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ABSTRACT. Let X be an orientable compact Levi-flat CR manifold and let L be a positive CR
complex line bundle over X. We prove that certain microlocal conjugations of the associated
Szegő kernel admit an asymptotic expansion with respect to high powers of L. As an appli-
cation, we give a Szegő kernel proof of the Kodaira type embedding theorem on Levi-flat CR
manifolds due to Ohsawa and Sibony.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The problem of global embedding CR manifolds is prominent in areas such as complex
analysis, partial differential equations and differential geometry. A general result is the CR
embedding of strictly pseudoconvex compact CR manifolds of dimension greater than five,
due to Boutet de Monvel [2].

For CR manifolds which are not strictly pseudoconvex, the idea of embedding CR manifolds
by means of CR sections of tensor powers Lk of a positive CR line bundle L → X was
considered in [12, 13, 14, 20, 25]. This was of course inspired by Kodaira’s embedding
theorem.

One way to attack this problem is to produce CR sections by projecting appropriate smooth
sections to the space of CR sections. So it is crucial to understand the large k behaviour of the
Szegő projection Πk, i. e. the orthogonal projection on space H0

b (X,Lk) of CR sections, and of
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its distributional kernel, the Szegő kernel. To study the Szegő projection it is convenient to
link it to a parametrix of the ∂b-Laplacian on (0, 1)-forms (called Kohn Laplacian). This is also
the method used in [2], where the parametrix turns out to be a pseudodifferential operator
of order 1/2.

In [14], we established analogues of the holomorphic Morse inequalities of Demailly [5,
19] for CR manifolds and we deduced that the space H0

b (X,Lk) is large under the assump-
tion that the curvature of the line bundle is adapted to the Levi form. In [12], the first author
introduced a microlocal cut-off function technique and could remove the assumptions link-
ing the curvatures of the line bundle and the Levi form under rigidity conditions on X and
the line bundle. Moreover, in [13], the first author established partial Szegő kernel asymp-
totic expansions and Kodaira embedding theorems on CR manifolds with transversal CR S1

actions.
All these developments need the assumptions that either the curvature of the line bundle

is adapted to the Levi form or rigidity conditions on X and the line bundle. The difficulty
of this kind of problem comes from the presence of positive eigenvalues of the curvature of
the line bundle and negative eigenvalues of the Levi form of X. Thus, it is very interesting to
consider Levi-flat CR manifolds. In this case, the eigenvalues of the Levi form are zero and
we will show that it is possible to remove the assumptions linking the curvatures of the line
bundle and the Levi form or the rigidity conditions on X and the line bundle.

Actually, Ohsawa and Sibony [25], cf. also [24], constructed a CR projective embedding of
class C κ for any κ ∈ N of a Levi-flat CR manifold by using ∂-estimates. A natural question
is whether we can improve the regularity to κ = ∞. Adachi [1] showed that the answer
is no, in general. The analytic difficulty of this problem comes from the fact that the Kohn
Laplacian is not hypoelliptic on Levi flat manifolds. Hypoellipticity and subelliptic estimates
are used on CR manifolds with non-degenerate Levi form in order to find parametrices of the
Kohn Laplacian and establish the Hodge decomposition, e. g. [2, 4, 15, 16]. Moreover, the
Szegő projection Πk is not a Fourier integral operator in our case.

In this paper, we establish a semiclassical Hodge decomposition for the the Kohn Lapla-
cian acting on powers Lk as k →∞ and we show that the composition Πk ◦Ak of Πk with an
appropriate pseudodifferential operatorAk is a semiclassical Fourier integral operator, admit-
ting an asymptotic expansion in k (see Theorem 1.3). From this result, we can understand
the large k behaviour of the Szegő projection and produce many global CR functions. As an
application, we give a Szegő kernel proof of Ohsawa and Sibony’s Kodaira type embedding
theorem on Levi-flat CR manifolds.

