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Abstract
We generalize the results of Montgomery (Commun Math Phys 168:651–675, 1995)
for the Bochner Laplacian on high tensor powers of a line bundle. When specialized
to Riemann surfaces, this leads to the Bergman kernel expansion for semipositive line
bundles whose curvature vanishes at finite order. The proof exploits the relation of the
Bochner Laplacian on tensor powers with the sub-Riemannian (sR) Laplacian.

Mathematics Subject Classification 53C17 · 58J50 · 32A25 · 53D50

1 Introduction

In [31] Montgomery studied the spectrum, and in particular the smallest eigenvalue,
of the Bochner (magnetic) Laplacian on the tensor powers Lk := L⊗k of a Hermitian
line bundle L . He assumed that the underlying manifold is a Riemann surface and that
the curvature of the line bundle vanishes transversally along a curve. The problem goes
back at least to the work Simon et al. [2, 35] and Guillemin–Uribe [18] among others,
who assumed the curvature is symplectic. The problem has since also been actively
explored under different assumptions on the curvature. The first theorem in this article
proves the most general such leading asymptotic for the smallest eigenvalue of the
Bochner Laplacian on tensor powers.
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The holomorphic analog of the above is the study of the Bergman kernel of a
holomorphic line bundle L ona complexmanifold.TheBergmankernel is theSchwartz
kernel of the projector from smooth sections of L onto holomorphic ones. The analysis
of the Bergman kernel and holomorphic sections associated to tensor powers has
important applications in complex geometry (see [14, 26]). When L is positive, the
leading asymptotic for the Bergman kernel along the diagonal was first proved in [38]
and later improved to a full expansion in [11, 39] using the Szegő kernel parametrix
of [9]. Subsequently, a different geometric method for the expansion was developed
in [12, 26, 27] inspired by the analytic localization technique of [8]. The problem of
the expansion for semipositive line bundles is largely open. A second objective of this
article is to give the first proof of the Bergman kernel expansion at vanishing points of
the curvature. We achieve this for a semipositive line bundle L on a Riemann surface.

1.1 Statement of themain results

We now state our results more precisely. Let Yn−1 be a compact Riemannian manifold
of dimension n − 1 with complex Hermitian line bundle

(
L, hL

)
and vector bundle(

F, hF
)
. We equip these with unitary connections ∇L , ∇F to obtain the Bochner

Laplacian

�k :=
(
∇F⊗Lk

)∗ ∇F⊗Lk : C∞
(
Y ; F ⊗ Lk

)
→ C∞

(
Y ; F ⊗ Lk

)
, k ∈ N,

(1.1)

on tensor powers F⊗Lk , where the adjoint is taken with respect to the natural L2 met-
ric. As the above is elliptic, self-adjoint and positive, one has a complete orthonormal

basis
{
ψk

j

}∞
j=1 of L

2
(
Y ; F ⊗ Lk

)
consisting of its eigenvectors �kψ

k
j = λ j (k) ψk

j ,

with eigenvalues 0 ≤ λ0 ≤ λ1 . . .. Denote by RL = (∇L
)2 ∈ �2 (Y ; iR) the purely

imaginary curvature form of the unitary connection ∇L . The order of vanishing of RL

at a point y ∈ Y is now defined1

ry − 2 = ordy
(
RL

)
:= min

{
l|J l

(
�2T ∗Y

)
	 j ly R

L 
= 0
}

, ry ≥ 2, (1.2)

where j l RL denotes the lth jet of the curvature. We shall assume that this order of
vanishing is finite at all points of the manifold i.e.

r := max
y∈Y ry <∞. (1.3)

1 The reason for this normalization, besides a simplification of resulting formulas, is the significance of ry
as the degree of nonholonomy of a relevant sR distribution (see Proposition 6).
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The function y �→ ry being upper semi-continuous, gives a decomposition Y =⋃r
j=2 Y j of the manifold via

Y j :=
{
y ∈ Y |ry = j

}
with each Y≤ j :=

j⋃

j ′=2
Y j ′ (1.4)

being open. Our first theorem is now the following.

Theorem 1 Let (L, hL) → (
Y , gTY

)
, (F, hF ) → (

Y , gTY
)
be Hermitian line and

vector bundles on a compact Riemannian manifold with unitary connections ∇L , ∇F .
Assuming that the curvature RL vanishes to finite order at all points, with maximal
order r (1.3), the first eigenvalue λ0 (k) of the Bochner Laplacian satisfies

λ0 (k) ∼ Ck2/r , as k →∞, (1.5)

for some positive constant C. Moreover, the first eigenfunction concentrates on Yr :

∣∣∣ψk
0 (y)

∣∣∣ = O
(
k−∞

) ; y ∈ Y≤r−1. (1.6)

The leading constant above (1.5) can be identified

C = inf
y∈Yr

λ0
(
�y

)
(1.7)

in terms of the bottomof the spectrumof certainmodel Laplacians�y := �gTYy , jr−2RL
y
,

depending on themetric gTYy andfirst non-vanishing jet tensors jr−2RL
y , defined on the

tangent space TyY at each y ∈ Y (see Section A). The first case of the above theorem
is r = 2, when the curvature RL is non-vanishing, and can be found in [19]. Here
the model Laplacian is a harmonic oscillator. The bottom of its spectrum is explicitly

given λ0
(
�y

) = 1
2 tr

√
−J 2y in terms of the endomorphism Jy : TyY → TyY , defined

by the equation gTY
(
., Jy .

) = RL (., .). In [31] a particular case of r = 3, with Y
a Riemann surface, is considered. It is surpising that the general case, despite being
attempted, has been missed therein and in several references since then.

Without further hypotheses, the structure of the locus Yr may be quite general;
locally any closed subset of a hypersurface (see Sect. 3.0.1 below). To obtain further
information on the small eigenvalues, we introduce additional assumptions. First, we
assume Yr =⋃N

j=1 Yr , j to be a union of embedded submanifolds of dimensions d j :=
dim

(
Yr , j

)
. At points y ∈ Yr , the first non-vanishing jet of the curvature jr−2y RL ∈

Sr−2T ∗y Y ⊗�2T ∗y Y may be thought of as an element of the product with the (r − 2)th
symmetric power. We say that the curvature RL vanishes non-degenerately along Yr
if the following implication holds

i sv
(
jr−2y RL

)
= 0, ∀s ≤ r − 2 �⇒ v ∈ TyYr , (1.8)
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where i s above denotes the s-fold contraction of the symmetric part of jr−2y RL . In
Remark 9 below we note the following less invariant definition of the non-degeneracy
condition (1.8) above in local coordinates: it is equivalent to assuming that the leading
order part RL

0 in the Taylor expansion of the curvature at y ∈ Yr locally defines the
same locus Yr = Y 0

r :=
{
y ∈ Y |ordy

(
RL
0

) = r − 2
}
as (1.4). In Remark 9 we also

note that our non-degeneracy condition (1.8) on the curvature is less restrictive than
the assumption of Yr being a ’magnetic well’ for the curvature RL that appears in
earlier works [19].

Now set dmax
j := max

{
d j

}N
j=1 and let NYr , j := TY⊥r , j ⊂ TY denote the normal

bundle of each Yr , j . Note that there is a natural density on each NYr , j coming from the
metric. Denote by χ[c1,c2] the characteristic function for [c1, c2]. In Sect. 3.2 we show
that under the non-degeneracy hypothesis (1.8), the Schwartz kernel of the model
Laplacian on the tangent space χ[c1,c2]

(
�y

)
(v, v) = O

(|v|−∞)
, v ∈ NYr , j,y, is

rapidly decaying, and thus integrable, in the normal directions.
Our next result is on the asymptotics for the Weyl counting function

N
[
c1k2/r , c2k2/r

]
for the number of eigenvalues of �k in the given interval.

Theorem 2 Let (L, hL) → (
Y , gTY

)
, (F, hF ) → (

Y , gTY
)
be Hermitian line and

vector bundles on a compact Riemannian manifold with unitary connections ∇L , ∇F .
Assuming Yr ⊂ Y (1.4) to be a union of embedded submanifolds along which the
curvature vanishes non-degenerately (1.8), the counting function satisfies the asymp-
totics

N
[
c1k

2/r , c2k
2/r

]
∼ k

dmaxj
r

∑

d j=dmaxj

∫

NYr , j
χ[c1,c2]

(
�y

)
(v, v) , as k →∞.

(1.9)

If further Yr is a finite set of points (or dmaxj = 0), then the smallest eigenvalue of the

Bochner Laplacian has a complete asymptotic expansion2

λ0 (k) = k2/r
[

N∑

l=0
λl k
−l/r + O

(
k−(2N+1)/r)

]

, ∀N ∈ N0, as k →∞.

(1.10)

Next, we consider the case when
(
Y , hTY

)
is a complex Hermitian manifold. The

line and vector bundles
(
L, hL

)
,
(
F, hF

)
are then assumed to be holomorphic. Taking

∇L ,∇F to be the Chern connections, one also has the associated Kodaira Laplacian

�q
k : �0,q

(
Y ; F ⊗ Lk

)
→ �0,q

(
Y ; F ⊗ Lk

)
, 0 ≤ q ≤ m,

2 The same result holds for the mth eigenvalue λm (k) for any fixed m ∈ N0.
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acting on tensor powers.3 The first eigenvalue of the above is typically 0 with ker�q
k =

Hq
(
X; F ⊗ Lk

)
being cohomological and corresponding to holomorphic sections.

The Bergman kernel �
q
k

(
y, y′

)
is the Schwartz kernel of the orthogonal projector

�
q
k : �0,q

(
Y ; F ⊗ Lk

)→ ker�q
k . Its value on the diagonal is given

�
q
k (y, y) =

Nq
k∑

j=1

∣∣s j (y)
∣∣2 , Nq

k := dim Hq
(
X; F ⊗ Lk

)
, (1.11)

in terms of an orthonormal basis
{
s j
}Nq

k
j=1 of Hq

(
X; F ⊗ Lk

)
, and thus controls point-

wise norms of sections in ker�q
k in the spirit of (1.6). To obtain the asymptotics

of �
q
k (y, y), we specialize to the case of Riemann surface (n − 1 = 2). Further-

more, in addition to vanishing at finite order (1.3), the curvature is assumed to be
semipositive: RL (w, w̄) ≥ 0, for all w ∈ T 1,0Y . Under these assumptions one has
H1

(
X; F ⊗ Lk

) = 0 for k sufficiently large, with the asymptotics of the Bergman
kernel �k := �0

k being given by the following.

Theorem 3 Let Y be a compact Riemann surface and (L, hL)→ Y a semipositive line
bundle whose curvature RL vanishes to finite order at any point. Let (F, hF )→ Y be
another Hermitian holomorphic vector bundle. Then the Bergman kernel �k := �0

k
has the pointwise asymptotic expansion on diagonal

�k (y, y) = k2/ry

⎡

⎣
N∑

j=0
c j (y) k

−2 j/ry
⎤

⎦+ O
(
k−2N/ry

)
, ∀N ∈ N. (1.12)

Here c j are sections of End (F), with the leading term c0 (y) > 0 being given in terms
of the Bergman kernel of the model Kodaira Laplacian on the tangent space at y (A.9).

Note that at points where RL is positive one has ry = 2 and the above expansion
recovers the usual Bergman kernel expansion at these points. The presence of frac-
tional exponents, at points where the curvature vanishes, given in terms of the order
of vanishing, represents a new feature. It would be desirable to have a more explicit
formula for the leading term c0 at vanishing points for the curvature. The final exam-
ple 17 computes the leading term explicitly in the case of semipositive line bundles
obtained from branched coverings. Finally, we note that unlike (1.6) the Bergman
kernel expansion (1.12) does not exhibit any concentration phenomenon.

1.2 Background and commentary

The result of Theorem 1 was shown by Montgomery [31] in the case when Y is a
Riemann surface and RL vanishes to first order (r = 3) along a curve. The case of
non-vanishing curvature (r = 2), and a special case of the expansion (1.10) for r ≥ 2,

3 Twisting by an additional bundle F is fairly standard in complex geometry, for instance one is often
required to choose F to be the canonical bundle (see Proposition 14 below).
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can be found in the work of Helffer–Mohamed [19]. The problem has since been
explored in several further cases. All such previous works however are more restrictive
in dimension, the curvature RL or the geometry of the manifold and bundles. Our
Theorem 1 is themost general leading asymptotic for the first Bochner eigenvalue. The
only assumption is the finite order of vanishing of the curvature RL and corresponds
to Hörmander’s condition on the unit circle of L .

The proof here uses the relation of the Bochner Laplacian with the sub-Riemannian
(sR) Laplacian on the unit circle bundle of L , this is a manifestation of the semiclas-
sical/microlocal correspondence in this context. Asymptotic bounds on the smallest
eigenvalue can be obtained by replacing Guillemin–Uribe’s use of the Melin inequal-
ity on the unit circle [18] by the subelliptic estimate of Rothschild–Stein [33]. The
leading asymptotic (1.5) however requires understanding the sharp constant in the
subelliptic estimate. Here we instead exploit a pointwise heat kernel expansion for the
sR Laplacian [4, 24] on the circle bundle, this is also consistent with our method for
the other announcements.

The first part of Theorem 2 is similarly the semiclassical analog of Weyl’s law for
hypoelliptic operators of Hörmander-type. Themain difficulty here is the non-uniform
nature of the relevant heat kernel expansion which does not immediately yield heat
trace asymptotics. Prior results on hypoellipticWeyl law’s include the one byMötivier
[30] and the eigenvalue estimates of Fefferman–Phong [17].

