GENERALIZED BERGMAN KERNELS ON SYMPLECTIC MANIFOLDS
XIAONAN MA AND GEORGE MARINESCU

ABSTRACT. We study the near diagonal asymptotic expansion of the generalized
Bergman kernel of the renormalized Bochner-Laplacian on high tensor powers of a
positive line bundle over a compact symplectic manifold. We show how to compute
the coefficients of the expansion by recurrence and give a closed formula for the
first two of them. As consequence, we calculate the density of states function of
the Bochner-Laplacian and establish a symplectic version of the convergence of the
induced Fubini-Study metric. We also discuss generalizations of the asymptotic
expansion for non-compact or singular manifolds as well as their applications. Our
approach is inspired by the analytic localization techniques of Bismut-Lebeau.

0. INTRODUCTION
S

The Bergman kernel for complex projective manifolds is the smooth kernel of the
orthogonal projection from the space of smooth sections of a positive line bundle
L on the space of holomorphic sections of L, or, equivalently, on the kernel of the

. . —I—L%  —L%—L . . . "ITian,Ru, Zelditch,Catlin, BS%, Lu,

Kodaira-Laplacian O =90~ +0 0 on L. It is studied in [46, 41, 50, 17, 6, 32,
49, 31], in various generalities, establishing the diagonal asymptotic expansion for
high powers of L. Moreover, the coefficients in the diagonal asymptotic expansion
encode geometric information about the underlying complex projective manifolds.
This diaDgonal asymptotic expansion plays a crucial role in the recent work of Don-
aldson b7 ] where the existence of Kéhler metrics with constant scalar curvature
is sh%v&l to be closely related to Chow-Mumford stability.

In [20], Dai, Liu and Ma studied the asymptotic expansion of the Bergman ker-
nel of the spin® Dirac operator associated to a positive line bundle on a compact
symplectic manifold, and related it to that of the corresponding heat kernel. As
a by product, they gave a new proof of the above results. This approach is in-
spired by Local %ridex Theory, especially by the analytic localization techniques of
Bismut-Lebeau h‘, §11].

Another natural generalization of the operator (I* in symplectic geometry was
initiated by Guillemin and Uribe [29]. In this VerylgnE%I;:esting short paper, they
introduce a renormalized Bochner—Laplacian (cf. (Hf}ﬁiich is exactly 200" in
the Kahler case. The asymptotic of the spectrum of the renormali B%dBlég(lzhéerr—
Laplacian on L” when p — oo is studied in various generalities in i9, 15, 2‘9}| by
applying the analysis of Toeplitz structures of Boutet de Monvel-Guillemin Hg],
and in [33] as a direct application of Lichnerowicz formula.

Of course, there exists also a replacement of the 0—operator and of the notion
of holomorphic section based on a construction of Boutet de Monvel-Guillemin
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2 XIAONAN MA AND GEORGE MARINESCU

Ff)g] of a first order pseudodifferential operator D, which mimic the 0, operator on
the circle bundle associated to L. However, D, is neither c IBII(J)Pi(Sl?Z:l(l)ly ]glse%‘ilned nor
unique. This point of view was adopted in a series of papers [10, 42, 7]

In this paper, we will study the asymptotic expansion of the generalized Bergman
kernel of the renormalized Bochner-Laplacian, namely the smooth kernel of the
projection on its bound states as p — oo. The advantage of this approach is that
the renormalized Bochner-Laplacian has geometric meaning and is canonically de-
fined. Moreover, it does not require the passage to the associated circle bundle as
we can work directly on the base manifold. Let’s explain our results in detail.

Let (X,w) be a compact symplectic manifold of real dimension 2n. Assume that
there exists a Hermitian line bundle L over X endowed with a Hermitian connec-
tion V¥ with the property that %RL = w, where RY = (VF)? is the curvature of
(L, VL). Let (E, h*) be a Hermitian vector bundle on X with Hermitian connection
V¥ and curvature R”. Let ¢’ be a Riemannian metricon X and J : TX — TX
be the skew—adjoint linear map which satisfies the relation

(0.1) w(u,v) = ¢g"*(Ju,v) for wu,veTX.

Let J be an almost complex structure such that ¢?*(J-, J.) = ¢?*(-,-), w(J-, J) =
w(-,-) and that w(-,J-) defines a metric on 7X. Then J commutes with J, and
—JJ € End(TX) is positive, thus J = J(—J?)~1/2,

We introduce the Levi-Civita connection V¥ on (T'X, ¢g’¥) with its curvature
R™X and scalar curvature r~. Let VX.J € T*X ® End(TX) be the covariant deriva-
tive of J induced by V7¥. Let AX¥®E be the induced Bochner-Laplacian acting on
¢ (X, L’ ® E). We fix a smooth Hermitian section ¢ of End(FE) on X. Let {¢;}; be
an orthonormal frame of (T'X, g7). Set

e

(0.2) 7(x) = —7 Tripx [JJ] = TRL(ej, Jej) >0,
_ 1 pL 2

(0.3) o = ueTgl(,fxeX V1R (u, Ju)/|ul>rx >0,

(0.4) Apo =AY _pr 4 @

M BU,GU, Bral,BiV . . .
By %3, Cor. 1.2] (also cf. [9, 29, 15, 5]), there exists C;, > 0 (which can be estimated
precisely by using the ¥°-norms of R?X, R, RL, VXJ and & cf. kS’B, p.656 —658])
independent of p such that

(0.5) Spec Ay e C [—CL,CL] U 2puy — Cr, +00[.

where we denote by Spec(A) the spectrum of any operator A.
Let H, be the e?gens ace of A, o with the %%geG%values in .[—O%, ,OL]' Then for p
large enough, again by [33, Cor. 1.2] (also cf. b‘f?g] when F is trivial and J = J)

(0.6) dimH, —d, — / ch(I? @ B) Td(TX)
X

= 1k(E) /X %p” ‘l‘/x <C1(E) + rk(2E) C1(TX)> _C<1n(li)z_)' 4 O (),
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where ch(-), ¢ (+), Td(:) are the Chern character, the first Chern class and the Todd
class of the corresponding complex vector bundles (7 X is a complex vector bundle
with complex structure J).

et {s? }Z , be any orthonormal basis of H, with respect to the inner product
( such that A, 457 = X;,S7. For ¢ € N, we define B,, € ¢~(X,End(E)) a
follows,

(0.7) Z X SP(z) @ (SP(x))",

here we denote by )}, = 1. Clearly, B, ,(z) does not depend on the choice of {S57}.
Let det J be the determlnant functlon of J. € End(7,X). A corollary of Theorem
h_Igls one of our main results:

Theorem 0.1. There exist smooth coefficients b,,.(x) € End(E), which are polyno-
mials in R™X, RE (and R, ®), their derivatives of order < 2(r+q)—1 (resp. 2(r+q)),
and reciprocals of linear combinations of eigenvalues of J at x, with

O

(0.8) boo = (det )2 1dg,

such that for any k,l € N, there exists Cy ; > 0 such that for any x € X, p € N,
1 k

(0.9) EB(M,(JJ) — ; byr(x)p™" (ﬂ < Ck pF L

Moreover, the expansion is uniform in the following sense: for any fixed k,l € N,
assume that the derivatives of ¢*%, h*, VE, h¥, VE, J and ® with order < 2n + 2k +
2q+1+4 run over a set bounded in the €'-norm taken with respect to the parameter
x € X and, moreover, g*X runs over a set boungiegi below. Then the constant Cy,; is
independent of the data; and the ¢'-norm in (b‘9) includes also the derivatives on
the parameters.

By derivatives with respect to the parameters we mean directional derivatives in
the spaces of all appropriate ¢*~, h”, V¥, b, V¥, J and ® (on which B,, and b,,
implicitly depend).

We calculate further the coefficients b,; and b, ¢ > 1 as follows'.

Theorem 0.2. If J = J, then for q > 1,

1 1
(0.10) bo1 = 5 [TX + VX + 2V TR ey, Jej)} ,
T
(L oxe, Vol !
(011) bq70 = <ﬂ|v J| + TR (6], Jej) + <I>> .

Q.0
Let us check our formulas with the help of the Atiyah-Singer formula (bTG“). Let
TUNX = {v € TX ®g C; Jv = v/—1v} be the almost complex tangent bundle on X
and let P = 1(1 — \/=1J) be the natural projection from 7X ®g C onto 70X

1. o MQ 4
'Here |[VXJ|2 = >, [(VEJ)e;j|? which is two times the corresponding [V*J|? from H%ZH 2
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Then V10 = pLOVTX pl.0 g a Hermitian connection on 7% X, and the lClhern-Weil
representative of ¢;(7TX) is ¢, (T X, V10) = % Trira0x (V)% By (E‘.Q’S),

(0.12) (V10)2 = pLo [RTX - }l(vXJ) A (VXJ)]PLO.
Thus if J = J, then by (0:12), G°13), &15), @21) and (322),

1 1
(0.13) ((TOOX, V1), 0) = — <7«X v Z|vXJ|2).

0.6 0.0
'Ig)h%refore, by integrating gver X the expansion (b?g) for £k = 1 we obtain (b?b’), S0
(b.TO) is compatible with (b‘B‘) . .
0.1 B_f_o . Catlin, zelditc mg05

Theorem 0.1 for ¢ = 0 and (0.10) generalize the r%s%Its of [17, 50, 32] ané i%’gi
to the symplectic case. The ter Gg)é .+ 1IVXJ)? in (b.TO) is called the Hermitian
scalar curvature in the literature [28; Chap. 10] and is a natural substitute for the
F 9igmannian scalar curvature in the almost-Kéhler case. It was used by Donaldson

] to define tl.le m81.117ent map on th(? space of compatible almost-compleB% 2str%c-
tures. We can view (h). 1) as an extension and refinement of t‘%lleesults of }[TI], FZQ,
§5] abDolelﬁt the density of states function of A, 4 (cf. Remark &3.2 for the details).

In 1, D%%MLiu and Ma also focused on the full off-diagonal asymptotic ex-
pansion (cf. hU, Theorem 4.18]) which is needed to study the Bergman kernel on
orbifolds, and the only Sirbl/lall eigenvalue of the operator is 0 when p — oo, thus they
had the key Oeqauation m, (4.89)]. In the current situation e, have small eigen-
values (cf. (bf@) and we are interested to prove Theorem hng, that is, the near
diagonal expansion of the generalized Bergman kernels. This result is enough

.. Q.3 )
for most of applications. At first, the spectral gap (b75) and the finite propaga-
tion speed of solutions of hyperbolic equations allow to localize the problem. Then
we will combine the Sobolev norm estimates as in [20] and a formal power series

. . t3. . .
trick to obtain Clglgore 1@751419, and in this way, we get a meth%(% D/}:0 compute the
coefficients (cf. (T. S)J.“W'r%%iévhich is new also in the case of h’U].

In a forthcoming paper , we will find the full off-diagonal asymptotic ex-

%Dl/’llsion of the generalized Bergman kernels by combining the results here and in
FZU], and as a direct application, we vagi%l study the Toeplitz operat(gl;% on symplectic
manifolds and Donaldson Theorem kZS] for the Kodaira map D (3.14).

Let us provide a short road-map of the paper. In Section hTwe prove Theorem

£0. T 1
1. In Section E;we compute the coefficients b,,, and thus establish Theorem

t? '.2 In Section ETwe explain some applications of our results. Among others, we
E%_e? a symplectic version of the convergence of the induced Fubini-Study metric

, and we show how to handle %}ég first-order pseudo-differential operator D, of
Boutet de M Sr12\6e21 and Guillemin h§], vzzlich was studied extensively by Shiffman
and Zelditch , and the operator 0 + 0 when X is Kadhler but J # J. We include
also generalizations for non-compact or singular manifolds and as a consequence
we obtain an unified treatment of the convergence of the induced Fubini—Study
metric, the holomorphic Morse inequalities and the charact ngg?gion of Moishezon
spaces. Some results of this pap D}I“M%%lve been announced in iSZII. We refer also the
readers to our forthcoming book or our approach.
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1. GENERALIZED BERGMAN KERNELS

As pointed out in Introduction, we will apply the s%r.a?)tegy of the proof in %].
However, we have smallDeLigenvalues when p — oo (cf. (b?5)), thus we cannot use di-
rectly the key equation m, (4.89)] to get a full off-diagonal asymptotic expansion
of the generalized Bergman kernels. AfterDI{%calizing the problem, we Wi%}&;%apt
the Sobolev norm estimates de\é%loioed in }[20] to our problem in Section T.3. To
complete the proof of Theorem b._l',_we need to prove the vanishing of the coeffi-
cients F,,, (r < 2¢) in the expansion (E%e"%% We will introduce a formal power series
tgi_c6k to overcome this difficulty and give a method to compute the coefficients in
(0.9). The id%%s used here are inspired by the technique of Local Index Theory,
especially by h‘, §10, 11].

This Section is organized as follows. In Section ﬁ%%we explain that the as-
ymptotic expansion of tl%e;generalized Bergman kernel P, ,(z,2’) is local on X by
using the spectral gap (0.5) a 93 ‘F}21e finite propagation speed of solutions of hy-
perbolic equations. In Sectionﬁﬁs;zgwe obtain an asymptotic expansion of A, 4 in
normal coordinates. In Section [1.3, we study the uniform estimate of the gene£%1-4
ized Bergman kernels of the renormalized Bochner-Laplacian .. 1 S§egtion A,
we study the Bergman kernel of the limit operator .%,. In Section 1.5, we com-,
pute some coeffici élécs 6qu(r < 2¢) in the gsyxlnptotic expansion in Theorem h_l'l?_
Finally, in Section [1.6, we prove Theorem 0.1

1.1. Localization of the problem. Let ¢ be the injectivity radius of (X, g7).
We fix ¢ € (0,a*/4). We denote by BX(z,¢) and BT=*(0, ¢) the open balls in X and
T, X with center = and radius ¢, respectively. Then the map 7, X > Z — expX(Z) €
X is a diffeomorphism from B7=X(0,¢) on B*(z,¢) for ¢ < a*. From now on, we
identify BT=%(0,¢) with BX(z,¢) for ¢ < a*.

Let (, )r»or be the metric on [? ® F induced by h* and h” and dvx be the Rie-
mannian volume form of (7X, g?*). The L?>-scalar product on ¢ (X, L* ® E), the
space of smooth sections of P ® F, is given by

(1.1) (s1,82) = /)(<81(I),52($)>LP®E dvx(x).

We denote the corresponding norm with || - || z2.

Let VX be the Levi-Civita connection of the metric ¢”* and V"®F be the con-
nection on L? ® E induced by VL and V*. Let {¢;}; be an orthonormal frame of T'X.
Then the Bochner-Laplacian on L? ® E is given by
12 AveE ST [(vreEp - vEgE]

Let Py, be the orthonormal projection from ¢*°(X, L? ® E) onto H,, the span of
eigensections of A, 5 = A"®F — pr + & corresponding to eigenvalues in [—Cp, Cy].

Definition 1.1. The smooth kernel of (A, 4)Py, , ¢ > 0 (where (A, 4)° = 1), with
respect to dvux(z’) is denoted P, ,(x,2’) and is called a generalized Bergman kernel
of Ap@ .
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6 XIAONAN MA AND GEORGE MARINESCU

The kernel P, ,(z,2') is a section of 7} (L ® F) ® m3(LP ® E)* over X x X, where
m and 7y ar the projections of X x X on the first and second factor. Using the
notations of (0.7) we can write

(1.3) Z X SP(z) @ (SP(2')" € (IP ® B), ® (L ® E)}.
Since L2 ®(LP)* is canonically isomorphic to C, the restriction of F, , to the diagonal
{(z,z) : x € X} can be identified to B,, € € (X, E ® E*) = €>°(X, End(F)).

