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Abstract We study the Berezin-Toeplitz quantization on symplectic manifolds mak-
ing use of the full off-diagonal asymptotic expansion of the Bergman kernel. We
give also a characterization of Toeplitz operators in terms of their asymptotic ex-
pansion. The semi-classical limit properties of the Berezin-Toeplitz quantization for
non-compact manifolds and orbifolds are also established.
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1 Introduction

Quantization is a procedure that leads from a classical dynamical system to an as-
sociated algebra whose behavior reduces to that of the given classical system in an
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appropriate limit. In the usual case, the limit involves Planck’s constant / approach-
ing zero. The aim of the geometric quantization theory [2-5, 21, 25, 35] is to relate
the classical observables (smooth functions) on a phase space (a symplectic mani-
fold) to the quantum observables (bounded linear operators) on the quantum space
(sections of a line bundle). One particular way to quantize the phase space is the
Berezin-Toeplitz quantization, which we briefly describe.

Let us consider a compact Kéhler manifold X with Kihler form w. On X we
are given a holomorphic Hermitian line bundle (L, k') endowed with the Chern
connection VX with curvature RY. We assume that the prequantization condition
gRL = w is fulfilled. For any p € N let L? := L®” be the p™ tensor power of L,
L2(X, L?) be the space of L2 -sections of L? with norm induced by hL and w, and
Py L>(X,L?) — H°(X, LP) be the orthogonal projection on the space of holo-
morphic sections. To any function f € C°°(X) we associate a sequence of linear
operators

Trp:L*(X,LP) — L*(X,L”), Typ,=P,fP,, (1.1

where for simplicity we denote by f the operator of multiplication with f. Then as
p — 00, the following properties hold:

im ([ T7pll = I flloo := sup [ f(X)],
p—00 fip o0 rex

(1.2)
/—1 B

(Trp: Tg,pl = TT{f,g},p +O(p 2)7

where {-, -} is the Poisson bracket on (X, 2w w) (cf. (4.77)) and | - || is the opera-
tor norm. Thus, the Poisson algebra (C*°(X), {-, -}) is approximated by the operator
algebras of Toeplitz operators in the norm sense as p — 00; the role of the Planck
constant is played by 2 = 1/p. This is the so-called semi-classical limit process.

The relations (1.2) were proved first in some special cases: in [24] for Riemannian
surfaces, in [19] for C" and in [9] for bounded symmetric domains in C", by using
explicit calculations. Then, Bordemann et al. [8] treated the case of a compact Kéh-
ler manifold using the theory of Toeplitz structures (generalized Szegd operators)
by Boutet de Monvel and Guillemin [11]. Moreover, Schlichenmaier [34] (cf. also
[17, 23]) continued this train of thought and showed that for any f, g € C*°(X), the
product Ty, , T, ,, has an asymptotic expansion

o0
TrpTep =Y Tofop F +0(p™™) (1.3)
k=0

in the sense of (4.5), where Cy are bidifferential operators, satisfying Co(f, g) = fg
and C1(f, g) — Ci1(g, f) =~/—1{f, g}. As a consequence, one constructs geometri-
cally an associative star product, defined by setting for any f, g € C*°(X),

frgi=)_ Ci(f,)h* € C¥X)IA]l. (1.4)

k=0
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For previous work on Berezin-Toeplitz star products in special cases see [13-16, 31].

The articles [8, 17, 23, 34] rely on the method and results of Boutet de Monvel,
Guillemin and Sjostrand [11, 12]. They perform the analysis on the principal bundle
associated to L, i.e., the circle bundle Y of the dual bundle L* of L. Actually Y = 9D,
where D :={v € L* : |v|, .+ < 1}, which is a strictly pseudoconvex domain, due to
the positivity of (L, k%) (this fact is a basic observation due to Grauert).

Let us endow Y with the volume form df A o*w", where ¢ : Y — X is the bundle
projection. Consider the space L2(Y) and for each p € Z the subspace L2(Y) p of
functions on Y transforming under the S'-action on ¥ according to the rule ¢ (¢!’ y) =
eipggo(y). There is a canonical isometry L2(Y)p = LZ(X, L?) which together with
the Fourier decomposition LA(Y)= P ez L2(Y) p (the latter is a Hilbert space direct
sum) delivers a canonical isometry L?(Y) = D,ez L2(X,LP).

Let 9, denote the tangential Cauchy-Riemann operator on Y. A function
@ € L>(Y) is called Cauchy-Riemann (CR for short) if it satisfies the tangential
Cauchy-Riemann equations d,¢ = 0 (in the sense of distributions). Let #2(Y) C
L*(Y) be the space of CR functions (Hardy space). For every p € N let us
denote J(IZ,(Y) = L%(Y) p N F2(Y). Then we have the Hilbert sum decomposi-
tion H2(Y) = &P peN JfZ(Y ). Moreover, JZS(Y ) is identified through the canon-
ical isometry L2(Y), = L*(X, L") to the subspace H'(X,LP). Thus, #?(Y) =
D en HO(X,LP).

Therefore, in order to study the Bergman projections P),, one can replace the fam-
ily { Py} pen with the orthogonal projection S : L2(Y) > @peN FHP(Y), called Szegd
projection. The key result is that S is a Fourier integral operator of order 0 of Hermite
type (Boutet de Monvel-Sjostrand [12]) and this allows to apply the theory of Fourier
integral operators to obtain the properties of Toeplitz structures.

In the framework of Toeplitz structures, Guillemin [22] (cf. also [10] for related
results) constructed a star product on compact symplectic manifolds by replacing the
CR functions with functions annihilated by a first order pseudodifferential operator
Dy, on the circle bundle of L* introduced in [11]. The operator Dj has the same
microlocal structure as the tangential Cauchy-Riemann operator 95, and it is derived
actually by first constructing the Szeg6 kernel.

In this article, we propose a different approach to the study of Berezin-Toeplitz
quantization and Toeplitz operators. This consists in applying the off-diagonal as-
ymptotic expansion as p — oo of the Bergman kernel P,(x,x’), which is the
Schwartz kernel of the Bergman projection Pp,.

We can actually treat the case of symplectic manifolds. Let (X, w) be a compact
symplectic manifold of real dimension 2. Let (L, k") be a Hermitian line bundle
on X endowed with a Hermitian connection V. The curvature of this connection
is given by RL = (VE)2. We will assume throughout the article that (L, h%, VE)
satisfies the prequantization condition:

Rl =ow. L5
o w (1.5)
(L, ht, V%) is called a prequantum line bundle. Due to the analogy to the complex
manifolds the bundle L will be also called positive. We also consider a twisting Her-
mitian vector bundle (E, ) on X with Hermitian connection V£.
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Let J be an almost complex structure on 7' X such that w is compatible with J and
w(-, J-) > 0. Let g"X be a Riemannian metric on 7 X compatible with J.

A natural geometric generalization of the operator /2(d + 9%) acting on
Q0°(X, LP) is the spin® Dirac operator D, acting on 20X, L? ® E) (cf. De-
finition 3.1) associated to J, gTX, vLi VE.

We refer to the orthogonal projection P, from 2%+(X,LP ® E) onto Ker(D)) as
the Bergman projection of D . The Schwartz kernel P, (-, -) of P, is called Bergman
kernel of D), (ct. Definition 3.2). For f € C*°(X,End(E)), we define the Berezin-
Toeplitz quantization of f asin (1.1) by

Tt p = PpfP, € End(L*(X, AT**VX)® L ® E)). (1.6)

Dai, Liu and Ma [20] proved the asymptotic expansion as p — oo of the Bergman
kernel P,(x,x") of D, on the symplectic manifold (X, w) by working directly on
the base manifold. The main idea of their proof is that the positivity of the bundle
L implies the existence of a spectral gap of the square of the spin® Dirac operator,
which in turn insures that the problem can be localized and transferred to the tangent
space of a point of the manifold.

We are thus lead to study the model operator £ on C", its Bergman projection
& and Bergman kernel P (Z, Z’). The strategy of our approach is to first study the
calculus of kernels of the type (FP)(Z, Z’) on C", where F € C[Z, Z'] is a polyno-
mial.

Using this calculus, the asymptotic expansion as p — oo of the Bergman
kernel of D, from [20] and the Taylor series expansion of the sections f and
g € C*°(X,End(E)), we find the asymptotic expansion of the kernel of Ty, (cf.
Lemma 4.6), and we establish that this kind of asymptotic expansion is also a suffi-
cient condition for a family of operators to be a Toeplitz operator (cf. Theorem 4.9).
In this way, we conclude from the asymptotic expansion of Tz, , T, , that Ty, , T p is
a Toeplitz operator in the sense of Definition 4.1.

The following result is one of our main results in this article.

Theorem 1.1 Let (X,J,w) be a compact symplectic manifold, (L, ht, v,
(E,hf,VE) be Hermitian vector bundles as above, and g'X be an J-compatible
Riemannian metricon T X.

Let f,g € C®°(X,End(E)). Then the product of the Toeplitz operators Ty, and
Ty, p is a Toeplitz operator, more precisely, it admits the asymptotic expansion in the

sense of (4.5):

o0
TrpTep =) P Teurp.p + OB ™), (1.7)
r=>0
where C, are bidifferential operators and C,(f,g) € C*(X,End(E)) and

Co(f. 8)=fg.
If f, g € C*(X), we have

Ci(f.8) — Ci(g, f) =v—1{f. g} 1dg, (1.8)
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and therefore
/1 B
(Tr.p, Tg.pl = TT{f,g},p +0(p7H). (1.9)

In conclusion, the set of Toeplitz operators forms an algebra. Moreover, the
Berezin-Toeplitz quantization has the correct semi-classical behavior (cf. Theo-
rem 4.19). In particular, when (X, J, ®) is a compact Kihler manifold and E = C,
gT* = w(-, J-), these results give a new proof of (1.2)—(1.4) (cf. Remark 5.1). Some
related results were also announced in [10].

Note that we have established the off-diagonal asymptotic expansion of the
Bergman kernel for certain non-compact manifolds [28, §3.5] (e.g., quasi-projective
manifolds) and for orbifolds [20, §5.2]. By combining these results and the method
in this article, we carry the Berezin-Toeplitz quantization over to these cases (cf. The-
orems 5.3, 6.13, 6.16).

As explained as above, an interesting corollary of our results is a canonical geo-
metric construction of associated star products (1.4) in several cases. We refer to
Fedosov’s book [21] for a construction of formal star products on symplectic mani-
folds and to Pflaum [32] for the generalization to orbifolds. Related results appear in
[18, 33].

We refer the readers to our book [30] for a comprehensive study of the Berezin-
Toeplitz quantization along the lines of the present article.

For the reader’s convenience, we conclude the introduction with a brief outline of
the article. We begin in Sect. 2 by explaining the formal calculus on C” for the model
operator L. In Sect. 3, we recall the definition of the spin® Dirac operator and the
asymptotic expansion of the Bergman kernel obtained in [20]. In Sect. 4, we establish
the characterization of Toeplitz operators in terms of their kernel. As a consequence,
we establish that the set of Toeplitz operators forms an algebra. Finally, in Sects. 5
and 6, we study the Berezin-Toeplitz quantization for non-compact manifolds and
orbifolds.

We will use the following notations throughout. For o = («y,...,a,) € N,
B=(Bi,...,B,) €C", we set

n
el =Y aj.  al=]]@. B“:]—[B}”f.
j=1 j j

2 Kernel Calculus on C*

In this Section we explain the formal calculus on C" for our model operator £,
and we derive the properties of the calculus of the kernels (FP)(Z, Z'), where
F €C[Z,Z'] and $(Z, Z') is the kernel of the projection on the null space of the
model operator .£. This calculus is the main ingredient of our approach.

Let us consider the canonical coordinates (Zi,..., Z>,) on the real vector
space R?". On the complex vector space C" we consider the complex coordinates
(z1y---,zn). The two sets of coordinates are linked by the relation

j=2Loj1+~=12y5, j=1,...,n.
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We consider the L?-norm |-|[,> = (fgan |-1?dZ)'/? on R?', where dZ =
dZi---dZy, is the standard Euclidean volume form.
Let 0 <a; <az <--- < a,. We define the differential operators:

1 1
b _2 8 9 b _2_ I
L g i T @.1)
=(b1,...,by).

Then b;" is the adjoint of b; on (L?(R>"), |-|| ;2). Set
L= Zbiblﬁ (2.2)
i

Then £ acts as a densely defined self-adjoint operator on (L2@R¥), |||l 12).

Theorem 2.1 The spectrum of £ on L*>(R*") is given by
n
Spec(L) = IZZaiai :ot:(cxl,...,a,,)eN”} (2.3)

and an orthogonal basis of the eigenspace of 2y "_, a;a; is given by

1 & _
b (zﬂ exp (-Z 2 1 a;lzi |2>>, with B € N, (2.4)
1=

In particular, an orthonormal basis of Ker(L) is

1/2
af . .
¢ﬂ(Z)=<mEal> exp( ZGJ|Z] ), ,BEN . 2.5)

For a proof we refer to [28, Theorem 1.15] (cf. also [30, Theorem 4.1.20]). Let

P(Z,Z') denote the kernel of the orthogonal projection & : - L2(R*) —> Ker(L)
with respect to dZ. We call & (-, -) the Bergman kernel of L.