We now formulate the main results. Let (X,T 1,0X) be an orientable compact Levi-flat CR
manifold of dimension 2n−1, n > 2. We fix a Hermitian metric 〈 · | · 〉 on CTX such that T 1,0X
is orthogonal to T 0,1X. The Hermitian metric 〈 · | · 〉 on CTX induces a Hermitian metric 〈 · | · 〉
on the bundle T ∗0,qX of (0, q) forms of X. We denote by dvX the volume form on X induced
by 〈 · | · 〉. Let (L, h) be a CR complex line bundle over X, where the Hermitian fiber metric on
L is denoted by h. We will denote by RL the curvature of L (see Definition 2.6). We say that
L is positive if RL

x is positive definite at every x ∈ X. Let λ1(x), . . . , λn−1(x) be the eigenvalues
of RL

x with respect to 〈 · | · 〉, and set

(1.1) detRL
x := λ1(x) . . . λn−1(x).

For k > 0, let (Lk, hk) be the k-th tensor power of the line bundle (L, h). For u, v ∈ T ∗0,qx X⊗Lkx
we denote by 〈u | v 〉hk the induced pointwise scalar product induced by 〈 · | · 〉 and hk. We then
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get natural a global L2 inner product ( · | · )k on Ω0,q(X,Lk),

(α | β )k :=

∫
X

〈
α | β

〉
hk
dvX .

Similarly, we have an L2 inner product ( · | · ) on Ω0,q(X). We denote by L2
(0,q)(X,L

k) and
L2

(0,q)(X) the completions of Ω0,q(X,Lk) and Ω0,q(X) with respect to ( · | · )k and ( · | · ), respec-
tively. For q = 0, we write L2(X) := L2

(0,0)(X), L2(X,Lk) := L2
(0,0)(X,L

k).
Let ∂b,k : C∞(X,Lk) → Ω0,1(X,Lk) be the tangential Cauchy-Riemann operator cf. (2.15).

We extend ∂b,k to L2(X,Lk) by

∂b,k : Dom ∂b,k ⊂ L2(X,Lk)→ L2
(0,1)(X,L

k), u 7−→ ∂b,ku ,

with Dom ∂b,k := {u ∈ L2(X,Lk); ∂b,ku ∈ L2
(0,1)(X,L

k)}, where ∂b,ku is defined in the sense of
distributions. The Szegő projection

(1.2) Πk : L2(X,Lk)→ Ker ∂b,k

is the orthogonal projection with respect to ( · | · )k .
The Szegő projection Πk is not a smoothing operator. Nevertheless, our first result shows

that it enjoys the following regularity property.

Theorem 1.1. Let X be an orientable compact Levi-flat CR manifold and let (L, h) be a positive
CR line bundle on X. Then for every ` ∈ N0 there exists N` > 0 such that for every k ≥ N` ,
Πk(C∞(X,Lk)) ⊂ C `(X,Lk) and Πk : C∞(X,Lk)→ C `(X,Lk) is continuous.

Let us recall now that the Szegő kernel Π(x, y) of the boundary of a strictly pseudoconvex
domain is a Fourier integral operator with complex phase, by a result of Boutet de Monvel-
Sjöstrand [3] (here we consider the projection on the space of CR functions or CR sections
of a fixed CR line bundle). In particular, Π(x, y) is smooth outside the diagonal of x = y and
there is a precise description of the singularity on the diagonal x = y, where Π(x, x) has a
certain asymptotic expansion.

For a Levi-flat CR manifold we do not have such a neat characterization of the singularities
of the Szegő kernel Πk(x, y) for fixed k. The smoothing properties of Πk are linked to the
singularities of its kernel Πk(x, y) and to its large k behaviour. Although it is quite difficult
to describe them directly, we will show that Πk still admits an asymptotic expansion in weak
sense.

Let s be a local trivializing section of L on an open set D ⊂ X. We define the weight of
the metric with respect to s to be the function φ ∈ C∞(D) satisfying |s|2h = e−2φ. We have an
isometry

(1.3) Uk,s : L2(D)→ L2(D,Lk), u 7−→ uekφsk,

with inverse U−1
k,s : L2(D,Lk)→ L2(D), α 7→ e−kφs−kα. The localization of Πk with respect to

the trivializing section s is given by

(1.4) Πk,s : L2
comp(D)→ L2(D), Πk,s = U−1

k,sΠkUk,s,

where L2
comp(D) is the subspace of elements of L2(D) with compact support in D. The second

main result of this work shows that for k →∞, Πk is rapidly decreasing outside the diagonal,
and describes the singularities of Πk in terms of an oscillatory integral.
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Theorem 1.2. Let X be an orientable compact Levi-flat CR manifold of dimension 2n−1, n ≥ 2.
Assume that there is a positive CR line bundle L over X. Then for every ` ∈ N0, there is N` > 0
such that for every k ≥ N` we have:

(i) χ̃Πkχ = O(k−∞) : C∞(X,Lk)→ C `(X,Lk), ∀χ, χ̃ ∈ C∞(X) with Suppχ ∩ Supp χ̃ = ∅;
(ii) Πk,s − Sk = O(k−∞) : C∞0 (D) → C `(D), where Sk : C∞0 (D) → C∞(D) is a continuous

operator and the kernel of Sk is equivalent to the oscillatory integral

(1.5) Sk(x, y) ≡
∫
eikψ(x,y,u)s(x, y, u, k)du mod O(k−∞),

where

s(x, y, u, k) ∼
∞∑
j=0

sj(x, y, u)kn−j in Snloc (1;D ×D × R),

s(x, y, u, k), sj(x, y, u) ∈ C∞(D ×D × R), j = 0, 1, 2, . . . ,

s0(x, x, u) =
1

2
π−n

∣∣detRL
x

∣∣ , ∀x ∈ D, ∀u ∈ R,

(1.6)

and the phase function ψ ∈ C∞(D ×D × R) satisfies Imψ(x, y, u) ≥ 0 and

dxψ|(x,x,u) = −2Im ∂bφ(x) + uω0(x), x ∈ D, u ∈ R,

dyψ|(x,x,u) = 2Im ∂bφ(x)− uω0(x), x ∈ D, u ∈ R,
∂ψ

∂u
(x, y, u) = 0 and ψ(x, y, u) = 0 if and only if x = y,

(1.7)

and

(1.8) |dyψ(x, y, u)| ≥ c |u| , ∀u ∈ R, ∀(x, y) ∈ D ×D,

where c > 0 is a constant. Here ω0 ∈ C∞(X,T ∗X) is the positive 1-form of unit length orthogo-
nal to T ∗1,0X ⊕ T ∗0,1X, see Definition 2.4.

Note that integrating by parts with respect to y several times in (1.5) and using (1.8), we
conclude that Sk is well-defined as a continuous operator Sk : C∞0 (D)→ C∞(D).

Using Theorem 1.2, we will show that by composing Πk,s with certain semiclassical pseu-
dodifferential operators we obtain kernels having an asymptotic expansion in k. The freedom
to choose these operators will be crucial for proving Theorem 1.4.

Let Ak be a properly supported semi-classical pseudodifferential operator on D of order 0
and classical symbol (see Definition 2.3) with symbol

α(x, η, k) ∼
∞∑
j=0

k−jαj(x, η) in S0
loc (1, T ∗D),

α(x, η, k) = 0, αj(x, η) = 0, j = 0, 1, 2, . . . , for |η| ≥ 1
2
M , for some M > 0.

(1.9)

The third main result of this work is the following.

Theorem 1.3. Let X be an orientable compact Levi-flat CR manifold of dimension 2n−1, n ≥ 2.
Assume that there is a positive CR line bundle L over X. Then for every ` ∈ N0, there is N` > 0
such that for every k ≥ N` , (Πk,sAk)(· , ·) ∈ C `(D ×D) and

(1.10) (Πk,sAk)(x, y) ≡
∫
eikψ(x,y,u)a(x, y, u, k)du mod O(k−∞) in C `(D ×D),
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where

a(x, y, u, k) ∼
∞∑
j=0

aj(x, y, u)kn−j in Snloc (1;D ×D × (−M,M)),

a(x, y, u, k), aj(x, y, u) ∈ C∞0 (D ×D × (−M,M)), j = 0, 1, 2, . . . ,

a0(x, x, u) =
1

2
π−n

∣∣detRL
x

∣∣α0

(
x, uω0(x)− 2Im ∂bφ(x)

)
, x ∈ D, |u| < M,

(1.11)

and ψ ∈ C∞(D ×D × R) is as in Theorem 1.2.

For more results and references about the singularities of the Szegő kernel and embedding
of CR manifolds we refer to [15].

As an application of Theorem 1.1 and Theorem 1.3, we show that by projecting appropriate
sections through Πk we obtain CR sections which separate points and tangent vectors. Hence
we give a Szegő kernel proof of the following result due to Ohsawa and Sibony [24, 25].