Let f : R — [0, 1] be a smooth even function such that f(v) = 1 for |v| < ¢/2, and
f(v) =0for |v| > e. Set

(1.4) F(a) = < +°° f(v)dv>_1 /_+Oo e £ (v)dv

Then F(a) is an even function and lies in the Schwartz space S(R) and F(0) = 1.
Let F be the holomorphic function on C such that F(a?) = F(a). The restriction of
F to R lies in the Schwartz space S(R). Then there exists {¢j}32, such that for any
k € N, the function

k

(1.5) Fy(a) = F(a) = Y _ ¢;a’ F(a)

verifies

(1.6) Fk(i)(()) =0 forany0 <i< k.

Proposition 1.2. For any k,m € N, there exists Cj,,, > 0 such that for p > 1
_E L 9(9ma2n

A |B(GAe) @) = Ryled)| | < O,

Here the €™ norm is induced by V', VZ, h', h¥ and ¢g'*.

0c3
Proof. By (h.%{), for any m € N, there exists ('} ,, > 0 such that

(1.8) sup [a|™|Fi(a)| < Cy,,
acR
Set
(1.9) Grp(a) = 1 puo,+ool(@) Fi(a),  Hypla) = 1[0,%](!@)&(@),
0.3
By (b75), for p big enough,
(1.10) Fk(%A ) ka( qu)) +Hkp(pr,¢).

As X is compact, there exist {z;}"_, such that {U; = B*(x;,¢)}/_, is a covering
of X. We identify BT=%(0, ) with BX(z;,¢) by the exponential map as above. We
identify (L?® E), for Z € B™=X(0,¢) to (L ® E),, by parallel transport with respect
to the connection V" along the curve v, : [0,1] 3 u — expy (uZ). Let {¢;}; be an
orthonormal basis of 7, X. Let ¢;(Z) be the parallel transport of ¢; with respect to
VTX along the above curve. Let I'?, I'" be the corresponding connection forms of
V¥, VI with respect to any fixed frame for E, L which is parallel along the curve



cl2

GENERALIZED BERGMAN KERNELS ON SYMPLECTIC MANIFOLDS 7

vz under the trivialization on U;. Denote by V is the ordinary differentiation
operator on 7, X in the direction U. Then

(1.11) VEEE =V, 4 (e)) + T7(ey).

Let ¢; be a partition function associated to {U;}. We define an Sobolev norm on the
I-th Sobolev space H'(X, [? ® E) by

l 2n
(1.12) Isllig =23 > Ve, - Ve, (wis)liz

i k=0 i1-ip=1

0.2 Ocl 10
Then by (0:2), (1), (T.11), there exists C' > 0 such that for p > 1, s € HX(X, [’® E),
(1.13) Isllmz < C([|Apaslc2 + p?lls]l2)-

Let @) be a differential operator of order m € N with scalar principal symbol and
. . clz . . .

with compact support in U;, then by (hTIB‘) and [A, ¢, Q)] is a differential operator of

order m + 1, we get

(1.14) 1Qsllmz < C([1ApaQsll 2 + 1| Q5] 2)
< C([|QA w5l 2 + PPl gmts + 1| Qs]|2).
This means
m+1
(1.15) Isll g2z < Conp™ > AT g5l 12.
j=0

Moreover for Gy, = G OF Hyep, (A5 Grep( 5 0,,8)Q5,8) = (5, Q" Gy J58p0)A)8"),

0c6 oY
so from (h‘%}, (E‘.S), we know that for [,m’ € N, there exist C,C’" > 0 such that for
p>1,

|275Grp(Z800) Qs | < O lsl
' _k
|a5e (s (5A00) = Py ) @5, < C9" sl

17 18
We deduce from (ETIB) and (ETI’G) that if P, Q are differential operators with com-
pact support in U;, U; respectively, then for any [ € N, there exists C' > 0 such that
for p > 1,

(1.16)

HPGk,P(\/LﬁAp@)QS L < CpfIs|l 2,

HP<H’“7P(¢%AP@) - PHP)QS

On U; x U;, we use Sobolev inequality, we know for any | € N, there exists C' > 0
such that for p > 1,

G (Gpa) (2] < ™
k
‘(HKP(LAMD) - Po,p> (I, x’)‘ < Cp2(2m+2n+1)—§‘

N gm
Qc9 20 0t3.0
By (thl'O) and (ETI’S), we get our Proposition T.2. O

(1.17)

/ k
1o SOPT sl

(1.18)
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Qc3.  J0cS C 1
Using (h.%{), (h_%) and the finite propagation speed HQ, §7.81, %4'5, 64.4], it is

clear that for z, 2’ € X, Fk(\/%Ap@) (z,-) only depends on the restriction of A, 4 to

BX(z,ep~1), and Fk(\/iﬁAp@)(x, 2/) = 0, if d(z,2') > ep~1. This means that the as-
ymptotic of AY o Py, (7, -) when p — 400, modulo &(p~) (i.e. terms whose "™ norm

is 0(p~') for any [, m € N), only depends on the restriction of A, 4 to BX(z, ep ).

1.2. Rescaling and a Taylor expansion of the operator A, ;. We fix 2, € X.
From now on, we identify B%=0X (0, ¢) with BX(zg,¢). For Z € B1=0%X(0, ¢) we identify
Lz, Ez and (L? ® ), to L,,, E,, and (L? ® E),, by parallel transport with respect
to the connections V*, V¥ and V"®¥ along the curve vz : [0,1] 3 u — expX (uZ2).
Let {e;}; be an oriented orthonormal basis of 7}, X, and let {¢'}; be its dual basis.

For ¢ > 0 small enough, we will extend the geometric objects from B0 (0, ¢) to
R?*" ~ T, X where the identification is given by

(1.19) (Z1,+ Zon) ER* — Y Zie; € Ty, X

such that A, ¢ is the restriction of a renormalized Bochner-Laplacian on R*" asso-
ciated to a Hermitian line bundle with positive curvature. In this way, we replace
X by R?",

At first, we denote by L,, Ey the trivial bundles with fiber L, , F,, on X, =
R?". We still denote by V¥, V¥, hl etc. the connections and metrics on L,, E, on
B=X(0, 4¢) induced by the above identification. Then h%, h¥ is identified to the
constant metrics h'° = hl=o, hFo = pFa0,

Let p: R — [0, 1] be a smooth even function such that

(1.20) p(v) =11if |v| <2; pv)=0 if |v] > 4.

Let ¢. : R?" — R?" is the map defined by ¢.(Z) = p(|Z|/e)Z. Then &y = ® o . is
a smooth self-adjoint section of End(E,) on Xy. Let g7 (Z) = g™ (¢.(2)), Jo(Z) =
J(p-(Z)) be the metric and complex structure on X,. Set V& = ©*VE, Then V0
is the extension of V¥ on B*0*(0,¢). If R = >, Z;e; = Z denotes radial vector field
on R?", we define the Hermitian connection V< on (L, ht°) by

. 1
(1.21) VEly = @iV + (1= p(12]/2) By (R ).
Then we calculate easily that its curvature R* = (V10)? is

R™(Z) = p:R* + 1d(<1 = p*(1Z]/e) Ry, (R, '))

2
(1.22) = (1= 7%121/2) ) BE, + p*(1Z1 /) RE. 1z
— () (1212 A [RE(R,) — RE, 5 (R.)].

e|Z]

. e 0.2 .
Thus R!° is positive in the sense of (bTZ“) for ¢ small enough, and the corresponding
constant y, for R™ is bigger than £ 1. From now on, we fix ¢ as above.

Let Ai&)o = AL®E _ pry — B, b?atl%g renormalized Bochner-Laplacian on X,
associated to the above data, as in (bf)._é’ebserve that R0 is uniformly positive on
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%2”3 so by the relations (3.2), (3.11) and (3.12) in %43, p. 6566—-658], we know that
(0.5) still holds for A;ﬂ%o. Especially, there exists C';, > 0 such that

8
(1.23) Spec A;f%o C [-Cr,,Cr,| U [gpﬂo — CLy, +00].

We note that Afjﬁ’bo has not necessarily discrete spectrum.

Let S;, be an unit vector of L,,. Using S; and the above discussion, we get
an isometry £, ® Lfj ~ E,,. Let P, be the spectral projection of A;f(%o from
> (Xo, Ly @ Ey) ~ €°°(Xo, E,,) corresponding to the interval [-Cp,, Cy,], and let
Poqp(z,2') (¢ = 0) be the smooth kernels of Py, = (A4 )Py, (we set (A )0 = 1)
with respect to the volume form dvx,(2’). The following Proposition shows that P, ,

and P, ,, are asymptotically close on B=0X (0, ¢) in the ¢ °—topology, as p — .

Proposition 1.3. For any [,m € N, there exists C;,, > 0 such that for z,2' €
BT=0X (0, ¢),

(1.24) ’(Pﬂ,q,p - Pq,p) (z, fK/)’rgm < Cl,mpil-

0c3 1cl17
Proof Using (h%{) and (h_?Zg), we know that for 2,2’ € BT=X(0,¢),
129 [R5 800)(0r!) — Praglo)] < Cop im0

0 20 9
Thus from (1:7) and (IZ5) for k big enough, we infer (1:24) for ¢ = 0; Now from the
definition of /% ,, and F,,, we get (1.24) from (I.11) and (1.24) for ¢ = 0. O

It suffices therefore to study the kernel F; ,, and for this purpose we rescale the
operator A;‘:SEO. Let dvrx be the Riemannian volume form of (7, X, g7=0%). Let x(2)
be the smooth positive function defined by the equation

(126) d’UXD(Z) = K,(Z)dUTX(Z),

with x(0) = 1. Denote by V; the ordinary differentiation operator on 7, X in
the direction U, and set 0, = V... If « = (ay,- -+, a9,) is a multi-index, set Z* =
Z3 .- Zg2n . We also denote by (0% RY),, the tensor (0°R"),,(e;, ;) = (R (€, €;))xp-
Denote by t = \/Lﬁ. For s € ¢>~(R*", E,,) and Z € R*", set

(S:8)(Z) =s(Z]t), V,=1tS;k2VHPoy 33,
=S ks AN kT2 S,

p

(1.27)

The operator %, is the rescaled operator, which we now develop in Taylor series.

Theorem 1.4. There exist polynomials A, ;. (resp. B;,, C.) (r e N,i,j € {1,--- ,2n})
in Z with the following properties:

— their coefficients are polynomials in R™™ (resp. R™X, R*, R, ®) and their
derivatives at xq up to order r — 2 (resp. r — 1, r, r — 1, 1),

— A, ;18 a monomial in Z of degree r, the degree in Z of B,, (resp. C,) has the
same parity with r — 1 (resp. r),

—if we denote by

(1.28) O, = A Ve, Ve, + B, Ve, +C,,
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then

(1.29) L=Ly+ Y 'O+ O,

r=1
and there exists m' € N such that for any k € N, t < 1 the derivatives of order < k of
the coefficients of the operator O(t"') are dominated by Ct™+*(1+|Z|)". Moreover

(1.30)
.,%0 = - Z (Vej + %R£0(27 ej)>2 — Tzo;

J

2 1 1
ON(Z) = ~5(O1R" )R )2 (Ve + SRE(R.€)) = 3R )0y (R. ) = (VT

1 1 1
0x(2) = 5 (R} (R, e)R.e5),, (vei + 5 RE(R, ei)) (ve]. + 5 RE(R. ej))

+ E (REX(R,e))ej e), — (% - (8QRL)930§ n Rfo> (R, ei)} (vei + %RfO(R, ei)>
|a|=2
_ ivei( > (aaRL>xo§(R, ei)> - éz [Z(ajRL)xO(R’ ei)ZJ}?
=2 5

1 W 2o
-5 [ZJ, (RIX(R,€;)R, ei>x0] — Z (0 T)IOJ + Dy
|a|=2
Proof. Set ¢;;(2) :B%EX\(iei,ej)(Z) = (e;,e;)z and let (¢"(Z)) be the inverse of the
matrix (g;;(Z)). By [T, Eroposition 1.28], the Taylor expansion of g;;(Z) with respect
to the basis {¢;} to order r is a polynomial of the Taylor expansion of R to order
r — 2, moreover

1
9i5(Z) = i + 3 (Ri (Ryei)R.e;), +O(|Z]),
(1.31) 1
K(Z) = | det(gy(2))["* =1+ 6 (Ri (Ryei)R,ei), + O(|Z]).

IfT" is the connection form of VX with respect to the basis {¢;}, we have (VI ¥e;)(Z) =
I'(Z)e;. Owing to (I.31),

1
I,(2) = §glk(aigjk + 0;9ik — Okgi;)(2)
(1.32) |
=3 [ <R£OX(R, €j)€i, €l>m0 + <R50X(R, €;)e;, el>m0] +0(2P).
0cl
Now by (h_.CZ),
13) By = VL PV VB ) e+

2 32
so from (57277) and (E_.BB) we infer the expression
(1.34) L= =g9(12) Vi Vo, = Ty V00 | (42) = 7(12) + 120(12).

Let I'”, I'Y be the connection forms of V¥ and V! with respect to any fixed frames
for E, L which are parallel along the curve v, under our trivializations on BT=0% (0, ¢).
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(672277) yields on BT=0X(0,¢/t)
(SRR

BeGeV
LetI' =T'? I' and R* = RF, R”, respectively. By le, Peroposition 1.18] the Taylor
coefficients of I'*(e;)(Z) at x, to order r are only determined by those of R* to order

r— 1, and
zZ“ 1 z°

(1.36) DO Tl p =g D (O"R)w(Roe)) Ty

|oe|=r lo|=r—1

Owing to (13D, (1°36)
2
A37) %= (b~ S (RX(R )R ;) + 09w (1)

2= K3 12) (Ve + %FL(ei)(tZ) TP (e)(12)) 57 (12).

L, [t I t? Wi 2%t o | 5
[Vei + (§Rzo + 5 (OeR oy Zx + Eljz(a Ry 5+ 5 Ry )(R, &)+ Ot )}
1 t t2 Ze 2
[Vej + <§R£0 + 3 (OeR )22+ > (0*R"),, T+ 5k ) (R, e;) + ﬁ(t?’)]
|a|=2

T (t2) (vel + %Rﬁo (R, e)) + ﬁ’(t)) } K3 (t2)

Za
Tao = HVRT)sy — 2 ) (0°T)ay 1 + t2d,, + O(t%).

|a|=2
0c30 0c37 J0cal
Relations ( - ) and ( I?SZI)—( 1?37) settle our Theorem. O
s3.3
1.3. Uniform estimate of the generalized Bergman kernels. We shall es-
timate the Sobolev norm of the resolvent of ., so we introduce the following
norms. We denote by (-,-), . and |- [[o 2 the scalar product and the L? norm
on ¢*°(X,, E,,) induced by gT%0_ 1o as in (I.1). For s € €= (Xo, Ey,), set
(1.38) Islite = lIsllg = /RQ |5(Z)[}620 v (Z),
I8l = Z Z HVtezl- Ve, sllio.
1=0 1,

We denote by (s',s),, the inner product on ¥ (X, E,,) corresponding to ||-||7,.
Let H" be the Sobolev space of order m with norm || - ||;,,. Let H, ' be the Sobolev
space of order —1 and let || - ||;_; be the norm on H, ' defined by ||s||; 1 = S
[ (5,8 )0 l/118']le0- IE A € Z(H™, H™) (m,m’ € Z), we denote by ||A|7™ the norm of
A with respect to the norms || - ||, and || - ||

Remark 1.5. Note that AXS s self-adjoint with respect to |- [lo, thus by (672226),
(h‘Z’?) (h‘38) Zisa formal self adjoint elliptic operator with respect to | ||o, and
is a smooth family of operators with the parameter x, € X. Thus .4 and O, are
also formal self-adjoint with respect to || - ||o. This will simplify the computation of
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the coefficients b, ; in (b‘l‘l) (cf. §b 3) and explains why we prefer to conjugate with
x'/? comparing tol%?U (3.38)].