It is easy to see that P(Z, Z') = Zﬁ 0 (2)@p(z). We infer the following formula
for the kernel P (Z, Z'):

n n
a; 1 _
Pz, 2)=]]5 e ( =3 2aillal + Izl - 2ziz;)>. (2.6)

i=1

In the calculations involving the kernel £ (., -), we prefer however to use the or-
thogonal decomposition of LZ(R?") given in Theorem 2.1 and the fact that 2 is an
orthogonal projection, rather than integrating against the expression (2.6) of P (-, -).
This point of view helps simplify a lot the computations and understand better the
operations. As an example, if ¢(Z) = b*z# exp(—% Z?‘:] ajlzj|2) with «, 8 € N,
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then Theorem 2.1 implies immediately that

Pexp(—3 Yo ajlzi?) i | =0,

2.
0 if |oe| > 0. @.7)

(Pe)(Z) = {
In the rest of this section, all operators are defined by their kernels with respect to
dZ. In this way, if F is a polynomial on Z, Z’, then F & is an operator on L?(R>")
with kernel F(Z, Z')P(Z, Z') with respect to dZ.
We will add a subscript z or z/ when we need to specify the operator is acting on
the variables Z or Z'.

Lemma 2.2 For any polynomial F(Z,Z') € C[Z, Z'], there exist polynomials F, €
Clz, Z'] and Fy,0 € Clz,7'], (@ € N") such that

(FP)Z,Z) =Zb§‘(Fa!P)(Z,Z’), (2.8)
(FP)o PNZ, 2y =) b Fao(z.T)P(Z, Z)), 2.9)

Moreover, |a| 4 deg Fy, || + deg Fy o have the same parity with the degree of F in
Z,Z'. In particular, Fyo(z, 7') is a polynomial in z, 7 and its degree has the same
parity with deg F .

For any polynomials F, G € C[Z, Z'] there exist polynomial X[F,G] € C[Z, Z']
such that

(FP)o (GP)NZ,Z" = XKI[F,GNZ,Z")P(Z,Z). (2.10)
Proof Note that from (2.1) and (2.6), for any polynomial g(z, 7) € C[z, 7], we get

bj P(Z,2)=a;(z; —T)P(Z,Z)),
(2.11)

_ 0 _
[g(Z, Z)v bj,Z] = z_g(Z, Z)'
0z

Let F(Z,Z") € C[Z, Z']. Using repeatedly (2.11) we can replace Z in the expression
of F(Z,Z') by a combination of bj . and 7' and (2.8) follows. We deduce from (2.7)
and (2.8) that there exists Fy € C[z, Z'] such that

(P o (FP)Z,Z) = (FoP)(Z,Z). (2.12)

We apply now (2.12) for F instead of F and take the adjoint of the so obtained
equality. Since & is self-adjoint, this implies the existence of a polynomial F’ in
Z,7 such that

(FP)o P)NZ.Z))=F(Z.2)P(Z,Z)).

The latter formula together with (2.8) imply (2.9). Finally, (2.10) results from (2.8)
and (2.9). U
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Example 2.3 We illustrate how Lemma 2.2 works. Observe that (2.11) entails
- » / bj,z ’ =/ /
Zje/(Z,Z):TJ)(Z,Z)'FZJ-?(Z,Z). (2.13)
J

Moreover, specializing (2.11) for g(z,z) = z; we get
2ibj (2, Z) = bj (i PNZ. Z) + 28 P(Z. Z)). 2.14)

Formulas (2.13) and (2.14) give

1 2
GZ P22 = by P(Z.2) + 8y P(Z2. ) + 5T P(Z.2). (215)
J J

Using the preceding formula we calculate further some examples for the expres-
sion KX [F, G] introduced (2.10). Indeed, equations (2.7), (2.13) and (2.15) imply that

K[I,Zj]f=ﬂ’o(§jfp)=2/jﬂ), K[, zj]P =P o (z;P) =z;P,

Kz, 2P = @) 0 G P) = 2P 0 (3;P) = 21T P,

Kz, 2)1P = @P) o (2;P) =% P o (2;P) =72, P,

(2.16)
Klz;,Zj1P = (2 P) o TjP) =P o (zi7;P) = ;31']':7) +27;P,
J
- - _ 2 _
JC[Zi,Zj]j) = (Zij)) o (Zlfl)) =Po (Zl'Zj:/)) = a—(S,jj) +ZiZj=7)-
J
Thus, we get:
K[l,fj]zz/j, K[, z;]1=zj,
Klzi,Zjl = 27}, Klzi zj1=7iz, 2.17)

2
Klzj, zj1 = Kl}, zil = sl +7;2;.
J

Notation 2.4 To simplify our calculations, we introduce the following notation. For
any polynomial F € C[Z, Z'] we denote by (F $), the operator defined by the kernel

PHFP)JPZ, JpZ'), thatis,

(FP)pp)(Z) = fRz P FPYPZ, JPZe(Z)dZ

for any ¢ € L2(R*"). (2.18)
Let F, G € C[Z, Z']. By a change of variables we obtain

(FP)p o (GP)p)Z,Z)) = p"(FP) o (GPN(/PZ, /PZ)). (2.19)
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3 Bergman Kernels on Symplectic Manifolds

This section is organized as follows. We recall the definition of the spin® Dirac opera-
tor in Sect. 3.1, and in Sect. 3.2, we explain the asymptotic expansion of the Bergman
kernel.

3.1 The spin® Dirac Operator

Let X be a compact manifold of real dimension 2n with almost complex structure
J. Let gTX be a Riemannian metric on X compatible with J, i.e., gTX(J~, J) =
g7,

The almost complex structure J induces a splitting of the complexification of
the tangent bundle, 7X ®r C = 730X @ TODX, where T-OX and TO-D X
are the eigenbundles of J corresponding to the eigenvalues /—1 and —+/—1 re-
spectively. Let P(10) = %(1 — /=1J) and P©D be the natural projections from
TX ®r C onto T X and 7OV X Accordingly, we have a decomposition of the
complexified cotangent bundle: 7*X ®@g C = T*1:9 X @ 7*(O-D X The exterior alge-
bra bundle decomposes as A(T*X) Qg C = @), 4 AP 9(T*X), where AP4(T*X) :=
AP(T* 1O x) @ A9(T*O:D X)),

Let VX be the Levi—Civita connection of (T X, gTX ) with associated curvature
RTX Let VXJ € T*X ® End(T X) be the covariant derivative of J induced by V7 ¥,
Set

VT(W)X _ P(I,O)VTXP(I,O)’ VT(W)x _ P(O,l)VTXP(O,l)’

@3.1)

TX (1,0 x oy TX
s .

1,0 ©.1) . .. .
Then V7 X and VI X are the canong:gi)l Herm1t1ar(1001)0nnect10ns on T(I'TO))(X and
TODX respectively with curvatures R7 X and RT" "X, Moreover, °V" ~ is an

Euclidean connection on 7' X. The tensor Ay € T*X ® End(T X) satisfies
1
Ay = 5J(VXJ), JAy=—AyJ. (3.2)
For any v € TX with decomposition v = vi9 + vo,1 € TUOX @ TODX | let
Ffo e T*O-D X be the metric dual of v1,0- Then

e(v) = V2T g A —iug,) (3.3)

defines the Clifford action of v on A%* = Aeven(7*(0.D xy g A0dd(7*0.D) x) where
A and i denote the exterior and interior product respectively.

The connection V7" on 70-0X induces naturally a Hermitian connection
VA on A% = A*(T*O:DX) which preserves the natural Z-grading on A%*. Let
{w; };'.:1 be a local orthonormal frame of 709 X. Let {w/ }?z | be the dual frame of

{wj}?:1~ Then

e2j-1=Js(w; +W;) and ezF%(u}j—w,-), j=1,....n, (34
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form an orthonormal frame of 7' X. Set

1
¢(A2) = 7D (Azei, ej)e(ei)ele;)
i,j
1
=5 2 ((Aowr, wa)imy i, + (A2, W) T AT A),

I,m

3.5)

VCliff — vAO’. + C(Az).

The connection VU is the Clifford connection on A%* induced canonically by V7%
(cf. [27, §2]). (Note that in the definition of the Clifford connection in [27, (2.3)], one
should add the term “ —l—% Tr|70,nxI" 7 in the right-hand side of the first line, and the
second line should read “ =d + >, {{T'w;, Wy ) W™ A iy, + )

Let (E, h%) be a Hermitian vector bundle on X with Hermitian connection V£
and curvature RE. Let (L, ) be a Hermitian line bundle over X endowed with
a Hermitian connection V% with curvature RE = (V£)2. We assume that (L, VL)
satisfies the prequantization condition, that is

/=1
w(, J) >0, o, J)=w(,-), wherew:= 2—RL. (3.6)
g
This implies in particular that w is a symplectic form on X.
We relate g7 X with w by means of the skew—adjoint linear map J : TX — T X
which satisfies the relation

o, v)=g"X(Ju,v) foru,veTX. (3.7)
Then J commutes with J, and J = J(—Jz)’%.
We denote
E,=A"Q®L’QE. 3.8)

Along the fibers of E,, we consider the pointwise Hermitian product (-, -) induced
by gTX, hL and hE. Let dvy be the Riemannian volume form of (T'X, gTX). The
L?-Hermitian product on the space £2%*(X, L? ® E) of smooth sections of E p is
given by

(51, 82) = /X(S1(X), s2(x))dvx (x). (3.9

We denote the corresponding norm with |-||;2 and with L*(X,E p) the completion
of 2%*(X, L? ® E) with respect to this norm.

Let VE"®E be the connection on L? ® E induced by VL and VE. Let VEr be the
connection on E, induced by VCIiff, L ®E;

vEr = vOIff @ [d+1d @ VL ®F (3.10)
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Definition 3.1 The spin® Dirac operator D, is defined by

2n
D, =Y cley)V." : 2% (X,L? ® E) — 2*(X,L” ® E). (3.11)

j=1

D, is a formally self-adjoint, first order elliptic differential operator on 04X, LP®
E), which interchanges £2%¢°"(X, L? ® E) and 2%°%(X, L? ® E) (cf. [30, §1.3]).

Definition 3.2 The orthogonal projection
P,: L*(X, E,) —> Ker(D)) (3.12)

is called the Bergman projection. Let w1 and m, be the projections of X x X on
the first and second factor. Since P, is a smoothing operator, the Schwartz kernel
theorem [36, p. 296], [30, Th. B.2.7] shows that the Schwartz kernel of P, is smooth,
i.e., there exists a section Py (-,-) € C®(X x X, n{(E)p) ®JT§‘(E;)) such that for any
s € L*(X, E,) we have

(Pps)(x)='/XPp(x,x’)s(x’)dvx(x’). (3.13)

The smooth kernel P, (:,-) is called the Bergman kernel of D,. Observe that
P,(x, x) is an element of End(A(T* D X) ® E),.

We wish to describe the kernel and spectrum of D), in the sequel. For any opera-
tor A, we denote by Spec(A) the spectrum of A.
Recall that {w;} is an orthonormal frame of (710 X, g7X). Set

wa=— Y R*(w, W)W" A,
I,m
t(x) =Y RY(wj,w)) = -7 Trlrx[J ], (3.14)

J

o = inf{Rf(u,ﬁ)/Iu@TX ueTHOX, x e X) > 0.

The following result was proved in [27, Theorems 1.1, 2.5] as an application of the
Lichnerowicz formula [6, Theorem 3.52] (cf. also [30, Theorem 1.3.5]) for D,z,.

Theorem 3.3 There exists C > 0 such that for any p €N, s € 209X, LP Q E) :=
@k>0 Qo,k(X, Lp ® E)9

IDpsll72 = @puo— O sl (3.15)
Moreover,

Spec(D}) C {0} U [2ppuo — C. +ool. (3.16)
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3.2 Off-Diagonal Asymptotic Expansion of Bergman Kernel

The existence of the spectral gap expressed in Theorem 3.3 allows us to localize the
behavior of the Bergman kernel.

Let aX be the injectivity radius of (X,g’%). We denote by B¥X(x,e) and
BTX(0, ¢) the open balls in X and T, X with center x and radius ¢, respectively. Then
the exponential map 7, X > Z — expX (Z) € X is a diffeomorphism from B7<X (0, ¢)
onto BX (x, &) for ¢ < a*. From now on, we identify BTxX(0, ¢) with BX(x, ¢) via
the exponential map for ¢ < a*X. Throughout what follows, € runs in the fixed interval
10, a* /4].

Let f: R — [0, 1] be a smooth even function such that f(v) =1 for |v| < &/2, and
f(v) =0 for |[v| > &. Set

+00 -1 rqo0
F(a)= </ f(v)dv) f e’ "f(v)dv. (3.17)

Then F(a) is an even function and lies in the Schwartz space S(R) and F(0) = 1.
By [20, Proposition 4.1], we have the far off-diagonal behavior of the Bergman ker-
nel:

Proposition 3.4 Foranyl,m € Nand ¢ > 0, there exists Cj p, « > 0 such that for any
p =1, x,x' € X, the following estimate holds:

|F(Dp)(x,x") = Pp(x, x")emxxx) < Clmep " (3.18)
Especially, for d(x,x') > ¢,
[Py (x, xX)emxxx) < Clmep . (3.19)

The C™ norm in (3.18) and (3.19) is induced by VL, VE hL hE and gTX.