The leading asymptotic of theBergmankernel for positive line bundles on a compact
complex manifold was first proved in [38] and later improved to a full expansion in
[11, 39] as a consequence of the Boutet de Monvel–Sjöstrand parametrix [9]. Our
geometric method here is closer to [12, 27] and we refer to [26] for a detailed account
of this technique and its applications. The problem of the expansion for semipositive
line bundles is well-known and largely unresolved, see [26, Problem 4.8] or [13] for
the analogous problem for weakly pseudoconvex domains. Our final Theorem 3 is the
first instance where the expansion has been proved at vanishing points of the curvature
for surfaces, and this is yet unresolved in higher dimensions. A key step in our proof of
Theorem 3, although one among several, is Corollary 15 below. This gives an O

(
k2/r

)

spectral gap for the Kodaira Laplacian on tensor powers by combining Theorem 1with
the method of [25]. Donnelly has earlier shown in [16] that the corresponding does
not hold in higher dimensions as a counterexample to Siu’s eigenvalue conjecture
[36] (see Remark 16 below). Despite the counterexample, the problem of generalizing
Theorem 3 to higher dimensions remains open, perhaps by circumventing the use of
Corollary 15. Previously, [6] proved an asymptotic estimate for the Bergman kernel
of semipositive line bundles. In [5] the expansion is proved on the positive part, and
away from the augmented base locus, assuming the line bundle to be ample. In [21]
the expansion is proved on the positive part when one twists by the canonical bundle
(i.e. F = KY ). The analogous problem of the boundary expansion for the Bergman
kernel of weakly pseudoconvex domains in C

2 has also been recently solved by the
second author in [22], refining earlier estimates on Bergman kernels from [28, 32].

The analysis of holomorphic sections and the Bergman kernel for positive line
bundles has several applications, particularly to the Tian–Yau–Donaldson program in
Köhler geometry, Berezin–Toeplitz quantization, holomorphic torsion and its relation
to Arakelov geometry, random holomorphic sections and the quantum Hall effect
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(see [26] for these references). Our Theorem 3 opens the way to extending these
applications of Bergman kernels to the case of semipositive line bundles, which we
plan to explore in a sequel to this article.

1.3 Organization of the article

The paper is organized as follows. In Sect. 2we beginwith some standard preliminaries
on sub-Riemannian geometry and the sR Laplacian. In particular Sect. 2.1.1 gives a
proof of the on-diagonal expansion for the sR heat kernel. In Sect. 3 we specialize to
the case of sR structures on unit circle bundles. Here Sect. 3.1 proves Theorem 1 based
on an analogous heat kernel expansion for the Bochner Laplacian on tensor powers
Theorem 8. Next Sects. 3.2 and 3.3 prove the Weyl law and expansion of the first
eigenvalue of Theorem 2 respectively. In Sect. 4 we come to the case of the Kodaira
Laplacian on tensors powers of semipositive line bundles on a Riemann surface. Here
we prove the Bergman kernel expansion Theorem 3 in Sect. 4.1.

2 sub-Riemannian geometry

Sub-Riemannian (sR) geometry is the study of (metric-)distributions in smooth man-
ifolds. More precisely, let Xn be an n-dimensional, compact, oriented differentiable
manifold X . Let Em ⊂ X be a rank m subbundle of the tangent bundle which is
assumed to be bracket generating: sections of E generate all sections of T X under
the Lie bracket. The subbundle E is further equipped with a metric gE . We refer
to the triple

(
X , E, gE

)
as a sub-Riemannian (sR) structure. Riemannian geometry

corresponds to E = T X .
The obvious length function l (γ ) := ∫ 1

0 |γ̇ | dt may be defined on the set of hori-
zontal paths of Sobolev regularity one connecting the two points x0, x1 ∈ X as

�E (x0, x1) :=
{
γ ∈ H1 ([0, 1] ; X) |γ (0) = x0, γ (1) = x1, γ̇ (t) ∈ Eγ (t) a.e.

}
.

This also defines the sub-Riemannian distance function via

dE (x0, x1) := inf
γ∈�E (x0,x1)

l (γ ) . (2.1)

The Chow–Rashevskii theorem shows that this distance is finite, or that there exists a
horizontal path connecting any two points on X , giving the manifold the structure of
a metric space

(
X , dE

)
.

The canonical flag of the distribution E at any point x ∈ X is defined by

E0 (x)︸ ︷︷ ︸
={0}

⊂ E1 (x)︸ ︷︷ ︸
=E

⊂ . . . ⊂� Er(x) (x) = T X (2.2)

where E j+1 := E j+
[
E j , E j

]
, 0 ≤ j ≤ r (x)−1denotes the spanof the j th brackets.

The number r (x) is called the step or degree of nonholonomy of the distribution at x
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and in general depends on the point x ∈ X . Furthermore, the ranks of the subspaces
E j (x) might also might depend on x ∈ X and E j need not define a locally trivial
vector bundles. The growth vector, weight vectors and Hausdorff dimension of the
distribution at x ∈ X are defined via

mE (x) =
(
mE

0︸︷︷︸
:=0

, mE
1︸︷︷︸
=m

,mE
2 , . . . , mE

r︸︷︷︸
=n

)
, with mE

j (x) := dim E j (x) , (2.3)

wE (x) =
(
wE
1 (x) , . . . , wE

n (x)
)
:=

(
1, . . . , 1︸ ︷︷ ︸
mE
1 times

, 2, . . . 2︸ ︷︷ ︸
mE
2 −mE

1 times

, . . . , r , . . . , r︸ ︷︷ ︸
mE
r −mE

r−1 times

)

(2.4)

Q (x) :=
m∑

j=1
j
(
mE

j (x)− mE
j−1 (x)

)
=

n∑

j=1
wE

j (x) . (2.5)

A point x ∈ X is called regular if mE
j ’s are locally constant functions near x or each

distribution E j is a locally trivial vector bundle near x . Mitchell’s measure theorem
shows that Q (x) agrees with the Hausdorff dimension of

(
X , dE

)
as a metric space

at a regular point x ∈ X . We call the distribution E equiregular if each point x ∈ X
is regular. Hence in the equiregular case each E j is a subbundle of T X with r (x),
mE

j (x) and Q (x) all being constants independent of x .
An important notion is that of a privileged coordinate systemat x . To define this, fix a

set of local orthonormal frameof vector fieldsU1,U2, . . .Um for E near x . The E-order
ordE,x ( f ) of a function f ∈ C∞ (X) at a point x ∈ X is the maximum integer s ∈ N0
for which

∑m
j=1 s j = s implies that

(
Us1
1 . . .Usm

m f
)
(x) = 0. Similarly the E-order

ordE,x (P) of a differential operator P at the point x ∈ X is the maximum integer for
which ordE,x (P f ) ≥ ordE,x (P)+ ordE,x ( f ) holds for each function f ∈ C∞ (X).
One then has the obvious relation ordE,x (PQ) ≥ ordE,x (P)+ordE,x (Q) for any pair
of differential operators P, Q. A set of coordinates (x1, . . . , xn) near a point x ∈ X
is said to be privileged if each x j has E-order wE

j (x) at x . A privileged coordinate
system always exists near any point [3, pg. 36]. Furthermore, the coordinate system
may be chosen such that each ∂

∂x j
equals the value of some bracket monomial in the

generating vector fields at x . The E-order of the monomial xα in privileged coordi-
nates is clearly w.α, while the defining vector fields Uj all have E-order −1. A basic
vector field is one of the form xα∂x j for some j and has E-order w.α − w j . We may

then use a Taylor expansion to write Uj = ∑∞
q=−1 Û

(q)
j with each vector field Û (q)

j
being a sum of basic vector fields of E-order q. If one defines the rescaling/dilation
δεx = (εw1x1, . . . , εwn xn) in privileged coordinates, the vector fields Û (q)

j are those

appearing in the corresponding expansion (δε)∗Uj =∑∞
q=−1 εqÛ (q)

j for the defining
vector fields. A differential operator P onR

n is said to be E-homogeneous of ordE (P)

iff (δε)∗ P = εordE (P)P . It is clear that the product of two such homogeneous dif-
ferential operators P1, P2 is homogeneous of ordE (P1P2) = ordE (P1)+ ordE (P2).
The nilpotentization of the sR structure at an arbitrary x ∈ X is the sR manifold

given via X̂ = R
n ,Ê := R

[
Û (−1)
1 , . . . , Û (−1)

m

]
with the metric ĝE corresponding
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to the identification Û (−1)
j �→ (

Uj
)
x . The nilpotentization μ̂ of a smooth measure

μ at x is also defined as the leading part μ̂ = μ̂(0) under the privileged coordinate

expansion (δε)∗ μ = εQ(x)
[∑∞

q=0 μ̂(q)
]
. These nilpotentizations can be shown to be

independent of the choice of privileged coordinates up to sR isometry [3, Ch. 5].

2.1 sR Laplacian

Here we define the sub-Riemannian (sR) Laplacian and state its basic properties. It
shall be useful to define it as acting on sections of an auxiliary complex Hermitian
vector bundle of rank l with connection

(
F, hF ,∇F

)
. To define this first define the

sR-gradient ∇gE ,Fs ∈ C∞ (X; E ⊗ F) of a section s ∈ C∞ (X; F) by the equation

hE,F
(
∇gE ,Fs, v ⊗ s′

)
:= hF

(
∇F

v s, s′
)

, ∀v ∈ C∞ (X; E) , s′ ∈ C∞ (X; F) ,

(2.6)

where hE,F := gE ⊗ hF . Next, one defines the divergence or adjoint of this gradient.
In the sR context, the lack of canonical volume form presents a difficulty in doing
so, hence we shall choose an auxiliary non-vanishing volume form μ. The divergence(
∇gE ,F

)∗
μ

ω ∈ C∞ (X; F) of a section ω ∈ C∞ (X; E ⊗ F) is now defined to be the

formal adjoint satisfying

∫ 〈(
∇gE ,F

)∗
μ

ω, s

〉
μ = −

∫ 〈
ω,∇gE ,Fs

〉
μ, ∀s ∈ C∞ (X; F) . (2.7)

The sR-Laplacian acting on sections of F is then defined by the composition

�gE ,F,μ :=
(
∇gE ,F

)∗
μ
◦ ∇gE ,F : C∞ (X; F)→ C∞ (X; F) . (2.8)

In terms of a local orthonormal frame
{
Uj

}m
j=1 for E , we have the expression

�gE ,F,μs =
m∑

j=1

[
−

(
∇F
Uj

)2
s +

(
∇gEU j

)∗
μ
∇F
Uj
s

]
(2.9)

with
(
∇gEU j

)∗
μ
being the divergence of the vector fieldUj with respect toμ. Changing

the volume form μ changes the sR Laplacian (2.8) by a conjugate, up to a term of
order zero.

The sR Laplacian�gE ,F,μ is non-negative and self-adjoint with respect to the obvi-
ous inner product

〈
s, s′

〉 = ∫
X hF

(
s, s′

)
μ, s, s′ ∈ C∞ (X; F). Its principal symbol is

easily computed to be the Hamiltonian

σ = σ
(
�gE ,F,μ

)
(x, ξ) = HE (x, ξ) = ∣∣ξ |E

∣∣2 ∈ C∞
(
T ∗X

)
(2.10)
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while its sub-principal symbol is zero. The characteristic variety

��gE ,F,μ
= {

(x, ξ) ∈ T ∗X |σ (
�gE ,F,μ

)
(x, ξ) = 0

} = {
(x, ξ) | ξ |E = 0

} =: E⊥
(2.11)

is the annihilator of E . From the local expression (2.9) and the bracket generating
condition on E , the Laplacian �gE ,F,μ is seen to be a sum of squares operator of
Hörmander type [20]. It is then known to be hypoelliptic and satisfies the following
optimal sub-elliptic estimate [33] with a gain of 1

r derivatives

‖ψs‖2H1/r ≤ C
[〈

�gE ,F,μϕs, ϕs
〉+ ‖ϕs‖2L2

]
, ∀s ∈ C∞ (X; F) (2.12)

for all ϕ,ψ ∈ C∞c (X), with ϕ = 1 on spt (ψ), and where r := supx∈X r (x) is the
maximum step size of the distribution.

Thus on a compact manifold the sR Laplacian has a compact resolvent, a discrete
spectrum of non-negative eigenvalues approaching infinity and a well-defined heat
operator e−t�gE ,F,μ .

2.1.1 sR heat kernel

We shall now describe the asymptotics of the heat kernel e−t�gE ,F,μ . One first begins
with the finite propagation speed for the sR wave equation [29]: the Schwartz kernel

Kt (x, y) of the half-wave operator e
it
√

�gE ,F,μ is supported

spt Kt ⊂
{
(x, y) |dE (x, y) ≤ |t |

}
(2.13)

in a |t | size neighborhoodof the diagonalmeasuredwith respect to the sRdistance (2.1).
From this one obtains a localization for the heat kernel. To state it, fix a Riemannian

metric gT X and a privileged coordinate ball BgT X

� (x), centered at a point x , of radius
�x depending on x . Let U1, . . . ,Um be a local orthonormal frame for E on this ball.
Let χ ∈ C∞c ([−1, 1] ; [0, 1]) with χ = 1 on

[− 1
2 ,

1
2

]
. Define the modified measure

and vector fields on R
n via

μ̃ = μ̂+ χ

(
dg

T X (
x, x ′

)

�x

)
(
μ− μ̂

)
,

Ũ j = U (−1)
j + χ

(
dg

T X (
x, x ′

)

�x

)(
Uj −U (−1)

j

)
, 1 ≤ j ≤ m, (2.14)

in terms of the nilpotentization at x given by these privileged coordinates. These
modified vector fields can be seen to be bracket generating for � sufficiently small. The
connection on F can be written∇F = d+ A, in terms of an orthonormal trivialization

for F over the ball, where A ∈ �1
(
BgT X

� (x) ; u (l)
)
, A (0) = 0, is a one form
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valued in the Lie algebra u (l) of the unitary group. A modified sR metric g̃E on
R
n is now defined by requiring the vector fields (2.14) to be orthonormal. While a

modified connection on the trivial vector bundle of rank rk (F) on R
n is defined as

∇̃F := d + χ
(
dE(x,x ′)

�

)
A. A formula similar to (2.9) now gives an sR Laplacian on

R
n via

�̃gE ,F,μs =
m∑

j=1

[
−

(
∇̃F
Ũ j

)2
s +

(
∇ g̃E Ũ j

)∗
μ̃
∇̃F
Ũ j
s

]
.