Theorem 1.6. There exist constants Cy,Cy,C5 > 0 such that for t €]0,1] and any
5,8 € €°(R*", Ey,),

(Zis,8)10 = CillsliEy — CallsllZo
[(Zis, 810 < Collsllealls']lea-

Proof. Relations (kl)?ZE ;13%% (h_.CZI) yield

(1.39)

(1.40) (Apas, )y 2 = V9053 2 = ((p7 — @) 5,5), 12

Thus from (£:27), (1:38) and (1:40) we get

(1.41) (L, 3>t,o = ||Vt5||§,0 - <(St_17 - th)) S, S>t,0'

which implies (Fll_.l39). O

Let ¢ be the counterclockwise oriented circle in C of center 0 and radius /4.

Theorem 1.7. There exists t, > 0 such that the resolvent (A — %,) ! exists for \ € ¢,
t €]0,to], and there exists C' > 0 such that for t €]0,t,], A € 6, and = € X,

(1.42) A —2)7"P° < ¢, A=) ' <
2

Proof By (123), (£27), for ¢ small enough,

(1.43) Spec £ C [ = Crof, Crot?] U | juo, 00|

Thus the resolvent (\ — %) ! el)ﬂsts for A\ € § and ¢ small enough, and we get the
first inequality of (h7I2) By (1:39) (A — %) ! exists for )y € R, )y < —2C,, and
1(ho = Z)7HI: ™ < & Now,

(1.44) A=Z) " =M-Z) " A=A =Z) (N —-Z)"
Thus for A\ € §, from (H.%Zl), we get
(1.45) 0= 20717 < 5 (1 =)
Changing the last two factors in (H.%ﬂ) and applying (H.%%) we get
(1.46) IA=2)"I7M < =+ 1A = Aol (1+—|/\ /\0|) < C.
C’1 C,?
The proof of our Theorem is complete. O

Proposition 1.8. Take m € N*. There exists C,, > 0such that fort €|0,1], Q1,- - ,Qm
€ {Vt,eia ZZ}?QI and S, S/ & Cgo(Xo, Exo):

(1.47) ([Q1,[Q2, -, [Qun, L 15, 87), 0| < Crallslleallslls1-
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Proof. Note that [V..., Z;] = ¢;;, ence (R‘???ZLZ) implies that [Z;, Z}] verifies (uI.eZIl?l). On
the other hand, we obtain from (1.27)
(1.48) Vier Vie,] = (RP(tZ) + PR (t2)) (e, €5).

0c37 lue2
Thus from (1?34) and (ﬁS), we know that [V, ., ,.%] has the same structure as .%,
for t €]0,1], i.e. [Vi,,-Z:] has the same type as

(149) Z Q5 (t, tZ)Vmein,ej + Z bz(t, tZ)Vtyei + C(t, tZ),
and a;;(t,Z),bi(t,Z),c(t, Z) and their derivatives in Z are uniformly bounded for
Z € R? t € [0, 1]. Moreover they are polynomials in ¢. -

If (V)" is the adjoint of V, ., with respect to (-, -),,, (h‘.38) yields

(1.50) (Vie) = —Vie, —t(k Heir))(t2).

Thus by (1°49) and (1:50), (147) is verified for m = 1.

11;%% recurrence, it tr Plls&ires that [Q1, [Q2, X (Qm, .,%]] ...| has the same structure
(I.49) as ., , so from (1.50) we get the required assertion. O

Theorem 1.9. For any t €]0,ty], A € §, m € N, the resolvent (\ — £,)~! maps H"
into H"**. Moreover for any o € Z*", there exists C,,, > 0 such that for t €]0,1],
A E D, s € (X, Eyy),

(1.51) 12O\ = Z) s llems1 < Cam Y 12 8lem-

o' <a
PrOOf: For Q17 T 7Qm € {Vt,ei 12217 Qm—‘rl)' o 7Qm+\a| € {21}12217 we can express
Q1 Quila)(A — %) as alinear combination of operators of the type
(152) [Ql[QQw“[QmU(A_Z)_lH --']Qm’+1"'Qm+|a\a m/ sm+ ’Oé’
Let %, be the family of operators %, = {[Q;,[Q;,,-.-[Qj.-%]|...]}. Clearly, any
commutator [Q[Qs, ... [Qu, (A — %)Y .. ] is a linear combination of operators of
the form
(1.53) A=ZL) 'RiAN— L) 'Ry RN — Z) 71

with Ry,--- R,y € i

From Proposition [I.8 we deduce that tt}}ﬁl norm | -||;~" of the operators R; € %,
is uniformly bounded lﬂi C. By Theorem h‘.?there exists C' > 0, such that the norm
| -1|9"" of operators (1-53) is dominated by C. O

The next step is to convert the estimates for the resolvent into estimates for
the spectral projection Py, : (6°(Xo, Ey), |- llo) — (€°°(Xo, Ex)s || - |lo) of £ cor-
responding to the interval [—Cy t? Cr,t?]. Let P,«(Z,Z') = Pyia,(Z,2"), (with
Z,7" € Xy, q¢ > 0) be the smooth kernel of P,; = (£)1P,; (we set (£)° = 1) with
respect to durx(Z'). Note that %, is a family of differential operators on 7,,, X with
coefficients in End(F),,. Let 7 : TX xx TX — X be the natural projection from the
fiberwise product of 77X on X. Then we can view P,,(Z, Z’) as a smooth section of
7 (End(E)) over T'X x x TX by identifying a section S € €°(TX xx T X, 7*End(F))
with the family (S,).cx, where S, = S|,-1(,). Let V() be the connection on
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End(E) induced by VZ. Then V™ ""4(®) induces naturally a ¥™—norm of S for the
parameter xy € X.

Theorem 1.10. For any m,m’' € N, o > 0, there exists C > 0, such that for t €]0, ],
72,7 € T, X, |Z|,|7'| <o,

glal+lel gr

(1.54) sup | —— 2 p (2,7 <C.
Ial,\o/Lprgm 07207 otr at ( ) ™' (X)
Here €™ (X) is the €™ norm for the parameter z, € X.
lu3
Proof. By (1.43), for any k € N*, ¢ > 0,
—1
1 fg+k—-1 _ B
455 Pu=rm—o (1) [ g ta

tub
For m € N, let Q™ be the set of operators {le e Vtveij }i<m. From Theorem h_ug,
we deduce that if Q € 9™, there is C,, > 0 such that

(1.56) QN —Z) ™"’ < C,,, forallAesd .

lg§%rve that .7, is self—adjoint with respect to || - ||; o, so after taking the adjoint of
(I.56), we have

(1.57) 1A= 2)7"Ql?* < Con.
From (%&%‘E (H?Slg) and (H_%Z%), we obtain
(1.58) 1QP Q7" < Cr, for Q,Q' € Q™.

Let | - |(o),m be the usual Sobolev norm on €>*(BT0X(0,0 + 1), E,,) induced by hf=
and the volume form dvrx(Z) as in (h‘.38). Loet3gAH (ogm be the operator norm of
A with respect to | - |(5),. Observe that by (h_.c3'5), (h‘.38), for m > 0, there exists
C, > 0 such that for s € €>(X,, E,,), supp s C BT=0X(0,0 + 1),

1

(159) C_HSHt,m < |S|(J),m < CUHS”t,m'

21 lue2l
Now (H_.e58) and (T.59) together with Sobolev’s inequalities imply
(1.60) sup |QzQ% P, (2,72 <C, forQ,Q € Q™.

12],12"|<o

0c36 23 15
Thanks to g Ie.c1355) and (H_.eGU) estimate (H_.eﬂ) holds for r u:e{?%’ = 0.
To obtain (1.54) for » > 1 and m’ = 0, note that from (h_.557,

o U (q+k=1\"" [ s @ N
- - — (N — >1.
(1.61) 55 Pas 2m_( o ) /5)\ S\ —Z)hdx, fork > 1
Set

(1.62) L, = {(k, r) = (ki) i:k = k+j, ijn =, k€ N*}.

=0 i=1
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Then there exist a¥ € R such that

A D) = (1 — )T

otm
-ue30 (1.63) r
P R DR eW))

(kvr)elk,'r

. _ —k;
- ),

A=)

We claim that AX(\ t) is well defined and for any m € N, & > 2(m +r + 1),
Q,Q € Q™, there exist C > 0, N € N such that for \ € ¢,

(1.64) [QAX(N, 1)Q's|ls0 < C Z 12°5]1.0.

|B1<2r

In fact, by(l 34), 2= &, is combination of ‘9“11( U(tZ)) (25 V1) (2eVie,), 2 (d(t2)),

D (di(t2)) (22 V4e,). NOW DL (d(tZ)) (resp. 25V, (r; > 1), are functions of the
type as d'(tZ)Z”, |3| < r, (resp. r1 + 1) and d'(Z) and its derivatives on Z are
bounded smooth functions on Z.

Let #, be the family of operators of the type

%2 = {[flejM [ijQj27 s [flejH"%]] - ]}

with f;, smooth bounded (with its derivatives) functions and Q;, € {V,.,, Z;}";.

Now for the operator AX()\,¢)Q’, we will move first all the term Z° in d'(tZ)Z° as
above to the right hand side of this operator, to do so, we always use the commuta-
tor trick, i.e., each time, we consider only the commutation for Z;, not for Z? with
6] > 1. Then A¥(),#)Q" is as the form 3° ; ., L;Q52°, and Q7 is obtained from @’
and its commutation with Z”°. Now we move all the terms V,_, i & th to the right
hand side of the operator Lj. Then as in the proof of Theorem . We get finally
that QAX(\,t)Q' is as the form > \61<ar 277 where £ is a linear combination of
operators of the form

QN — L) MR\ — L) MRy Ry(A— L) Q"Q",

with Ry,--- Ry € Z,, Q" € 9, Q" € Q™, |#] < 2r, an | " is obtained from '
and its commutation with Z°. By the argument as in (I.56) and (I.57), as k£ >

2(m +r + 1), we can split the above operator to two parts
QA= L) R\ = L) MRy Ri(N— Z) 7",
(/\ — %)—(ké—kg,) . Rl’(/\ _ D%)—kz, Q/N //7

and the | [|?°-norm of each part is bounded by C for A\ € §. Thus the proof of

1ue30
(I.64) is 3, comp) gte
By (h_GT) (h‘B‘S’) nd the above argument, we get the estimate (h‘ﬂ) with m/ = 0.
Finally, for any vector U on X,

-1
1 - *
oue3o] (1.65) Vi P, = — (qﬁ 1 1) / ARG ERE (N Z) R,

2mi 5

7* End(E

Now we use a similar formula as (I 63) for V; (/\ %)~ by replacing Wlt by

vy B & and remark that Vi, *") & is a differential operator on T,, X with
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15
the same structure as .%,. Then by the above argument, we conclude that (uI.eSZI)
holds for m’ > 1. O

For k big enough, set

~1
1 qgtk—1 q+k—1 k 7k

F,, = E AN, 0)dA

or 27Tir!( k—l) /5)\ ar Ar(A,0)d,

(k,I‘)EI}Cm

(1.66)
1o
Fq,r,t - H%Pqﬂg - Fqﬂ-.
Let F, . (Z,2") (Z,Z" € T,,X) be the smooth kernel of F| ., with respect to dvrx(Z’).
Then F,, € €°(TX xx TX,7*End(F)). Certainly, as t — 0, the limit of || ;..

exists, and we denote it by || [[o.n-

Theorem 1.11. Forany r > 0, k > 0, there exists C' > 0 such that fort € [0,to],\ € 0,

9L 0L
— < a
(1.67) H 5~ op = 0> . <Ct Y [1Z2%]loa.
) || <r+3
H(@t” (A=2) Z arAr()\,O)>sH0’0 <0 Z 127 sllo0
(kvr)elk,'r || <4r+3

0c36.  [uo
Proof. Note that by (1?35), (H‘.BS), fort € [0,1], k > 1,
(1.68) Islleo = lIslloo,  lIsller < C Y 1250
lo| <k

0c37
An application of Taylor expansion for (h_.c37[) leads to the following estimate for
compactly supported s, s":

(1.69) ) <(8T"% — %|t0)8,8/>

< ! « .
— - == =t 3 175l
) |a|<r+3

32
Thus we get the first inequality of (uI B7). Note that
(L70) (=L —(A—Z) = (A= L) (L - L) - L)

After taking the limit, we know that Th%orems H E‘g E_Q_Stlu hold for ¢ = 0. Now
from Theorem h‘gfor £, ( 1 69) and (1.

(1.71) (A =27 = (A=) ") sl <CE D 12%lloo-
|a|<3
0c36
Note that V., = V., + %Rﬁo (R,e;) by (11 ?35). If we denote by .2, = A — %, then
oY, 0%

(1.72) A%\ t) — A%\, 0) = Z.z“"‘%-( S T o h:o) Lot Ly

ko e (TN, S
+Za§/ﬂ)\tk ) g,\tk —f/\é“) ( atrﬂt‘t 0) "'f,\o'.

From the discussion af;cgr (h_GZLT formulas (h7I2) (H‘e&% and (h‘?TT we get the

second inequality of (.
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Theorem 1.12. For o > 0, there exists C > 0 such that for t €]0,1], Z,Z' € T, X,
Z],|1Z'| < o

(1.73) Foi(2,2")

28 31 32
Proof. By (H_.GBT), (H_.GGG) and (1. ), there exists C' > 0 such that for ¢ €]0, 1],
(1.74) 1Erill@)0 < Ct.

Let ¢ : R — [0,1] be a smooth function with compact support, equal 1tne8ar 0,
sucgl that fT x o(Z)dvrx(Z) = 1. Take v €]0, 1]. Igylt5he proof of Theorem 0 a
(I.66), F, Verlﬁes the similar inequality as in (I.54) with » = 0. Thus by (T. 54)
there ex1sts C > 0 such thatif |7|,|Z'| < o, U, U’ € E,,,

(1.75) ‘ (For(Z,Z"NU,U") — / (Furi(Z =W, 2" —W"U,U")
TTOXXTTOX
1
Egb(W/V)qb(W,/V)dUTX(W)dUTX(W’) < Cv|U||U).
On the other hand, by (uI.e732£9),
(1.76) ’/ (FypdlZ — W, 2 — WU, U")
Ty X % Ty X
1 ! ! 1 !
W¢(W/V)¢(W Jv)dvrx(W)dvrx(W')| < CtﬂWHU B
By taking v = t'/2%"+1) we obtain (1 .67432). O

Finally, we obtain the following off-diagonal estimate for the kernel of P, ;.

Theorem 1.13. For k,m,m’ € N, o > 0, there exists C > 0 such that if t €]0,1],
72,7 e T,, X, |Z|,|Z'| <o

glol+e'| k

1.77 —_ - Ft")(Z, 7 < Ot
am e | (Pu = S R)ED)

42
Proof. By (h_.Gb‘), and(u.e ),

1o
(1.78) E%Pq,t’tzo = Fy,.
31 . , 1

Now by The rem Tt and (H_e(%') - has the same estimate as 1 2-P,,, in (1 5).
Again from ( (h‘B‘b’) and the Taylor expansion

k

rtoGq, . 1 LG

(1.79) G(t) —;ﬁ O = /0 (¢ = o)y (to)dto

Queds
we have (11.1767 ). O
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1.4. Bergman kernel of .%,. The almost complex structure J induces a splitting
TX @r C=TWOX @ TODX, where 70X and TV X are the eigenbundles of .J
corresponding to the eigenvalues v/—1 and —/—1 respectively. We denote by detc
the determinant function on the complex bundle 7% X . Set

(1.80) J = —2mv/—1J.

By (Bﬁl'), J € End(T™*Y X) is positive, and J acting on TX is skew-adjoint. For any
tensor 1) on X, we denote by VX the covariant derivative of ) induced by V¥,
Thus VX 7,V¥J € T*"X @ End(TX), VXV¥T € T*X ® T*X ® End(TX). We also
adopt the convention that all tensors will be evaluated at the base point 2y € X,
and most of the time, we will omit the subscript x.