We consider the orthogonal projection:
Icge  E:=AT*OVX)Q E— CQE. (3.20)

Letm : TX xx TX — X be the natural projection from the fiberwise product of 7 X
on X. Let VEM(E) pe the connection on End(A(T*®VX) ® E) induced by VCiff
and VE.

Let us elaborate on the identifications we use in the sequel, which we state as a
Lemma.

Lemma 3.5 Let xg € X be fixed and consider the diffeomorphism BT0X(0, 4¢) 5
Z — expffo (Z) € BX(xp, 4¢). We denote the pull-back of the vector bundles L, E
and E, via this diffeomorphism by the same symbols.

(i) There exist trivializations of L, E and E, over BTxoX (0,4¢) given by unit
frames which are parallel with respect to V¥, VE and VEr along the curves
vz : 10,11 = BT0X(0,4¢) defined for every Z € B™0X(0,4¢) by yz(u) =
expy (UZ).
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(ii) With the previous trivializations, Pp,(x, x") induces a smooth section
B™0X(0,46) 3 2,7 + Py.(Z,2Z)) of w*(End(A(T*OVX) ® E)) over
TX xx T X, which depends smoothly on x.

(iii) VEE) jnduces naturally a C™-norm with respect to the parameter xo € X.

(iv) Ifdvry is the Riemannian volume form on (Ty, X, gT"OX ), there exists a smooth
positive function ky, : Txy X — R, Z = k,,(Z) defined by

dvx(Z) =Ky (Z)dvrx(Z), Kx(0)=1, (3.21)

where the subscript xo of kx,(Z) indicates the base point xo € X.
(v) By (3.7), J is an element of End(T 10 X). Consequently, we can diagonalize
J xy» i.e., choose an orthonormal basis {w j}7:1 of T)C(O1 Dy such that

V=1
Jxoa)jzﬁaj(xo)wj, forall j=1,2,...,n, (3.22)

where 0 < aj(xg) < ax(xg) < -+ < ay(xg). Then {q}?"zl defined in (3.4) forms
an orthonormal basis of Ty, X. The diffeomorphism

R¥ 3 (Z1..... Zo) —> Y Zie; € Ty, X (3.23)

1

induces coordinates on Ty, X, which we use throughout the article. In these co-
ordinates we have ej = 9/3Z;.

Let Vi denote the ordinary differentiation operator on Ty, X in the direction U.
We introduce the model operator &£ on Ty, X = R?" by setting

1
Vou :=Vuy + E1%50(2, U), forU eTyX,

(3.24)
Li== (Vo) = t(x0).
J

By (3.14) and (3.22), t(x0) = > jaj (x0). The operator £ defined in (3.24) coincides
with the operator £ given by (2.1) and (2.2), with a; = a;(xo) for 1 < j <n.

We denote by detc for the determinant function on the complex bundle 79 X
and set | J x| = (—J)%O)l/z. The Bergman kernel 7, X > Z, Z' +— P(Z, Z’) of £ has
the following form in view of (2.6):

P(Z,Z") =detc (1 )
T
X exp ( -5 (WINIVAEVARVAVAEE VAT MYA Z/)), (3.25)
By [20, Theorem 4.18'] we have the off diagonal expansion of the Bergman kernel:

Theorem 3.6 Let £ €10, a* /4[. For every xo € X and r € N there exist polynomials
Jrxo(Z,Z)) € End(A(T*ODX) @ E)y,. in Z, Z' with the same parity as r and with
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. C (1,0)
deg J; x, < 3r, whose coefficients are polynomials in RTX RTVX RE (and RL)
and their derivatives of order <r — 1 (resp. < r) and reciprocals of linear combina-
tions of eigenvalues of J at xq, such that by setting

PINZ, Z) = Jrxo(Z, Z)VP(Z,2Z)).  Joxo(Z,Z) = IcgE, (3.26)

the following statement holds: There exists C" > 0 such that for every k,m,m’ € N,
there exist N € N and C > 0 such that the following estimate holds

glaltle’l [
/
/ _P[?(sz)
9Z*3zZ'* \ p"

k
_ Z:P(r)(ﬁz’ \/EZ/)K_I/Z(Z)K_I/Z(Z/)p_r/z)

r=0 @m’(x)
<Cp~*HmRA 41 /pZI+ VP2 DY
x exp(—/C"po/PIZ = Z')) + O(p~), (3.27)

forany a0/ e N, with |a| + |o'| <m, any Z,Z' € Ty, X with |Z|,|Z’| < € and any
xoeX,p=>1.

Here ™ (X) is the €™ -norm for the parameter xo € X. We say that a term

G, =0O(p~) if for any [,/ € N, there exists C;;; > 0 such that the C't-norm

of G, is dominated by Cl,llp_l.

Remark 3.7 Set E*:= @; AY(T*OVX)® E and E~ 1= @; A>T (T*OVX)® E;
E,:=E  ®L? and E} := ET ® L?. By Theorem 3.3 and because Df, pre-
serves the Z,-grading of 2%*(X, L? ® E), P is the orthogonal projection from
C>®(X, E}}) onto Ker(D,) for p large enough. Thus, Pp(x,x) € End(E™), and
J,(Z,Z') € End(E ™)y, for p large enough.

Let VX J € T*X ® End(T X) be the covariant derivative of J induced by vTX,
We denote by R =), Z;e; = Z the radial vector field on R2",
For s € C*°(Ty, X, E,), set

55,0 = / IS(D 4 0.1 3,0 AVTX (Z). (3.28)
R2n th

We adopt the convention that all tensors will be evaluated at the base point xg € X,
and most of the time, we will omit the subscript xo. From (3.14) and (3.24), let us set
LY =L =204 =y (bjbT +2a,0’ i),
J
2 1
O1 == 30;(R (e ey Z; ZuVo.e, = 50 (R ejoen)nZ; O

— V=TV Dgers em) clencien).
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Let PV be the orthogonal projection from (L2(R**, Ey,), | - llo.0) onto N
Ker(£g), and PN (Z,Z') its smooth kernel with respect to dvyx(Z'). Let PNt =
Id—PN. Since a; > 0 we get from (3.29) that

PNZz,72Y=P(Z,7)IceE. (3.30)

By [20, Theorem 4.6, (4.107), (4.115) and (4.117)] (or proceeding as in [28,
(1.111)], or by [29, Theorem 2.2]), we obtain:

Theorem 3.8 The following identity holds:
J’x(;)=—PNL(£(2))’1(91PN—PNOI(GC(Z))*lPNl, (3.31)

Remark 3.9 It is interesting to observe the role of @ in different geometric situa-
tions. Firstly, if (X, J, w) is Kdhler, J = J and L, E are holomorphic vector bundles,
we have O] = 0. Secondly, if (X, J, ) is symplectic and E is trivial, we do not need
the precise formula of O for the proof of Lemma 4.7, but just the information that
O acts as the identity on E. Thirdly, to compute the coefficient J> ,, (0, 0) in (3.26)
as in [29, Theorem 2.1], we need certainly the precise formula of O given in (3.29).

Finally, for the proof of Theorem 1.1, the precise formulas for O or JPX(OI ) are not
needed (cf. Remark 4.8 and formulas (4.86), (4.87)).

4 Berezin-Toeplitz Quantization on Symplectic Manifolds

We give a brief summary of this section. We begin in Sect. 4.1 by establishing the
asymptotic expansion for the kernel of Toeplitz operators. In Sect. 4.2, we show that
the asymptotic expansion is also a sufficient condition for a family of operators to
be Toeplitz. Finally, in Sect. 4.3, we conclude that set of Toeplitz operators forms an
algebra.

4.1 Asymptotic Expansion of Toeplitz Operators

In this section, we define the Toeplitz operators and deduce the asymptotic expansion
of their Schwartz kernels.

We use the same setting and notations as in Sect. 3. Let (X, J, ®) be a compact
symplectic manifold of real dimension 2n, a Hermitian line bundle (L, hL) over X
endowed with a Hermitian connection V% with curvature RY = (VX)? satisfying
the prequantization condition (3.6). Let g7 X be an arbitrary Riemannian metric on X
compatible with the almost complex structure J. We consider a Hermitian vector bun-
dle (E,h%) on X with Hermitian connection V£, and the space (L%(X, Ep), ()
introduced in (3.9).

A section g € C*°(X, End(E)) defines a vector bundle morphism Id A(T*OD X)QLP
®g of E, := A(T* "V X) ® L? ® E, which we still denote by g.
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Definition 4.1 A Toeplitz operator is a sequence {T,} = {T} pen of linear operators
Tp: L*(X, Ep) — L*(X, E,), “.1)

with the properties:
(i) For any p € N, we have
T, =P,T,Pp,. 4.2)

(i1) There exist a sequence g; € C*°(X, End(E)) such that for all k > 0 there exists
Cr > 0 with

<Cep ™t (4.3)

k
T, - Pp(Zplgl>Pp
=0
where ||-|| denotes the operator norm on the space of bounded operators.

The full symbol of {T},} is the formal series Z?io I g1 € C*°(X,End(E))[[R]] and
the principal symbol of {T,} is go. If each T, is self-adjoint, {T),} is called self-
adjoint.

We express (4.3) symbolically by

k
T,=P, (Z,ﬂg,) P, +0(p~ . (4.4)

=0

If (4.3) holds for any k € N, then we write

T,=P, (Zp1g1> P, +0O(p™™). (4.5)

=0

An important particular case is when g; = 0 for [ > 1. We set go = f. We denote then
Tip: L*(X,Ep) —> L*(X, E,), Tj,=P,fP,. (4.6)

The Schwartz kernel of Ty, , is given by

Ty p(x,x") = /;( Py(x,x") f(x") Py (x", x")dvx (x"). 4.7

Let us remark that if f € C°°(X, End(E)) is self-adjoint, i.e., f(x) = f(x)* for all
x € X, then the operators Id 4 (7+0.) xygr ® f and T, , are self-adjoint.

The map which associates to a section f € C*°(X, End(E)) the bounded operator
Ty pon L*(X,E p) is called the Berezin-Toeplitz quantization.

We examine now the asymptotic expansion of the kernel of the Toeplitz operators
Ty, p. The first observation is that outside the diagonal of X x X, the kernel of T,
has the growth @ (p~°).
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Lemma 4.2 For every ¢ > 0 and every l,m € N, there exists Cj , o > 0 such that

1T, X)) emxxx) < Clmep™ (4.8)

forall p > 1andall (x,x") € X x X withd(x, x") > &, where the C™-norm is induced
by VL VE and bt hE, gTX.

Proof Due to (3.19), (4.8) holds if we replace Ty, , by P,. Moreover, from (3.27), for
any m € N, there exist Cy,, > 0, M, > 0 such that |P,,(x,x/)|@m(x><x) < CpM'" for
all (x,x") € X x X. These two facts and formula (4.7) imply the lemma. (]

We concentrate next on a neighborhood of the diagonal in order to obtain the
asymptotic expansion of the kernel Ty, (x, x").

We adhere to the identifications made in Lemma 3.5. We also identify in the sequel
f € C*(X,End(FE)) with a family fy,(Z) € End(Ey,) (with parameter xo € X) of
functions in Z in normal coordinates near xg. In general, for functions in the normal
coordinates, we will add a subscript xg to indicate the base point xg € X .

Let {5} en be a sequence of linear operators 5, : L*(X, E,) —> L*(X, E})
with smooth kernel &, (x, y) with respect to dvx (y).

Recall that # : TX xx TX — X is the natural projection from the fiberwise
product of 77X on X. Under our trivialization, Z,(x, y) induces a smooth section
Epx(Z,Z') of *(End(A(T*OVX) ® E)) over TX xx TX with Z, Z' € Ty, X,
|Z|,1Z'| < ax. Recall also that £, = & was defined in (2.6).

Consider the following condition for {Z)} pen.

Condition 4.3 Let k € N. There exists a family { O, x,}o<r<k,xoex such that

(@) Qr.y € End(A(T*OVX) ® E)4[Z, Z'],

(b) {Qr x}reN,xpex is smooth with respect to the parameter xg € X,

(c) there exist constants &’ €]0,ax] and Cy > 0 with the following property: for
every [ € N, there exist Cx; > 0, M > O such thatforevery xo € X, Z, Z' € T X,
|Z|,|Z'| < &' and p € N the following estimate holds (in the sense of (3.27)):

k
-~ 2 1/2 L
P Epo(Z. 2, (D)ka) (Z) =Y (Qrg Pu) WPZ. /PZ ) p
r=0 el(x)
ksl
<Crp™ T A+ pIZI+/pIZ' DY
x exp(—/CoplZ — Z') + O(p™™). 4.9)

Notation 4.4 Assume that {Z,} yen is subject to the Condition 4.3. Then we write

k
r k+1
P Epo(Z. Z)Z D (O Pu) WPZ.PZIP I +O(pT ). (4.10)
r=0

The family {J; x}ren xoex of polynomials J. ., (Z,Z') € End(A(T*ODX) ®
E)y, was defined in Theorem 3.6. Moreover, J; x,(Z, Z') have the same parity as
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r,deg J. x, < 3r, and
Jo.xo = lcaE- 4.11)

Lemma 4.5 ForanykeN, Z,Z' € Ty X, |Z|, |Z'| < 2¢, we have

k
r k+1
pin P.l%/‘fO(Z7 Z/) = Z(Jr,xoj)xo)(\/ﬁz’ \/l_/)Z/)p7§ + O(Pf%% (412)
r=0

in the sense of Notation 4.4.

