vanishing of the curvature
homogeneous curvature RV (of the homogeneous connection aRV

(A.2)) is seen to be
maximal at the origin: ordy

(
RV

)
< r − 2 for y �= 0. Following a similar subelliptic

estimate (2.6) on V × S1θ as in Proposition 2.1, we have

k2/(r−1) ‖u‖2 ≤ C
[
〈
ku, u〉 + ‖u‖2L2

]
, ∀u ∈ C∞c (V \ B1 (0)) ,

holds on the complement of the unit ball centered at the origin. Combining the above
with Persson’s characterization of the essential spectrum (cf. [1, 33] Ch. 3)

EssSpec (
k) = sup
R

inf‖u‖=1
u∈C∞c (V \BR(0))

〈
ku, u〉 ,

we have EssSpec (
k) ⊂ [
c1k2/(r−1) − c2,∞

)
. From here and using (A.10),

EssSpec
(

gV ,RV

) = ∅ follows.
The proof of the final part is similar following k2/rSpec

(
�gV ,RV ,J V

) =
Spec

(
�gV ,kRV ,J V

) = Spec (�k) ⊂ {0} ∪ [
c1k2/r − c2,∞

)
, �k := �gV ,kRV ,J V ,

by an argument similar to Corollary 2.3. ��

Next, the heat e−t
gV ,RV , e−t�gV ,RV ,JV andwave eit
√


gV ,RV , e
it
√

�gV ,RV ,JV operators
being well defined by functional calculus, a finite propagation type argument as in [32,
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eqs. 2.15, 2.16] gives ϕ
(

gV ,RV

)
(., 0) ∈ S (V ), ϕ

(
�gV ,RV ,J V

)
(., 0) ∈ S (V ) are

in the Schwartz class for ϕ ∈ S (R). Further, when EssSpec
(

gV ,RV

) = ∅ any
eigenfunction of 
gV ,RV also lies in S (V ). Finally, on choosing ϕ supported close to
the origin, the Schwartz kernel �gV ,RV ,JV (., 0) ∈ S (V ) of the projector �gV ,RV ,JV

onto the kernel of �gV ,RV ,J V is also of Schwartz class.
We now state another proposition regarding the heat kernel of 
gV ,RV . Below we

denote λ0
(

gV ,RV

) := inf Spec
(

gV ,RV

)
.

Proposition A.2 For each ε > 0 there exist t, R > 0 such that the heat kernel

∫
BR(0) dx

[

gV ,RV e

−t
gV ,RV
]
(x, x)

∫
BR(0) dx e

−t
gV ,RV (x, x)
≤ λ0

(

gV ,RV

)+ ε

Proof Setting P := 
gV ,RV − λ0
(

gV ,RV

)
it suffices to show

∫
BR(0) dx

[
Pe−t P

]
(x, x)

∫
BR(0) dx e

−t P (x, x)
≤ ε

for some t, R > 0. With �P
[0,x] denoting the spectral projector onto [0, x], we split

the numerator

∫

BR(0)
dx

[
Pe−t P

]
(x, x) =

∫

BR(0)
dx

[
�P

[0,4ε]Pe
−t P] (x, x)

+
∫

BR(0)
dx

[(
1−�P

[0,4ε]

)
Pe−t P

]
(x, x) .

From P ≥ 0, �P
[0,4ε]Pe

−t P ≤ 4εe−t P and
(
1−�P

[0,4ε]

)
Pe−t P ≤ ce−3εt , for all

t ≥ 1, we may bound

∫
BR(0) dx

[
Pe−t P

]
(x, x)

∫
BR(0) dx e

−t P (x, x)
≤ 4ε + ce−3εt Rn−1

∫
BR(0) dx e

−t P (x, x)
(A.11)

for all R, t ≥ 1. Next, as 0 ∈ Spec (P) there exists ‖ψε‖L2 = 1, ‖Pψε‖L2 ≤ ε. It

now follows that
∥∥∥ψε −�P

[0,2ε]ψε

∥∥∥ ≤ 1
2 and hence

1

2
= −1

4
+

∫

BRε (0)
dx |ψε (x)|2 ≤

∫

BRε (0)
dx

∣∣∣∣

∫
dy�P

[0,2ε] (x, y) ψε (y)

∣∣∣∣

2

≤
∫

BRε (0)
dx

(∫
dy�P

[0,2ε] (x, y) �P
[0,2ε] (y, x)

)
=

∫

BRε (0)
dx�P

[0,2ε] (x, x) ,
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for some Rε > 0, using
(
�P

[0,2ε]

)2 = �P
[0,2ε] and Cauchy–Schwarz. This gives

∫

BRε (0)
dx e−t P (x, x) ≥ e−2εt

2
, t > 1.

Plugging this last inequality into (A.11) gives

∫
BRε (0) dx

[
Pe−t P

]
(x, x)

∫
BRε (0) dx e

−t P (x, x)
≤ 4ε + ce−εt Rn−1

ε

from which the theorem follows on choosing t large. ��
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38. Zelditch, S.: Szegő kernels and a theorem of Tian. Int. Math. Res. Notices 6, 317–331 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00208-023-02750-3

	Geometric Quantization Results for Semi-positive Line Bundles on a Riemann Surface
	Abstract
	1 Introduction
	2  Preliminaries
	2.1  sR and Bochner Laplacians
	2.2  Kodaira Laplacian and its Spectral Gap

	3  Bergman Kernel Expansion
	3.1  Uniform Estimates on the Bergman Kernel 

	4  Induced Fubini-Study Metrics
	5  Toeplitz Operators
	5.1 Branched Coverings

	6  Random Sections
	7  Holomorphic Torsion
	Appendix A: Model operators
	References