Let PV be the orthogonal projection from (L?(R*", E,,),|| llo =1 |lt0) onto N =
Ker %, and let PV(Z, Z') be the smooth kernel of PV with respect to dvr, x(Z).
Then PV (Z,7') is the the Bergman kernel of .%,. For Z, Z' € T,, X, we have

(1.81) PN(Z, 7)) = d?;fr)jn

Now we discuss the eigenvalues and eigenfunctions of .4, in more precise way.
We choose {w;}!_; an orthonormal basis of T X, such that

<__<j2 W27z -2, (Z — Z’>+ JxOZZ’>>

(1.82) Joy = diag(ar, -+ ,a,) € End(T00X),
with 0 < a1 < ap < -+ < ap, and let {w/}’_, be its dual basis. Then ey;_; =
\%(wj +w;) and ey; = %(wj w;),j=1,...,n forms an orthonormal basis of T;,, X .

We use the coordinates on T, X ~ R*" 1nduced by {e;} as in ( ) and in what
follows we also introduce the complex coordinates z = (z;,---,z,) on C" ~ R?".
Thus Z = 2+ %, and w; = \/58%, w; = \/58%. We will also identify = to )°, z;;2 and
Zto ), Eia% when we consider z and Z as vector fields. Remark that

(1.83)

It is very useful to rewrite %, by using the creation and annihilation operators.
Set

2 2
0
| 0z;

%)

1 1
Z = —, sothat|z]*=[Z]* = Z|Z|*.
Zi 2 2

1
0gl| (1.84) VO,:V.+§R§O(R,-), bi=—-2V o, b =2V 5, b= (b, - ,b,).

Que62 Queb2
Then by (I?Se()), and ( s , we have
1

1
(1.85) by = =25 6 -+ 2(1222, b =252 a -+ W%
and for any polynomial ¢(z,Z) on z and Z,
b 87,67 0,

177

[g(Z,E),bj] = 23_2].9(2?2)7 [g(zvz)vbj] _23(2 g(Z Z).
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0.2 Queb2 c31 Queb2 |0gl 2
By (0:9), (182)- 7,, = 3", a:. Thus from (£:30), (1827 (184)-(ts6),

(1.87) Ly=> bib}.

Remark 1.14. Let L = C be the trivial holomorphic line bundle on C" with the
canonical section 1. Let 2" be the metric on L defined by |1],:(z) := e Xim wlal® =
h(z) for z € C". Let g”" be the euclidian metric on C". Then .%, is twice the corre-
sponding Kodaira-Laplacian 9" 9" under the trivialization of by using the unit
section et 27=1%l%1 1 Indeed, let & be the adjoint of the Dolbeault operator 9 asso-
ciated to L with the trivial metric on L. In fact, under the canonical trivialization
by 1,

(1.88) 9" =9, 97 =n"9h2
Set

(1.89) On = hoh™', 8, =h7'9 h.
Then

bj = 2[@1,5}1], bj = [527613]'/\]7

9z
= 1 o ‘
8h=§Zd2]/\bj, 8h:Zlibj.
J

i 0F

(1.90)

Under the trivialization by 4! - 1, we know the Kodaira-Laplacian 88" + 8 9"
is (070" + 00 )h! = 0,0, + 0,0, and its restriction on functions is 1%.

Theorem 1.15. The spectrum of the restriction of £, on L?(R*") is given by
(1.91) Spec Zo| 2 (ren) = {2 iaiai ca=(ag, o, ap) € N"}
i=1
and an orthogonal basis of the eigenspace of 2 ., wa; is given by
(1.92) b (zﬁ exp (—%1 Z CL¢|Z¢’2)) ,  with p € N",

i

Proof. At first 2% exp (—1 Y, ai|z|?), 6 € N" are I%nihil 1:5ed by b} (1 <i < n), thus
they are in the kernel of %j|;2z2ny. Now, by (1.86), (1.92) are eige%functions of
Lol r2(r2ny With eigenvalue 23" | a;a;. But the span of functions (ﬁ‘.92) includes
all the rescaled Hermite polynomials multiplied by exp (=350 ailz]?) which is an
orthogonal basis of L?(R?") by h‘él, §6]. Thus the eig tr%fuélnctions in (ﬁ‘.92) are all
the eigenfunctions of .Zj|,>(g2n). The proof of Theoremeﬁffb‘ is complete. O

Especially an orthonormal basis of Ker %2 (g2n) is

/8 n / n
(1.93) (WH%)I 2zﬂexp(— iZaﬂsz), BeN".
i=1 j=1
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6 ue62
From (H‘.QS), we recover (h_.BT):

(1.94) PY¥(Z,2') = ! [Jai exp ( — %Zai(piIQ + |z* - 2ziz;)).
=1

(2m)"

' 31 t3.5
Recall that the operators O, O, were defined in (CI.S()). C’)Iél%e%rem th’Gbelow is
crucial in proving the vanishing result of F,, (cf. Theorem [I.18).

Theorem 1.16. We have the relation

(1.95) PNO, PN =0.

0.1
Proof. From (b.‘l’), for U V,W € TX, (VEI)V,W) = (Viw)(V, W), thus
(1.96) (VEDV, WY + (Ve D)W, U) + (Vi DU, V) = dw(U,V,W) = 0.

By (B;ll') and (BT'Z%,
RMU,V) =(JU,V),
(1.97) (VERM(V,W) = (VFT)V, W),

V=T

Vyr = — Tr|rx [V (JT))].

As J, J € End(T X) are skew-adjoint and commute, Vi J, Vi J are skew-adjoint
and Vi (JJ) is symmetric. From J? = —Id, we know that

(1.98) J(VET) + (VX T =0,
9 10
thus V{¥J exchanges T9 X and TV X. From (H‘.QG) and (1:97), we have
(VRT)z = =2V -1 <(V%(JJ))aia a(;-> =2 <(V%\7)aziv aaz¢> 7

s ORRe) =2(Vy DR )+ AV IR )

= 4((VH DR &) —2((VRD & &)

0z;
From (E%%O), (%6), (Hflf%) and (%929), we infer

01 = <[ (VAR 2 )b = (VAR 22 )b
(1.100) +2<(V;%J)R,a%>+2<<V%~7)3%,£i>]
= [{(ER 2 Yo - v {(TETR L) ]
Note that by (1:85), (£94),
(1.101) (bFPNYZ, 2y =0, (bPYNZ,Z) = ai(z —Z)PN(Z,2").

14
We learn from (E._IOI) that for any polynomial ¢(z, %) in z, Z we can write g(z, E)ltD3N QZ A
as sums of 0’gs(2,7') PN (Z, Z') with gs(z,Z') polynomials in z,7. By Theorem [I.15,

(1.102) PYbog(2,Z2)PY =0, for|a| >0,
3 8
and relations (H%IOO) - (%2) yield the desired relation (%95). O
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1.5. Evaluation of F,,. For s € R, let [s] denote the greatest integer which
is less than or equal to s. Let f(A,t) be a formal power series with values in
End(L*(R*, E,,))

(1.103) FO) =D £\, f(\) € End(L*(R™, Ey,)).
r=0
30
By (E‘.ZQ), consider the equation of formal power series for A\ € 0,

(1.104) (—L+A=> 10 (A1) = ldpa@en g, ) -

r=1

Let N be the orthogonal space of N in L2(R?", E,, ), and PV be the orthogonal
projection from L?(R** E, ) to N-. We decompose f()\,t) according the splitting
(R, B, ) = N @ N+,

(1.105) g:(N) =PVE(N), ) =PV A0,
Using (5751@05) and identifying the powers of ¢ in (5%04), we find that
1 L
go(A) = XPN, fo) =0 —=%)'PY,
1 oy -1 Nteny ¢

0 =1 S PO ).
j=1

Lemma 1.17. For r € N, M&/t1g, (\), Al'Z'1 £(\) are holomorphic functions for |\ <
to/4 and

(1.107) (X *192,)(0) = (PNO,PY — PNOLZ ' PN 0, PN) P,

57 t3.6
gt gogf. By (ETIOB) we know that Lemma I.tI37 Z1is rue for r = 0. Assume that Lemma
.17 is true for » < m. Now, by Theorem hTI'S, (I.106) and the recurrence assump-
tion, it follows that AlZ1+1fL . ()) is holomorphic for |\| < 110/4, and

m+1
(1.108) N g0 (0) = A YT PYO, g iN) + frra ().

i=1
By our recurrence, AL O, é[:%;]*lgmfgg%\), >\V’1T+1]fcL A) areﬁloinorphic
for |\| < p0/4, j = 2. Thus by Theorem [T.16, and (1.106) and (I.108), A"z 1+1g,. .1 (\)
is also holomorphic for |\| < 1/4, and

m—+1

(1.109) ("2 4,,,1)(0) = (AP (PYOL £ + PYOsg 1)) (0

— —PYOLL PN O (N (g + [520)) (0) + A5 TPY Os1)(0).



22 XIAONAN MA AND GEORGE MARINESCU
. c84 .
If m is odd, then by (1.109) and recurrence assumption,

m—+1

(1.110) (A2 g, 1)(0) = PN (—0,.% ' PN O + 05) PV (A" g 1)(0)
— (PNO,PN — PNO,Z ' PN O, PV PN

3.6
The proof of Lemma tI.I? is complete. O

Theorem 1.18. There exist J,,.(Z,Z') polynomials in Z,Z' with the same parity
as r and deg J, . (Z,Z") < 3r, whose coefficients are polynomials in R™™, R* (and
RL, ®) and their derivatives of order < r — 1 (resp. r), and reciprocals of linear
combinations of eigenvalues of J at x,, such that

(1.111) F, (2,7 = J,.(Z2,Z2"\P"(Z,Z").
Moreover,

FO,O = PN7
(1.112) Fyr =0, forq>0,r<2q,

Fyoq = (PYO,PY — PNOLLT' PN O, PY)' PN for g > 0.

15
Prooé[ Recall thatP (Z)?Py,. By (I. 15 s Pyt

(%D, (1566 and (h—m5) =

1
X%«)\d/\ — [ XN
7 [ Mo aa+ o [ g

From Lemma h_l"T an(% gh_l‘l we get (h—rrz) Generally, from Theorems E%%lél'é,

Remark h_T(%_g@ (h_IOB) (T. 3) and the residue formula, we conclude that F,
has the form (h_l'l 1). O

J; A(A— %) 'dX . Thus by

(1.113) F,, =

t3.4 [£3.5 |c57 90
From Theorems h‘l’S h‘l’B’ (E_IOG) (E_HS) and the residue formula, we can get
.- by using the operators .%, ', PN PN" Ou(k < r). This give us a direct method
to compute F,, in view of Theorem h_l'5 In particular, we get 2

Fop =—PNOLL ' PN — PN 710, PN

1 1 1
Fos =5 /5 [()\ — L) 'PY (O fi + Oa2fo)(N) + XPN(Olfl + O2fo)(>\)] dA

(1114) :a%flPNlalc%flPNLOlPN —goileLOQPN
+PNOVLTI PN 047 PN - PN O PN
+ PN 7 0PN oL P - PO PN O P,

o - . MMO
°The foz}”ngula Fy 2 in [34, i2a())] missed the last two terms here which are zero at (0,0) if J = J, cf.

Section ET
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0.1 22 27
1.6. Proof of Theorem 0.I. Recall that Pogp = (A;f?bo)qPoﬂp. By (E_.ZB), (E‘.Z’Y), for
7,7 € R,

(1.115) Pogp(Z.2") = 1722573 (Z2) Py, (21, Z’/t)/-c_%(Z’)

1cl9  J0c53 L . ttueld 0t 3.
By (h_.CZZI), (hTCHB), Proposition E.S, Theorems [I.13 and . 18, We get the following

main technical result of this paper, the near off-diagonal expansion of the general-
ized Bergman kernels:

Theorem 1.19. For k,m,m’' € N, k > 2q, o > 0, there exists C > 0 such that if p > 1,
2,7 € T, X, 20,12/ < o/ /b

(1.116) A P, (Z 7
. su —_— :
\Oc|+|o}\)<m 0Z07" ( " il )
Z RO YA A1V )K,_%(Z/)p_%"'q) <opiE
r=2q emiX)
1c53 0t3.6 0.6
Set now Z = 7' =0 in (thl'l'G). By Theorem I.tIS, we obtain (bTFD and
(1 117) bq T(LL’Q) == Fq 2r+2q(07 0)

Hence (b‘B) follows from (h‘%T and %@7) The statement about the structure of
b follows from Theorems h_[5 and h_IB_To rove the uniformity part of Theorem
b_l_we notice that in the proof of Theoremﬁlﬂl@& we only use tl the derivatives of
the coefficients of c% Wlth order 5 < 2n + 2m + m' + 2. Thus by (1.79), the constants
in Theorems h_l'U T. M and u T3 are uniformly bounded, if with respect to a fixed
metric gl ¥, the €2"+2m+m'+4_norms on X of the data (¢”, h%, VX, h¥, V¥, J and
®) are bounded, and ¢’¥ is bounded below. Moreover, tak'@ril%%%erivatives with
respect to the parameters we obtain a similar equation a c( .65), where 7y, € X
plays now a role of a parameter. Thus the ¥”'—norm in (I.116) can also include
the parameters if the C"'—norms (with respect to the parameter z, € X) of the
derivatives of above d ta with order < 2n + 2m + 2k +m’ 4+ 4 are bounded. Hence
we can take Cj ; in b‘g’) independent of ¢ under our condition. This achieves the
proof of Theorem b_l_

2. COMPUTING THE COEFFICIENTS by.r

In principle, Theorem Fiéfé the equations (E%ZOG) (5_91(113) and the residue for-
mula give us a direct method to calculat b, by recurrence. Actually, it is com-
putable for the first sz%jrms by, I (b‘Ef) in this way. This Section is organized
as follows. In Section we W111 ge a glmphﬁed formula for O, PN without the
assumption J = J. In Sections E"Z_ ; We W111 compute b,( and by; under the
assumption J = J, thus proving Theorem

In this Section, we use the notation in Sectlon h_and all tensors will be eval-
uc%tled at the base point xy € X. Recall that the operators O;, O, were defined in

).
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ﬁole A formula for O,P". We will use the following Lemma to evaluate b,, in
(0°9).

Lemma 2.1. The following relation holds:

O, PN = {%bibj <RTX(R7 %)R, i> T lb‘ Z (07R")s (R, 8%)_

2]

(2.1) 3 '
1 1
+ (= 3% (AR ZIR &) + S |(VRDRP - lazzjz(aar)ma +@) PN
Proof. Set
h=; X @ R 27
1 N Zey 1 N 7z

(R )+ (R R )b,

From (E_:%SIO), (Ol ?86(6) 2), (%85), (HTzSG), (ETIQO’D, (57128), and since 7 is purely imaginary,

Oy =1 +1,— %[.Zo, (R™(R, )R, 2 ) | + RER, )b

T % KRTX(Ra 3R %> (—2b;b] — 2a,6,;) + <RTX(R, 2R, 81> b;bﬂ

(2.3) n @ <RTX(R7 ees, 81> _ (% Z(aaRL)mg n RE> (R, %Dbj

|| =2
FVEDRE = 32 (07 o 4 0
9" "R Ty '

laf=2

. 0c31
In normal coordinates, (V! ¥¢;),, = 0, so from (h_BZ), at o,

Ve, Ve (JTex, 1) = <(vgj VEXT)er + T(VIXVTXey), el> + <Jek, ijngXel>

B 1
3
1

+ 3 <RTX(ej, ei)er + RTX(ej, e, jek> )

(2.4) = ((VEVEDew ) = 5 (R™ (o5, e)e + B (e, ex)es, Ter)
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From (H_.lgo'?), (E.%Q),

Z 1
> (R ) (e, )y = 5(Ve, Ve (T ew, e1))an ZiZj
g21| (2.5) lel=2

== <(va T)RR)ER: €1) + = [<RTX R,e)R,Ter) — (R™ (R, ex)R, Ter)] -

2
Thus

ze 1 1
g22] (2.6) > (9"R"). (R, el)J =3 (VV*TD)rr)R,e1) + 5 (R"™X(R,TR)R, ;).

|a|=2

From (HTZSG), (%4), (57128) and (57262), we know that

b D (0" R ), ,aZZ)Za

ol
|o[=2

923] @.7) + %2 2 (RIXR,IRIR, 22 ) = i (RN (R.TRIR, )|
+ i [ai <(VXVXJ)(R,R)R7 ag> ~ = <(VXVX«7)(R,R)R7 aiﬂ :

9
The definition of VXVX 7, RTX and (H‘.QG) imply, for U, V, WY € TX,

(R™(U,V)W,Y) = (R"™X(W,Y)U,V),
RT™ (U, VYW 4+ R™(V, W)U + R™(W,U)V =0,

241 (2.8)
. (VXVET) ) — (VI D)y = [RTX(U, V), T,

(VXX D) vV, W) + (VI D) vy W, U) + (VX T v U, V) = 0.