Being semi-bounded from below, it is essentially self-adjoint and has a well-defined
heat kernel on R

n using functional calculus. Furthermore from the bracket generation
of (2.14), it is of Hörmander type and satisfies a local sub-elliptic estimate (2.12).
Next, an application of finite propagation speed for the wave operator (2.13) gives
localization for the heat kernel for the sR Laplacian. Namely, there exist constants
ρ1,x ,Cx depending on x such that

e−t�gE ,F,μ
(
x, x ′

) ≤ Ct−2nr−1e−
dE(x,x ′)2

4t (2.15)

e−t�gE ,F,μ
(
x, x ′

)− e−t�̃gE ,F,μ
(
x, x ′

) ≤ Cxe
− �21,x

16t (2.16)

for dE
(
x, x ′

) ≤ �1,x and t ≤ 1.
We now have the following on diagonal expansion for the sR heat kernel.

Theorem 4 There exist smooth sections A j ∈ C∞ (X;End (F))such that

[
e−t�gE ,F,μ

]

μ
(x, x) = 1

t Q(x)/2

[
A0 (x)+ A1 (x) t + · · · + AN (x) t N + O

(
t N

)]

(2.17)

∀x ∈ X, N ∈ N. The leading term A0 =
[
e−�̂ĝE ,μ̂

]

μ̂

(0, 0) is a multiple of the identity

and given in terms of the scalar heat kernel on the nilpotent approximation at x.

Proof By (2.16) it suffices to demonstrate the expansion for the localized heat kernel

e−t�̃gE ,F,μ (0, 0) at the point x . Next, the heat kernel of the rescaled sR-Laplacian

�̃ε
gE ,F,μ

:= ε2 (δε)∗ �̃gE ,F,μ (2.18)

under the privileged coordinate dilation satisfies

e
−t�̃ε

gE ,F,μ
(
x, x ′

) = εQ(x)e−tε
2�̃gE ,F,μ

(
δεx, δεx

′) . (2.19)

Rearranging and setting x = x ′ = 0, t = 1; gives

ε−Q(x)e
−�̃ε

gE ,F,μ (0, 0) = e−ε2�̃gE ,F,μ (0, 0)
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and it suffices to compute the expansion of the left-hand side above as the dilation
ε → 0. To this end, first note that the rescaled Laplacian has an expansion under the
privileged coordinate dilation

�̃ε
gE ,F,μ

=
⎛

⎝
N∑

j=0
ε j �̂

( j)
gE ,F,μ

⎞

⎠+ εN+1R(N )
ε , ∀N . (2.20)

Here each �̂
( j)
gE ,F,μ

is an ε-independent second-order differential operator on R
n of

homogeneous E-order j − 2. While each R(N )
ε is an ε-dependent second-order differ-

ential operator onR
n of E-order at least N−1. The coefficient functions of �̂( j)

gE ,F,μ
are

polynomials of degree at most j+2r .While those of R(N )
ε are uniformlyC∞-bounded

in ε. The first term is a scalar operator given in terms of the nilpotent approximation
at x

�̂
(0)
gE ,F,μ

= �ĝE ,μ̂;x =
m∑

j=1

(
Û (−1)

j

)2
. (2.21)

This expansion (2.20) along with the subelliptic estimate (2.12) now gives

(
�̃ε

gE ,F,μ
− z

)−1 −
(
�̂

(0)
gE ,F,μ

− z
)−1 = O

Hs
loc→Hs+1/r−2

loc

(
ε |Imz|−2

)
,

∀s ∈ R. More generally, we let I j :=
{
p = (p0, p1, . . .) |pα ∈ N,

∑
pα = j

}
denote

the set of partitions of the integer j and define

Cz
j :=

∑

p∈I j

(
�̂

(0)
gE ,F,μ

− z
)−1

[
∏

α

�̂
(pα)

gE ,F,μ

(
�̂

(0)
gE ,F,μ

− z
)−1

]

. (2.22)

Then by repeated applications of the subelliptic estimate we have

(
�̃ε

gE ,F,μ
− z

)−1 −
N∑

j=0
ε jCz

j = O
Hs
loc→Hs+N (1/r−2)

loc

(
εN+1 |Imz|−2Nwn−2

)
,

(2.23)

∀s ∈ R. A similar expansion as (2.20) for
(
�̃ε

gE ,F,μ
+ 1

)M (
�̃ε

gE ,F,μ
− z

)
, M ∈ N,

also gives

(
�̃ε

gE ,F,μ
+ 1

)−M (
�̃ε

gE ,F,μ
− z

)−1 −
N∑

j=0
ε jCz

j,M

= O
Hs
loc→H

s+N (1/r−2)+ M
r

loc

(
εN+1 |Imz|−2Nwn−2

)
(2.24)
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where Cz
j,M = O

Hs
loc→H

s+N (1/r−2)+ M
r

loc

(
εN+1 |Imz|−2Nwn−2), j = 0, . . . , N , with

Cz
0,M =

(
�̂

(0)
gE ,F,μ

+ 1
)−M (

�̂
(0)
gE ,F,μ

− z
)−1

.

For M � 0 sufficiently large, Sobolev’s inequality gives an expansion for the
corresponding Schwartz kernels of (2.24) inC0

(
R
n × R

n). The heat kernel expansion
now follows by plugging the resolvent expansion into the Helffer–Sjöstrand formula
(see [15, Ch. 8, eq. 8.3] for this formula and the notion of an analytic continuation
used therein). Finally, to see that the expansion only involves even powers of ε, or that
(2.17) has no half-integer powers of t , note that the operators �̂

( j)
gE ,F,μ

in the expansion

(2.20) change sign by (−1) j under the rescaling δ−1. Thus the Schwartz kernel for Cz
j

(2.22) then changes sign by (−1) j under this change of variables giving Cz
j (0, 0) = 0

for j odd. ��
The above proof similarly gives an expansion for functions of the Laplacian

[
ϕ
(
t�gE ,F,μ

)]
μ

(x, x) = 1

t Q(x)/2

[
Aϕ
0 (x)+ Aϕ

1 (x) t + · · · + Aϕ
N (x) t N + O

(
t N

)]
,

(2.25)

∀ϕ ∈ S (R). As usual, the same proof gives a point-wise, near-off diagonal
expansion for the heat kernel and its derivatives: i.e. an asymptotic expansion for
[
ϕ
(
t�gE ,F,μ

)]
μ

(
δ
t
1
2
x, δ

t
1
2
x ′
)
, as t → 0, on the chosen privileged coordinate ball in

the C∞-norm on the product. This is only a matter of different substitutions in (2.19)
and in the Helffer–Sjöstrand formula for ϕ in (2.24).

However both the above and the expansion Theorem 4 hold only pointwise along
the diagonal. In particular, the leading order Q (x) is in general a function of the point
x on the diagonal. This hence does not immediately give heat trace or spectral function
asymptotics for the sR Laplacian as the expansion might not be uniform or integrable
in x . In the equiregular case, where Q (x) = Q is constant, a uniform set of privileged
coordinates, privileged at each point in a neighborhood of x , may be chosen in the
proof. This gives the uniformity of the expansion in x and one obtains the asymptotics
for theWeyl counting function N (λ), for the number of eigenvalues of�gE ,F,μ below
λ.

Theorem 5 For an equiregular sR manifold case there is a heat trace expansion

tr e−t�gE ,F,μ = 1

t Q/2

[
a0 + a1t + · · · + aN t

N + O
(
t N

)]
,

∀N ∈ N, with leading term given by a0 =
∫
X

[
e−�̂ĝE ,μ̂

]

μ̂

(0, 0) μ. Thus the Weyl

counting function satisfies

N (λ) = λQ/2 (1+ o (1))

� (Q/2+ 1)

∫

X

[
e−�̂ĝE ,μ̂

]

μ̂

(0, 0) μ.
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The above two theorems are by now well known [4, 24, 30, 37], with the investiga-
tion of the small time heat kernel asymptotics having begun in [7]. The above proof is
based on the analytic localization technique [8] combined with the use of sR geometric
privileged coordinate dilations.

3 Bochner Laplacian on tensor powers

A natural place where sub-Riemannian structures arise is on unit circle bundles. To
be precise, let us consider

(
X , E, gE

)
a corank 1 sR structure on an n-dimensional

manifold X . We assume that there is a free S1 action on X with respect to which the
sR structure is invariant and transversal: the generator e ∈ C∞ (T X) of the action
and E are transversal at each point. The quotient Y := X/S1 is then a manifold with
a Riemannian metric gTY induced from gE . Equivalently, the natural projection π :
X → Y is a principal S1 bundle with connection given by the horizontal distribution
E . Let L := X×ρ S1→ Y be theHermitian line bundle associated to the standard one-
dimensional representation ρ of S1 with induced connection ∇L and curvature RL .
Since the distribution is of corank 1, the growth vector at x is simply a function of the

step r (x) and given bymE (x) =
(
0, n − 1, n − 1, . . . , n − 1︸ ︷︷ ︸

r(x)−1 times

, n
)
(2.3). Equivalently,

the canonical flag (2.2) is given by

E j (x) =
{
E; 1 ≤ j ≤ r (x)− 1

T X; j = r (x)
.

Also, note that the weight vector at x is wE (x) =
(
1, 1, . . . , 1︸ ︷︷ ︸
n−1 times

, r (x)
)
, while the

Hausdorff dimension is given by Q (x) = n − 1 + r (x). On account of the S1

invariance, each ofmE (x) , r (x) and Q (x) descend to functions on the base manifold
Y . The degree of nonholonomy r (x) at x is now characterized in terms of the order
of vanishing of the curvature RL as below.

Proposition 6 The degree of nonholonomy of an S1 invariant sR structure

r (x)− 2 = ord
(
RL

)
:= min

{
l| j lπ(x)

(
RL

)

= 0

}
(3.1)

is given in terms of the order of vanishing of the curvature RL on the base.

Proof In terms of local coordinates on Y and a local orthonormal section l for L ,
we may write ∇L = d + iaL ; aL ∈ �1 (Y ), while E = ker

[
dθ + aL

]
with θ

being the induced coordinate on each fiber of X . The proposition now follows on
noting

[
Ui ,Uj

] = (
daL

)
i j ∂θ = RL

i j∂θ for the local generating vector fields Uj :=
∂y j −aLj ∂θ , 1 ≤ j ≤ n−1. Repeated brackets among theUj ’s are then given in terms

of derivatives of the curvature RL . ��
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Thus we see that the bracket generating condition is equivalent to the curvature RL

having a finite order of vanishing at each point of Y .
3.0.1. Structure of Yr . As noted before, the function y �→ ry (1.2) is upper semi-
continuous and gives a decomposition of the manifold Y = ⋃r

j=2 Y j ; Y j :=
{
y ∈ Y |ry = j

}
with each Y≤ j := ⋃ j

j ′=0 Y j ′ being open. We next address the local
structure of Yr , the locus of highest vanishing order for the curvature.

Proposition 7 The subset Yr ⊂ Y is locally any closed subset of a hypersurface.

Proof First, express the curvature RL = RL
i j dyi ∧ dy j in some coordinates centered

at y ∈ Yr . By definition, Yr is described by equations of the following type near y

∂α
y R

L
i j = 0, ∀i, j = 1, 2, . . . , n − 1, α ∈ N

n−1
0 , |α| ≤ r − 3, while (3.2)

∂α0
y RL

i0 j0 
= 0, for some i0, j0 = 1, 2, . . . , n − 1, α0 ∈ N
n−1
0 , |α0| = r − 2. (3.3)

The second equation (3.3) implies that one of the functions ∂α
y R

L
i j , |α| = r − 3, has a

non-zero differential and cuts out a hypersurface.
Conversely, let S ⊂ {0} × B

n−2
y2,...,yn−1 ⊂ R

n−1
y1,y2,...,yn−1 be any closed subset of the

n − 2 dimensional ball, sitting inside the hypersurface {y1 = 0} in n − 1 dimensions.
By an application of the Whitney extension theorem, there exists a smooth function

f (y2, . . . , yn−1) ∈ C∞
(
R
n−2
y2,...,yn−1

)
such that S = {0} × {

fy3 = . . . = fyn−1 = 0
}
.