Theorem 1.4. Let X be an orientable compact Levi-flat CR manifold of dimension 2n−1, n ≥ 2.
Assume that there is a positive CR line bundle L over X. Then, for every ` ∈ N there is a M` > 0
such that for every k ≥ M` , we can find Nk CR sections s0, s1, . . . , sNk

∈ C `(X,Lk), such that
the map X 3 x 7→ [s0(x), s1(x), . . . , sNk

(x)] ∈ CPNk is an embedding.

There are no compact Levi-flat real hypersurfaces in a Stein manifold, due to the maximum
principle. On the other hand, the non-existence of smooth Levi-flat hypersurfaces in complex
projective spaces Pn attracted a lot of attention, cf. [18, 26]. The non-existence has been
settled for n ≥ 3 but a famous still open conjecture is whether this is true for n = 2.

The paper is organized like follows. In Section 2 we collect some notations, terminology,
definitions and statements we use throughout. In Section 3, we give an explicit formula for
the semi-classical Kohn Laplacian �(q)

b,k in local coordinates and we determine the characteris-

tic manifold for �(q)
b,k. In Section 4 we exhibit a semi-classical Hodge decomposition for �(q)

b,k.
In Section 5, we establish the regularity of the Szegő projection and we prove Theorem 1.1.
In Section 6, by using the semi-classical Hodge decomposition theorem established in Sec-
tion 4 and the regularity for the Szegő projection, we prove Theorem 1.2 and Theorem 1.3.
In Section 7, we prove Theorem 1.4.

2. PRELIMINARIES

2.1. Definitions and notations from semi-classical analysis. We use the following nota-
tions: N = {1, 2, . . .}, N0 = N∪ {0}, R is the set of real numbers, R+ := {x ∈ R; x ≥ 0}. For a
multiindex α = (α1, . . . , αn) ∈ Nn

0 we set |α| = α1 + . . .+ αn. For x = (x1, . . . , xn) we write

xα = xα1
1 . . . xαn

n , ∂xj =
∂

∂xj
, ∂αx = ∂α1

x1
. . . ∂αn

xn =
∂|α|

∂xα
,

Dxj =
1

i
∂xj , Dα

x = Dα1
x1
. . . Dαn

xn , Dx =
1

i
∂x .
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Let z = (z1, . . . , zn), zj = x2j−1 + ix2j, j = 1, . . . , n, be coordinates of Cn. We write

zα = zα1
1 . . . zαn

n , zα = zα1
1 . . . zαn

n ,

∂zj =
∂

∂zj
=

1

2

( ∂

∂x2j−1

− i ∂

∂x2j

)
, ∂zj =

∂

∂zj
=

1

2

( ∂

∂x2j−1

+ i
∂

∂x2j

)
,

∂αz = ∂α1
z1
. . . ∂αn

zn =
∂|α|

∂zα
, ∂αz = ∂α1

z1
. . . ∂αn

zn
=
∂|α|

∂zα
.

Let M be a C∞ orientable paracompact manifold. We let TM and T ∗M denote the tangent
bundle of M and the cotangent bundle of M respectively. The complexified tangent bundle
of M and the complexified cotangent bundle of M will be denoted by CTM and CT ∗M
respectively. We write 〈 · , · 〉 to denote the pointwise duality between TM and T ∗M . We
extend 〈 · , · 〉 bilinearly to CTM × CT ∗M .

Let E be a C∞ vector bundle over M . The fiber of E at x ∈ M will be denoted by Ex. Let
F be another vector bundle over M . We write E � F or F � E∗ to denote the vector bundle
over M ×M with fiber over (x, y) ∈M ×M consisting of the linear maps from Ex to Fy.

Let Y ⊂ M be an open set. The space of smooth sections of E over Y is denoted by
C∞(Y,E) and the subspace of smooth sections with compact support is denoted by C∞0 (Y,E).
Let KM be the canonical bundle of M . The space D ′(Y,E) of distribution sections of E is the
dual of C∞0 (Y,E∗⊗KM). Since M is orientable we can identify C∞0 (Y,E∗⊗KM) to C∞0 (Y,E∗)
by using a volume element on M , so we can think D ′(Y,E) as the dual of C∞0 (Y,E∗).