Oues2 24
Note that 7, (V*V*7) ) are skew-adjoint, by (ESGZTand (578‘),

P <(VXVX«7)(R,R)R’ ag> ~ o5 <(VXVX‘7)(R’R)R’ 6i>

= (AT T s+ ATV 0 R+ [RN(LR), IR )
g25| (2.9)

< (VIVAT) o2 R+ [RTX(a‘Zi,R),J} R, ai>

821 )

4 {((VXVE D immyie, i ) + (20 R (R, LR — R (R, TR) L, 2

2 (™R, TRIR, 2 ) = & (R™ (R, TR)R, £ )

= 2(R™(R, TR)Z, & ) + 20 (R™(R, %)R, 2)
+ (R™ (2, TRIR, 2 ) = (B (&, TR)R, 2 )
=3 (R™ (R, IR, & ) + 20 (R (R, LR, 2 ).

82L

25
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Thus by (ETZ%-(ETZ%,

(2.10) I, = —b Y (0°RM)4 (R, 2% )Z <(VXV J)<mazla£z>

=2

) Oz

a; <RTX(R R, <‘?>.
Now by (%86), (571283 and (572847,

@11 b= b [(R(2, 2R 2 ) -

by <RTX<R,3%>R,%>+4<RTX< L)L ).
Finally (187), (L101), &%), #10) and G11), yield &D. 0
From (L.97), (£:100), (T.102), (T1°£12) and &1, follows

(2.12) Fio= JioPY = (2RE( 8)+4<RTX( 0. 00 %>+<I>>p1v

92 07
+ PN( <(VXVXJ) R,R) 8z ) 5%, > + QTUTX (VXVX(JJ)>

(R,R)
1

SIVEDRE + 5 (VETIR, &) br 2 b ((VETIR, 2 ) ) P

2.2. The coefficients 0, . he rest of this Section we assume that J = J. A

very useful observation is that (IT. 6), (E‘.Q’S) imply

Que5?2
J = —2mv—1J and @; = 27 in (hi.JBeZT, T = 2mn. Vi J is skew-adjoint

(2.13)
and the tensor ((VJ)-,-) is of the type ("9 X)®3 @ (T X)®3,

Before computing b,, we establish the relation between the scalar curvature r*
and |[VXJ|2.

Lemma 2.2.

214 = (RN ) )~ [P
Proof. By (E%),
(2.15) VX J]2 = 4<(vxij)ej,(vxij)ej> - 8<(VX8 I (V% J)%>.

0z; 0z; 8_21 0z;
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0 9 29
By (1:83), (196) and (°13),
@16) (VN (Vi k) = <<v§ N (Vi ) )
—2((V% D = (V5% N 2 (V% Dk )
0z; Oz1 0%;
_ <(inJ) (V% D )= (Vo N (V5 D).
0z; Z; 0z, 0z,
30 31
By (15) and B:16),
(2.17) <(VX3 ENCAY J)—> _ Livxge
3z 7%, 0z, 16

11

Now, from (HTQS), we get

(2.18) (VXV¥ DS + (Vi T) o (Vid) + (Vi d) o (Vi d) + J(VXVE D) wv) = 0.
24 29 34

thus from (88), B°13) and B18), for w1, 1y, us € TV X, 7,7, € TOV X,

27

(VXVXJ) (u1,u2)U3) (VXVXJ)@L@)Ug € T(O’l)X, (VXVXJ)(UL@)U;; € T(l’O)X,

(2.19)
2V =1 {(VXVXD) oy u2, Ta) = (Vs J)us, (Vo J)02)

Formulas (88) and 3:19) yield
(2.20) (VYT (u1,u0)01,02) = — (VIVET) (050002, ) — (VT 0y 50 U2, U1 )

1 X X 1\— X 1\
N ﬁ <<vu1 J>u27 (vﬁ J)UQ - (V@ J>1)1> :

From (57284), (E%) and (B%Z%)), we deduce

(2.21) <RTX(ai L)L )= \/_<[RTX(3%,6%),J] 2, 2)

25 2 821 ’ aZj

(VX9 o o = (VEVE) 0 o )i i
"sz') (az] 621) it 0%

ﬁ

1 1
= (V% N (T D) = 5 IVEIR
aZi azz

The scalar curvature r* of (X, g7™¥) is

= — <RTX(€i7@j)6i:€j> = —4 <RTX(ai
X 9y o 0 X
8<RT (azl’azj>azi’ﬁ7j> 8<RT (

In conclusion, relations (ETZ',[) and (5%282) imply (B.‘M).

(2.22)

From (ETIEOO) and (B%) we know

(2.23) O, = gbi <(v§j)z, 84> - % <(v§j)z, 81> b
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Hence by (HTZBG), (%1), (5%193) and (%213),

(0,PN)(2,2") :% (b- <(v¥j)z i> PN> (2,72")
e (s ) v )P

5%
By Theorem .15, (f:702) and (:54), we have
(2.25) (L 'PNOPYY(Z, 7))
(v, o) (1w ) )P ),
PNOLL PN O PN = —§PN <(VXJ) 2, >b+,,§f PN O PN,
(83), (E86), (£101), B23) and #%5) imply

2

(2.26) §<<(VXJ) L)L PN 0PN ) (2, 7)) :g{<(VfJ)z,%k>
x (—%<(V§j>% + (VY D7)+ (VEDZ, ) PN} (2,2')

0Zg

= {{ §ﬂ<<vw> % e ><<VX J)%+(vg7>%,z’>

8Z 82,6

2
- (VI + (7 ) ><<VX I+ (V% D7)
Bz 0Z; 8zk

+§ (VET)z, (vfj)z’>} PN} (2, 2").

Thanks to (1:98), (f-101), §°13), T5) and (3°16) we obtain

2
(2.27) %\(%J)RFPN(Z,Z'):8i<<V§J>z,<V§J>z>PN<Z,Z'>

)

o =

{Ki v ai+2b—(<vx DE + (V32 ) (VX )z

Z

< )z + (V) (VX J) + (VY J) 2>
azj

Zj
0z; 8z]

< Nz + (VXL (% J)z’+(V§J)%->

0z,

+{((VED)z, (V2 )Z') +

o vaXJP] PN} (Z,2").
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Taking into account (57284‘), ©19) and <[RTX (z,2), J] 2= > =0, we get

9z 0z
o)
0z;

0
2) 9z
_ _¢_<(v>< )z (VEDL).

228) (V¥ Dirmygs, 2 ) = (VXX D)eni + (V).

From (1:101), 15) and (428),

(2.29) <(VXVXJ)(R,R)8%,8%>PN(Z, Z') :_27r<(v§<J) (VX
= o {{(VEDNZ, DV N+ (VENL )P (2, 2)
8z

) PN(2.2)

- —{ [<bj(v;%J)% +2m(VE )L, (VET) 2 > + %lVXJIQ] PN}(Z Z").

Recall thgt the 6ynomlal 217(12(1 (Z,7') was defined in (h‘l’ll) From JJ = 27y/—1,
Ft02), (b:12), (21

%4 6
) and (2. ), J12(Z,Z") is a polynomial on z,7’, and each
monomlal of J; » has the same degree in z and Z’; moreover

(2.30) J12(0,0) = |VXJ|2 +2R; (575 =) + Puy.

7 1c52
Using (5794), (hTCH2) and the recurrence, we infer that each monomial of J, ,, has
the same degree in z and 7/, and

(2.31) Ty24(0,0) = (J12(0,0))7.

In view of (104), (T:111), (1517), 30) and (3'31) we obtain (0:11),

1c54 42
0342The coefficient b, ;. By (thl‘ﬂ), we need to compute Fi»(0,0). By (5724) and
(2.25), we know that

(2.32) (0. PY)(Z,0) =0, (& 'PN O,PN)0,2") =0.

Thus the first and last two terms in (HTM) are zero at (0,0). Thus we only need
to compute —(Z; ' PN 0,PN)(0,0), since the third and fourth terms in (ﬁ_ﬂél) are
adjoint of the first two terms by Remark

Let h ) and fi;(z n) be arbltrary polynomials in z. By Theorem

15, (EL86) (T94) and (ﬁ—rol) we hav

(b;h; PN)(0,0) = —22}”

<
2.33
(2.33) "

_1,A,,N e
(00 P)(0.0) =

82fij

0), (bl P)(0,0) = 455(0),

(0).
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(2.37) —(30‘1PNl]3PN>(0,O):%{Zo‘lbi[g <RTX(Z,8%)Z, (;;>
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Owing to Theorem E%fé, (B%QE)), (5%12'7), (57424’7) and (ETSS%?;),

(2.34) 5(.,% PN(vE ) R’ P¥)(0,0) = 9{[3% <(v D= (7 J)67j>
+ o (V% D)2+ (VEDE (VS D + (V5 J)—£_>]PN}(O,O)
87\ 35 o o=

1 1
= G\ (V9D + (V% D) (V% D) +2(V% N ) = 16V,
m 0z; Bz] 9z; 7 oz, J 167

and by Theorem E%[’é, (%) and (5753%3),

235) (%' PV (VV¥ D) rmas 22 ) PY)(0,0)

<b <(VXJ) (V¥ J)%>PN>(O7O):_%|VXJ‘2.

A 5z,

Observe that by (%1) for a polynomial g(z) in z, the constant term of 2 2= g(z) P~
is the constant term of (£)“g. Thus in the term —%; "' PV “O,PY, by (1.101), the
contribution of 1b; ZM:Q(@O‘RL)M (R, 621_) "+ in O, consists of the terms Whose total
degree of b; and Z; is same as the degree of z. Hence we onl Dee

the contribution from the terms where the degree of z is 2. By (

©%0) and < [RTX(%,2), J)» 4> = 0, this term is

) 0Z;

1
2.36) L= b <(VXVXJ)(ZZ 2+ (VIVE D)z + (VI Dy, i )

+ 2 (R, 72)2 4 BTNz, 72)2 )|

= —2h, [(VE0)2 3V D) — (9% J)z) + §<RTX(z,z)z,8%>]

0z;

Therefore, from (1.101), €8), &17), @21), ¢33) and (336), we get

+<(v§J) (V% J)%—(VEJ)%>]JPN}(O,O)

%, 2T

L 14 /0x, 0 TX 9\ o 8
- _16_7T [g <R (azyaz])azl tR <6217 3Zg)6zj’ 62i>

+{(V% D)+ (V5% D395 DL — (V% D2 )]
0z; 0z; 0%; 8zj

o 5 X 7112
- 1927rv Jl

TX( 0 o) o) o)
67T <R (6Zi’8§j)8zj"8§i>'
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Thanks to (%1), (5%26'1) and (575323) we have

(2.38) é(PNL <RTX (R, )R, 8@> PN) (0,0)

1 .
= (P (B g + BN (G )z i) 22 PY)(0.0)
1 TX( 0 0\ 0 TX 0 0\ 0 0
1

1 X 7112 TX (0 o) 0 o)
=561V +3—7T<R (6—%7@—%)3—%,%)-

9
By (313), 833), 3834), 35), 837), (338), and the discussion above (3:36),

bib; b

TX(, 8 ) E(, 8
Gy <R (2, 5.)%, 5].> + ER (2, 75)

+ g (R &0 ) - (G ) | P} 00

@39 - (Z'P¥ 0.PY)(0,0) = ~{]

1 TXr 0 90\ O0 0 1 Ero0 0
:§<R (a_zz-’a_fj)a_q’%>+§R (550 72 )-

28 60 4.3
Formulas (E.‘M), (5739) and the discussion at the beginning of Section EB yield
finally

bo.1 (o) =Fo2(0,0) = —(%‘1PNL(’)2PN)(O, 0) — ((%‘1PNL(’)2PN>(O, o))*
_lrx  Lox e E( 7.
== [rioo+24|v JE, + 2V=TRE (e5, Jej) .

The proof of Theorem 0.7 %s complete.

(2.40)

Remark 2.3. In the Kéhler case, i.e. J is integrable and L, F are holomorphic, then
O, = 0, and the above computation simplifies a lot.

3. APPLICATIONS

In this Section, we discuss various applications of our resg%tsg In Section Eél,_l
we study the density of states function of A, . In Section b???we explain how
to handle tglgGﬁrst-order pseudo-differential operator D, of Boutet de Mo SvZeolzalrld
Guille 18% LI ] which was studied extensively by Shiffman and Zelditch . In
Section 3.3, we prove a symplectic version of the convergence of the Fubini-Study

T1ian s5.4
metric of an ample line bundleﬁF[Gﬁ In Section %Twe show how to handle the
operator 9 + 9 when X is Kéhler but J # J. Finally, in Sections E?'ng%,éwe
establish some generalizations for non-compact or singular manifolds.
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3.1. Density of states function. Let (X, w) be a compact symplectic manifold
ofl' real dimension 2n and (L, V% h') is a pre-quantum line bundle as in Section

. Assume that F is the trivial bundle C, ® = 0 and J = J. The latter means,
by (b‘l’) that gTX is the Riemannian metric associated to w and J. We denote by
vol(X) = [ % the Riemannian volume of (X, ¢”¥). Recall that d, is defined in

Our aim is to describe the asymptotic distribution of the energies of the bound
states as p tends to infinity. We define the spectrum counting function of A, := A,
by N,(A\) = #{i : \i, < A} and the spectral density measure on [—-C}, C;] by
1 d
Y

Clearly, v, is a sum of Dirac measures supported on Spec A, N [-Cp, Cy]. Set

(3.1) v, = N,(\), Ae[-CL.Cyl.

1
(3.2) 0: X — R, Q(x):ﬂ|VXJ|2.

Theorem 3.1. The weak limit of the sequence {v,},>: is the direct image measure
1 " . . .
s (—w—>, that is, for any continuous function f € € ([—Cp,CL)), we have
vol(X) n!
Cr, n

. 1 w
(3.3) lim dePZMA(fOQ)H .

p—oo [ o)

0.4
Proof. By (bTT), we have for ¢ > 1 (now E is trivial): B,,(z) = 377, A1 ()P,
which yields by integration over X,

(3.4) ! ! ij o [ a0
3.4 —/B dvy = — A :/ A dv,(N),
dp X “r . dp i=1 P —Cr 8
0.0 0.6
since S? have unit L? norm. On the other hand, (bTB'), (bTET) entail for p — oo,
1 P" o' )
(3.5) —/B,dvxz—/b@dv;(%——
dy, Jx 7 dy Jx * d,

1
Yol (X) /XQ dux + O(p~).
£5 £6 £4
We infer from (b._4) and (b75) that (bTB) holds for f(\) = A%, ¢ > 1. Since this is
obviously true for f(\) = 1, too, we deduce it holds for %14 polynomials. Upon
invoking the Weierstrass approximation theorem, we get (3.3) for all continuous
functions on [—-C7, Cy]. This achieves the proof. O

Remark 3.2. A function o satisfying (b‘S) is called spectral denmtg function. Its
existence and uniqueness were demonstrated by Guillemin-Uribe [29]. As for the

§)11c1t formula of o, %}Il_erpaper hT] is dedicated to its computation. Our formula
(3.2) is different from Theorem 1.2] 3.