The closed two form

RL = d

[
− f dy1 + 1

2
y21dy2

]
= (

y1 + fy2
)
dy1dy2 +

n−1∑

j=3
fy j dy1dy j

is the curvature of some connection on the trivial line bundle over the ball. This
curvature form satisfies r = 3 with Y3 =

{
y1 + fy2 = fy3 = · · · = fyn−1 = 0

}
. The

local structure of Y3 near the origin is now the same as S under the diffeomorphism
(y1, y2 . . . , yn−1) �→

(
y1 + fy2 , y2, . . . , yn−1

)
. ��

3.1 Smallest eigenvalue

The unit circle bundle of L being X , the pullback C ∼= π∗L → X is canonically
trivial via the identification π∗L 	 (x, l) �→ x−1l ∈ C. Pick an auxiliary complex
Hermitian vector bundle with connection

(
F, hF ,∇F

)
on Y and we denote by the

same notation its pullback to X . Pulling back sections then gives the identification

C∞ (X; F) = ⊕k∈ZC∞
(
Y ; F ⊗ Lk

)
. (3.4)

Each summand on the right-hand side above corresponds to an eigenspace of ∇F
e

with eigenvalue −ik. While horizontal differentiation dH on the left corresponds to
differentiation with respect to the tensor product connection∇Lk

on the right-hand
side above. Pick an invariant density μX on X inducing a density μY on Y . This now
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defines the sR Laplacian �gE ,F,μX
acting on sections of F . By invariance the sR

Laplacian commutes
[
�gE ,F,μX

, e
] = 0 with the generator of the circle action and

hence preserves the decomposition (3.4). It acts via

�gE ,F,μX
= ⊕k∈Z�k (3.5)

on each component where �k is the Bochner Laplacian (1.1) on the tensor powers
F ⊗ Lk , with adjoint being taken with respect to μY .

Next, we show that the heat kernel expansion for the sR Laplacian Theorem 4 gives
a corresponding heat kernel expansion for the Bochner Laplacian.

Theorem 8 The heat kernel of the Bochner Laplacian �k has the following pointwise
expansion on the diagonal

e
− t

k2/r
�k

(y, y) =
{
k(n−1)/r

[∑N
j=0 a2 j (y; t) k−2 j/r + O

(
k−(N+1)/r )

]
; y ∈ Yr

O
(
k−∞

) ; y ∈ Y≤r−1
(3.6)

with leading coefficient a0 (y; t) = e−t�y (0, 0) being the heat kernel of the model
operator (A.3) on the tangent space.

Proof The Fourier decomposition for the Laplacians (3.5), gives the corresponding
relation

e−T�k (y1, y2) =
[∫

dθ e
−T�gE ,F,μX

(
ly1, ly2e

iθ
)
e−ikθ

]
ly1 ⊗ l∗y2 (3.7)

between the heat kernels with ly1, ly2 denoting two unit elements in the fibers of L
above y1, y2 respectively. We again note that the kernels are computed with respect
to the densities μX , μY chosen before. The above relation together with (2.15) first
gives

e
− 1

k2/r
�k

(y1, y2) = cε,Nk
−N , ∀N ∈ N, (3.8)

when d (y1, y2) > ε > 0.
Choosing a coordinate system centered at a point y ∈ Y and a local orthonormal

section l of L gives an induced coordinate system on the unit circle bundle near x .
It is easy to see that this induced coordinate system is privileged at each point on the
fiber above y.

Next, using (3.7) with T = ε2t and y1 = y2 belonging to this coordinate chart, one
has

e−ε2t�k (y1, y1) =
[∫

dδεθ
′ e−ε2t�gE ,F,μX

(
l (y1) ,l (y1) e

iδεθ
′)
e−ikδεθ

′
]
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where δε denotes the privileged coordinate dilation as before. Now setting y1 = εy =
δεy, the Eqs. (2.19), (2.20) in the proof of Theorem 4 give an expansion for the
integrand above

e−ε2t�k (δεy, δεy)

=
∫

dδεθ
′e−ikδεθ

′
ε−Q(y)

⎡

⎣
N∑

j=0
a2 j

(
y, θ ′; t) ε2 j + ε2N+1

t Q(y)/2
RN+1

(
y, θ ′; t)

⎤

⎦

(3.9)

uniformly in t ≤ 1 and y ∈ BR (0), ∀R > 0. A slight difference above being that the
coefficients a j

(
y, θ ′; t) above are computed with respect to the model nilpotent sR

Laplacian �̂y := �̂gTYy , jr−2RL
y
(A.5) on the product S1θ × R

n−1 rather than (2.21) on

Euclidean space. In particular, the leading term is a0
(
y, θ ′; t) = e−t�̂y

(
y, 0; y, θ ′).

Now set ε = k− 1
r and r1 (y) := 1− r(y)

r to obtain

e
− t

k2/r
�k

(
k−

1
r y, k−

1
r y

)

=
∫

dδk−1/r θ
′e−ikr1(y)θ ′ kQ(y)/r

⎡

⎣
N∑

j=0
a2 j

(
y, θ ′; t) k−2 j/r + O

(
k−(2N+1)/r)

⎤

⎦

=
{
k(n−1)/r

[∑N
j=0 a2 j (y; t) k−2 j/r + O

(
k−(2N+1)/r )

]
; y ∈ Yr

O
(
k−∞

) ; y ∈ Y≤r−1
(3.10)

following a stationary phase expansion in θ ′. Finally, setting y = y1 = y in (3.10)
proves the theorem.

Above we again note that the remainders are uniform for y ∈ BR (0) ,∀R > 0.
The first coefficient is given by the model Laplacian on the tangent space �y :=
�gTYy , jr−2RL

y
via

a0 (y; t) =
∫

dθ ′e−iθ ′e−t�̂y
(
y, 0; y, θ ′) = e−t�y (y, y)

by (A.7). While the general coefficient has the form

a2 j (y; t) = − 1

π

∫

C

∂̄ ρ̃ (z)Cz
2 j (y, y) dzdz̄

Cz
2 j =

∑

p∈I2 j

(
�y − z

)−1
[
∏

α

�pα

(
�y − z

)−1
]

(3.11)

as in (2.22), for some set of second-order differential operators � j , j = 1, 2, . . . ,
(see also (3.9) below). Above ρ̃ denotes an almost analytic continuation of ρ ∈ S (R)

satisfying ρ (x) = e−t x , x ≥ 0. ��
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We now show how the heat kernel expansion immediately proves our first Theo-
rem 1.

Proof of Theorem 1 We first give a short argument for asymptotic bounds on the small-
est eigenvalue

C1k
2/r − C1 ≤ λ0 (k) ≤ C [1+ o (1)] k2/r . (3.12)

The upper bound follows easily from a min-max argument. Namely by the min-max
principle for self-adjoint operators applied to the model operator �y on the tangent

space at y ∈ Yr , there exists ψ̃ ∈ C∞c
(
R
n−1), ‖ψ‖ = 1 such that

〈
�yψ̃, ψ̃

〉
≤

λ0
(
�y

) + ε, for each ε > 0. Furthermore, the model operator arises as the leading
term

(
δk−1/r

)
∗�k = k2/r

[
�y + O

(
k−1/r

)]
under the rescaling δk−1/r y := k−1/r y

in geodesic coordinates centered at y (cf. also Sect. 3.3 below). From the min–max
principle for �k one then obtains

λ0 (k)

k2/r
≤ k−2/r

〈
�kψ̃

k
0 , ψ̃k

0

〉
≤ λ0

(
�y

)+ o (1)

for ψ̃k
0 := k(n−1)/r (δk−1/r

)∗
ψ̃ . The upper bound (3.12) now follows. For the lower

bound, we combine the trick of Guillemin–Uribewith the Rothschild–Stein subelliptic
estimate (2.12) on the circle bundle to obtain

C1

∥∥∥∂
1/r
θ s

∥∥∥
2 ≤ C1 ‖s‖2H1/r ≤

[〈
�gE ,F,μX

s, s
〉+ ‖s‖2L2

]
,

∀s ∈ C∞ (X; F) .Letting s = π∗ψk
0 be the pullback of the orthonormal eigenfunction

ψk
0 of �k gives C1k2/r ≤ (λ0 (k)+ 1) as required. To obtain the leading asymptotic

(1.5) in Theorem 1 however one needs to showC1 = C in (3.12). This requires a closer
look at the Rothschild–Stein subelliptic estimate (2.12) and in particular identifying
the sharp constant therein.

We instead take an alternate route via the heat kernel, this is also consistent with
our proofs of the other two theorems in the introduction. First for any 0 < t1 < t2,
y ∈ Yr and R > 0, one has the following estimate at leading order using (3.10)

λ0 (k)

k2/r
≤ 1

(t2 − t1)
ln

⎛

⎜
⎝

∫
BR(0) d

(
k− 1

r y
)
e
− t1

k2/r
�k

(
k− 1

r y, k− 1
r y

)

∫
BR(0) d

(
k− 1

r y
)
e
− t2

k2/r
�k

(
k− 1

r y, k− 1
r y

)

⎞

⎟
⎠

= 1

(t2 − t1)
ln

(∫
BR(0) dye

−t1�y (y, y)+ O
(
k−1/r

)

∫
BR(0) dye

−t2�y (y, y)+ O
(
k−1/r

)

)

= 1

(t2 − t1)
ln

(∫
BR(0) dye

−t1�y (y, y)
∫
BR(0) dye

−t1�y (y, y)

)

+ O
(
k−1/r

)
. (3.13)
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This already gives an upper bound on the first eigenvalue. To identify the constant
(1.7) one takes the limit as t1→ t2 to obtain

λ0 (k)

k2/r
≤

∫
BR(0) dy

[
�ye−t1�y

]
(y, y)

∫
BR(0) dye

−t1�y (y, y)
+ O

(
k−1/r

)
,

∀t1 > 0. Using Proposition 19 of Section A, this gives lim supk→∞
λ0(k)
k2/r
≤ λ0

(
�y

)+
ε,∀ε > 0, y ∈ Yr , and hence

lim sup
k→∞

λ0 (k)

k2/r
≤ inf

y∈Yr
λ0

(
�y

)
. (3.14)

For the lower bound on λ0 (k), first note that as in (2.25) one may prove an on diagonal
expansion

ϕ

(
1

k2/r
�k

)
(y, y) = k(n−1)/r [aϕ

0 (x)+ aϕ
1 (x) k−1/r + . . .+ aϕ

N (x) k−N/r + O
(
k−(N+1)/r)]

∀ϕ ∈ S (R), and where the coefficient aϕ
j has the form (3.11) with ρ̃ replaced with an

analytic continuation ofϕ. Next note that each of the termsCz
2 j (3.11) is holomorphic in

z for Rez < C := inf y∈Yr λ0
(
�y

)
. This gives ϕ

(
1

k2/r
�k

)
(y, y) = O

(
k−N

)
,∀N ∈

N, uniformly in y ∈ Y , for ϕ ∈ C∞c (−∞,C). Thus

ϕ

(
λ0 (k)

k2/r

)
≤ tr ϕ

(
1

k2/r
�k

)
= O

(
k−N

)

and hence inf
y∈Yr

λ0
(
�y

) ≤ lim inf
k→∞

λ0 (k)

k2/r
. (3.15)

From (3.14), (3.15) we have (1.5).

The estimate on the eigenfunction (1.6) then follows from
∣∣ψk

0 (y)
∣∣2 ≤ e

λ0(k)

k2/r

e
− 1

k2/r
�k

(y, y) on using (3.6) and (1.5). ��

3.2 Weyl law

In this subsection and the next, we shall prove Theorem 2 assuming Yr =⋃N
j=1 Yr , j to

be a union of embedded submanifolds, of dimensions d j := dim
(
Yr , j

)
, along which

the curvature RL vanishes non-degenerately (1.8). Before proceeding, the following
remark on our non-degeneracy hypothesis is in order.

Remark 9 (Non-degeneracy hypothesis) The non-degeneracy hypothesis (1.8) can be
described more explicitly in local coordinates. Namely, if we choose a coordinate
system
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⎛

⎜
⎝y1, . . . , yd j︸ ︷︷ ︸

=y′
; yd j+1, . . . , yn−1︸ ︷︷ ︸

=y′′

⎞

⎟
⎠

near y ∈ Yr , j in which Yr , j =
{
y′′ = 0

}
is given by the vanishing of the last n−1−d j

of these coordinates, then the curvature can be Taylor expanded as

RL =
∑

|α|=r−2

n∑

p,q=1
Rpq,α

(
y′′

)α
dypdyq

︸ ︷︷ ︸
=RL

0

+O
((

y′′
)r−1)

. (3.16)

The non-degeneracy condition (1.8) is now seen to be equivalent to the implication

(
∂β RL

0

)
(y) = 0, ∀ |β| < r − 2 ⇐⇒ y′′ = 0. (3.17)

That is, the (r − 2)-order vanishing locus Yr = Y 0
r :=

{
y ∈ Y |ordy

(
RL
0

) = r − 2
}
is

locally the same for the curvature RL and its leadingpart RL
0 .An example of a curvature

that is not non-degenerate in this sense is RL = (
y21 + y42

)
dy1dy2. Here r = 4, the

leading part of the curvature is RL
0 = y21dy1dy2, while {0} = Y4 
= Y 0

4 = {y1 = 0}.
A more restrictive condition, that is common in the literature and satisfied in the

Montgomery case [31], is that the curvature RL defines a ’magnetic well’ at Yr [19].
This assumes the existence of positive constants C1,C2 > 0 for which the curvature
satisfies

C1d
g (y,Yr )

r−2 ≤
∣∣∣RL (y)

∣∣∣ ≤ C2d
g (y,Yr )

r−2 , ∀y ∈ Y , (3.18)

with dg denoting the Riemannian distance above. It is easy to see that the
above (3.18) is stronger than and implies our non-degeneracy hypothesis (3.17).
Examples of curvatures in dimension two that are non-degenerate (3.17) with-
out defining a magnetic well (3.18) are RL = y1y2dy1dy2 (normal crossing),
y1y2 (y1 + y2) dy1dy2, y1y2

(
y21 − y22

)
dy1dy2 (multiple crossings), y1

(
y2 − y21

)

dy1dy2 (tangential crossing), y1
(
y31 − y22

)
dy1dy2 (cuspidal vanishing) and y1(

yk+11 ± y22

)
dy1dy2 (A±k singularity). While in higher dimension a general class

of examples is given by curvatures of the form RL = f d f ∧ y1dy1 ∈ �2
(
R
n−1),

for f = y2 . . . yn−1g (y2, . . . , yn−1), with g being any homogeneous polynomial.
The vanishing set Y≥3 for these curvatures includes {0} × V [g] for the variety
V [g] := {g = 0} ⊂ R

n−2
y2,...,yn corresponding to the arbitrary homogeneous polynomial

g. While the highest order vanishing locus Yr = {0} is the origin for the above.
By a standard Tauberian argument, the first part of Theorem 2 on the asymptotics

of the Weyl counting function now follows from the following heat trace expansion.
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Theorem 10 Assume that Yr = ⋃N
j=1 Yr , j is a union of embedded submanifolds,

of dimensions d j := dim
(
Yr , j

)
, along which the curvature RL vanishes non-

degenerately (1.8). For any f ∈ C∞ (Y ), the heat trace of the Bochner Laplacian
satisfies the asymptotics

tr
[
f e
− t

k2/r
�k

]
=

N∑

j=1

{
M∑

s=0
k(d j−2s)/r

[∫

NYr , j
a j,s ( f ; t)

]

+ O
(
k(d j−2M−1)/r

)
}

(3.19)

∀M ∈ N, t ≤ 1. Moreover, the leading terms above are given by

a j,0 ( f ; t) = f |Yr , j e−t�y (v, v) , v ∈ NyYr , j , (3.20)

in terms of the pullback to the normal bundle of f |Yr , j .