Let E ′(Y,E) be the subspace of D ′(Y,E) whose elements have compact support in Y . For
m ∈ R, we let Hm(Y,E) denote the Sobolev space of order m of sections of E over Y . Put

Hm
loc (Y,E) =

{
u ∈ D ′(Y,E); ϕu ∈ Hm(Y,E), ∀ϕ ∈ C∞0 (Y )

}
,

Hm
comp (Y,E) = Hm

loc(Y,E) ∩ E ′(Y,E) .

We recall the Schwartz kernel theorem [9, Theorems 5.2.1, 5.2.6], [19, Thorem B.2.7]. Let
E and F be smooth vector bundles over M . Let A(·, ·) ∈ D ′(Y × Y, F � E∗). For any fixed
u ∈ C∞0 (M,E), the linear map C∞0 (M,F ∗) 3 v 7→ (A(·, ·), v ⊗ u) ∈ C defines a distribution
Au ∈ D ′(Y, F ). The operator A : C∞0 (M,E)→ D ′(M,F ), u 7→ Au, is linear and continuous.

The Schwartz kernel theorem asserts that, conversely, for any continuous linear operator
A : C∞0 (M,E) → D ′(M,F ) there exists a unique distribution A(·, ·) ∈ D ′(M ×M,F � E∗)
such that (Au, v) = (A(·, ·), v ⊗ u) for any u ∈ C∞0 (M,E), v ∈ C∞0 (M,F ∗). The distribution
A(·, ·) is called the Schwartz distribution kernel of A. We say that A is properly supported if
the canonical projections on the two factors restricted to SuppA(·, ·) ⊂M ×M are proper.

The following two statements are equivalent:

(a) A can be extended to a continuous operator A : E ′(M,E)→ C∞(M,F ),

(b) A(·, ·) ∈ C∞(M ×M,F � E∗).

If A satisfies (a) or (b), we say that A is a smoothing operator. Furthermore, A is smoothing
if and only if for all N ≥ 0 and s ∈ R, A : Hs

comp (M,E)→ Hs+N
loc (M,F ) is continuous.

Let A be a smoothing operator. Then for any volume form dµ, the Schwartz kernel of A is
represented by a smooth kernel K ∈ C∞(M ×M,F � E∗), called the Schwartz kernel of A
with respect to dµ, such that

(Au)(x) =

∫
M

K(x, y)u(y) dµ(y) , for any u ∈ C∞0 (M,E) .(2.1)
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Then A can be extended as a linear continuous operator A : E ′(M,E)→ C∞(M,F ) by setting
(Au)(x) =

(
u(·), K(x, ·)

)
, x ∈M , for any u ∈ E ′(M,E).

Definition 2.1. The Szegő kernel of the pair (X,Lk) is the the Schwartz distribution kernel
Πk(·, ·) ∈ D ′(X ×X,Lk � Lk) of the Szegő projection Πk given by (1.2).

Let W1, W2 be open sets in RN and let E and F be complex Hermitian vector bundles
over W1 and W2. Let s, s′ ∈ R and n0 ∈ R. For a k-dependent continuous function Fk :
Hs

comp (W1, E)→ Hs′

loc (W2, F ) we write

Fk = O(kn0) : Hs
comp (W1, E)→ Hs′

loc (W2, F ),

if for any χ0 ∈ C∞(W2), χ1 ∈ C∞0 (W1), there is a positive constant c > 0 independent of k,
such that

(2.2) ‖(χ0Fkχ1)u‖s′ ≤ ckn0 ‖u‖s , ∀u ∈ H
s
loc (W1, E),

where ‖·‖s denotes the usual Sobolev norm of order s. We write

Fk = O(k−∞) : Hs
comp (W1, E)→ Hs′

loc (W2, F ),

if Fk = O(k−N) : Hs
comp (W1, E) → Hs′

loc (W2, F ), for every N > 0. Similarly, let ` ∈ N, for a
k-dependent continuous function Gk : C∞0 (W1, E)→ C `(W2, F ) we write

Gk = O(k−∞) : C∞0 (W1, E)→ C `(W2, F ),

if for any χ0 ∈ C∞(W2), χ1 ∈ C∞0 (W1) and N > 0, there are positive constants c > 0 and
M ∈ N0 independent of k, such that