Proof Theorem 3.6 shows that for any k, m’ € N, there exist M € N, C > 0 such that

k
1 1 P
P Ppao(Z, 2V (20N Z) =Y (JrxgPu)(PZ, /PZ )P 2
r=0 e (X)

<cp™ R+ Up1zI+ Pz
x exp(—v/C"po/PIZ = Z') + O(p~), (4.13)
for Z,Z' € T, X, |Z|,|Z’'| < 2¢. Hence (4.13) immediately entails (4.12). O
Lemmad4.6 Let f € C°(X, End(E)). There exists a family { Oy x, () }reN,xgex Such
that

(@ Qrx(f)€ End(A(T*(O’l)X) ® E)ylZ, Z'] are polynomials with the same par-
ityasr,

(b) {Qrxo(f)}reN, xoex is smooth with respect to xg € X,

(c) foreverykeN,xo€ X, Z,Z' € Ty, X, |Z|,|Z'| < £/2 we have

+1

k
P T (2. Z) 2 (Qrg (N Pe) WPZ. D2 p ™2 +O(p™ ),

r=0
4.14)
in the sense of Notation 4.4.
Or.x,(f) are expressed by
aaf Zd
Orxo(f) = Z K []rl’xo , 3Z20 (O)E J,MO]. (4.15)
ri+ro+|o|=r
Especially,
Q0.x (f) = f(x0)IcgE- (4.16)

We have used here the notations (2.10) and (3.20).

Proof From (4.7) and (4.8), we know that for |Z|,|Z'| < /2, Ty, px,(Z, Z') is de-
termined up to terms of order @(p~°°) by the behavior of f in BX (x, ¢). Let
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p: R — [0, 1] be a smooth even function such that
pw)y=1 if|v| <2; p(w)=0 if|v|>4. 4.17)

For |Z|,|Z'| < ¢/2, we get

Tf,p,xo(Z’ Z/) = / Pp,xo(Z’ Z//)p(2|Z//|/8)fxo(z//)Pp,xo(Z//» Z/)

Ty X

X kxy(Z")dvrx(Z") + O (p~). (4.18)

We consider the Taylor expansion of f,:

— fxo = k+1
fx0<Z)—MZ<k S (0) +<9(|Z| )

= 3yl g WPy o gpzi. @)

YA
|| <k

We multiply now the expansions given in (4.19) and (4.13) and obtain the expan-
sion of

K3l (Z) Py s (Z, Z") (xy fr) (Z"V Py iy (2", Z) i * (2

which we substitute in (4.18). We integrate then on Ty, X by using the change of vari-
able ,/pZ” = W and conclude (4.14) and (4.15) by using formulas (2.10) and (2.19).
From (4.11) and (4.15), we get

Q0. (f) = KI1, frgOllcgE = fxy(0)Icgr = f(x0)IcoE- (4.20)

The proof of Lemma 4.6 is complete. t
As an example, we compute Q1 ,(f).

Lemma 4.7 Q ,(f) appearing in (4.14) is given by

Q1.3 (f) = fxo)J1x + K[Jo,xo, 0w ~(0)Z Jo, xo] (4.21)
Proof At first, by taking f =1 in (4.15), we get
Jl,xo ZK[JO,xoa Jl,x0]+JC[Jl,x0a JO,X0]~ (422)

The operator O defined in (3.29) (considered as a differential operator with coeffi-
cients in End(A(T*1-9X) ® E) xo) acts as the identity on the E-component. Thus,
from (3.31) and (2.10), we obtain

K[J1,x9> [ x0)Jo,x0] = f(x0) K [J1,x5 J0,x0]- (4.23)

From (4.15), (4.22) and (4.23), we get (4.21). U
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Remark 4.8 If f € C*(X) we get (4.23), thus also (4.21), without using the precise
formulas of @ or J;.

4.2 A Criterion for Toeplitz Operators

We will prove next a useful criterion which ensures that a given family is a Toeplitz
operator.

Theorem 4.9 Let {T) : L*(X, Ep) — L3(X, Ep)} be a family of bounded linear
operators which satisfies the following three conditions:
(i) ForanypeN, P,T,P, =T, .
(ii) For any g9 > 0 and any | € N, there exists C; 5, > 0 such that for all p > 1 and
all (x,x") e X x X withd(x,x") > ¢,

1Ty (x, x')| < Cregp™. (4.24)

(iii) There exists a family of polynomials {Qy x, € End(A(T*OVX) @ E)ylZ,
Z' N} xpex such that:
(a) each Q, x, has the same parity as r,
(b) the family is smooth in xo € X and
(c) there exists 0 < &' < ax /4 such that for every xo € X, every Z,Z" € Ty, X
with |Z|,|Z'| < &' and every k € N we have

k
r k
P Ty (Z. Z) 2 Y Qi Pi) WPZ. /PZ)p 2+ O(p~ ),
r=0
(4.25)

in the sense of (4.10) and (4.9).
Then {T,} is a Toeplitz operator.
Remark 4.10 By Lemmas 4.2 and 4.6, and by (4.2), (4.3) and the Sobolev inequality

(cf. [20, (4.14)]), it follows that every Toeplitz operator in the sense of Definition 4.1
verifies the conditions (i), (ii), (iii) of Theorem 4.9.

We start the proof of Theorem 4.9. Let T be the adjoint of 7). By writing

1 1
Tp= 5T + T +V=1—7=(T, = T), (4.26)

we may and will assume from now on that T, is self-adjoint.
We will define inductively the sequence (g);>0, & € C*°(X, End(E)) such that

m
T, = Z Pogip ' P, +O(p™ Y, forevery m > 0. 4.27)
=0

Moreover, we can make these g;’s to be self-adjoint.
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Let us start with the case m = 0 of (4.27). For an arbitrary but fixed xo € X, we set

80(x0) = Q0,x(0,0)|cor € End(Ey,). (4.28)
‘We will show that
PTNTy — Ty p)ne(Z, Z) = O(p™h, (4.29)

which implies the case m = 0 of (4.27), namely,
T, = PygoPp +O(p~ ). (4.30)
The proof of (4.29)—(4.30) will be done in Propositions 4.11 and 4.17.

Proposition 4.11 In the conditions of Theorem 4.9 we have Qo ,(Z,Z') =
Q0,x,(0,0) € End(Ey,) o Icgg forallxo € X and all Z,Z' € Ty, X.

Proof The proof is divided in the series of Lemmas 4.12, 4.13, 4.14, 4.15 and 4.16.
Our first observation is as follows.

Lemma 4.12 Qq ,, € End(Ey,) o IcgelZ, Z'], and Qo x, is a polynomial in z,7.
Proof Indeed, by (4.25)
P Tpxo(Z, 2) = (Qoxy Pr) WPZ, /PZ) +O(p~ ). (43D
Moreover, by (4.11) and (4.12), we have
p " (PpTyPp)ay(Z,Z")
= (P Jo) 0 (QP) o (PI)x(WPZ./PZ) +O(p~ 7). (4.32)
Since P,T, P, =T,, we deduce from (4.31), (4.11) and (4.32) that
Q0,50 Pxy = ek Py © (Q0,xPx) © Py legEs (4.33)

hence Qp x, € End(Ey,) o Icgklz, 7] by (2.8) and (2.12). O

For simplicity we denote in the rest of the proof Fy = Qo x|cgr € End(Ey). Let
F, = Zi>0 F, x(') be the decomposition of F, in homogeneous polynomials F)gl) of

degree i. We will show that F’ fi) vanish identically for i > 0, that is,

F¥(z,7)=0 foralli>O0andz,z e€C" (4.34)
The first step is to prove

F90,7)=0 foralli>0andall 7 € C". (4.35)
Let us remark that since T), are self-adjoint we have

Fi(z,7)=(FO@, 20" (4.36)
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Consider ¢/ > 0 as in hypothesis (iii) (c) of Theorem 4.9. For Z' € R* ~ T, X with
|Z'| <&’ and y = expX(Z'), set

FD(x,y)=F(0,7) € End(Ey),
. . 4.37)
FO(x,y)=(FD(y,x))* € End(E,).

F® and F© define smooth sections on a neighborhood of the diagonal of X x X.
Clearly, the F®(x, y)’s need not be polynomials in z and 7.

Since we wish to define global operators induced by these kernels, we use a cut-
off function in the neighborhood of the diagonal. Pick a smooth function n € C*°(R),
such that () = 1 for |u| < 8’/2 and n(u) =0 for |u| > &'

We denote by F@) Pp and P, F F the operators defined by the kernels

n(dx, y)FD (x, y)Pp(x,y) and n(d(x,y)Pp(x, )FD(x,y)

with respect to dvy (y). Set

Tp=T,— (FOP,)p'/2. (4.38)
i<deg Fy

The operators 7, extend naturally to bounded operators on L*(X,E ).

From (4.25) and (4.38) we deduce that for all k > 1 and |Z’| < &/, we have the
following expansion in the normal coordinates around xp € X (which has to be un-
derstood , in the sense of (4.10)):

k
T (0, Z) =Y (Reng Pu) 0, /PZ)p TP+ O~ ETV), (4.39)
r=1

p

for some polynomials R, y, of the same parity as r. For simplicity let us define simi-
larly to (4.37) the kernel

R p(x,y) = p" (Rex P00, /PZ i 22 (x, y)). (4.40)

where y = expX (Z'), and denote by R, p» the operator defined by this kernel.

Lemma 4.13 There exists C > 0 such that for every p > po and s € L>(X, Ep) we

have
I1Tpsll 2 < Cp~ 2]l 2, (4.41)
1755l 2 < Cp~ 2 |sll o (4.42)

Proof In order to use (4.39) we write

k

Z p_r/er,,;S

r=1

+
L2

(T) — Zp 2Ry p)s (4.43)

r=I1

Tpsllze <

L2
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By the Cauchy-Schwarz inequality we have

k
(Tp - pr/er»p)s

r=1

()
(f

We split then the inner integrals into integrals over BX (x, &) and X ~ BX (x, ¢’) and
use the fact that the kernel of 7, — Zf: p / ZR,, p has the growth O (p~™°) outside
the diagonal. Indeed, this follows by (4.24), the definition of the operators F) P,
in (4.38) (using the cut-off function 7), and the definition (4.40) of R, , (which in-
volves ). We get for example, uniformly in x € X,

k
/;( <Tp _Zp_r/er,p) (x,y)

r=1

B /];X(x,s’)

+0(p™™) ls()Pdvx (7). (4.45)
X~ BX(x,e)

2

L2

k
(Tp - Z p_r/ZRr,p> (x,y)

r=1

dvx(y)>

|s<y>|2dvx<y))dvx<x>. (4.44)

k
<Tp - Zp"/er,p> (*x. )

r=1

ls () [*dvx ()

Is(V)2dvx ()

k
(Tp - Z pr/er,p> (x,y)

r=1

By (4.9) and (4.39) applied for k sufficiently large, which we fix from now on, we

obtain
k
Tp—Y PRy |(x.y)

=0(p™h ls(M)Pdvx (y). (4.46)
BX (x,g')

Is(V)Pdvx ()

In the same vein we obtain

k
/ (Tp - Zp"”Rr,p) @ )|dux()=0(p H+0(p™™). 447
X r=1
Combining (4.44)—(4.47) we infer
k
’ (T,, - Zp—r/zR,,,,>s <Cp sl seL*(X, Ep). (4.48)
r=1 L2
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A similar proof as for (4.48) delivers for s € L*(X, Ep)
| Rr.ps| ;2 < Cllsll.2, (4.49)
which implies

k

Z p_r/er,pS

r=1

<Cp~ 2 |Is|l 2, fors e LA(X, E,), (4.50)

L2

for some constant C > 0. Relations (4.48) and (4.50) entail (4.41), which is equivalent
to (4.42), by taking the adjoint. O

Let us consider the Taylor development of F® in normal coordinates around x
with y = expX (Z'):
~ 9o FO) zy
FOG,y)= Y ——(x,0) WPZY. a2 4 9 z/p). (4.51)
<k VAL ol

The next step in the proof of Proposition 4.11 is the following.

Lemma 4.14 For every j > 0 we have

9a FO)
g 0 =0. fori—la|>j>0. (4.52)

Proof The definition (4.38) of 7, shows that
Tr=T,— >  p/2(P,FD). (4.53)
i<deg Fy

Let us develop the sum in the right-hand side. Combining the Taylor development
(4.51) with the expansion (4.12) of the Bergman kernel we obtain:

P Y (P FD) (0,2 p'?