3In I% (3.7)], the leadlng term of GO]BSUhZ()uld be x~1/ 2b( which was missed therein, as the
principal terms of -2 - re o, T 0, by m equation after (3.11)]. Now, from hf (3.5)1, b

3(Jz,T}8;). Thus Lo in (3 8)] is incorrect. h 11, Theorem 1.2] is o(z) = — 2 |VXJ|2.
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An integg;ting corollary of (5732) and (5743) is the following result which was first
stated in h‘[, Cor. 1.3].

Corollary 3.3. The spectral density function is identically zero if and only if (X, w, J)
is Kahler.

lspectral-density X
Remark 3.4. Theorem 3.1 can be slightly generalized. Assume namely that J = J

and F is a Hermitian vector bundle as in Section %‘such that RF = n® Ildg, ® =
¢ 1dg, where 7 is a 2-form an%léfp a real function on X. Then there exists a spectrum
density function satisfying (%73) given by

1 v —1
(3.6) 0: X — R, ox)= ﬂ|VXJ|2+Tn(6j,Jej)+go.

The proof is similar to the previous one, as Trp, B,,(z) = 3., AL ST ()],

3.2. Almost-holo%gliphic Szego kernels. We use the notations and assump-
tions from Section 3.1, especially, J = J. Then 7 = 27n.

Let Y = {u € L*,|u|,- = 1} be the unit circle bundle in L*. Then the smooth sec-
tions of L? can be identified to the smooth functions >°(Y), = {f € €>(Y, C); f(ye®)
= e f(y) for € € S,y € Y}, here ye' is the S! action on Y.

The connection V¥ on L induces a connection on the S'-principal bundle 7 :
Y — X, and let T”Y C TY be the corresponding horizontal bundle. Let ¢”¥ =
7¢"* @ db? be the metric on TY = THY @ TS!, with df? the standard metric on
St = R/2nZ. Let Ay be the Bochner-Laplacian on (Y, g’Y), then by construction, it
commutes with the generator 9y of the circle action, and so it commutes with the
horizontal Laplacian

(3.7) Ap = Ay + 3,

' 1
then A, on €(Y), is identical with A~ on €(X, L*) (cf. [10, §2.1D.
In , Lemma 14.11, Theorem A 5.9], m], , (3.13)], they construct a self-
adjoint second-order pseudodifferential operator ) on Y such that

(3.8) V=AM + V=170 — Q

is a self-adjoint pseudodifferential operator of order zero on Y, and V, () commute
with the S'-action. The orthogonal projection II onto the kernel of () is called
the Szego projector associated with the almost CR manifold Y. In fact, the Szego
projector is not unique or canonically defined, but the above construction defines
a canonical choice of II modulo smoothing operators. In the complex case, the
construction produces the usual Szego projector II.

We denote the operators on €>°(X, L?) correspondifr%% to @, V, Il by Q,,V,, 11,
especially, V,(z,y) = 5= 02” e~ PV (xe? y)df. Then by (3.8),
(3.9 Q=AY —pr -V,

1Y) .
By FZQ, 64], there exists i1 > 0 such that for p large,

(3.10) Spec @, C {0} U [p1p, +00].
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0.3 [0.0
Since the operator V, is uniformly bounded in p, naturally, from (b75), (bTG), we get

(3.11) dim Ker Q, = d, = / Td(TX) ch(LP).
X

Now we explain how to study the Szegé projector IT, 4. This can be done from our
point of view. Recall F is the function defined after ( ). Let IL,(x,2"), ﬁ(Qp)(x, z')
be the smooth kernels of I1,,, F/(Q,) with respect to the volume form dvx (z').

Note that V, is a 0-order pseudodifferential (%)%at(%g on X induced from a 0-order

Eﬁudodifferential operator on Y. Th Ostgrpgrl 3.9), (b._[()), we have the analogue of
, Proposition 3.1] (cf. Proposition 1.2): for any [,m € N, there exists C},, > 0
such that for p > 1,

(3.12) |F(Qp) (i, a") = T (w, a)

1
emxxx) < Crmp -

By finite propagation speed %5, 64.4], we know that ﬁ(Qp)(x,x’) only depends
on the restriction of ), to B*(z,¢), and is zero if d(z,2’) > . It transpires that
the asymptotic of II,(x,2’) as p — oo is localized on a neighborhood of z. Thus
we can translate our analysis from X to the manifold R* ~ 7, X =: X, as in
Section ﬁ‘?ﬁ%especially, we extend V* to a Hermitian connection VX on (L, hi0) =
(Xo X Ly, ht=0) on T}, X in such a way so that we still have positive curvature R0,
in addition R* = R’ outside a compact set.

Now, by using a micro-local partition of unity, one can still construct the opera-
tor Q*° as in FJ%, Lemma 14.11, Theorem A 5.9], F&%], %9, (3.13)], such that VX0
differs from V by a smooth operator in a neighborhood of 0. On X, and Q*X° still

. tz3 . . 3.3
verifies (%._1'0). Thus we gan work on (X, C) asin Section h_.3._We rescale then
the coordinates as in (E‘.Z’Y) and use the norm (H‘.SS). The VpXO is a 0-order pseu-
dodifferential operator on X, induced from a 0-order pseudodifferential operator
on Y;. This guara113toees that the operator rescaled from VpX0 will have the simi-
lar expansion as (E_.ZQ) with leading term t?R, in the sense of pseudo-differential

operator £24 DLM L . DLM

From (3.11) and hU, (3.89)], similar to the argument in hﬁ, Theorem 3.18] e
can also get the full off diagonal expansion for II,, which is an extension of [4Z,
Theorem 1.], where th.e authors objcam B.13) for |Z|,|Z'| < C/\/p W.lth ge 20 ﬁ)%ed.
More precisely, recalling that PV is the Bergman kernel of .% as in (h_.BT), (%94)

we have:

Theorem 3.5. There exist polynomials j.(Z,7') (r = 0) of Z, Z' with the same parity
with r, and jo = 1, C" > 0 such that for any k,m,m' € N, there exist N € N,C' > 0

4As Professor Sjostrand pointed out to us, in general, II, g0 is not &(p~*°) as p — oo, where
Py, is the smooth kernel of the operator A, (Definition g :; This can also be seen from the
presence of a contribution coming from @ in the expression (0.9) of the coefficient by ».
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such that for o, o’ € Z°", |a| + |o/| <m, Z,7' € T,, X, |Z|,|Z'| <& w90 € X, p> 1,

(3.13)

1

a|a|+|o/\ 1 (7. 7' k . PN A 7! _1 N3 (7 —r/2
072971 E (2, )_;(JT )(VPZ,/pZ")k"2(Z)k2(Z )p

e (X)
< Cp "ML+ [pZ] + |VpZ')Y exp(—/C" i /plZ = Z')) + O(p™).

The term 2 in (5%1@3) comes from the conjugation of the operators as in (HTCFEG),
€™ (X) is the €™ ;horm for the parameter z, € X, and we use the trivializa-
tions from Section 1.2; the term &(p~>°) means that for any /,1; € N, there exists
Cyy, > 0 such that its €"-norm is dominated by C;; p~'. We leave the details to the

interested reader.

3.3. Symplectic version of Kodaira Embedding Theorem. Let (X,w) be a
compact symplectic manifold of real dimension 2n and let (L, V% hl) be a pre-
quantum line bundle and let ¢”X be a Riemannian metric on X as in Section (0.

Recall that H, C (X, L?) is the span of those eigensections of A, = A¥ — 7p
corresponding to eigenvalues from [-C7,Cr]. We denote by PH; the projective
space associated to the dual of H, and we identify PH; with the Grassmannian
of hyperplanes in H,. The base locus of H, is the set Bl(H,) = {z € X : s(x) =
0 for alls € H, }. As in algebraic geometry, we define the Kodaira map

®, : X N\ BI(H,) — PH,
Q,(x) ={s € H, : s(z) =0}
which sends z € X ~\ Bl(H,) to the hyperplane of gegtions vanishing at x. Note

that H,, is endowed with the induced L? product (thl') so there is a well-defined
Fubini—Study metric grs on PH;, with the associated form wrs.

(3.14)

Theorem 3.6. Let (L, V%) be a pre—quantum line bundle over a compact symplectic
manifold (X,w). The following assertions hold true:

(1) For large p, the Kodaira maps ®,, : X — PH; are well defined.

(i) The induced Fubini—Study metric %@;(wpg) converges in the € topology to
w; for any | > 0 there exists C; > 0 such that

1 C
(3.15) = O (wrs) —w| < —.
p ¢! p

(iii) For large p the Kodaira maps ®, are embeddings.

Remark 3.7. 1) Assume that X is Kéhler and L is a holomorphic bundle. Then A,
is the twice the Kodaira-Laplacian and H, coincides with the space H°(X, L?) of
holomorphic sections of L. Then (i) and (iii) are simply the Kodaira embedding
. .o . . Tlan .
theorem. A nggglon (i1) is due to Tian h’B,‘Theorem Al as an answer to a co gg%ture
of Yau. In the case [ :Rg is considered and the left-hand side of (13.15) is
estimated by C;/,/p. Ruan h’l] proved the > convergence and improved the
bound to C;/p. Both papers use the peak section method, based on L?—estimates

for 0. Finally, Zelditch deduced (ii) from the asymptotic expansion of the Szegé
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gelditch B
kernel [501. Bouche ﬁ%] proves that the induced Fubini-Study metric (®;n7M)!/?

on L converges in the €° to%})%l;)gy to the initial metric h”. 5202

2) Borthwick and Uribe , Theorem 1.1], Shif{ri%%n and Zelditch h’Z,’Theo-
rems 2, 3] prove a different symplectic version of [7F6,_The%%elm Al Wh%rzlo% = J.
Igg;;ad of H,, they use the space HY(X, L?) := Im(II,) (cf. hU, p.601], hZT§2.3],
%o’G B%t; ‘almost holomorphic sections’ proposed by Boutet de Monvel and Guillemin
Proof. Let us first give an alternate description of the map ®, which relates it to
the Bergman kerne(l).chet {SP1%  be any orthonormal basis of H, with respect to
the inner product (hTD. Once we have fixed a basis, we obtain an identification
H, = H; = C% and PH}; = CP%»~'. Consider the commutative diagram.

X \BI(H,) — PH;

(3.16) [ |
X \BI(H,) —% CP%!
Then
d
* ok \/__1 o) .
(3.17) O (wrs) = cpp(?aa log; ywﬁ),
where [w;,...,wy ] are homogeneous coordinates in CP%~!. To describe 51, in a

neighborhood of a point z, € X \ Bl(H,), we choose a local unity frame e;, of L and
write S = fPe?” for some smooth functions f7. Then

(3.18) ®y(x) = [f(2);. - 4 (2)],

and this does not depend on the choice of the frame ¢;,.
(i) Let us choose an unit frame e, of L. Then |S?|> = | f7|?|e.|*? = | fF|?, hence

dp dp
Bop =Y _ISTP =) _IfFP
=1 =1

Since by, > 0, the asymptotic expansion (}87'96‘) shows that B, does not vanish on
X for p large enough, so the sections {57}, have no common zeroes. Therefore o,
and &, are defined on all X.
(i) Let us fix 2y € X. We identify a small geodesic ball B*(zg,¢) to BT=X(0,¢)
lgg.gleans of the exponential map and consider a trivialization of L as in Section
.2,1.e. we trivialize L by using an unit frame e, (Z) which is parallel with respect
to V£ along [0,1] > u — uZ for Z € B™0%(0,¢). We can express the Fubini—Study
metric as
dp
V-1 > |wj|2> _ vl
j=1

d d
1 = 1 « 1 ~ _
788 log ( - o [W JZ_; dwj VAN d@j - ngz:l W ;W dwj AN d@k s
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and therefore, from (E.EEB),

d
v—1 1 s __
(3.19) @ (wrs)(w0) = 3= | o > dff ndff -
j=1

dp
LSS T a ndf | (xo)

4
ol 2

1

- % pr(xo’ $0)_1dmdyfp(x’ y) - fp(x(], ‘TO)_Zd:pr(‘TJ y) A dyfp(xv y)] |m=y=woa

where f7(z,y) = i, f7(z) 7 (y) and |f7(z)|* = f*(x,x). Since
(3.20) Pop(z,y) = fP(z,y)el] (x) @€l (y)",

0c30 0t3.6
thus {3(9 é’gx’ y) is fP(z,y) under our trivialization of L. By (h_.CBT), Theorem (hTtIST,
and (hﬁl‘l’G), we obtain

1., V=Ir 1 1
(321) ]_) q)p(WFS)(lL'()) - 7 [ mdxdyF()’O - K%deFo’o VAN dyFO,O] (0, 0)
v—11 1
— o ﬁ [ F2 (dIFOJ A dyF()’() + drFo’() A\ dyF0’1>i| (0, O) + ﬁ(l/p)
0,0
7 1ch2
Using again (}%94), (thl'l'Q), we obtain
1 V=1

A A~

Zajdzj A dZj|zy + O(1/p) = w(mo) + O(1/p),

and the convergence takes place in the ¢ topology with respect to z( € X.

(iii) Since X is compact, we have to prove two things for p sufficiently large:
(a) ®, are immersions and (b) ®, are injective. We note that (a) follows immediately
from (3.15).

To prove (b) let us assume the contrary, namely that there exists a sequence

szl.1
of distinct points z, # y, such that ¢,(z,) = ©,(y,). Relation (%.TGTimplies that
®,(,) = ,(y,), where &, is defined by any particular choice of basis.

The key observation is that Theorem h_l'g ensures the existence of a sequence
of peak sections at each point of X. The construction goes like follows. Let 2y € X
be fixed. Since @, is point base free for large p, we can consider the hyperplane
P, (x) of all sections of H, vanishing at z,. We construct then an orthonormal
basis {S”}?, of H, such that the first d, — 1 elements belong to ®,(z,). Then Sg, 18
a unit norm generator of the orthogonal complement of ¢,(z), and will be denoted
by S2 . This is a peak section at z;. We note first that |S2 (zo)> = Bo,(zo) and
Pop(x,x0) = SE (v) ® SP (70)* and therefore

1
(3.23) SE () = mﬂ)’p(m, g) - SP (20).

1c53
From (thlT6) we deduce that for a sequence {r,} with r, — 0 and ,,\/p — oo,
(3.24) / 1SP (z)* dvx(z) =1—0(1/p), forp— cc.
B(zo,rp)

5
Relation (@%24) explains the term ‘peak section’> when p grows, the mass of 57
concentrates near z,. Since ¢,(x,) = ®,(y,) we can construct as before the peak
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section S? = SP as the unit norm generator of the orthogonal complement of
O, (z,) = D,(y,). We fix in the sequel such a section which peaks at both z, and y,.

We consider the distance d(z,,y,) between the two points =, and y,. By passing
to a subsequence we have two possibilities: either ,/pd(z,,y,) — oo as p — oo or
there exists a constant C' > 0 such that d(x,,y,) < C/,/p for all p.

Assume that the first possibility is true. For large p, we learn from relation
(ETZZS4) that the mass of S = 57 (which is 1) concentrates both in neighborhoods
B(z,,1,) and B(y,,r,) with r, = d(x,,y,)/2 and approaches therefore 2 if p — oc.
This is a contradiction which rules out the ﬁrsg Z[g)()zssibility.