(2.3) ‖(χ0Gkχ1)u‖C `(W2,F ) ≤ ck−N ‖u‖CM (W1,E) , ∀u ∈ C∞0 (W1, E),

A k-dependent continuous operator Ak : C∞0 (W1, E)→ D ′(W2, F ) is called k-negligible on
W2 ×W1 if for k large enough Ak is smoothing and for any K b W2 ×W1, any multi-indices
α, β and any N ∈ N there exists CK,α,β,N > 0 such that

(2.4)
∣∣∂αx∂βyAk(x, y)

∣∣ ≤ CK,α,β,Nk
−N , on K.

Let Ck : C∞0 (W1, E) → D ′(W2, F ) be another k-dependent continuous operator. We write
Ak ≡ Ck mod O(k−∞) (on W2 ×W1) or Ak(x, y) ≡ Ck(x, y) mod O(k−∞) (on W2 ×W1) if
Ak − Ck is k-negligible on W2 ×W1.

Similarly, for ` ∈ N0, Ak : C∞0 (W1, E)→ D ′(W2, F ) is called k-negligible in the C ` norm on
W2 ×W1 if Ak(x, y) ∈ C `(W2 ×W1, Ey � Fx) for k large and (2.4) holds for multi-indices α,
β with |α|+ |β| ≤ `.

Let Ck : C∞0 (W1, E) → D ′(W2, F ) be another k-dependent continuous operator. We write
Ak ≡ Ck mod O(k−∞) in the C ` norm (on W2 ×W1) or Ak(x, y) ≡ Ck(x, y) mod O(k−∞) in
C ` norm (on W2 ×W1) if Ak − Ck is k-negligible in C ` norm on W2 ×W1.

Let Bk : L2(X,Lk) → L2(X,Lk) be a continuous operator. Let s, s1 be local trivializing
sections of L on open sets D0 b M , D1 b M respectively, |s|2h = e−2φ, |s1|2h = e−2φ1. The
localized operator (with respect to the trivializing sections s and s1) of Bk is given by

Bk,s,s1 : L2(D1) ∩ E ′(D1)→ L2(D), u 7−→ e−kφs−kBk(s
k
1e
kφ1u) = U−1

k,sBkUk,s1 ,(2.5)

and let Bk,s,s1(x, y) ∈ D ′(D ×D1) be the distribution kernel of Bk,s,s1. We write

Bk = O(kn0) : Hs(X,Lk)→ Hs′(X,Lk), n0 ∈ R,
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if for all local trivializing sections s, s1 on D and D1 respectively, we have

Bk,s,s1 = O(kn0) : Hs
comp (D1)→ Hs′

loc (D).

We write
Bk = O(k−∞) : Hs(X,Lk)→ Hs′(X,Lk), n0 ∈ R,

if for all local trivializing sections s, s1 on D and D1 respectively, we have

Bk,s,s1 = O(k−∞) : Hs
comp (D1)→ Hs′

loc (D).

Fix ` ∈ N. We write
Bk = O(k−∞) : C∞(X,Lk)→ C `(X,Lk),

if for all local trivializing sections s, s1 on D and D1 respectively, we have

Bk,s,s1 = O(k−∞) : C∞0 (D1)→ C `(D).

We recall semi-classical symbol spaces (see Dimassi-Sjöstrand [7, Chapter 8]):

Definition 2.2. Let W be an open set in RN . Let

S(1;W ) :=
{
a ∈ C∞(W ) | ∀α ∈ NN

0 : sup
x∈W
|∂αa(x)| <∞

}
,

S0
loc (1;W ) :=

{
(a(·, k))k∈N | ∀α ∈ NN

0 ,∀χ ∈ C∞0 (W ) : sup
k∈N

sup
x∈W
|∂αa(x, k)| <∞

}
.

For m ∈ R let
Smloc(1;W ) =

{
(a(·, k))k∈N | (k−ma(·, k)) ∈ S0

loc (1;W )
}
.

Hence a(·, k)) ∈ Smloc(1;W ) if for every α ∈ NN
0 and χ ∈ C∞0 (W ), there exists Cα > 0, such

that |∂α(χa(·, k))| ≤ Cαk
m on W .