1

~ 3 F® WVPZ)* (il
=YD (o Pa) O/PZ) S (0.0) VPZY imiai-ny2

!
i alr<k @
+ O(p(dcg F=k=1)/2y (4.54)
where k > deg F, 4+ 1. Having in mind (4.42), this is only possible if for every j > 0

the coefficients of p// 2 in the right-hand side of (4.54) vanish. Thus, we have for
every j > O:

deg F, ~
a2 F® (J/PZ)H™
YD By 0.4pZ) (X0, 0) ‘/; =0 (4.55)
I=j |o|+r=I—j ’
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From (4.55), we will prove by recurrence that for any j > 0, (4.52) holds. As the
first step of the recurrence leL us take j = deg F in (4.55). Since Jo x, = IcgE (see
(4.11)), we get immediately F (927 (x(, 0) = 0. Hence (4.52) holds for j = deg F;.

Assume that (4.52) holds for j > jo > 0. Then for j = jo, the coefficient with
r > 0in (4.55) is zero. Since Jy x, = IcgE, (4.55) reads

9% F GotlaD 7/
0.0 WA g (4.56)
VACS o!
o
which entails (4.52) for j = jo. The proof of (4.52) is complete. U
Lemma 4.15 Fori > 0, we have
9 Fy”

Therefore Ff)(O, Z)Y=0foralli > 0and 7 € C" i.e., (4.35) holds true. Moreover,

Ff)(z, 0)=0 foralli>0andallzeC". (4.58)

Proof Let us start with some preliminary observations.
In view of (4.42), (4.52) and (4.54), a comparison the coefficient of p¥in (4.31)
and (4.53) yields

FO(x,z)y=F90,7)+0(z'|*. (4.59)
Using the definition (4.37) of F® (x, Z’), and taking the adjoint of (4.59) we get
FOZ' x)=(FP0.2)* + 0z, (4.60)
which implies
LI L *
ﬁF(U(.’xﬂx = <<azla F}El))(o’ ?)) , for |Ol| <i, (461)
so in order to prove the Lemma it suffices to show that
L
—FD(,x)y=0, for|a|<i. (4.62)
07%

We prove this by induction over ||. For |a| = 0, it is obvious that F)(0,x) =0,
since F(-, x) is a homogeneous polynomial of degree i > 0. For the induction step
let jx : X — X x X be the diagonal injection. By Lemma 4.12 and the definition
(4.37) of FD(x,y),

9 .
5?WMw=anwnax (4.63)
J

where y = expff(Z’). Assume now that @ € N” and (4.62) holds for |«| — 1. Consider
Jwitha; >0andseta’ = (ar,...,05 —1,...,a).
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Taking the derivative of (4.37) and using the induction hypothesis and (4.63), we
have

L[
~5e (57"
X Zj 9z
Thus, (4.57) is proved. The identity (4.35) follows too, since it is equivalent to

(4.57). Furthermore, (4.58) results from (4.35) and (4.36). This finishes the proof
of Lemma 4.15. [l

/

0 .
5 P60 =0 @ed
j 0,0

*
1
BZaF ('7-x)

X

Lemma 4.16 We have F;i)(z, 7)=0foralli >0and z,7 € C" .

Proof Let us consider the operator

1 E
—P,(Vy," T,)P, with X € C®°(X,TX), X(x0) = — + — 4.65
ﬁp( x.xIp)Pp ( ), X (xo0) 5z, oz, (4.65)
The leading term of its asymptotic expansion (4.10) is
0 )
Y NN TN AN (4.66)
J

By (4.35) and (4.58), (-2 52 Fy,)(z,7) is an odd polynomial in z,z" whose constant term
vanishes. We reiterate the arguments from (4.38)—(4.61) by replacing the operator 7),
with the operator (4.65); we get for i > 0,

a .
—F0,7)=0. (4.67)
8Zj
By (4.36) and (4.67),
a-’ F9(z,0)= (4.68)

By continuing this process, we show that forall i > 0, € Z", 7,7 € C",

%

P —F90,7) = a—/“ F(’)(z 0) = (4.69)
Thus, the Lemma is proved and (4.34) holds true. Il
The Lemma 4.16 finishes the proof of Proposition 4.11. t

We come now to the proof of the first induction step leading to (4.27).

Proposition 4.17 We have p~" (T, — Tgy p)xo(Z, Z') = O(p~Y) (in the sense of No-
tation 4.4). Consequently, T, = P,goPp + O(p_l) (i.e., relation (4.30)) holds true
in the sense of (4.4) .
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Proof Let us compare the asymptotic expansion of T, and Ty, , = PpgoP),. Using
the Notation 4.4, the expansion (4.14) (for k = 1) reads

p_nTgo,p,xo(Zv Z/)
= (g0(x0) [coE Pry + Q1.x0(80)Prop /DWPZ, VPZ)+O(p™h),  (4.70)

since Q. x,(80) = g0(x0) IcgE by (4.16). The expansion (4.25) (also for k = 1) takes
the form

P Ty xy = (80(x0) IcoEPry + Q1xgPro P~/ )WPZ, VPZ) +O(p™h), (4.71)

where we have used Proposition 4.11 and the definition (4.28) of go. Thus, subtracting
(4.70) from (4.71) we obtain

p_n(Tp — Ty, p)xo(Z, Z")
= ((Q1xg — 1.5 (80) Puo) WPZ, /PZNp™ 2+ O(p7). (4.72)

Thus, it suffices to prove the following.

Lemma 4.18
Fix:=0Q1x— 01,x(g)=0. (4.73)

Proof We note first that F y is an odd polynomial in z and 7'; we verify this state-
ment as in Lemma 4.12. Thus, the constant term of F , vanishes. To show that the

rest of the terms vanish, we consider the decomposition Fy x =} ;> F ](’))C in homo-

geneous polynomials F’ ff; of degree i. To prove (4.73) it suffices to show that

F(:.7)=0 foralli>0andz ¢ eC". (4.74)

The proof of (4.74) is similar to that of (4.34). Namely, we define as in (4.37) the op-
erator Fl(’), by replacing F\"(0,7") by F" (0,7'), and we set (analogously to (4.38))

1,x

<

p1=Tp— PpgoPy— > (F{'Py)pi=D72 (4.75)
i<deg Fi

Due to (4.14) and (4.25), there exist polynomials ﬁr, xo € C[Z, Z'] of the same parity
as r such that the following expansion in the normal coordinates around xo € X holds
fork>2and |Z'| <¢&'/2:

k

P Tp 1000, Z) =Y (Reag Piy) 0, /PZ)p ™2 + O(p~*HD2), (4.76)
r=2

This is the analogue of (4.39). Now we can repeat with obvious modifications the
proof of (4.34) and obtain the analogue of (4.34) with F, replaced by Fj .. This
completes the proof of Lemma 4.18. U
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Lemma 4.18 and the expansion (4.72) imply immediately Proposition 4.17. t

Proof of Theorem 4.9 Proposition 4.17 shows that the asymptotic expansion (4.27) of
T, holds for m = 0. Moreover, if T), is self-adjoint, then from (4.70), (4.71), go is also
self-adjoint. We show inductively that (4.27) holds for every m € N. To prove (4.27)
for m =1 let us consider the operator p(T, — P,goP,). We have to show now that
p(Tp — Ty, p) satisfies the hypotheses of Theorem 4.9. The first two conditions are
easily verified. To prove the third, just subtract the asymptotics of T}, »,(Z, Z') (given
by (4.25)) and Ty, p x,(Z, Z") (given by (4.14)). Taking into account Proposition 4.11
and (4.73) the coefficients of p® and p~!/? in the difference vanish, which yields the
desired conclusion.

Propositions 4.11 and 4.17 applied to p(T), — P,go Pp) yield g1 € C*°(X, End(E))
such that (4.27) holds true for m = 1.

We continue in this way the induction process to get (4.27) for any m. This com-
pletes the proof of Theorem 4.9. O

4.3 Algebra of Toeplitz Operators

The Poisson bracket {-, -} on (X, 27 w) is defined as follows. For f, g € C°(X), let
& ¢ be the Hamiltonian vector field generated by f, which is defined by 27iz 0 = df .
Then

{f. g}:=&rdg). 4.77)

One of our main goals is to show that Theorem 1.1 holds, thus the set of Toeplitz
operators is closed under the composition of operators, so forms an algebra.

Proof of Theorem 1.1 Firstly, it is obvious that P,T¢ T, Py = Ty, pTg . Lem-
mas 4.2 and 4.6 imply Ty, , Ty, , verifies (4.24). Like in (4.18), we have for Z, Z' €
T\ X, |ZI,1Z'| < &/4:

(T pTo )y (2, Z)) = / Tt poo(Zs 2 p(41Z"1/) Ty py (2 Z1)

Ty
X kexy (Z")dvrx (Z") + O (p™). (4.78)

By Lemma 4.6 and (4.78), we deduce as in the proof of Lemma 4.6, that for Z, Z’ €
Ty, X, |Z|,1Z'| < ¢/4, we have

k
P T T p)so(Z. 22 Y 01y (f. ) Pr) WBZ./PZNp ™2+ O(p 5,
r=0
4.79)

and with the notation (2.10),

Orx(f. 8) = Z KIQri.xo () Oryxo(8)]- (4.80)

ri+ry=r
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Thus, Ty, , T, , is a Toeplitz operator by Theorem 4.9. Moreover, it follows from the
proofs of Lemma 4.6 and Theorem 4.9 that g; = C;(f, g), where C; are bidifferential
operators.

Recall that we denote by Icgr : A(T**DX)® E — C® E the natural projection.
From (2.10), (4.16) and (4.80), we get

Co(f.8)(x) = Icge Qo.x (f. &)lcoE = Icoe K[Qox(f), Qo.x(&)]lceE
= f(x)g(x). (4.81)

By the proof of Theorem 4.9 (cf. Proposition 4.11, Lemma 4.18 and (4.28)), we
get

01x(f.8) = Q1.x(Co(f, &),
Ci1(f, 8) = Icoe(Q2x(f, 8) — Q2. (Co(f, 8)))(0,0)|ceE-
Moreover, by (4.16) and (4.80), we get

(4.82)

02x(f, 8) = K[f (D) Icge, Q2.x(@)]+ K[Q1,x(f), Q1,x(8)]
+ K[Q2.x(f). ) IcgE]- (4.83)

Now Ty,, P, = PpTy,, implies O, (f, 1) = O, (1, f), so we get from (4.83):

KlJox, O2.x(H)] = K[Q2,x(f), Jo.x]
= K[Ql,x(f)v Jl,x] - K[Jl,xs le(f)]
+ KLf () Jox, J2,x] — K2 x, f(x)Jox] (4.84)

Assume now that f, g € C*°(X). By (4.82), (4.83) and (4.84), we get

Ci(f, 8)(x) = Ci(g, f)(x)
= IcgelKI[Q1,x(f), Q1x(9)] — K[Q1,x(8), Q1,x (/)]
+ fC(KIQ1,x(8)s J1.x] = KJ1x, Q1.x(8)])
— 8 (KI[Q1.x(f), J1.x]1 = K1 x, Q1.x(HD]lceE- (4.85)

By Lemma 4.7, Remark 4.8, we have
K[Q1.x(f), O1.4(8)]

_ A 7. 98x .,
_K[K[l’ IZ, (O)Zj} K[l’ IZ, (O)Z]H

+ K[f () J1, Qrx(@]+ K[Q1,x(f), gx) 1] = K[f(x)J1, g(x)J1].
(4.86)

From (4.11), (4.85) and (4.86), we get

Cl(f’ g)(x) - Cl(g9 f)(X)
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— x| x| 20z | x| 1, 280y,
B [ [’321'()/}’ [’321()1}}
0gx ) 0fx )
—JC|:JC|:1,a—Zj(0)ZJi|,JC|:1,—azj (O)Z]i|:|. (4.87)
From (2.17) we get
afx 0 o O o
JC[I, 8—%(0)21} =3z Oz + P 0)z;. (4.88)

Plugging (4.88) into (4.87) and using (2.17) we finally obtain:

" 200fc . Og« Afc  dgy
Ci(f,e)x)—Ci(g, Hx) = —[T(O)—(O) - —(O)T(O)} Idg
i;ai azi azi aZi 32[

= V=1{f. g} dg.. (4.89)
This finishes the proof of Theorem 1.1. (|

The next result and Theorem 1.1 show that the Berezin-Toeplitz quantization has
the correct semi-classical behavior.

Theorem 4.19 For f € C*°(X,End(E)), the norm of Ty, , satisfies

lim |Tfpll =1 flloo:= sup  [fx)@)lpe/lulpe. (4.90)
p—=0 0#uckE,,xeX

Proof Take a point xg € X and ug € Ey, with |ug|,z = 1 such that | f (xg)(uo)| =
Il flloo- Recall that in Sect. 4.1, we trivialize the bundles L, E in our normal coor-
dinates near xg, and ey, is the unit frame of L which trivialize L. Moreover, in this
normal coordinates, u is a trivial section of E. Considering the sequence of sections
Sh = p2P,(e2” ® up), we have by (3.27),

IT7.p Sty — f x0) Skl 2 < %IISfOIILz- (4.91)
If f is areal function, then df (x¢) = 0, so we can improve the constant % in (4.91)
to %. The proof of (4.90) is complete. (]

Remark 4.20 For E = C, Theorem 1.1 shows that we can associate to f, g € C*°(X)
a formal power series Zfio HCy( f, &) € C=(X)[[R]], where C; are bidifferential
operators. Therefore, we have constructed in a canonical way an associative star-
product fxg=> 72, R.Ci(f, g), called the Berezin-Toeplitz star-product.