Proof By Theorem 8 it suffices to consider f supported in a sufficiently small neigh-
borhood of a given point y ∈ Yr , j . We then again choose a coordinate system near y
in which Yr , j is given by the vanishing of the last n − 1 − d j of the coordinates and
in which the curvature has the Taylor expansion (3.16). We may further assume the
coordinate vector fields

{
∂y j

}n−1
j=1 to be orthonormal at y. The model operator (A.4)

on the tangent space

�y = −
∑

|α|=r−2

n∑

p,q=1

(
∂yp +

i

r
yq

(
y′′

)α
Rpq,α

)2

,

is given in terms of this leading part of the curvature. Below it shall also be useful to
define the model semiclassical k-Bochner Laplacian

�mod
y;k := −

∑

|α|=r−2

n∑

p,q=1

(
∂yp +

ik
r
yq

(
y′′

)α
Rpq,α

)2

, ∀k > 0, (3.21)

corresponding to the leading part of the curvature in (3.16).
Next from (3.10) one has

e
− 1

k2/r
�k

(δεy, δεy) = k(n−1)/r
⎡

⎣
N∑

j=0
a2 j

(
εk1/ry; t

)
k−2 j/r + O

(
k−(2N+1)/r)

⎤

⎦ ,

with a0
(
εk1/ry; t

)
= e−t�y

(
εk1/ry, εk1/ry

)
, (3.22)
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uniformly for k−1/r ≥ ε and y ∈ B1 (0). Furthermore, substituting t = 1
ε2k2/r

in (3.9)
we obtain

e
− 1

k2/r
�k

(δεy, δεy) = ε−(n−1)
∫

dθ ′e−ikεr θ ′
⎡

⎣
N∑

j=0
a2 j

(
y, θ ′; 1

ε2k2/r

)
ε2 j (3.23)

+ ε2N+1
(
εk1/r

)n−1+r R2N+1
(
y, θ ′; 1

ε2k2/r

)]

,

a0

(
y, θ ′; 1

ε2k2/r

)
= e
− 1

ε2k2/r
�̂y

(
y, 0; y, θ ′) (3.24)

uniformly for k ∈ N, k−1/r ≤ ε and y ∈ B1 (0). The leading term above is identified
with the heat kernel

e
− 1

k2/r
�mod

y;k (y, y) =
∫

dθ ′e−ikεr θ ′ a0
(
y, θ ′; 1

ε2k2/r

)
,

of the model k-Bochner Laplacian (3.21) for k := kεr . One next chooses

y =
(
0, . . . , 0︸ ︷︷ ︸
=y′

; yd j+1, . . . , yn−1︸ ︷︷ ︸
=y′′

)
,
∣
∣y′′

∣
∣ = 1,

of the given form so that ordy
(
RL
0

)
< r − 2 by (3.17). Then

e
− 1

k2/r
�mod

y;k (y, y) = e−�y
(
k1/ry, k1/ry

)
= O

(
k−∞

)
, (3.25)

follows by a stationary phase type argument as in Theorem 8. A similar argument
applied to the subsequent terms in (3.24), which are given by convolution integrals

with the leading part, shows that
∫
dθ ′e−ikεr θ ′ a2 j

(
y, θ ′; 1

ε2k2/r

)
= O

(
k−∞

)
, ∀ j .

In particular, the terms of (3.23), (3.24) are integrable in ε for fixed k. Thus (3.22),
(3.24), (3.25) and a Taylor expansion for f near y = 0 combine to give (3.19). ��

3.3 Expansion for the smallest eigenvalue

In this subsection we prove the second part of Theorem 2 on the expansion for the first
eigenvalue λ0 (k), assuming non-degeneracy (1.8) and when Yr is a finite set of points.
The same argument as below, with a minor modification, also gives an expansion for
the mth eigenvalue λm (k) for any fixed m ∈ N0.

Before proceeding, we note a short argument showing that a weaker version of the
second part (1.10) of Theorem 2 is immediate from its first part (1.9). Namely, when Yr
is a finite set of points (or dmax

j = 0), the number of eigenvalues for the Bochner Lapla-

cian N
[
c1k2/r , c2k2/r

]
, for c1 < C < c2, has a limit as k →∞ by (1.9). Furthermore,
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by Theorem 10 the functional traces tr ϕ
(

1
k2/r

�k

)
, ϕ ∈ C∞c (c1, c2), involving the

eigenvalues in this interval, have expansions in powers of k−1/r . Thus for k sufficiently
large λ0 (k) is a root of the polynomial pk−1/r (λ) := �λ j (k)∈[c1k2/r ,c2k2/r ]

(
λ− λ j (k)

)

of a fixed degree in λ. The coefficients of this polynomial can be written in terms of the
functional traces and hence have expansions in powers of k−1/r . By an application of
analytic perturbation theory for polynomial roots [23, Ch. 2.2], the smallest eigenvalue
λ0 (k) has an expansion in powers of k−1/Mr , where M ∈ N is the multiplicity of one
of the roots of p0 (λ).

The above argument is however insufficient to obtain an expansion in powers of
k−1/r . Below we instead show that λ0 (k) is an eigenvalue of a family of self-adjoint
matrices Ak−1/r , of fixed rank, whose entries admit expansions in k−1/r . One may then
apply analytic perturbation theory for self-adjoint matrices. This requires working at
the level of eigenfunctions and our technique again partly borrows from [8, Ch. 9].

We first need some terminology. Let � < min
{ 1
2 ,

1
2 igTY

}
be smaller than half the

injectivity radius igTY of
(
Y , gTY

)
. Choose a geodesic coordinate system on a ball

B2� (y) centered at y ∈ Yr . Below it shall also be useful to choose � small enough so

that the balls
{
B2� (y)

}
y∈Yr are disjoint. Choose local trivializations l,

{
s j
}rank (F)

j=1 of

L , F over B2� (y) that are parallel with respect to∇L ,∇F respectively along geodesics
starting at the origin. The Bochner Laplacian can be written in this local frame and

coordinates as �k =
(
∇F⊗Lk

)∗ ∇F⊗Lk
where

∇F⊗Lk = d + aF + kaL

aLp =
∫ 1

0
dρ

(
ρyq RL

pq (ρx)
)

,

aF
p =

∫ 1

0
dρ

(
ρyq RF

pq (ρx)
)

, (3.26)

With χ ∈ C∞c ([−1, 1] ; [0, 1]) with χ = 1 on
[− 1

2 ,
1
2

]
, we define the modified

connections on R
n−1 via

∇̃F = d + χ

( |y|
2�

)
aF

∇̃L = d +

⎡

⎢⎢⎢
⎢
⎣

∫ 1

0
dρ ρyk

(
R̃L

)

jk
(ρy)

︸ ︷︷ ︸
=ãLj

⎤

⎥⎥⎥
⎥
⎦
dy j , where

R̃L = χ

( |y|
2�

)
RL +

[
1− χ

( |y|
2�

)]
RL
0 . (3.27)
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Further, we choose a modified metric g̃T Y which is Euclidean outside B2� (y)
and agrees with gTY on B� (y). This defines the modified Bochner Laplacian �̃k :=(
∇̃F⊗Lk

)∗ ∇̃F⊗Lk
agreeing with �k = �̃k on the geodesic ball B� (y).

A dilation as before is now defined via δk−1/r y :=
(
k−1/r y1, . . . , k−1/r yn−1

)
and

we consider the rescaled Bochner Laplacian

� := k−2/r
(
δk−1/r

)
∗ �̃k . (3.28)

Using a Taylor expansion and (3.27), the rescaledBochner Laplacian has an expansion

� =
⎛

⎝
N∑

j=0
k− j/r� j

⎞

⎠+ k−2(N+1)/rEN+1, ∀N . (3.29)

where each � j = a j;pq (y) ∂yp∂yq + b j;p (y) ∂yp + c j (y) (3.30)

is a k-independent, self-adjoint, second-order differential operator while each

E j =
∑

|α|=N+1
yα

[
aα
j;pq (y; k) ∂yp∂yq + bα

j;p (y; k) ∂yp + cα
j (y; k)

]
(3.31)

is a k-dependent self-adjoint, second-order differential operator onR
n−1. Furthermore

the functions appearing in (3.30) are polynomials with degrees satisfying

deg a j = j, deg b j ≤ j + r − 1, deg c j ≤ j + 2r − 2

deg b j − ( j − 1) = deg c j − j = 0 (mod 2) (3.32)

and whose coefficients involve

a j : atmost j − 2 derivatives of RTY

b j , c j : atmost j − 2 derivatives of RF , RTY and atmost j + r − 2 derivatives of RL

(3.33)

The coefficients aα
j;pq (y; k) , bα

j;p (y; k) , cα
j (y; k) of (3.31) are moreover uniformly

C∞ bounded in k. The leading term of (4.19) is computed

�0 = �y := �gTYy , jr−2RL
y

(3.34)

in terms of the model Bochner Laplacian on the tangent space TY (A.3). We shall see
below that these operators (3.30) are the same as those appearing in (3.11).

Next, in our chosen coordinates and trivialization, the curvature RL again has a
Taylor expansion as in (3.16)with the non-degeneracy condition (1.8) being equivalent
to (3.17). If Yr is further a finite set of points then the model operator (3.34) at y ∈ Yr
has a discrete spectrum, EssSpec

(
�y

) = ∅, by Proposition 18 in Section A. We then
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set λ0,y < λ1,y to be the two smallest eigenvalues of �y and E0,y := ker
[
�y − λ0,y

]

the smallest eigenspace. Any normalized ψ̃ ∈ E0,y defines a quasimode

ψ̃k (y) := χ

(
2 |y|
�

)
k(n−1)/2r ψ̃

(
k1/r y

)

︸ ︷︷ ︸
=k(n−1)/2r δ∗

k−1/r ψ̃

∈ C∞
(
Y ; F ⊗ Lk

)
, satisfying

∥∥ψ̃k
∥∥ = 1+ o (1)

�kψ̃k = k2/rλ0,yψ̃k + OL2

(
k1/r

)
. (3.35)

And we define Ẽ0,y to be the span of the quasimodes corresponding to an orthonormal
basis of E0,y . Finally set λ̄0 := miny∈Yr λ0,y , Ȳr :=

{
y ∈ Yr |λ0,y = λ̄0

} ⊂ Yr and
λ̄1 := min

{
λ1,y |y ∈ Ȳr

} ∪ {
λ0,y |y ∈ Yr\Ȳr

}
> λ̄0. Further set Ẽ0 := ⊕y∈Ȳr Ẽ0,y ⊂

C∞
(
Y ; F ⊗ Lk

)
and Ẽ⊥0 to be its L2 orthogonal complement.

We now have the following proposition.

Proposition 11 There exist c > 0, k0 ∈ N such that

∣
∣∣
〈
�kψ̃, ψ̃

〉
− λ̄0k

2/r
∣
∣∣ ≤ ck1/r (3.36)

〈�kψ,ψ〉 ≥ 1

2

(
λ̄0 + λ̄1

)
k2/r (3.37)

for each k > k0 and ψ̃ ∈ Ẽ0, ψ ∈ C∞
(
Y ; F ⊗ Lk

) ∩ Ẽ⊥0 of unit L2-norm.

Proof The first Eq. (3.36) follows easily from construction (3.35).

For (3.37), we first set χyψ := χ

(
dg

TY
(.,y)

�

)
ψ , with dg

TY
being the Riemannian

distance, for each y ∈ Yr and split

ψ =
⎛

⎝
∑

y∈Yr
χy

⎞

⎠ψ

︸ ︷︷ ︸
=ψ1

+
⎛

⎝1−
∑

y∈Yr
χy

⎞

⎠ψ

︸ ︷︷ ︸
=ψ2

.