To exclude the second possibility we follow h’ZT We identify as usual B*(z,,¢)
to B™»*(0,¢) so the point y, gets identified to Z,/,/p where Z, € B"»*(0,C). We
define then

529 bl — R, gl =

We have f,(0) = f,(1) = 1 (again because S; = S ) and f,(¢) < 1 by the definition

of the generalized Bergman kernel. We deﬁiuce the existence of a point ¢, € (0, 1)
1c53 1 6 P ’
such that f)(t,) = 0. Equations (thl'l'G), (ESS .223), (ETZZB) imply the estimate

(3.26) Fo(t) = e s alal? (14 9,(tZ,)/\/p)

and the ¢? norm of g, over B’»»*(0,C) is uniformly bounded in p. From (572276),
we infer that |Z,[§ := > a;l2,; 527: 0(1/,/p). Using a limited expansion e* =
1+ 2 + 2*¢(z) for = t*|Z,[] in (8.26) and taking derivatives, we obtain f)/(t) =
223+ 0(Z,0) + OZJ3/yB) = (=2 + 6(1/yp)|Z,f;. Evaluating at t, we get
0= fl(t,) = (=2 + O(1/\/p))|Z,[3, which is a contradiction since by assumption
Z, # 0. This finishes the proof of (iii). O

Remark 3.8. Let us point out complementary resulgs which are analogues of H](lf,
(1.3)—(1.5)] for the spaces H,. Computing as in (E.EE)) the pull-back ;i of the
Hermitian metric hps = gps — V—1lwpg on PH;, we get the similar inequality to
(8.15) for grs and w(-, J- . lThus, ®,, are asymptotically symplectic and isometric.
Moreover, arguing as in hU, Proposition 4.4] we can show that ¢, are ‘nearly holo-
morphic’:

(3.27) ! |0D,| = C, |0®,|| = 0(1/p), for some C >0,
p

1
p
uniformly on X, where || - || is the operator norm.
3.4. Holomorphic case revisited. In this Section, we assume that (X,w, /) is
Kihler and the vector bundles F, L are holomorphic on X, and V¥, V? are the
holomorphic Hermitian connections on (£, h¥), (L, h*). As usual, L1 R" = w.

But we will work with an arbitrary (non-théeri) Riemannian metric ¢’X on TX
compatible with J. That is, in gerslgr%ll J# Jin (b‘l’) The use of non-Kédhler metrics
is useful for example in Section %TB‘._Set

(3.28) 0(X,Y) = ¢"™*(JX,Y).
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Then the 2-form © need not to be closed (the convention here is different to F2,
(2.1)] by a factor —1). We denote by 70 X, TODX the holomorphic and anti-
holomorphic tangent bundles as in Section ﬁ%l.iLet {e;} be an orthonormal frame
of (TX, g™™).

Let g2 (-,-) := w(, J-) be the metric on TX induced by w, J. We will use a sub-
script w to indicate the objects corresponding to g2, especially rX isotl%e scalar
curvature of (TX, g-%), and A, is the Bochner-Laplace operator as in (h_.CZ) associ-
ated to g1 *.
—LPQE % .. —=LPQE

Let 0 be the formal adjoint of the Dolbeault operator 0 on the Dol-
beault complex Q%*(X, L? @ F) with the scalar product induced by ¢, ht, h¥ as
in (%. Set D, — \/§<5LP®E +5LP®E,*)‘ Then Dﬁ _ 2(5L"®E5L1’®E,* +5LP®E,*5LP®E)
preserves the Z-grading of 2%*(X, L” ® E). Then for p large enough,

(3.29) Ker D, = Ker D = H*(X, ¥ ® E).

Here D, is not a spin‘ Dirac operator on Q% (X, L? ® E), and D is not a renormal-
ized Bochner-Laplacian as in (0.4).

Let Py(z,2’) (z,2" € X) be the smooth kernel of the orthogonal projection from
¢>*(X,L? ® E) on Ker D? with respect to the Riemannian volume form dvx (z') for
p large enough. Recall that we denote by detc the determinant function on the
complex bundle 79X, We denote by |J| = (—J*)7'/2, then detc |J| = (27) "L q,
under the notation in (11%1862’{ Now we explain how to put it in the frame of our
work.

Theorem 3.9. The sm(%%h kernel P,(x,z') has a full off-diagonal asymptotic ex-
pansion analogous to (b_IB) with jo = detc |J| as p — oo. The corresponding term

0.6
bo.1 in the expansion (b?gj of Bop(z) := Py(z, x) is given by
_dete || 7« E =
(330) b(),l = 7 |:Tw — 2Aw < log(detd.]])> + 4R (w%j, ww-)] .

here {w, ;} is an orthonormal basis of (T*9 X, g1X).

M BiV
Proof. As pointed out in %133, Remark 3.1], by |51, Theorem 1], there exist py, C, > 0
such that for any p € Nand any s € Q°(X, [? ® E) := @, "X, ¥ ® E),
(3.31) 1Dpsll72 = (2ppo — Cr)||5]172-

Moreover Spec D} C {0} U [2puo — Cp, +00|.
Let S~7 denote the 1-form with values in antisymmetric elements of End(7X)
which is such that if U, V, W € T'X,

(3.32) (S~B(U)V, W) = —@ ((a - 5)@) (U,V,W).

The Bismut connection V-7 on T'X is defined by
(3.33) VE=v¥* 455

B89
Then by h,’Prop. 2.5], V~F preserves the metric g% and the complex structure
of TX. Let VI be the holomorphic Hermitian connection on det(7™!? X) with its
curvature R, Then these two connections induce naturally an unique connection
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on A(T*®Y X) which preserves its Z-grading, and with the connections V%, V¥, we
get a connection V-5 on A(T*"VX) ® L ® f. Let A~B.Fr be the Laplacian on
AMT*OVX) ® L? @ E induced by V-5 as in (h_.CZ). For any v € TX with decom-
position v = vy + vo1 € THOX & TOVX, let 7, € TV X be the metric dual of
v10. Then c¢(v) = V2(¥jy A —iy,,) defines the Clifford action of v on A(T**VX),
where A and i denote the exterior and interior product respectively. We define a
map ¢ : A(T*X) — C(TX), the Clifford bundle of TX, by sending e"* A --- A €% to
c(ei,) - cley) for iy < “5eS bt For B € A(T*X), set |B]* = >, ... |B(ei, ej,ex) .
Then we can formulate kSTTheorem 2.3] as following,

X

fle6| (3.34) D2=A"Pr4 % +°(R” +pR" + %Rdet) + g

- We use now the connection V~—52#» instead of V*» in %ﬁléﬂ. Then by (E?Slﬁ

(E3734), everything goes through perfeD%‘cD%y well and as in hU, Theorem 3.18], so

we can directly apply the result in kZU] to get the full off-diagonal asymptotic

expansion of the Bergman kernel. As the above construction preserves the Z-
grading on Q"*(X, L? ® E), we can also directly work on (X, L* ® E).

Now, we need to compute the corresponding b,;. We endow E with the metric

(90) — %y(a _d)eP.

hE = (detc|J|)"'h* and let RZ be the curvature associated to the holomorphic
Hermitian connection of (E, hF). Then

(3.35) RE = R® — 901og(detc|J)).
Thus

(336) V —1R£)(€w’j, Jew,j) = 2Rf(ww7j,ﬁw’j) =V —1RE(6w,j, Jew,j) - Aw log(det(c\J) .
Let (-, -)_ be the Hermitian product on ¢>(X, L? ® E) induced by ¢.~, h*, hZ. Then
B3N (FX(X P @E), () = (=X, 9 E).(~)), doxa = (detc|I])dusx.

Observe that H°(X, L? @ E) does not depend on ¢**, h* or hZ. If P, ,(x, 1), (z,2' €
X) denotes the smooth kernel of the orthogonal projection from (¢ (X, L?®F), (-,-)_)
onto H°(X, L? ® E) with respect to dvx ., (z), we have

(3.38) P,(z,2") = (detc|J|(z")) P, p(x, 2).

t0.1 LM
Now for the kernel P, ,(z,z’), we can apply Theoremi(f).llgor hU, Theor%m5 1.3])
ince g% (-,-) = w(-, J-) is a Kdhler metric on TX, and (bng) follows from (bT'B”) and
%.36). O

Remark 3‘%9{\4 Certainly, the argument in this Subsection goes through the orbifold
case as in [20, §4.2].

3.5. Generalizations to non-compact manifolds. As in Section E.%I,_lee con-
sider a complex Hermitian manifold (X, J, ©) of dimension n, where J is the com-
plex structure and © f1§ 1the (1,1) form associated to a riemannian metric g’ com-
patible with J as in (%728). The torsion of © is T = [i(©), 00|, where i(0) = (O A -)*
is the interior multiplication with ©. Let (L, h*) and (E, ") be holomorphic Her-
mitian vector bundles over X, with tk L = 1. We denote by R”, R¥ and R%"' the



oncompact

GENERALIZED BERGMAN KERNELS ON SYMPLECTIC MANIFOLDS 41

curvatures of the holomorphic Hermitian connections V¥, V¥ and V! on L, E
and det(T"9X). Let J* € End(TX) be the endomorphism satisfying 2 R'(-,-) =
©(JE.,-). The line bundle L is supposed to be positive and we seE%A— FRL We
also keep the notations ¢’ *, A, and r* when we refer to Section

The space of ((:%omorphlc sections of L? ® E which are L? with respect to the
norm given by (I.T) is denoted by H(Q)(X, L? ® E). Let Py(z,2’), (z,2" € X) be the
Schwartz kernel of the orthogonal projection P, from the L? section of L” ® F onto
H&)(X , P ® E) with respect to the Riemannian volume form dvx(z’) associated

to (X,0). Then by the ellipticity of the Kodaira- Laplacian and Schwartz kernel
theorem, we know P,(z,2') is €>°. We set B,( 2) zr,x) € €°(X,End(E)). We
have the following generalization of Theorem b_l_

Theorem 3.11. Assume that (X,0) is a complete Hermitian manifold. Suppose
that there exist ¢ > 0, C > 0 such that:

3.39) V-1R*>c0, —-IR*>-CO, +-1R¥>-CO, IT|e < CO.

The kernel P,(x,z") has a full off-diagonal asymptotic expansion analogous to (b._[3)
with jo = detc |J*| as p — oo, uniformly for any x,2' € K, a compact set of X. Es-
pecially there exist coefficients b, € €*(X), r € N, such that for any compact set
K C X, any k,l € N, there exists Cy; i > 0 such that for p € N,

(3.40) < Cruxp "

(gl(K)

£12
Moreover, by = detc |J*| and by equals by, from (ba.BU ).

Let us remark that if L = det(7"("%/X) is the canonical bundle, the first two
conditions in (3.39) are to be replaced by

(3.41) h* is induced by © and v—1R%*" < —<0O.
Moreover, if (X, O) is Kéhler, the condition on the torsion 7 is trivially satisfied.

Proof. By the argument in Section ﬁéliif the Kodaira—La[pl3acian Dol = 1A, =
1 54,0 acting on sections of L?® F 135 2 spectral gap Ss31 n (0.5), then we can localize
the problem, and we get directly ( ) from Section [I.3." Observe that D’|qo. = A,
In general, on a non-compact manifold, we define a self-adjoint extension of Df) by

=Ep

DomD2 {uEDom@ NDom &7"" . 9 ueDongp*,ng*

u € Domd'” },

=E, = E

Dpu:2(8 8"+ 0" u, for u € Dom D .

where we set 0" 1= 0 ". The quadratic form associated to D2 is the form Q,
given by

Dom @), := Dom 2N Dom ™"
(3.42)

E,

Qp(u,v) :2<5Epu,5Ep v) +2<5Ep*u,5 p*v>, u,v € Dom @, .
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In the previous formulas 2" is the weak maximal extension of ' to L2 forms and

977" is its Hilbert space adjoint. We denote by Qg *(X, LP ® E) the space of smooth

compactly supported forms and by L)*(X, L’®F) the corresponding L?-completion.
Under hypothesis (3.39) there exists p > 0 such that for p large enough

(3.43) Qp(u) = pp |lul®*, w € Dom@,N LO’q(X, L ® E) for ¢ > 0.

Indeed, the estimate holds f ry € Qoq dh : g@ si ce the Bochner-Kodaira-
Nakano formula of Dema1lly , Th.0.3], h. 1 5], (8)] with torsion term
delivers

(3.44) Qy(u) >

pRY + RF + RN (w;, @W,) W Aig,u,u
J i

O W~

2 _ ) .
- —(||TUII2 + [|Tull® + T ull® + | T ull?)

for QO 4 X LP ® E), where {w;} is an orthonormal frame of 7(}Y) X. Relations
Eiring (% 39) imply (%743) fo{r we Q(X, [’ @ E). Since Q% (X, [” @ E) is dense
in Do le with respect to the graph norm (due to the completeness of the metric
g™™), (3:43) holds in general.
Next, consider f € Dom A, N Ly” X, [?® E) and set u = 9™ f. It follows from
the definition of the Laplacian and (3.43) that

=Ep* =Ep
(3.45) 1A fI*=2( 0" u,0" u) = Qpu) > upllull* = up(Apf . f) -
This clearly implies Spec(4,) C {0} U 4 SO af% Olarge P
As 21];11721’ the argument leading to (3.35)-(3.38) still holds locally, thus we get b,
from (3.30). O

Theorem &Ergo_g%ts an immediate generalization of Tian’s convergence the-
orem. Tian Theorem 4.1] already proved a non—compact version for conver-
gence in the 4 topology and convergence rate 1/,/p. Another easy consequence
are holomorphic Morse inequalities for the space H (02) (X, LP).

For simplicity we consider now rk £ = 1, with the important case £ = Ky =
det(7*("9X) in mind. Choose an orthonormal basis (S});>1 of H{) (X, L” ® E). For
each local holomorphic frames ¢; and ey of L and £ we have

(3.46) SP = [P @ e

for some local holomorphic functions f. Then B,(z) = Py(z,x) = .5, |5/ (2)]* =
> st (@) 5712, |er|? » is a smooth function. Observe that the quantity > s [ (2)?
is not globally defined, but the current

_ —1 P 2
(3.47) oy = = 0D log (Z P @)P)
is well defined globally on X . Indeed, since R = —991log |er|?, and RF = —301log |ep|?,
we have

1 v—1 v—1 = v—1
ell0.1 (348) —wp — Q—RL = ﬂ 8810g Bp + ﬂRE .
v T ™
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z0
If E is trivial of rank one and diné hg (02) (X, L?) < oo we have by (E.‘l’4) that w, =
@5 (wrs) where @, is defined as in (%._1'4) with JZ, replaced by H, (02) (X, LP).

Corollary 3.12. Assume that vk E = 1 and (%’.39) holds true. Then :
(a) for any compact set K C X the restriction w,|x is a smooth (1,1)-form for
sufficiently large p; moreover, for any | € N there exists a constant C) i such that

’ <Cl,K_
p or ey T p

(b) the Morse inequalities hold in bidegree (0,0):

1 [ /T
(3.49) lim inf p~" dim HY (X, I? @ E) > — / (?RL> .
X

p—00 n!
In particular, if dim H ?2)()( , [P ® F) < oo, the manifold (X, ©) has finite volume.

Proof. Due to (E%&), B, doesn’t vanish qn any given compact set K for p sufficiently
large. Thus, (a) is a consequence of (E.%H%) and (%%80771

Part (b) follows from Fatou’s lemma, applied on X with the measure ©"/n! to the
sequence p " B, which converges pointwise to (det J)'/? = (X2RY)"/O" on X. O

{TBTemark 3.13. Under the hypothesis (%%41), the inequality (E%g) (with F trivial) is
, Theorem 1.1] of Nadel-Tsuji, where Demailly’s holomorphic inequalities on
compact sets K C X were used. The volume estimate is essential in their com-
pactification theorem of complete Kidhler manifolds with negative Ricci curvature
(a generalization of the fact that arith v etic varieties can be complex—analytically
(B:Tgr_lgoactiﬁed). The Morse inequalities (3.49) were also used by Napier—Ramachandran
to show that some quotients of the unit ball in C" (n > 2) having a strongly
pseudoconvex e%d have finite topological type (for the compactification of such quo-
tients see also [37]).