5 Berezin-Toeplitz Quantizations on Non-Compact Manifolds

In this section, we extend our results to non-compact manifolds. We consider for sim-
plicity only complex manifolds, that is, we suppose that (X, J) is a complex mani-
fold with complex structure J and E, L are holomorphic vector bundles on X with
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rk(L) = 1. We assume that VE, VL are the holomorphic Hermitian (i.e., Chern) con-
nections on (E, hf), (L, h%). Let g7¥ be any Riemannian metric on 7 X compatible
with J. Since g7 is not necessarily Kihler, the endomorphism J defined in (3.7)
does not satisfy J # J in general. Set

OX,Y)=g"X(UXx,v). (5.1

Then the 2 form ©® need not be closed.

Let 3 e * be the formal adjoint of the Dolbeault operator 8 ok on the Dol-
beault complex £2%*(X, L? @ E) with the Hermitian product induced by g”*X, AL,
hE asin (3.9). Set

D, =2 4379,
(5.2)
g

~LPQE-LPQE,* =LPQE = L”®E
p=09 "9 +d 9

Then [, is the Kodaira-Laplacian which preserves the Z-grading of 04X, LP ®
E) and

D2 =20, (5.3)

Note that D), is not a spin® Dirac operator on R04(X,LP? ® E).
The space of holomorphic sections of L? @ E which are L? with respect to the
norm given by (3.9) is denoted by Hz)(X LP® E).Let Py(x,x"), (x,x" € X) be the

Schwartz kernel of the orthogonal projection P, from the space of L? sections of
L?P ® E onto H(z)(X L? ® E), with respect to the Riemannian volume form dvy (x”)

associated to (X, gTX ). Then P (x, x) is smooth by the ellipticity of the Kodaira
Laplacian and the Schwartz kernel theorem (cf. also [30, Remark 1.3.3]).

Remark 5.1 If J = J, then (X, J, ®) is Kihler and D), in (3.11) and (5.2) coincide.
Assume moreover X is compact. Then by the Kodaira vanishing theorem and the
Dolbeault isomorphism we have

H(X,L? ® E) =Ker(D)), (5.4)

for p large enough. Thus, if (X, J, ®) is a compact Kihler manifold and J = J,
E = C, Theorems 1.1, 4.19 recover the main results of Bordemann et al. [8, 17, 23,
34].

We denote by R%! the curvature of the holomorphic Hermitian connection V4t
on K} = det(T 19 x).

For a (1, 1)-form £2, we write £2 > 0 (resp. > 0) if 2(-, J-) > 0 (resp. = 0).

The following result, obtained in [28, Theorem 3.11], extends the asymptotic ex-
pansion of the Bergman kernel to non-compact manifolds.

Theorem 5.2 Suppose that (X, g'X) is a complete Hermitian manifold and there
exist € > 0, C > 0 such that :

V—=1Rl > ¢0, V=1(R¥® + RE) >~ —COdg, 100@],rx <C,  (5.5)
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then the kernel P,(x, x") has a full off-diagonal asymptotic expansion analogous to
that of Theorem 3.6 uniformly for any x,x' € K, a compact set of X. If L = Kx :=
det(T*10 X) is the canonical line bundle on X, the first two conditions in (5.5) are
to be replaced by

h™ is induced by @ and N—1R%® < —¢©®, vV—1RF > —COIdE.

The idea of the proof is that (5.5) together with the Bochner-Kodaira-Nakano for-
mula imply the existence of the spectral gap for [, acting on L*(X,L? @ E) as
in (3.16).

Let CZ5,,; (X, End(E)) denote the algebra of smooth sections of X which are con-
stant map outside a compact set. For any f € CS,,, (X, End(E)), we consider the
Toeplitz operator (T7,p) pen as in (4.6):

Tty L*(X,LP ® E) — L*(X,LP ® E), Tf,=P,fPp. (5.6)
The following result generalizes Theorems 1.1 and 4.19 to non-compact manifolds.

Theorem 5.3 Assume that (X, gTX) is a complete Hermitian manifold, (L, hty and
(E, h®) are holomorphic vector bundles satisfying the hypotheses of Theorem 5.2
withtk(L) = 1. Let f, g € C=5 (X, End(E)). Then the following assertions hold:

const

(1) The product of the two corresponding Toeplitz operators admits the asymptotic
expansion (1.7) in the sense of (4.5), where C, are bidifferential operators, es-
pecially, supp(C;(f, g)) C supp(f) Nsupp(g), and Co(f, g) = fg.

(ii) If f, g € Cons: (X)), then (1.9) holds.

(iii) Relation (4.90) also holds for any f € C25, (X, End(E)).
Proof The most important observation here is that the spectral gap property (3.16)
and a similar argument as in Proposition 3.4 deliver

F(Dp)s = Pps, IF(Dp) — Ppll=0(p™), (5.7

for p large enough and each s € H, (02) (X, L? ® E). Moreover, by the proof of Propo-
sition 3.4, for any compact set K, and any [, m € N, ¢ > 0, there exists C; . > 0
such that

|F(Dp)(x,x") = Pp(x, x)enkxk) < Clmep ", (5.8)

for p > 1, x,x’ € K. By the finite propagation speed for solutions of hyperbolic
equations [36, §2.8], [30, Appendix D.2] (cf. also [20, Proposition 4.1]), F(D,)(x, -)
only depends on the restriction of D), to B¥X(x, ¢) and is zero outside BX (x, ¢).

For g € C°(X,End(E)), let (F(Dp)gF(Dp))(x,x") be the smooth kernel of
F(Dp)gF (D)) with respect to dvy (x’). Then for any relative compact open set U
in X such that supp(g) C U, we have from (5.7) and (5.8),

Ty,p — F(Dp)gF(D),) =0(p™™), 59)
Ty p(x,x') = (F(D)gF (D)) (x,x)=O(p~>) onU x U. '
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Now we fix f, g € C°(X,End(E)). Let U be relative compact open sets in X
such that supp(f) U supp(g) C U and d(x, y) > 2¢ for any x € supp(f) U supp(g),
y € X \ U. From (5.7), we have

TfpTe.p = PyF(Dp) fPpgF(Dy)Py. (5.10)

Let (F(Dp) fPpgF(Dp))(x,x"), be the smooth kernel of F(D,)fP,gF(D,)
with respect to dvy(x’). Then the support of (F(Dp)fPpgF(Dp))(-,-) is con-
tained in U x U. If we fix xg € U, it follows from (5.8) that the kernel of
F(Dp)fPygF(Dp) has exactly the same asymptotic expansion as in the compact
case. More precisely, as in (4.79), we have

p " (F(Dp) fPpgF(Dp))xy(Z, Z))

k
=3 Qo (. O P ) WBZAPZIP O~ 5), (.11

r=0

with the same local formula for Q, ,,(f, g) given in (4.80).

But since all formal computations are local, O, ,(f, g) are the same as in the
compact case, i.e., polynomials with coefficients bidifferential operators acting on f
and g.

Thus, we know from (5.9) that there exist (g;);>0, where g € C3°(X, End(E)),
supp(g;) C supp( f) Nsupp(g) such that for any k > 1, s € L>(X, E,),

k

F(Dp)fPy,gF(Dp)s — Z F(Dp)PpglpfleF(Dp)s
=0

C
< SR sllz2. (5.12)
L2

(5.10) and (5.12) imply that

< Cep L (5.13)

k
I
Ty pTg,p— Z Ppgip " Pp
=0

Therefore, (i) is proved. With the asymptotic expansion at hand, we have just to re-
peat the proofs given in the compact case in order to verify assertions (ii) and (iii).
More precisely, (ii) follows exactly in the same way as in the proof of (1.9) given in
Theorem 1.1. Finally, to derive assertion (iii), we apply verbatim the proof of Theo-
rem 4.19. This completes the proof of Theorem 5.3. (|

Example 5.4 Theorem 5.3 holds for every quasi-projective manifold with L the re-
striction of the hyperplane line bundle associated to some arbitrary projective embed-
ding and E the trivial bundle. By definition, a quasi-projective manifold X has the
form X =Y \ Z, where Y and Z are projective varieties, and Z C Y contains the sin-
gular set of Y. Let us consider a holomorphic embedding ¥ C CP™, the hyperplane
line bundle @ (1) on CP", and set L = O(1)|x.

By Hironaka’s theorem of resolution of singularities there exists a projective man-
ifold Y and a holomorphic map 7 : Y—7Y composition of a finite succession of
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blow-ups with smooth centers) such that 7 : Y~ 7~1(Z) — Y ~ Z is biholomor-
phic and 7 ~1(Z) is a divisor with normal crossings.

In this situation it is shown in [28, §3.6], [30, §6.2] that there exist a complete
Kihler metric gTX onY 7! (Z) ~ X, called the generalized Poincaré metric, and
a metric k™ on 7* L ~ L satisfying the hypotheses of Theorem 5.2 (with E trivial).

Remark 5.5 It is appropriate to remark that the results of Sect. 4.1-4.3 learn that we
can associate to any f, g € C*°(X, End(E)) a formal power series Z?io R Ci(f, g€
C*°(X, End(E))[[7]], where C; are bidifferential operators. This follows from the
fact that the construction in Sect. 4.3 is local. However, the problem we addressed in
this section is which Hilbert space the Toeplitz operators act on in the case of a non-
compact manifold. Theorem 5.6 shows that the space of holomorphic L2-sections
H(Oz) (X,L? ® E) of L? ® E, is a suitable Hilbert space which allows the Berezin-
Toeplitz quantization of the algebra C>5 (X, End(E)).

const

6 Berezin-Toeplitz Quantization on Orbifolds

In this section we establish the theory of Berezin-Toeplitz quantization on symplectic
orbifolds, especially we show that set of Toeplitz operators forms an algebra. For
convenience of exposition, we explain the results in detail in the Kéhler orbifold
case. In [30, §5.4] we find more complete explanations and references for Sects. 6.1
and 6.2. For related topics about orbifolds we refer to [1].

This section is organized as follows. In Sect. 6.1 we recall the basic definitions
about orbifolds. In Sect. 6.2 we explain the asymptotic expansion of Bergman kernel
on complex orbifolds [20, §5.2], which we apply in Sect. 6.3 to derive the Berezin-
Toeplitz quantization on Kihler orbifolds. Finally, we state in Sect. 6.4 the corre-
sponding version for symplectic orbifolds.

6.1 Basic Definitions on Orbifolds

We define at first a category M, as follows : The objects of M are the class of
pairs (G, M) where M is a connected smooth manifold and G is a finite group
acting effectively on M (i.e., if g € G such that gx = x for any x € M, then g is
the unit element of G). If (G, M) and (G’, M’) are two objects, then a morphism
@ : (G, M) — (G', M) is a family of open embeddings ¢ : M — M’ satisfying:

(i) For each ¢ € @, there is an injective group homomorphism 1, : G — G’ that
makes ¢ be A,-equivariant.
(ii) For g € G, ¢ € @, we define gp : M — M’ by (g¢)(x) = gp(x) for x € M. If
(gp)(M) N (M) # 1, then g € A,(G).
(iii) For ¢ € @, we have @ = {gp, g € G'}.

Definition 6.1 Let X be a paracompact Hausdorff space. An m-dimensional orbifold
chart on X consists of a connected open set U of X, an object (G, U) of M with
dim U = m, and a ramified covering tyy : U — U which is Gy-invariant and induces

a homeomorphism U =~ ﬁ/GU. We denote the chart by (G, 17) oy,
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An m-dimensional orbifold atlas V on X consists of a family of m-dimensional
orbifold charts V(U) = ((Gy, U ) LNy ) satisfying the following conditions:

(1) The open sets U C X form a covering U with the property:

Forany U,U' eldandx c U NU’,
thereis U” e suchthatx e U cUNU’. 6.1)

(ii) for any U,V €U, U C V there exists a morphism ¢yy : (Gy, (7) — (Gy, V),
which covers the inclusion U C V and satisfies pwy = ¢wy o ¢yy for any
UV, Weld,withUcCV CW.

It is easy to see that there exists a unique maximal orbifold atlas V,,,x containing

V; Vinax consists of all orbifold charts (G, U ) oy , which are locally isomorphic
to charts from V in the neighborhood of each point of U. A maximal orbifold atlas
Viax 18 called an orbifold structure and the pair (X, V4. ) is called an orbifold. As
usual, once we have an orbifold atlas VV on X we denote the orbifold by (X, V), since
V determines uniquely V4.