Now since theψ2 is compactly supported away from Yr , an argument similar to (3.12)
gives

〈�kψ2, ψ2〉 ≥
[
c1k

2/(r−1) − c2
]
‖ψ2‖2 (3.38)

for some constants c1, c2 > 0 depending only on �. Next since χyψ , y ∈ Ȳr , has
compact support in B� (y), we may decompose

k−(n−1)/2r (δ−1
k−1/r

)∗
χyψ = ψ0

y︸︷︷︸
∈ker[�0−λ̄0

]

+ ψ+y︸︷︷︸
∈ker[�0−λ̄0

]⊥

.
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Clearly ψ0
y is orthogonal to ψ+y and �0ψ

+
y while

〈
�0ψ

+
y , ψ+y

〉
≥ λ̄1

∥
∥∥ψ+y

∥
∥∥
2
by

definition. Furthermore, χyψ ⊥ Ẽ0,y by construction and hypothesis. Hence we may
compute

〈
χyψ, k(n−1)/2rδ∗k−1/r ψ̃

〉
=

〈
χyψ, (1− χ) k(n−1)/2rδ∗k−1/r ψ̃

〉

=
〈
k−(n−1)/2r (δ−1

k−1/r
)∗

χyψ,
[
1− χ

(
k−1/r y

)]
ψ̃
〉

= o (1)
∥
∥χyψ

∥
∥

for any normalized ψ̃ ∈ E0,y . This in turn gives
∥
∥∥ψ0

y

∥
∥∥ = o (1)

∥∥χyψ
∥∥,

∥
∥∥ψ+y

∥
∥∥ =

[1− o (1)]
∥∥χyψ

∥∥ and hence

〈
�0k

−n/2r
(
δ−1
k−1/r

)∗
χyψ, k−n/2r

(
δ−1
k−1/r

)∗
χyψ

〉
=

〈
�0ψ

0
y , ψ

0
y

〉
+

〈
�0ψ

+
y , ψ+y

〉

≥ λ̄1

∥∥∥ψ+y
∥∥∥
2 ≥ [

λ̄1 − o (1)
] ∥∥χyψ

∥∥2 .

On account of the rescaling (3.28), (3.29), (3.34) we then have

〈
�kχyψ, χyψ

〉 ≥ k2/r
[
λ̄1 − o (1)

] ∥∥χyψ
∥
∥2 . (3.39)

Finally, with χ1 =∑
y∈Ȳr χy we estimate

∥∥∥∇F⊗Lk
ψ

∥∥∥ ≥ ρ

∥∥∥χ1∇F⊗Lk
ψ

∥∥∥+ (1− ρ)

∥∥∥(1− χ1)∇F⊗Lk
ψ

∥∥∥

= ρ

∥∥∥−dχ1ψ + ∇F⊗Lk
χ1ψ

∥∥∥+ (1− ρ)

∥∥∥dχ1ψ +∇F⊗Lk
(1− χ1) ψ

∥∥∥

= ρ

∥∥
∥∇F⊗Lk

χ1ψ

∥∥
∥+ (1− ρ)

∥∥
∥∇F⊗Lk

(1− χ1) ψ

∥∥
∥− O (1) ‖ψ‖

≥ ρk1/r
[
λ̄1 − o (1)

]1/2 ‖χ1ψ‖
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+ (1− ρ)
[
c1k

2/(r−1) − c2
]1/2 ‖(1− χ1) ψ‖ − O (1) ‖ψ‖

≥ 1

2

(
λ̄0 + λ̄1

)1/2
k1/r ‖ψ‖

for k � 0 by (3.38) and (3.39). ��
Following the above proposition, the min–max principle for eigenvalues gives

Spec (�k) ⊂
[
λ̄0k

2/r − ck1/r , λ̄0k
2/r + ck1/r

]

︸ ︷︷ ︸
Ik :=

∪
[
1

2

(
λ̄0 + λ̄1

)
k2/r ,∞

)
. (3.40)

Next, choose α ∈
(
λ̄0,

λ̄0+λ̄1
2

)
. And let � = {|z| = α} and ϕ ∈ Cc (0, α), with

ϕ = 1 near λ̄0, define a circular contour in the complex plane and a cutoff function

respectively. The resolvent
(

1
k2/r

�k − z
)−1

then exists for z ∈ �, k � 0 and one may

define via

P0 := 1

2π i

∫

�

(
1

k2/r
�k − z

)−1
= ϕ

(
1

k2/r
�k

)

the spectral projection onto the span of the�k-eigenspaces with eigenvalue in the first
interval Ik of (3.40). Finally, (3.36) and (3.37) imply that

P0 : Ẽ0
∼−→ E0 :=

⊕{
ker (�k − λ) : λ ∈ Ik

}
(3.41)

is an isomorphism for k � 0. We now have the following.

Theorem 12 For any two quasimodes ψ̃k, ψ̃
′
k ∈ Ẽ0 (3.35), the inner product

〈
ψ̃k,�k P0ψ̃

′
k

〉 = k2/r
N∑

j=0
c̃ j k
− j/r + O

(
k(1−N )/r

)
(3.42)

has an asymptotic expansion for some c̃ j ∈ R, j = 0, 1, . . ..

Proof For two quasimodes ψ̃k, ψ̃
′
k localized at two different points of Ȳr one has〈

ψ̃k,�k P0ψ̃ ′k
〉 = O

(
k−∞

)
following a similar off-diagonal decay for the kernel of

ϕ
(

1
k2/r

�k

)
as (3.8). We now consider two ψ̃k, ψ̃

′
k ∈ Ẽ0,y of the form (3.35) localized

at the same point y ∈ Ȳr . In this case, first a finite propagation argument as in (2.16)
gives

〈
ψ̃k,�k P0ψ̃

′
k

〉 =
〈
ψ̃k, �̃kϕ

(
1

k2/r
�̃k

)
ψ̃ ′k

〉
+ O

(
k−∞

)
, while
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1

k2/r
�̃kϕ

(
1

k2/r
�̃k

) (
y, y′

) = k(n−1)/r�ϕ (�)
(
k1/r y, k1/r y′

)
(3.43)

follows by a similar rescaling as in (2.19). We now obtain an expansion for the right-
hand side above by a resolvent expansion for � similar to (2.23). Namely, let

I j :=
{
p = (p0, p1, . . .) |pα ∈ N,

∑
pα = j

}

denote the set of partitions of the integer j and define

Cz
j :=

∑

p∈I j
(�0 − z)−1

[
∏

α

�pα (�0 − z)−1
]

.

Then by repeated applications of the local elliptic estimate we have

(�− z)−1 −
N∑

j=0
k− j/rCz

j = OHs
loc→Hs+2

loc

(
k−(N+1)/r |Imz|−2r N−2

)
, (3.44)

for each N ∈ N, s ∈ R. Plugging the above expansion into the Helffer–Sjöstrand
formula then gives

�ϕ (�)−
N∑

j=0
k− j/rCϕ

j = OHs
loc→Hs+2

loc

(
k−(N+1)/r) (3.45)

∀N ∈ N and for some k-independent Cϕ
j ∈ L2

(
R
n−1 × R

n−1), j = 0, 1, . . . .
A similar argument as (2.24), replacing (3.44) by the resolvent expansion for
(�+ 1)−M (�− z)−1, shows that the last expansion above is valid in Cl
(
R
n−1 × R

n−1), ∀l ∈ N. Hence plugging (3.45) into (3.43) finally gives

〈
ψ̃k,�k P0ψ̃

′
k

〉− k2/r

⎛

⎝
N∑

j=0
c j k
− j/r

⎞

⎠ = O
(
k−(N−1)/r)

∀N ∈ N, with c̃ j :=
〈
ψ̃,Cϕ

j ψ̃
′
〉
as required. ��

The proof of Theorem 2 now follows from the above and is summarized below.

Proof of Theorem 2 As noted before, the first part of the theorem regarding the Weyl
law (1.9) follows from Theorem 10 by a Tauberian argument.

For the second part of the theorem regarding the expansion for λ0 (k), note
from (3.41) that the low lying eigenvalues of �k are given by Spec

(
�k |E0

) =
Spec

(
�k |P0 Ẽ0

)
for k � 0. But since the matrix coefficients of �k |P0 Ẽ0

were just

shown to have an expansion in Theorem 12, the expansion for the smallest eigenvalue
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λ0 (k) now follows by an application of standard perturbation theory for self-adjoint
matrices as in [23, Ch. 2.6]. ��
Remark 13 (Spectrum and abnormals) Our Theorems 1 and 2 proved in this section are
generalizations of the results in [31]. This latter article seems to have been motivated
by describing a correspondence between the asymptotics of sR Laplace spectrum and
the phenomenon of singular or abnormal geodesies in sR geometry, and claims to have
achieved this goal. However our generalization of its results here shows that this is
not the case, as indeed the concentration of the eigenfunction ultimately occurs on the
locus Yr where the Hausdorff dimension is maximized. And this in general has little if
anything to do with abnormals. As a reference for the first spectral study of abnormals
in sR geometry we refer instead to the recent article [34] of the second author.

4 Kodaira Laplacian on tensor powers

In this final section, we shall prove the Bergman kernel expansion in Theorem 3.
Thus we now specialize to the case when Y is a complex Hermitian manifold with
integrable complex structure J . For the arguments of this section, we shall further need
to restrict to the two dimensional case, when Y is a Riemann surface (see Remark 16).
The metric gTY is induced from the Hermitian metric on the complex tangent space
TCY = T 1,0Y . Further (L, hL), (F, hF ) are chosen to be a Hermitian, holomorphic
line and vector bundles respectively. We denote by ∇L , ∇F the corresponding Chern
connections. The curvature RL of ∇L is a (1, 1) form which is further assumed to be
semipositive

RL (w, w̄) ≥ 0, ∀w ∈ T 1,0Y . (4.1)

We also assume as before that the curvature RL vanishes at finite order at any point
of Y . We note that semipositivity implies that the order of vanishing ry − 2 ∈ 2N0 of
the curvature RL at any point y is even. Semipositivity and finite order of vanishing
imply that there are points where the curvature is positive, the set where the curvature
is positive is in fact an open dense set. Hence deg L = ∫

Y
i
2π RL > 0, so that L is

ample.
Denote by

(
�0,∗ (X; F ⊗ Lk

) ; ∂̄k
)
the Dolbeault complex and define the Kodaira

Laplace and Dirac operators acting on �0,∗ (X; F ⊗ Lk
)
via

�k := 1

2
(Dk)

2 = ∂̄k ∂̄
∗
k + ∂̄∗k ∂̄k (4.2)

Dk :=
√
2
(
∂̄k + ∂̄∗k

)
. (4.3)

Clearly, Dk interchanges while �k preserves �0,0/1. We denote D±k = Dk |�0,0/1

and �0/1
k = �k |�0,0/1 . The Clifford multiplication endomorphism c : TY →

End
(
�0,∗) is defined via c (v) := √2 (

v1,0 ∧−iv0,1
)
, v ∈ TY , and extended multi-

plicatively to the entire exterior algebra �∗TY .
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Denote by ∇TY ,∇T 1,0Y the Levi-Civita and Chern connections on the real and
holomorphic tangent spaces as well as by ∇T 0,1Y the induced connection on the anti-
holomorphic tangent space. Denote by � the real (1, 1) form defined by contraction
of the complex structure with the metric �(., .) = gTY (J ., .). This is clearly closed
d� = 0, or Y is Köhler, and the complex structure is parallel ∇TY J = 0 or ∇TY =
∇T 1,0Y ⊕∇T 1,0Y .

With the induced tensor product connection on �0,∗ ⊗ F ⊗ Lk being denoted via
∇�0,∗⊗F⊗Lk

, the Kodaira Dirac operator (4.3) is now given by the formula

Dk = c ◦ ∇�0,∗⊗F⊗Lk
. (4.4)

Next, we denote by RF the curvature of ∇F and by κ the scalar curvature of gTY .
Define the following endomorphisms of �0,∗

ω
(
RF

)
:= RF (w, w̄) w̄iw̄, τ F := RF (w, w̄)

ω
(
RL

)
:= RL (w, w̄) w̄iw̄, τ L := RL (w, w̄)

ω (κ) := κw̄iw̄, (4.5)

in terms of an orthonormal section w of T 1,0Y . The Lichnerowicz formula for the
above Dirac operator [26, Thm. 1.4.7] simplifies for a Riemann surface and is given
by

2�k = D2
k =

(
∇�0,∗⊗F⊗Lk

)∗ ∇�0,∗⊗F⊗Lk

+ k
[
2ω

(
RL

)
− τ L

]
+

[
2ω

(
RF

)
− τ F

]
+ 1

2
ω (κ) . (4.6)

We now have the following.

Proposition 14 Let Y be a compact Riemann surface, (L, hL) → Y a semipositive
line bundle whose curvature RL vanishes to finite order at any point. Let (F, hF )→ Y
be aHermitian holomorphic vector bundle. Then there exist constants c1, c2 > 0, such
that

‖Dks‖2 ≥
(
c1k

2/r − c2
)
‖s‖2

for all s ∈ �0,1
(
Y ; F ⊗ Lk

)
.