Another generalization is a version of Theorem %.Ql'_lfor covering manifolds. Let
X be a paracompact smooth manifold, such that there is a discrete group I' acting
freely on X with a compact quotient X = X /T. Let 7p: X — X be the projection.
Assume that there exists a I'-invariant pre-quantum line bundle Lon X and a
I—invariant connection V* such that & = ¥_1(V’)? is non—degenerate. We endow
X with a I'-invariant Riemannian metric gT;{ . Let J be an [-invariant almost
complex structure on TX which is separately compatible with & and ¢’*. Then
J, gT)? , o, J, L, E are the pull-back of the corresponding objects in Section B;by
the projection mr : X — X. Let ® be a smooth Hermitian section of End(E), and
® = ® o 7rp. Then the renormalized Bochner-Laplacian Ep@ is

Ag= APCE _ p(Tomr) + )

M
which is an essentially self—adjoint operator. It is shown in %3, Corollary 4.7] that

(3.50) Spec A 5 C [~Cr, Cr] U [2ppo — C, +00
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. . . Bi .. . Jo.21 ~
where ('} is the same constant as in Section 0 and i is introduced in (k).B). Let H,
be the eigenspace of A 3 with the eigenvalues in [-C7, Cy:

(3.51) M, = Range B([-C1,C1], A 5)

~ MM
where E( -, Ap,<5> is the spectral measure of A 3. From m, Corollary 4.7], the von

Neumann dimension of ﬁp equals d, = dim H&. g‘inally, we define the generalized
Bergman kernel F;, of A 3 as in Definition II. [. Unlike most of the objects on X,

P, , 1s not '—invariant.

P 0el16 Qt3. Qe

By (b%OTand the proof of Proposition .2, the analogue of (h%‘) still holds on any
compact set X C X. By the finite propagation speed as the end of Section 1.1, we
have:

Theol'em 3.14. We fix 0 < ¢y < inf,ex{injectivity radius of x}. For any compact set
K Cc X and k,l € N, there exists Cy, | x > 0 such that for x,2' € K, p € N,

P,,(z,2") — P, (mr(x), 7 (2")) o) <Crixp ™, ifd(z,2) < e,

< Crik p Tt if d(z,x") > eo.

(3.52) N
Py p(x, xl)

Egplecially, P, ,(x,z) has the same asymptotic expansion as B, ,(7r(z)) in Theorem
.1 on any compact set K C X.

Remark 3.15. Theorem %.gﬁ_lworks well for coverings of non-compact manifolds.
Let (X, ©) be a complete Kdhler manifold, (L, 2*) be a holomorphic line bundle on
X and let 7 : X — X be a Galois covering of X = X/I'. Let © and (L, hz) be the
inverse images of © and (L, h*) through 7. If (X, ©) and (L, h") satisfy one of the
conditions (%'.396?{ 6(1.141), (X,0) and (L, hE ) have the same properties. We obtain
therefore as in (3.49) (by integrating over a fundamental domain):

~ ~ 1 —1 n
(3.53) lim inf p~" dimp H (X, I?) > — / (—”RL) .
p—00 n' X 27'('
where dimr is the von Neumann dimension of the '-module H ?2) (X, L?). Such type

TCM:01
of inequalities imply as in [47] weak Lefschetz theorems a la Nori.

The example of non-compact manifolds emphasizes very well our philosophy
about the existence of the asymptotic expansion of the Bergman kernel of Lapla-
cian type operators Wlslgnlthe power of the line bundle tends to co. In fact, from the
argument in Section hTI,_the spectral gap property allows to localize our problem
whenever the manifold X is compact or not. Thus from the argument in Section
5733'_301“ %, 64.4], it implies the existence of the asymptotic expansion. Moreover,
the formal power series trick in Section ﬁ%égives a general way to compute the
coefficients. As an example, we state the following result which is an extension
of [20, Theorem 4.18] to non-compact case and we use the notation therein. Let
(X, ¢™*) be a Riemannian manifold with almost complex structure J which is com-
patible with ¢’*, and let (L, h", V") and (E,h¥, V¥) be Hermitian bundles as in
Introduction. We consider the associated spin® Dirac operator D,. Let RT"VX be
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the curvature of the connection on 7% X induced by V’¥ by projection. We de-
note by Icsz the projection from A(7*V X)® E onto C® E under the decomposition
A(T*(O,I)X) =C D A>O(T*(O’1)X).

Theorem 3.16. We suppose that (X, g"™) is complete and the scalar curvature r
of (X, ¢g™%), RE and Tr[RT""X] are uniformly bounded on (X, g"™). Moreover, there
exists € > 0 such that on X,

(3.54) V—IRE(-, J) > g™ (-, ).

Then the smooth kernel P,(x,1') of the orthogonal projection from Q% (X, [P ® FE)
onto ker DrP nwclgln% gecs,!)ect to dvx(z'), has a full off-diagonal expansion analogous to
Theorem 3. 1T with j, = detc |JL|Icgr as p — oo, uniformly on compact sets of X.

Proof. By the proof of %43, Theorem 2.5], we know that the spectral gap properties
%gfz%)g C {0}U[2uop — CL, o] still holds under our condition. Thus we get Theorem
b. [6. O
3.6. Singular polarizations. Let X be a compact complex manifold. A singular
Kdahler metric on X is a closed, strictly positive (1, 1)-current w. This means there
exist locally strictly plurisubharmonic functions ¢ € L}, such that /~100 ¢ = w.

If the cohomology class of w in H?(X,R) is integral, there exists a holomorphic
line bundle (L, h*), endowed with a singular Hermitian metric, such that %RL =
w in the sense of currents. We call (L, h%) a singular polarization of w. If we change
the metric h”, the curvature of the new metric will be in the same cohomology class
as w. In this case we speak of a polarization of [w] € H*(X,R). Our purpose is to
define an appropriate notion of polarized section of L?, possibly by changing the
metric of L, and study the associated Bergman kernel.

First recall that a Hermitian metric h” is called singular if it is given in local
trivialization by functions e~% with ¢ € L} . The curvature current R” of h! is well
defined and given locally by the currents 00 . em

By the approximation theorem of Demailly h‘ZB’, Theorem 1.1], we can assume
that h” is smooth outside a proper analytic set ¥ C X. Using this fundamental
fact, we will introduce in the sequel the generalized Poincaré metric on X \ X. Let
7 : X — X be a resolution of singularities such that 7 : X < 771(Z) — X \ %
is biholomorphic and 771(X) is a divisor with only simple normal crossings. Let
g&X be an arbitrary smooth J-invariant metric on X and ©'(-,-) = ¢Z¥(J.,-) the
corresponding (1 18?-fr0m. The ggneralized Poincaré metricon X \ ¥ = X ~ 7 1(%)

is defined by (cf. ICI 6r,G §r272|, ICIOSr,G §r6|)
(3.55) 0., =60 V1Y 9dlog ((—1og ||a,-||3)2) , 0< g < 1 fixed,

where 71 (X2) = U;Y; is the decomposition into irreducible components %; of 7~(X)
and each Y; is non-singular; o; are sections of the associated holomorphic line
bundle [¥;] which vanish to first order on ¥;, and ||0;|; is the norm for a smooth
Hermitian metric on [¥;] such that ||o;||; < 1. The fist part of H}glgrfollowin lemma

. . . . . . Gr'712,Co¥rGr75,7%2u:79
generalizes previous work on the generalized Poincaré metric [16, 18, 51T.
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Lemma 3.17. (i) The generalized Poincaré metric (E%g) is a complete Hermitian
metric of finite volume. It has bounded torsion and the curvature R is also
bounded.

(i) If (E, h?) is a holomorphic bundle over X with smooth Hermitian metric and
HY (X NS, E) = {u e LYX NS, B, 0, ,h") : 8" u = 0} then HY (X \ 5, E) =

HY(X,E).

Proof. To describe the metric more precisely we denote by D the unit disc in C and
by D* = D \ {0}. On the product (D*)! x D"~ we introduce the metric

\/ dzk AN de \/ —1 - -
(3.56) Z = 5 Z dzp A dz),.

Fllog[22 2 2=

For any point p € 771(X) there exists a coordinate neighbourhood U of p isomorphic
to D" in which (X ~\ 77 YX))NU = {2z = (21,...,2,) : 21 # 0,...,2 # 0}. Such
coordinates are called special. We endow (X 7 HE))NU = (D*)! x D! with the
metric (; 56)

We have

5 RI=i dlog||oi||? A Dlog ||o]|?
(3.57) —V—193log ((—1og||ai||3)2>:2\/—1(10g”0||2+ H(10Hg||0-||2)2 lo:] ).

||? tend to zero as we approach ¥,

R[ il

Haz

Since the terms Rl /log||o;

(3.58) 0 +2v/~1eg Z " >0,

I3
for £y small enough. For a (1,1 form Q, we write Q0 > 0 (resp. > 0)if Q(-,J:) > 0
(resp. > 0). The last term in (]3‘%7’%%0 as/—10gAdg >0 for any real function
g on X. Thus 0., is positive for ¢; small enough.

We choose special coordinates in a neighborhood U of z; in which X, has the
equation z; = 0 for j = 1,...,k and X,, j > k, do not meet U. Then for 1 < i < &,
lloil|? = wi|z|* for some positive smooth function u; on U and

(log [|o:[[7)? |2i]*(log || [[7)*
where v, hs a smooth (1, 1)—form on U suchﬁtl}elﬂi SjﬂLZa— =0 oin
. éAr‘nS in[51, Prop. 3.4], we show using (\d 57) and (3.59) that the metrics (E 55) and
(b 56) are equivalent for |z;| small. From this the first assertion of (i) follows.
Recall that Rt is the curvature of the holomorphic Hermitian connection on

det (T X)) with respect to the Hermitian metric induced by ©.,. We wish to show
that there exist a constant C' > 0 such that

(3.60) —C0O,, < V—1R*" < CO,,, |T,le.,, <C.

(3.59)

where 7., = [i(©,), 00.,] is the torsion operator of O, and |T,|e,, is its norm with

respect to ©.,. Since 00, = 0 by (151_§5) 86., extends smoothly over X, and thus
we get the second relation of (
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. —e119 i lzar—elll0 |zar—ellll
We turn now to the first condition of (E‘%Grff)e._ﬁy (E%g), (é.abr'/ )e and (é.abrv )e, we know
that

2kel 4+ B(2) = "
(361) @? = 0 (\/ —1dZ] A dE]) = "}/(Z) (\/ —1d2] A dZJ)
" IT sl (og [l )12)? ]1:[1 ]1:[1
Here 3(z) is a polynomial in the functions a;,(2)|z;|*(log ||0:]|?)?, bia(2)|2i|* log ||o:||?
and c;(2), (1 <@ < k), with a;, b;, smooth functions on U and ¢;, smooth functions
on U such that c¢;,(2)|.,—o = 0. Moreover, 2*c} + (3(z) is positive on U as O, is
positive. Since

| 2

n

(3.62) = A A gle, [[(V-1dz A dzy) = O
=1
—ell1 13
we get from (%?BII ) ané (bz 32

k
(3.63) R = _ dlogr(z) = — ddlog (2’%’5 + ﬁ(z)) +Y 9dlog ((1og ||ai||§)2) .

=1
—e1110 14
By (bz 57 e), the last term of (%?6]?35 it is bounded with respect to ©.,. To examine the
first term of the sum we write

_008(z)  0B(z) NOB(2)
2R+ 0(2)  (2kef + B(2))F
Now we observe that for W;(z) = |zi]?(log ||o:]|?)? or | 2] log ||o; |7, th > terms a?bwi(z),
OW;(z), OW;(z) are bounded with respect to the Poincaré IEZ SE@&;%'?&’ fzﬁus with
respect to O.,.. Combining with the form of  given after (3.61), this achieves the
proof of (W
Let us prove (ii). First observe that ©., dominate S é:rlnlel?gclliélian metric in spe-
cial coordinates near 7 '(X), being equivalent with (%.5&). Therefore it dominates
some positive multiple of any smooth Hermitian metric on X. We deduce that,
given a smooth Hermitian metric ©” on X, there exists a constant ¢ > 0 such that
O = 0" on X N\ X. It follows that elements of () (X \ X, E) are L? integrable
with respect to the smooth metrics ©” and /¥ over X, which entails they extend
holomorphically to sections of H°(X, E) by FZe?%emme 6.9]. We have therefore
H (02)(X \ Y, E) C H(X, E). The reverse inclusion follows from the finiteness of the
volume of X \ ¥ in the Poincaré metric. O
. |Ta:94 . . . ~ ~
We can construct as in h?&T&l] a singular Hermitian line bundle (L, 2") on X
which is strictly positive and L| Fun-i(y) = (L), for some py € N. We introduce

(3.64) 90 log(2"<k + B(2))

on L|x.s the metric (hz)l/ P whose curvature extends to a strictly positive (1,1)-
current on X. Set

(3.652) nt = (b T[(-1egllodll?)?, 0<e<1,

(3.65b) HY(X N5, L) = {ue L8 (X NS, L7, 0., ht) : 8" u=0}.

The space H (02) (X \ X, LP) is the space of L?-holomorphic sections relative to the
metrics ©., on X \ ¥ and hl on L|x.x. Since (hz)l/po is bounded away from zero
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(having plurisubharmonic weights), the elements of this space are L* integrable
with res pect tgitgle Poincaré metric and a smooth metric hZ of L over whole X. By
Lemma g.I? (i) we have Hiy (X N3, L) € H(X, LP). (Here we cannot infer the
other inclusion since h might be infinity on ¥.) The space H (02) (X N\ X, LP) is our
space of polarized sections of L?.

Corollary 3.18. Let (X,w) be a compact complex manifold with a singular Kihler
metric with integral cohomology class. Let (L,h') be a singular polarization of
(w] with strictly positive curvature current having singular support along a proper
analytic set Y. Let (E,h") be a holomorphic He qzlizéian bundle on X. Then the

. : e .
Bergman kernel of tézgnsg)crtnc% 8]; polarized sections (3.6bb) has the asymptotic expan-
sion as in Theorem 3.11 for X \ X.

Proof. We will apply Theorem bm.)InICOfncl) a’ﬁECte non—Kéahler Hermitian manifold (X
3, 0.,) equipped with the Hermitian bundle (L|x.x, %) and (E, h¥). Certainly, R”
is bounded. Thus we have to show that there exist constants n > 0, C' > 0 such
that

(3.66) VEIRMx= k) 5 g, EIRY > 00, [Thle., < C.

where T, = [i(©,,), 00.,] is the torsion operator of O, and |T_,|eo 3? its norm with
respect to O.,. The first one results for all £ small enough from (7%755), (bTGSa) and
the fact that the curvature of (hL)/™ extends to a strictly positive (1, 1)—current
on X (dominating a sma Zlalg(_)giltli e multiple of © on X). The sec%lg([%and third
relations were proved in (3.60). This achieves the proof of Corollary 3.18. O

Remark 3.19. (a) Corollary % gives an alternagi_ve3 proof of thée (;lglgracterization
%g :M}l)ishezon manifolds given by Ji—Shiffman fgo"]ngonavero ﬁjﬁd Takayama
hB%Indeed, any Moishezon manifold possesses a strictly positive singular e(illa%r-
ization (L, h!). Conversely, suppose X has such a polarization. Then as in (3.49),
we have dim H?z) (X N X, LP) > Cp™ for some C > 0 and p large enough. Since
H&)(X N3 :Lgpg CH 0(X , LP), it follows tThSat9 Lis blg agd X is Moishezon. o
(b) By , Proposition 6.6. (f)], or h’BﬂTany big line bundle L on a projective
manifold carries a singular Hermitian metric having strictly positive curvature
current with singularities along a proper analytic set.

(c) The results of this section hold also for reduced compact complex spaces X
possessing a holomorphic line b1T1£1_dl£3 L with singular Hermitian metric h” having
positive curvature current (see h’é‘j’for definitions). This is just a matter of desin-
gularizing X. As space of polarized sections we obtain H (02)(X \ X, LP) where X is
an analytic set containing the singular set of X.
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