Note that if 2/’ is a refinement of U/ satisfying (6.1), then there is an orbifold atlas
V' such that V UV’ is an orbifold atlas, hence V U V' C V4. This shows that we
may choose {/ arbitrarily fine.

Let (X, V) be an orbifold. For each x € X, we can choose a small neighborhood
(Gy, U ) — Uy such that x U « 1s a fixed point of G (it follows from the definition
that such a G, is unique up to isomorphisms for each x € X). We denote by |G| the
cardinal of G,. If |G| = 1, then X has a smooth manifold structure in the neighbor-
hood of x, which is called a smooth point of X. If |G| > 1, then X is not a smooth
manifold in the neighborhood of x, which is called a singular point of X. We denote
by Xsing = {x € X; |G| > 1} the singular set of X, and X,,; = {x € X; |G| =1}
the regular set of X.

It is useful to note that on an orbifold (X, V) we can construct partitions of unity.
First, let us call a function on X smooth, if its lift to any chart of the orbifold atlas V) is
smooth in the usual sense. Then the definition and construction of a smooth partition
of unity associated to a locally finite covering carries over easily from the manifold
case. The point is to construct smooth Gy -invariant functions with compact support
on (Gy, U ).

In Definition 6.1 we can replace M by a category of manifolds with an addi-
tional structure such as orientation, Riemannian metric, almost-complex structure or
complex structure. We impose that the morphisms (and the groups) preserve the spec-
ified structure. So we can define oriented, Riemannian, almost-complex or complex
orbifolds.

Let (X, V) be an arbitrary orbifold. By the above definition, a Riemannian metric
on X is a Riemannian metric g7% on X reg such that the lift of gT¥ to any chart of
the 0rb1fold atlas V can be extended to a smooth Riemannian metric. Certainly, for
any (Gy, U ) € V, we can always construct a Gy -invariant Riemannian metric on U.
By a partition of unity argument, we see that there exist Riemannian metrics on the
orbifold (X, V).
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Definition 6.2 An orbifold vector bundle E over an orbifgld (X, V) is defined as fol-
lows: E is an orbifold and for U e U, (Gg, pu:Ey—U)isa GE—equivariant vec-
tor bundle and (GE, EU) (resp. (Gy = GE/KE, l7) K = Ker(GE — D1ffeo(U)))
is the orbifold structure of E (resp. X). If GE acts effectlvely on U for U el,i.e.,
Ky E — {1}, we call E a proper orbifold vector bundle.

Note that any structure on X or E is locally G, or ng -equivariant.

Remark 6.3 Let E be an orbifold vector bundle on (X, V). For U eU, let Epr be

the maximal K ; E _invariant sub-bundle of Eyy on U. Then (Gy, E £ y ) defines a proper
orbifold vector bundle on (X, V), denoted by EP".

The (proper) orbifold tangent bundle 7X on an orbifold X is defined by
(Gy, TU — U ), for U € Y. In the same vein we introduce the cotangent bundle
T*X. We can form tensor products of bundles by taking the tensor products of their
local expressions in the charts of an orbifold atlas. Note that a Riemannian metric on
X induces a section of T7*X ® T*X over X which is a positive definite bilinear form
on 7Ty X at each point x € X.

Let E — X be an orbifold vector bundle and k € NU {oo}. A section s : X — E is
called C* if for each U € U, s|y is covered by a Gy E _invariant C¥ section 3 : U—
EU. We denote by CkX(X, E) the space of ck sectlons of E on X.

If X is oriented, we define the integral f x o for a form « over X (i.e., a section of
A(T*X) over X) as follows. If supp(a) C U € U set

1
= — o . 62
fxo’ |GU|/,7°’U ©2)

It is easy to see that the definition is independent of the chart. For general o we extend
the definition by using a partition of unity.

If X is an oriented Riemannian orbifold, there exists a canonical volume element
dvy on X, which is a section of A™(T*X), m = dim X. Hence, we can also integrate
functions on X.

Assume now that the Riemannian orbifold (X, V) is compact. For x, y € X, put

d(x,y) =Inf, {Z S 1EF@lde |y [0, 11— X, y(0) =x,y(1) =y,
such that there exist fp =0 <t <--- <fr =1, y([ti=1, ] C U;,

Uiel, andaC® map ¥; : [t;_1, ;] — l7,' that covers Vl[z,l,tij}~

Then (X, d) is a metric space. For x € X, set d(x, Xying) 1= infyexmg d(x,y).
Let us discuss briefly kernels and operators on orbifolds. For any open set U C X

and orbifold chart (GU, U ) BLN U, we will add a superscrlpt to 1ndlcate the corre-
sponding objects on U. Assume that IC(x e C®(U x U, JTI*E ® n;E*) verifies

(&, DK™ '%,¥) =1, ¢ HKR, g¥') forany g € Gy, (6.3)
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where (g1, g2) acts on Ex X E%, by (81, 82) (61, 62) = (8161, 8282).
We define the operator K : C°(U, E) — C*(U, E) by

(KD X) = f~ K&, )5 )dvg®) forse P, E). (6.4)
U

Fors e C®(U, E) and g € Gy, g actson Cx(U, E) by: (g-5)(X) :=5~§£g_1}). We
can then identify an element s € €*° (U, E) with an elements € C*° (U, E) verifying
g-s=5forany g € Gy.

With this identification, we define the operator K : C;°(U, E) — C*°(U, E) by

(Ks)(x) = —— / RE¥FE@)dvs®) forseCOW.E), (65
Gul Jo

where X' € Ty 1()c). Then the smooth kernel K(x, x") of the operator K with respect
to dvy is

K. xy= Y (g. DK(g7'%.%). (6.6)

geGy

Indeed, if s € CJ°(U, E), by (6.3) and (6.5), we have

(/Cs)(x)=|617 ZG fﬁ RE 7 -5\ %)@ )dvog @)

1 ~
=—— Y |.(& DK% ¥)sF)dvg(F)
Gul S5 Jo
= /U > (g DR(™'T, ¥)s(x)dvx (x'). 6.7)
geGy

Let K, K7 be two operators as above and assume that the kernel of one of K 1, Ez
has compact support. By (6.2), (6.3) and (6.5), the kernel of Ky o K5 is given by

(K1 oK), x)= Y (g, D(Ki 0 Ka)(g7'%,X). (6.8)
geGy

6.2 Bergman Kernel on Kihler Orbifolds

Let X be a compact complex orbifold of complex dimension n with complex structure
J. Let E be a holomorphic orbifold vector bundle on X.

Let O be the sheaf over X of local Gy -invariant holomorphic functions over U .
for U e U. The local G 5 -invariant holomorphic sections of E — U define a sheaf
Ox(E) over X. Let H*(X, Ox(E) be the cohomology of the sheaf Ox(E) over X.

Notice that by Definition, we have

Ox(E)=0Ox(E™). (6.9)
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Thus, without lost generality, we may and will assume that E is a proper orbifold
vector bundle on X. o
Consider a section s € C*°(X, E) and a local section 5 € C®(U, Ey) covering s.

Then 37U covers a section of T*ODX ® E over U , denoted 5Es|U. The family of
sections {5E5|U : U € U} patch together to define a global section 5Es of T*OD ¥ @
E over X. In a similar manner we define 5Ea for a > section o of A(T*OVX)Q E
over X. We obtain thus the Dolbeault complex (2%*(X, E), 5E):

E —=E

0— %X, E) 2 ... 25 @0 (X, E) —> 0. (6.10)

From the abstract de Rham theorem there exists a canonical isomorphism
H* (2% (X, E),§E)2H'(X, Ox(E)). (6.11)

In the sequel, we also denote H*(X, Ox(E)) by H*(X, E).

We consider a complex orbifold (X, J) endowed with the complex structure J. Let
¢7X be a Riemannian metric on 7 X compatible with J. There is then an associated
(1, 1)-form @ given by @ (U, V) = gTX(JU, V). The metric g7 ¥ is called a Kihler
metric and the orbifold (X, J) is called a Kdhler orbifold if @ is a closed form, that
is, d® = 0. In this case ® is a symplectic form, called Kéhler form. We will denote
the Kihler orbifold by (X, J, @) or shortly by (X, ©).

Let (L, h’) be a holomorphic Hermitian proper orbifold line bundle on an orbifold
X, and let (E, h¥) be a holomorphic Hermitian proper orbifold vector bundle on X.

We assume that the associated curvature R of (L, h%) verifies (3.6), i.e., (L, h%)
is a positive proper orbifold line bundle on X. This implies that w := @RL is a
Kihler form on X, (X, w) is a Kéhler orbifold and (L, ht, vEyisa prequantum line
bundle on (X, w).

Note that the existence of a positive line bundle L on a compact complex orbifold
X implies that the Kodaira map associated to high powers of L gives a holomorphic
embedding of X in the projective space. This is the generalization due to Baily of the
Kodaira embedding theorem (see e.g. [30, Theorem 5.4.20]).

Let "X = w(-, J-) be the Riemannian metric on X induced by w = QRL.

Using the Hermitian product along the fibers of L?, E, A(T*19X), the Rie-
mannian volume form dvy and the definition (6.2) of the integral on an orbifold, we
introduce an L2-Hermitian product on R9*(X, L? ® E) similar to (3.9). This allows

. . =LPQEx .—=LP®E .
to define the formal adjoint d of 9 and as in (5.2), the operators D, and
Up. Then Df, preserves the Z-grading of 2%*(X,L? ® E). We note that Hodge
theory extends to compact orbifolds and delivers a canonical isomorphism

HY(X, L” ® E) ~ Ker(D?| g04). 6.12)

By the same proof as in [27, Theorems 1.1, 2.5], [7, Theorem 1], we get vanishing
results and the spectral gap property.
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Theorem 6.4 Let (X, w) be a compact Kihler orbifold, (L, Ly be a prequantum
holomorphic Hermitian proper orbifold line bundle on (X, ) and (E,h*) be an
arbitrary holomorphic Hermitian proper orbifold vector bundle on X .

Then there exists C > 0 such that the Dirac operator D) satisfies for any p € N

Spec(D}) C {0}Ul4mrp — C, 400l (6.13)

and Df,l 00,0 is invertible for p large enough. Consequently, we have the Kodaira-
Serre vanishing theorem, namely, for p large enough,

HY(X,L? @ E)=0, foreveryq > 0. (6.14)

In view of Theorem 6.4 and of the isomorphism (6.12), we can define for
p>C m)~! the Bergman kernel

Py(,) €C®(X x X, n{(L" ® E) ® m; (L ® E)*))

like in Definition 3.2. Namely, the Bergman kernel is the smooth kernel with respect
to the Riemannian volume form dvy (x’) of the orthogonal projection (Bergman pro-
jection) P, from C*°(X, L? ® E) onto H(X,L? Q E).

From now on, we assume p > C(27t)’1 Let dp = dim HO%(X,L? ® E) and con-
sider an arbitrary orthonormal basis {Sp }i ”1 of HO(X, L? ® E) with respect to the
Hermitian produit (3.9) and (6.2). In fact, in the local coordinate above, Slp (Z) are
G y-invariant on U,, and

dp

Py(y. )= ST®H® GG, (6.15)
i=1

where we use ¥ to denote the point in l7x representing y € U,.
The spectral gap property (6.13) shows that we have the analogue of Proposi-
tion 3.4, with the same F as given in (3.17):

|Pp(x,x") — F(Dp)(x, x)enxxx) < Clmep - (6.16)

As pointed out in [26], the property of the finite propagation speed of solutions of
hyperbolic equations still holds on an orbifold (see the proof in [30, Appendix D.2]).
Thus, F(Dp)(x,x") =0 for every for x,x" € X satisfying d(x,x") > e. Likewise,
given x € X, F(Dp)(x,-) only depends on the restriction of D, to BX(x, ¢). Thus
the problem of the asymptotic expansion of P (x, -) is local.

We recall that for every open set U C X and orbifold chart (Gy, U ) LN U, we
add a superscript”to indicate the corresponding objects on U.LetdU =T \U,U; =
{xeU,d(x,dU) < ¢}. Then F(D[,)(x,f’) is well defined for ¥, ¥ € U} = T, Y.
Since g - F(ﬁp) = F(ﬁp)g, we get

~ ~

(&, DF(D,) (g~ '%, %)=, ¢ HYF(D,) X, g%, (6.17)
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for every g € Gy, X,X" € U;. Formula (6.6) shows that for every x,x’ € Uy and
X,x’ € Uj representing x, x’, we have

F(Dp)(x,x') = Z (g, DF(D,)(g~'%,%). (6.18)
geGy

For %o € Uy := {x € U,d(x,80) < 2¢}, and Z, Z' € Tz, X with |Z|,|Z'| < &, the
kernel F(D p)(i ,Z") has an asymptotic expansion as in Theorem 3.6 by the same
argument as in Proposition 3.4. In the present situation J = J, so that a; = 27 and
the kernel & defined in (3.25) takes the form

~ o~ T ~ ~ )
?(Z,Z’):exp(— EZ(|z,-|2+|z§|2—2z,'z§)>. (6.19)

i
6.3 Berezin-Toeplitz Quantization on Kéhler Orbifolds

We apply now the results of Sect. 6.2 to establish the Berezin-Toeplitz quantization
on Kihler orbifolds. We use the notations and assumptions of that section.