Proof Writing s = |s| w̄ ∈ �0,1
(
Y ; F ⊗ Lk

)
in terms of a local orthonormal section

w̄ gives

〈[
2ω

(
RL

)
− τ L

]
s, s

〉
= RL (w, w̄) |s|2 ≥ 0 (4.7)
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from (4.1), (4.5). This gives

〈
D2
k s, s

〉
=

〈[(
∇�0,∗⊗F⊗Lk

)∗ ∇�0,∗⊗F⊗Lk + k
[
2ω

(
RL

)
− τ L

]

+
[
2ω

(
RF

)
− τ F

]
+ 1

2
ω (κ)

]
s, s

〉

≥
〈(
∇�0,∗⊗F⊗Lk

)∗ ∇�0,∗⊗F⊗Lk
s, s

〉
− c0 ‖s‖2

≥
(
c1k

2/r − c2
)
‖s‖2

from Theorem 1, (4.6) and (4.7). ��
We now derive as a corollary a spectral gap property for Kodaira Dirac and Laplace

operators Dk , �k corresponding to Theorem 1.

Corollary 15 Under the hypotheses of Proposition 14 there exist constants c1, c2 > 0,
such that Spec (�k) ⊂ {0} ∪

[
c1k2/r − c2,∞

)
for each k. Moreover, ker D−k = 0 and

H1
(
Y ; F ⊗ Lk

) = 0 for k sufficiently large.

Proof From Proposition 14, it is clear that

Spec
(
�1

k

)
⊂

[
c1k

2/r − c2,∞
)

(4.8)

for some c1, c2 > 0 giving the second part of the corollary. Moreover, the eigenspaces
of D2

k

∣∣
�0,0/1 with non-zero eigenvalue being isomorphic by Mckean-Singer, the first

part also follows. ��
The vanishing H1

(
Y ; F ⊗ Lk

) = 0 for k sufficiently large also gives

dim H0
(
Y ; F ⊗ Lk

)
= χ

(
Y ; F ⊗ Lk

)
= k

[
rk (F)

∫

Y
c1 (L)

]
+

∫

Y
c1 (F)+ 1− g,

(4.9)

by Riemann-Roch, with χ
(
Y ; F ⊗ Lk

)
, ch

(
F ⊗ Lk

)
, Td (Y ), g denoting the holo-

morphic Euler characteristic, Chern character, Todd genus and genus ofY respectively.

Remark 16 Our proof of the last two results Proposition 14 and Corollary 15 follows
[18, 25] from the positive case. In the semipositive case however the proof only works
on a Riemann surface, since in higher dimensions there are more components to the[
2ω

(
RL

)− τ L
]
term (4.7) in the Lichnerowicz formula (4.6) which semipositivity is

insufficient to control.
Indeed, Donnelly has shown a counterexample to the existence of a spectral gap

for semipositive line bundles in higher dimensions [16]. In the same paper [16, Cor.
3.3], Donnelly has also observed that on a Riemann surface the Kodaira Laplacian
satisfies an O (1) spectral gap: Spec (�k) ⊂ {0}∪ [c,∞), for some c > 0, by using its
equivalence with the closed range hypothesis for the Kohn Laplacian �b on the unit
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circle. It is however crucial for our proof of the Bergman kernel expansion Theorem 3
that the size of the spectral gap is O

(
k2/r

)
, as in Corollary 15, or that it is at least

growing with k.

4.1 Bergman kernel expansion

We now investigate the asymptotics of the Bergman kernel. Recall that this is the
Schwartz kernel �k (y1, y2) of the projector onto the kernel of �k with respect to the

L2 inner product given by the metrics gTY , hF and hL . Alternately, if
{
s j
}N0

k
j=1 denotes

an orthonormal basis of eigensections of H0
(
X; F ⊗ Lk

)
then

�k (y1, y2) :=
Nk∑

j=1
s j (y1)⊗ s j (y2)

∗ . (4.10)

We wish to describe the asymptotics of �k (y, y) along the diagonal in Y × Y .
Next as in Sect. 3.3, we fix a geodesic coordinate system centered at y ∈ Y .

By using parallel transport of an orthonormal basis {w}, {l}, { f j
}rk(F)

j=1 for T 1,0
y Y ,

Ly , F with respect to ∇T 1,0Y , ∇L , ∇F respectively we obtain a local orthonormal
trivialization for the corresponding bundles over a geodesic ball B2� (y). In this frame

and coordinate system, the connection on the tensor product ∇�0,∗⊗F⊗Lk
again has a

similar expression as (3.26).
We now define a modified frame {w̃} on T 1,0

R
2 which agrees with {w} on B� (y)

and with
{

1√
2

(
∂x1 + i∂x2

)}
outside B2� (y). Also define the modified metric g̃T Y and

almost complex structure J̃ on R
2 to be standard in this frame and hence agreeing

with gTY , J on B� (y). The Christoffel symbol of the corresponding modified induced

connection on �0,∗now satisfies ã�0,∗ = 0 outside B2� (y).
Further we may as before define the modified connections ∇̃F , ∇̃L (3.27) as

well as the corresponding tensor product connection ∇̃�0,∗⊗F⊗Lk
which agrees with

∇�0,∗⊗F⊗Lk
on B� (y). Clearly the curvature of the modified connection ∇̃L is given

by R̃L (3.27). This modified curvature can also be seen to be semipositive and van-
ishing to order ry − 2 for � sufficiently small. We now define the modified Kodaira

Dirac operator on R
2 by the similar formula D̃k = c ◦ ∇̃�0,∗⊗F⊗Lk

, agreeing with Dk

on B� (y) by (4.4). This has a similar Lichnerowicz formula

D̃2
k = 2�̃k :=

(
∇̃�0,∗⊗F⊗Lk

)∗ ∇̃�0,∗⊗F⊗Lk

︸ ︷︷ ︸
=�̃k

+k
[
2ω

(
R̃L

)
− τ̃ L

]

+
[
2ω

(
R̃F

)
− τ̃ F

]
+ 1

2
ω (κ̃) (4.11)

with the adjoint being taken with respect to the metric g̃T Y and corresponding volume
form. Also the endomorphisms R̃F , τ̃ F , τ̃ L andω (κ̃) are the obvious modifications of
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(4.5) defined using the curvatures of ∇̃F , ∇̃L and g̃T Y respectively. The above (4.11)
again agrees with �k on B� (y) while the endomorphisms R̃F , τ̃ F , ω (κ̃) all vanish
outside B� (y). Being semi-bounded below (4.11) is essentially self-adjoint. A similar
argument as Corollary 15 gives a spectral gap

Spec
(
�̃k

)
⊂ {0} ∪

[
c1k

2/ry − c2,∞
)

. (4.12)

To repeat some parts of the argument, first note that by construction the localized
Bochner Laplacian in (4.11) is the rescaled model Laplacian �̃k = k2/rR�0R−1 on
the complement of a compact ball B� (y)c. Using the global subelliptic estimate for
the model Laplacian (A.6), one obtains c1, c2 > 0 such that

〈
�̃ks, s

〉
≥

(
c1k

2/r − c2
)
‖s‖2 (4.13)

for each s ∈ C∞c
(
B� (y)c

)
supported outside the ball. Combinig this with the

local subelliptic estimate on the compact ball B� (y) one obtains (4.13) for each

s ∈ C∞c
(
R
2) and hence for all s in Dom

(
�̃k

)
as an unbouded operator on L2.

The spectral gap (4.12) for �̃k now again follows by the Lichnerwicz formula as in
the proof of 15.

By elliptic regularity, the projector �̃k from L2
(
R
2;�0,∗

y ⊗ Fy ⊗ L⊗ky
)
onto

ker
(
�̃k

)
then has a smooth Schwartz kernel with respect to the Riemannian vol-

ume of g̃T Y .
We are now ready to prove the Bergman kernel expansion Theorem 3.

Proof of Theorem 3 First choose ϕ ∈ S (Rs) satisfying ϕ (0) = 1. For c > 0, set
ϕ1 (s) = 1[c,∞) (s) ϕ (s). On account of the spectral gap Corollary 15, and as ϕ1
decays at infinity, we have

ϕ (�k)−�k = ϕ1 (�k) with
∥
∥�a

kϕ1 (�k)
∥
∥
L2→L2 = O

(
k−∞

)
(4.14)

∀a ∈ N. Combining the above with semiclassical Sobolev and elliptic estimates gives

|ϕ (�k)−�k |Cl (Y×Y ) = O
(
k−∞

)
, (4.15)

∀l ∈ N0. Next, we may write ϕ (�k) = 1
2π

∫
R
eiξ�k ϕ̂ (ξ) dξ via Fourier inversion.

Since �k = �̃k on B� (y), we may use a finite propagation argument as in (2.16) to
conclude

ϕ (�k)
(
y′, y

) = ϕ
(
�̃k

) (
y′, 0

)+ O
(
k−∞

)
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for y′ ∈ B �
2
(y). Next, since the operator �̃k also satisfies a spectral gap (4.12), similar

arguments as above for the localizedKodaira Laplacian give
∥∥
∥�̃a

kϕ1

(
�̃k

)∥∥
∥
L2
loc→L2

loc

=
O

(
k−∞

)
. And there after local elliptic regularity gives

∣
∣∣ϕ

(
�̃k

)
− �̃k

∣
∣∣
Cl
loc(Y×Y )

=
O

(
k−∞

)
similar to (4.15). Thus we now have a localization of the Bergman kernel

�k (., y) = O
(
k−∞

)
, on B� (y)c

�k (., y)− �̃k (., 0) = O
(
k−∞

)
, on B� (y) . (4.16)

It thus suffices to consider the Bergman kernel of the model Kodaira Laplacian (4.11)
on R

2.
Next, with the dilation δk−1/r y =

(
k−1/r y1, . . . , k−1/r yn−1

)
as in Sect. 3.3, the

rescaled Kodaira Laplacian

� := k−2/ry
(
δk−1/r

)
∗ �̃k (4.17)

satisfies

ϕ

(
�̃k

k2/ry

)
(
y, y′

) = k2/ryϕ (�)
(
yk1/ry , y′k1/ry

)
(4.18)

for ϕ ∈ C∞c (R) as in (3.43). Using a Taylor expansion via (3.27), the rescaled Kodaira
Laplacian again has an expansion

� =
⎛

⎝
N∑

j=0
k− j/ry� j

⎞

⎠+ k−2(N+1)/ryEN+1, ∀N , (4.19)

where each � j = a j;pq (y) ∂yp∂yq + b j;p (y) ∂yp + c j (y) (4.20)

is a k-independent self-adjoint, second-order differential operator while each

E j =
∑

|α|=N+1
yα

[
aα
j;pq (y; k) ∂yp∂yq + bα

j;p (y; k) ∂yp + cα
j (y; k)

]
(4.21)

is a k-dependent self-adjoint, second-order differential operator on R
2. Furthermore

the functions appearing in (4.20) are again polynomials with degrees satisfying the
same conditions in (3.32) and (3.33). While the coefficients aα

j;pq (y; k) , bα
j;p (y; k) ,

cα
j (y; k) of (4.21) are uniformly C∞ bounded in k. Using (3.27), (A.4), (A.9) and

(A.10) the leading term of (4.19) is computed

�0 = �y := �
gTY , j

ry−2
y RL ,J TY

(4.22)

in terms of the model Kodaira Laplacian on the tangent space TY (A.9).
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Next, we obtain an expansion for the right-hand side of (4.18) by a resolvent expan-
sion for � as in (3.45). Namely, we let I j :=

{
p = (p0, p1, . . .) |pα ∈ N,

∑
pα = j

}

denote the set of partitions of the integer j and define

Cz
j =

∑

p∈I j
(z −�0)

−1 [�α

[
�pα (z −�0)

−1]] . (4.23)

Then by repeated applications of the local elliptic estimate using (4.19) we have

(z −�)−1 −
⎛

⎝
N∑

j=0
k− j/ryCz

j

⎞

⎠ = OHs
loc→Hs+2

loc

(
k−(N+1)/ry |Imz|−2Nry−2

)
,

(4.24)

for each N ∈ N, s ∈ R. Plugging the above into the Helffer–Sjöstrand formula gives

ϕ (�)−
N∑

j=0
k− j/ryCϕ

j = OHs
loc→Hs+2

loc

(
k−(N+1)/ry

)
(4.25)

∀l, N ∈ N0 and for some k-independent Cϕ
j ∈ C∞

(
R
2 × R

2), j = 0, 1, . . .. The

leading term Cϕ
0 = ϕ (�0) = ϕ

(
�y

)
is given in terms of the modal Kodaira

Laplacian. Again a similar argument as (2.24), replacing (4.24) by the resolvent
expansion for (�+ 1)−M (z −�)−1, shows that (4.25) is valid at the level of ker-
nels in Cl

(
R
2 × R

2), ∀l ∈ N. Finally choosing ϕ supported, and equal to one, near
0 gives (1.12) from the spectral gap (4.12) as well as (4.18) and (4.25). The leading
term c0 (y) = C0 (0, 0) = �0 (0, 0) := ��0 (0, 0) is seen to be the model Bergman
kernel on the tangent space. See the argument in Section A at the bottom of page 29
for the positivity c0 (y) > 0. From this identification of c0 (y) with the model kernel
one sees that it has a locally smooth extension c0,ry

(
y′
)
for y′ near y, depending only

on the type ry at y. However such an extension might have nothing to do with the
Bergman kernel at points y′ other than y. Finally, to show that there are no odd powers
of k− j/ry , one again notes that the operators � j (4.20) change sign by (−1) j under
δ−1x := −x . Thus the Schwartz kernel for Cz

j (4.23) changes sign by (−1) j giving
Cz
j (0, 0) = 0 for j odd. ��
We end by giving an example where semipositive bundles arise and where the first

term of the Bergman kernel expansion (1.12) above can further be made explicit.