Since we consider the holomorphic case, we denote directly by P, the orthogonal
projection from C>®(X, L? ® E) onto H*(X, L? ® E) and we replace in (4.1) the
space L2(X, Ep) with L%(X,L? ® E). Thus, we have the following definition.

Definition 6.5 A Toeplitz operator is a family {T),} of linear operators
T,:L*(X,L? ® E) — L*(X,L? ® E), (6.20)
verifying (4.2) and (4.3).

For any section f € C*°(X,End(E)), the Berezin-Toeplitz quantization of f is
defined by

Tty L*(X,LP ® E) — L*(X,LP ® E), Tf,=P,fPp. (6.21)
Now, by the same argument as in Lemma 4.2, we get

Lemma 6.6 For any ¢ > 0 and any I, m € N there exists C; . > 0 such that
1Ts,p (6, X)) em(xxx) < Crmep ™ (6.22)

forall p > 1andall (x,x") € X x X withd(x, x') > &, where the C™ -norm is induced
by VL VE and ht hE, gTX.

As in Sect. 4 we obtain next the asymptotic expansion of the kernel 7y, , (x, x") in
a neighborhood of the diagonal.

We need to introduce the appropriate analogue of the Condition 4.3 in the orbifold
case, in order to take into account the group action associated to an orbifold chart. Let
{Zp}pen be a sequence of linear operators &, : L*(X,LP Q E) — L*(X,L? ® E)
with smooth kernel Z,(x, y) with respect to dvx (y).
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Condition 6.7 Let k € N. Assume that for every open set U € U and every orbifold
chart (Gy, U) BLN U, there exists a sequence of kernels {Ep’y(f, xX)}pen and a
family {Q/ x,}o<r<k,xoex such that

(a) Qr xo € End(E)xO[i Z’]
(b) {Orxo}reNxpex ls smooth with respect to the parameter x € X,
(c) for every fixed ¢” > 0 and every X, X’ € U the following holds

(&, D&, v %) =010, HE,v&, %)
for any g € Gy (cf. (6.17)),

E,u@X)=0(p~>) ford(x,x)>¢", (6.23)
Epx.x) =Y (. DE,uE 'FX)+0(p™™),
geGy

and moreover, for every relatively compact open subset V c U, the relation

P Epur(Z,Z) = Z(ero Pe) (VP2 JPZ)p T+ O(p~ T )

for Xp € vV, (6.24)

holds in the sense of (4.10).

Notation 6.8 If the sequence {&} yen satisfies Condition 6.7, we write

k
P Epy(Z.Z) 2 Y (O Pe) WPZAPZpTE+ O ). (625)

r=0

Note that although the Notations 6.8 and 4.4 are formally similar, they have dif-
ferent meaning.

Lemma 6.9 The smooth family Q, x, € End(E),, [Z, Z’] in Condition 6.7 is uniquely
determined by & .

Proof Clearly, for W C U, the restriction of & p,U tO W x W verifies (6 23), thus we

can take &, w = Ep vl - Since Gy acts freely on 7, (Ung) C U we deduce
from (6.23) and (6.24) that

Epo(Z, 2NV =Epuz(Z,Z) +O(p™), (6.26)

for every xo € Uyeg and |Z B |2 | small enough. We infer from (6.24) and (6.26) that
Or.x, € End(E)y[Z, VA ] is uniquely determined for xq e Xreg - Since Q. %) depends

smoothly on xo, its lift to U is smooth. Since the set Ty (U,eg) is dense in U we see
that the smooth family Q. y, is uniquely determined by &, (]
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Lemma 6.10 There exist polynomials J; x,, Orx,(f) € End(E)xO[Z, Z’] such that
Lemmas 4.2,4.5, 4.6 and 4.7 still hold under the notation (6.25). Moreover,

Joxy=1dg,  Ji =0. (6.27)

Proof The analogues of Proposition 3.4, Theorem 3.6 for the current situation and
(6.17), (6.18) show that Lemmas 4.2 and 4.5 still hold under the notation (6.25).
Since in our case w is a Kéhler form with respect to the complex structure J and
J = J, we have O; =0 (cf. (3.29) and Remark 3.9). Hence (3.31) entails (6.27).
Moreover, (6.16) implies

Tf,p(x,x/)Z/XF(Dp)(x,x//)f(x//)F(Dp)(x//,x/)de(X”)+(9(p_°°)- (6.28)

Therefore, we deduce from (6.8), (6.17), (6.18) and (6.28) that Lemmas 4.6 and 4.7
still hold under the notation (6.25). U

We will prove next a useful criterion (an analogue of Theorem 4.9) which ensures
that a given family is a Toeplitz operator.

Theorem 6.11 Let {T), : L*X,LPQE) — L*(X,L"’® E)} be a family of bounded
linear operators which satisfies the following three conditions:
(i) ForanypeN, P,T,P, =T, .
(ii) For any g9 > 0 and any | € N, there exists C; 5, > 0 such that for all p > 1 and
all (x,x") e X x X withd(x,x") > e,

1T, (x, x)| < Cregp ™. (6.29)

(iii) There exists a family of polynomials {Q, y, € End(E)y,[Z, Z/]}xoeX such that:
(a) each Q. x, has the same parity as r,
(b) the family is smooth in xo € X and
(c) there exists 0 < &' < ax/4 such that for every xo € X, every Z,Z" € Ty, X
with |Z|,|Z'| < &' and every k € N, we have

k
P T (Z,Z) =Y Qg Pry) (WBZ, /PZ)p™ 5 +O(p™ ) (630)
r=0

in the sense of (6.25).
Then (T} is a Toeplitz operator.
Proof As explained in (4.26), we can assume that T}, is self-adjoint. We will define
inductively the sequence (g;);>0, g € C°°(X, End(E)) such that

m
T, = Z Pogip ' P, +O(p™™ 1) foreverym >0, (6.31)
=0
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using the same procedure as in (4.27). Moreover, we can take these g;’s to be self-
adjoint. For xg € X, we set

g0(x0) = Q0,x (0, 0) € End(Ey,). (6.32)
We will show that

T, = PygoP, +O(p~ ). (6.33)

We need to establish the following analogue of Proposition 4.11.

Proposition 6.12 In the conditions of Theorem 6.11, we have Qq x,(Z, 7 =
Q0,x,(0,0) € End(Ey,) forallxo € X and all Z,Z' € T\ X.

Proof The key observation is the following. Let {Z)} pen, {Q0,xy }xoex and {El’,}peN,
{Q6 xo}XOEX two pairs satisfying Condition 6.7 for k = 0. Then (6.8), (6.23) and
(6.24) imply that

p_n(Ep o E;;)xo(z’ Z/)
= ((Q0,x0Px) © (Qé,xOfxo))(\/ﬁZ, VrZ')+ O(P_%), (6.34)

in the sense of Notation 6.8 and (2.10).
We modify now the proof of Lemma 4.12. Formula (6.30) for k = 0 gives

P " Ty a(Z, Z') = (Q0.xy Pro) WPZ, VDZ) + O(p~ 1), (6.35)

Moreover, the analogue of Lemma 4.5 shows that

PP (Z, Z') = (Joxo Pro) WPZs /PZ P2+ O(p~ V2. (6.36)

By (6.35) and (6.36) we can apply the observation at the beginning for =, =T, and

&), = P}, to obtain

p_n(PprPp)xO(Zv Z"
= (P Jo) 0 (QoP) o (PI))xy(WPZ, /PZ) + O(p~'/?). (6.37)

Using the same argument as in the proof of Lemma 4.12 (note also that Jy y, =Idg
by (6.27)) we see that Q y, is a polynomial in z, 7.

Now, we need to establish the analogue of (4.34). We define F© (%, 5), F (X, 7)
as in (4.37). Then from (6.17), (6.23), we know that for g € Gy, X, 5 € U,

g- FO@ %, 5) = FOF, g9. (6.38)
We denote by F OF (Dp) and F(D p)f @ the operators defined by the kernels

ndx, y)WFO® HF(Dy) R,y and n(d(x, »)F(D)E, NFDF,5)
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as in (6.5) and (6.6). Set

Tp=Ty— (FOF(D,)p'’>. (6.39)
i<deg Fy

Now using (6.39) instead of (4.38), by (6.5) and the proof of Proposition 4.11, we
get the analogue of (4.34) and hence Proposition 6.12. U

We go on with the proof of Theorem 6.11. Applying Proposition 6.12 and the
proof of Proposition 4.17, we obtain (6.33).

Finally, we deduce (6.31) according to the pattern set down in the proof of Theo-
rem 4.9. This completes the proof of Theorem 6.11. (I

We can therefore show that the set of Toeplitz operators on a compact orbifold is
closed under the composition of operators, so forms an algebra.

Theorem 6.13 Let (X, w) be a compact Kihler orbifold and (L,h") be a holo-
morphic Hermitian proper orbifold line bundle satisfying the prequantization condi-
tion (1.5). Let (E, h®) be an arbitrary holomorphic Hermitian proper orbifold vector
bundle on X.

Consider f, g € C*°(X,End(E)). Then the product of the Toeplitz operators Ty,
and Ty, is a Toeplitz operator, more precisely, it admits an asymptotic expansion
in the sense of (1.7), where C.(f,g) € C®°(X,End(E)) and C, are bidifferen-
tial operators defined locally as in (1.7) on each covering U of an orbifold chart
Gy, ﬁ) U . In particular Co(f, g) = fg.

If f, g € C*(X), then (1.9) holds.

Relation (4.90) also holds for any f € C*°(X, End(E)).

Proof Notice that by using (6.34) we have

(Tf,pTg,p)(x,x/)=fX(F(Dp)fF(Dp))(x,X’/)(F(Dp)gF(Dp))(x//,x/)dvx(x//)

+0O(p~™). (6.40)

From (6.8), (6.40) and the proof of Theorem 1.1, we get Theorem 6.13. U

Remark 6.14 As in Remark 4.20, Theorem 6.13 shows that on every compact Kiahler
orbifold X admitting a prequantum line bundle (L, k"), we can define in a canoni-
cal way an associative star-product f % g = Zﬁo R Ci(f, g) € C=(X)[[Ah]] for every
f, g € C°°(X), called the Berezin-Toeplitz star-product. Moreover, C;( f, g) are bidif-
ferential operators defined locally as in the smooth case.

6.4 Symplectic Orbifolds

In this section we state the result for symplectic orbifolds.
We work on a compact symplectic orbifold (X, @) of real dimension 2n. Assume
that there exists a proper orbifold Hermitian line bundle L over X endowed with a
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Hermitian connection VX with the prequantization property —VZ;I RL = w. This im-

plies in particular that there exist k € N such that L¥ is a line bundle in the usual
sense. Let (E, hf) be a proper orbifold Hermitian vector bundle on X equipped with
a Hermitian connection V£,

Let J be an almost complex structure on 7' X such that (3.6) holds. We endow X
with a Riemannian metric g% compatible with J.

Then the construction in Sect. 3.1 goes through, especially, we can define the
spin® Dirac operator D), : 20X, L? @ E) — 2%*(X,L? ® E). The orthogonal
projection P, : L2(X, E,) —> Ker(D,) with E, := A»* ® L” ® E is called the
Bergman projection. The smooth kernel P, (-, -) of P, with respect to the Riemannian
volume form dvy, is called the Bergman kernel of D,,.

We define the Toeplitz operator T), : L*(X,E ) —> L*(X,E p) as in Defini-
tion 4.1 by using the orthogonal projection P, defined above. Especially Ty, =
P, f Py for f € C*°(X,End(E)).

By the argument in Sect. 6.2 we see that Theorem 3.3 and Proposition 3.4 still
hold:

Theorem 6.15 Assume that (X, J, o) is a compact symplectic orbifold endowed with
a prequantum proper line bundle (L, h™, V). We endow X with a Riemannian metric
gTX compatible with J. Let (E,h%) be a proper orbifold Hermitian vector bundle

on X with Hermitian connection VE. Then

(i) the associated Dirac operator D), has a spectral gap (3.16), and
(i) Pp(x,x")=0O(p~) for d(x,x") > & > 0 in the sense of (3.19).

Now by combining the argument in Sects. 3.2 and 6.3, we get the following ex-
tension of Theorem 1.1.

Theorem 6.16 Let us make the same assumptions as in Theorem 6.15. Then for
every f,g € C®(X,End(E)) the product of the Toeplitz operators Ty, and Ty
is a Toeplitz operator, more precisely, it admits an asymptotic expansion in the sense
of (1.7), where C.(f, g) € C*°(X,End(E)) and C, are bidifferential operators de-
fined locally as in (1.7) on each covering U of an orbifold chart (Gy, 17) Y U.In
particular, Co(f, g8) = fg.

If f, g € C*(X), then (1.9) holds.

Relation (4.90) also holds for any f € C*°(X, End(E)).

As before, for the given data X, J,gTX,L,hL,VL from Theorem 6.15 and
E = C, Theorem 6.16 implies a canonical construction of the (associative) Berezin-
Toeplitz star-product f x g = > 2 RCi(f, g) € C®(X)[[h]] for every f,g €
C®(X).
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