Example 17 (Branched coverings) Consider f : Y → Y0 a branched covering of a
Riemann surface Y0 with branch points {y1, . . . , yM } ⊂ Y . The Hermitian holomor-
phic line bundle on Y is pulled back

(
L, hL

) = (
f ∗L0, f ∗hL0

)
from one on Y0. If(

L0, hL0
)
is assumed positive, then

(
L, hL

)
is semipositive with curvature vanish-

ing at the branch points. In particular, near a branch point y ∈ Y of local degree
r
2 one may find holomorphic geodesic coordinate such that the curvature is given

by RL = r2
4 (zz̄)r/2−1 RL0

f (y) + O
(|z|r−1). The leading term of (1.12) is given by
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the model Bergman kernel ��0 (0, 0) of the operator �0 = bb†, b† = 2∂z̄ + a,
a = r

4 z (zz̄)r/2−1 RL0
f (y). An orthonormal basis for ker (�0) is then seen to be

sα (z) :=
⎛

⎝ 1

2π

r

�
(
2(α+1)

r

)
[
RL0

f (y)

] 2(α+1)
r

⎞

⎠

1/2

zαe−�, α ∈ N0, with

�(z) := 1

4
(zz̄)r/2 RL0

f (y).

Since sα (0) = 0 for α ≥ 1, the model Bergman kernel at the origin is now computed

c0 (y) = �0 (0, 0) := ��0 (0, 0) = |s0 (0)|2 = 1

2π

r

�
( 2
r

)
[
RL0

f (y)

] 2
r

at the vanishing or branch point y.
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Appendix A: Model operators

Here we define certain model Bochner, Kodaira Laplacians and Dirac operators act-
ing on a vector space V . The Bochner Laplacian is intrinsically associated to a triple(
V , gV , RV

)
consisting of a metric gV and a non-vanishing tensor 0 
= RV ∈

Sr−2V ∗ ⊗ �2V ∗, r ≥ 2. While the Kodaira Laplacian depends on an additional
complex structure J V on V . Throughout the article, the vector space V = TyY is
the tangent space of the manifold, with gV = gTYy the Riemannian metric, J V = Jy
the complex structure and RV = jr−2RL

y the first non-vanishing jet of the auxiliary
curvature RL at a point y ∈ Y .
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We say that the tensor RV is nondegenerate if the following is satisfied

Sr−s−2V ∗ ⊗�2V ∗ 	 i sv
(
RV

)
= 0, ∀s ≤ r − 2 �⇒ TyY 	 v = 0. (A.1)

Above i s denotes the s-fold contraction of the symmetric part of RV .
For v1 ∈ V , v2 ∈ Tv1V = V , contraction of the antisymmetric part, denoted

by ι, of RV gives ιv2 R
V ∈ Sr−2V ∗ ⊗ V ∗. The contraction may then be evaluated(

ιv2 R
V
) (

vr1

)
at vr1 := v&r1 ⊗ v1 for v1 ∈ V and hence viewed as a homogeneous

degree r − 1 polynomial function on V . The tensor RV now determines a one form
aRV ∈ �1 (V ) via

aRV

v1
(v2) :=

∫ 1

0
dρ

(
ιv2 R

V
) (

(ρv1)
r ) = 1

r

(
ιv2 R

V
) (

vr1
)
, (A.2)

which we may view as a unitary connection ∇RV = d + iaRV
on a trivial Hermitian

vector bundle E of arbitrary rank over V . The curvature of this connection is clearly
RV now viewed as a homogeneous degree r − 2 polynomial function on V valued in
�2V ∗. One now defines the model Bochner Laplacian, intrinsically associated to the
tuple

(
V , gV , RV

)
, via

�0 = �gV ,RV :=
(
∇RV

)∗ ∇RV : C∞ (V ; E)→ C∞ (V ; E) . (A.3)

depending on the pair
(
gV , RV

)
. An orthonormal basis {e1, e2, . . . , en}, determines

components Rpq,α := RV
(
e&α; ep, eq

)
, α ∈ N

n−1
0 , |α| = r − 2, as well as linear

coordinates (y1, . . . , yn) on V . The connection form in these coordinates is given by
aRV

p = i
r y

q yαRpq,α. While the model Laplacian (A.3) is given

�0 = −
n∑

q=1

(
∂yp +

i

r
yq yαRpq,α

)2

. (A.4)

As in (3.5), the above may now be related to the nilpotent sR Laplacian on the product
S1θ × V given by

�̂0 = �̂gV ,RV := −
n∑

q=1

(
∂yp +

i

r
yq yαRpq,α∂θ

)2

, (A.5)

and corresponding to the sR structure
(
S1θ × V , ker

(
dθ + aRV

)
, π∗gV , dθvolgV

)

where the sR metric corresponds to gV under the natural projection π : S1θ ×V → V .
Note that the above differs from the usual nilpotent approximation of the sR Laplacian
since it acts on the product with S1. Following [33, Part III, Sec. 16], the above satisfies
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a subelliptic estimate: there exists C > 0 such that

‖s‖2H1/r ≤ C
[〈

�̂0s, s
〉
+ ‖s‖2L2

]
, ∀s ∈ C∞c

(
S1θ × V

)
. (A.6)

As (3.7), the heat kernels of (A.3), (A.5) are now related

e−t�0
(
y, y′

) =
∫

e−iθe−t�̂0
(
y, 0; y′, θ) dθ. (A.7)

Next, assume that the vector space V is of even dimension and additionally is

equipped with an orthogonal endomorphism J V ∈ O (V );
(
J V

)2 = −1. This gives
rise to a linear integrable almost complex structure on V , a decomposition V ⊗ C =
V 1,0 ⊕ V 0,1 into ±i eigenspaces of J and a Clifford multiplication endomorphism
c : V → End

(
�∗V 0,1

)
. We further assume that RV is a (1, 1) form with respect to J

that is SkV ∗ 	 RV (w1, w2) = 0, ∀w1, w2 ∈ V 1,0. The (0, 1) part of the connection
form (A.2) then gives a holomorphic structure on the trivial Hermitian line bundle C

with holomorphic derivative ∂̄C = ∂̄+(
aV

)0,1
.Onemay nowdefine themodelKodaira

Dirac and Laplace operators, intrinsically associated to the tuple
(
V , gV , RV , J V

)
,

via

D0 = DgV ,RV ,J V :=
√
2
(
∂̄C + ∂̄∗

C

)
(A.8)

�0 = �gV ,RV ,J V :=
1

2

(
DgV ,RV ,J V

)2 (A.9)

acting on C∞
(
V ;�∗V 0,1

)
. The above (A.3), (A.9) are related by the Lichnerowicz

formula

�0 = �0 + c
(
RV

)
(A.10)

where c
(
RV

) = ∑
p<q Ri1...ir−2

pq yi1...yir−2c
(
ep

)
c
(
eq

)
. We may choose a complex

orthonormal basis
{
w j

}m
j=1 of V

1,0 that diagonalizes the tensor RV : RV
(
wi , w̄ j

) =
δi j R j j̄ ; Ri j̄ ∈ Sr−2V ∗. This gives complex coordinates on V in which (A.9) may be
written as

�0 =
dimV /2∑

q=1
b jb

†
j + 2

(
∂z j a j + ∂z̄ j ā j

)
w̄ j iw̄ j

where b j := −2∂z j + ā j , b†j = 2∂z̄ j + a j , for a j = 1

r
R j j̄ z j , (A.11)

with each R j j̄ (z), 1 ≤ j ≤ dimV /2, being a real homogeneous function of order
r − 2.

Being symmetric with respect to the standard Euclidean density and semi-bounded
below, both �0 and �0 are essentially self-adjoint on L2. We shall need the following
information regarding their spectrum.
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Proposition 18 There exists c > 0 such that Spec (�0) ⊂ [c,∞). For RV satisfying
the non-degeneracy condition (A.1) one has EssSpec (�0) = ∅. While for dimV = 2
with RV (w, w̄) ≥ 0 semipositive one has Spec (�0) ⊂ {0} ∪ [c,∞) .

Proof The proof of the first part is similar to that of (3.12). Introduce the deformed
Laplacian �k := �gV ,kRV obtained by rescaling the tensor RV . From (A.4) �k =
k2/rR�0R−1 are conjugate under the rescaling R : C∞ (V ; E) → C∞ (V ; E),
(Ru) (x) := u

(
yk1/r

)
implying

Spec (�k) = k2/rSpec (�0)

EssSpec (�k) = k2/rEssSpec (�0) (A.12)

By an argument similar to (3.12), one has Spec (�k) ⊂
[
c1k2/r − c2,∞

)
for some

c1, c2 > 0 for RV 
= 0. From here Spec (�0) ⊂ [c,∞) follows. Next, under the non-
degeneracy condition, the order of vanishing of the homogeneous curvature RV (of the
homogeneous connection aRV

(A.2)) is seen to be maximal at the origin: ordy
(
RV

)
<

r − 2 for y 
= 0. Following a similar sub-elliptic estimate (2.12) on V × S1θ as in
(3.12), we have

k2/(r−1) ‖u‖2 ≤ C
[
〈�ku, u〉 + ‖u‖2L2

]
, ∀u ∈ C∞c (V \B1 (0)) ,

holds on the complement of the unit ball centered at the origin. Combining the above
with Persson’s characterization of the essential spectrum [1, Ch. 3]

EssSpec (�k) = sup
R

inf‖u‖=1
u∈C∞c (V \BR(0))

〈�ku, u〉 ,

we have EssSpec (�k) ⊂
[
c1k2/(r−1) − c2,∞

)
. From here and using (A.12),

EssSpec (�0) = ∅ follows.
For the final part, similarly set �k := �gV ,kRV ,J V and note that k2/rSpec (�0) =

Spec (�k) ⊂ {0} ∪
[
c1k2/r − c2,∞

)
by an argument similar to Corollary 15. ��

Next, the heat e−t�0 , e−t�0 and wave eit
√

�0 , eit
√

�0 operators being well-
defined by functional calculus, a finite propagation type argument as in (2.15) gives
ϕ (�0) (., 0) ∈ S (V ), ϕ (�0) (., 0) ∈ S (V ) are of Schwartz class for ϕ ∈ S (R).
When EssSpec (�0) = ∅ any eigenfunction of �0 also lies in S (V ). Finally, under
the hypothesis of 18, the Schwartz kernel�0 (., 0) ∈ S (V ) of the projector�0 = ��0

onto the kernel of �0 is also seen to be of Schwartz class, on choosing ϕ supported
close to the origin.

The constant a0 := �0 (0, 0) is also the leading term in the boundary expansion

�D (z, z) ∼ a0 (−ρ)−2− 2
r for the Bergman kernel of a weakly pseudoconvex finite

type domain D := {ρ < 0} ⊂ C
2 as z→ x ′ ∈ ∂D a point on its boundary [22, Thm.

2]. Here r = r
(
x ′
)
is the typer of the point on the boundary. In this case, [10, Thm.

2] proved the lower bound �D (z, z) ≥ c (−ρ)−2− 2
r for some c > 0. Thus a0 > 0.
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We now state another proposition regarding the heat kernel of�0. Belowwe denote
λ0 (�0) := inf Spec (�0).

Proposition 19 For each ε > 0 there exist t, R > 0 such that the integral of the heat
kernel satisfies

∫
BR(0) dx

[
�0e−t�0

]
(x, x)

∫
BR(0) dx e

−t�0 (x, x)
≤ λ0 (�0)+ ε

Proof Setting P := �0 − λ0 (�0) it suffices to show

∫
BR(0) dx

[
Pe−t P

]
(x, x)

∫
BR(0) dx e

−t P (x, x)
≤ ε

for some t, R > 0. With �P
[0,x] denoting the spectral projector onto [0, x], we split

the numerator

∫

BR(0)
dx

[
Pe−t P

]
(x, x)

=
∫

BR(0)
dx

[
�P

[0,4ε]Pe
−t P] (x, x)+

∫

BR(0)
dx

[(
1−�P

[0,4ε]

)
Pe−t P

]
(x, x) .

From P ≥ 0, �P
[0,4ε]Pe

−t P ≤ 4εe−t P and
(
1−�P

[0,4ε]

)
Pe−t P ≤ ce−3εt , ∀t ≥ 1,

we may bound

∫
BR(0) dx

[
Pe−t P

]
(x, x)

∫
BR(0) dx e

−t P (x, x)
≤ 4ε + ce−3εt Rn−1

∫
BR(0) dx e

−t P (x, x)
(A.13)

∀R, t ≥ 1. Next, as 0 ∈ Spec (P) there exists ‖ψε‖L2 = 1, ‖Pψε‖L2 ≤ ε. It now

follows that
∥∥
∥ψε −�P

[0,2ε]ψε

∥∥
∥ ≤ 1

2 and hence

1

2
= −1

4
+

∫

BRε (0)
dx |ψε (x)|2 ≤

∫

BRε (0)
dx

∣∣∣
∣

∫
dy�P

[0,2ε] (x, y) ψε (y)

∣∣∣
∣

2

≤
∫

BRε (0)
dx

(∫
dy�P

[0,2ε] (x, y) �P
[0,2ε] (y, x)

)
=

∫

BRε (0)
dx�P

[0,2ε] (x, x) ,

for some Rε > 0, using
(
�P

[0,2ε]

)2 = �P
[0,2ε] and Cauchy–Schwartz. This gives

∫

BRε (0)
dx e−t P (x, x) ≥ e−2εt

2
, t > 1.
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Plugging this last inequality into (A.13) gives

∫
BRε (0) dx

[
Pe−t P

]
(x, x)

∫
BRε (0) dx e

−t P (x, x)
≤ 4ε + ce−εt Rn−1

ε

from which the theorem follows on choosing t large. ��
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