Consider a sequence aj ∈ S
mj

loc (1), j ∈ N0, where mj ↘ −∞, and let a ∈ Sm0
loc (1). We say

that

a(·, k) ∼
∞∑
j=0

aj(·, k), in Sm0
loc (1),

if for every ` ∈ N0 we have a −
∑`

j=0 aj ∈ S
m`+1

loc (1) . For a given sequence aj as above, we
can always find such an asymptotic sum a, which is unique up to an element in S−∞loc (1) =
S−∞loc (1;W ) := ∩mSmloc (1).

We say that a(·, k) ∈ Smloc (1) is a classical symbol on W of order m if

(2.6) a(·, k) ∼
∞∑
j=0

km−jaj in Sm0
loc (1), aj(x) ∈ Sloc (1), j = 0, 1 . . . .

The set of all classical symbols on W of order m0 is denoted by Sm0
loc ,cl (1) = Sm0

loc ,cl (1;W ).

Definition 2.3. Let W be an open set in RN . A semi-classical pseudodifferential operator on
W of order m and classical symbol is a k-dependent continuous operator Ak : C∞0 (W ) →
C∞(W ) such that the distribution kernel Ak(x, y) is given by the oscillatory integral

Ak(x, y) ≡ kN

(2π)N

∫
eik〈x−y,η〉a(x, y, η, k)dη mod O(k−∞),

a(x, y, η, k) ∈ Smloc ,cl (1;W ×W × RN).

(2.7)

8
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We shall identify Ak with Ak(x, y). It is clear that Ak has a unique continuous extension
Ak : E ′(W )→ D ′(W ). For u ∈ C∞0 (W ) we have

(2.8) Aku(x) ≡ kN

(2π)N

∫
eik〈x−y,η〉α(x, η, k)u(y)dη mod O(k−∞),

with symbol

(2.9) α(x, η, k) ∈ Smloc ,cl (1;W × RN) = Smloc ,cl (1;T ∗W ).

2.2. CR manifolds and bundles. A Cauchy-Riemann (CR) manifold (of hypersurface type)
is a pair (X,T 1,0X) where X is a smooth manifold of dimension 2n − 1, n > 2, and T 1,0X is
a sub-bundle of the complexified tangent bundle CTX := C⊗ TX, of rank (n− 1), such that
T 1,0X ∩ T 1,0X = {0} and the set of smooth sections of T 1,0X is closed under the Lie bracket.
We call T 1,0X the CR structure of X and we denote T 0,1X := T 1,0X.

We say that (X,T 1,0X) is a Levi-flat CR manifold if the set of smooth sections of T 1,0X ⊕
T 0,1X is closed under the Lie bracket. If X is Levi-flat, there exists a smooth foliation of X, of
real codimension one and whose leaves are complex manifolds: it is obtained by integrating
the distribution (T 1,0X ⊕ T 0,1X) ∩ TX.

In this paper, we assume throughout that X is an orientable Levi-flat manifold.
Fix a smooth Hermitian metric 〈 · | · 〉 on CTX so that T 1,0X is orthogonal to T 0,1X and
〈u | v 〉 is real if u, v are real tangent vectors. Then locally there is a real non-vanishing vector
field T of length one which is pointwise orthogonal to T 1,0X ⊕ T 0,1X. T is unique up to the
choice of sign. For u ∈ CTX, we write |u|2 := 〈u |u 〉. Denote by T ∗1,0X and T ∗0,1X the
dual bundles of T 1,0X and T 0,1X, respectively. They can be identified with subbundles of the
complexified cotangent bundle CT ∗X.

Define the vector bundle of (0, q)-forms by T ∗0,qX := ΛqT ∗0,1X. The Hermitian metric 〈 · | · 〉
on CTX induces, by duality, a Hermitian metric on CT ∗X and also on the bundles of (0, q)
forms T ∗0,qX, q = 0, 1, . . . , n− 1. We shall also denote all these induced metrics by 〈 · | · 〉. Let
Ω0,q(D) denote the space of smooth sections of T ∗0,qX over D and let Ω0,q

0 (D) be the subspace
of Ω0,q(D) whose elements have compact support in D. Similarly, if E is a vector bundle over
D, then we let Ω0,q(D,E) denote the space of smooth sections of T ∗0,qX ⊗ E over D and let
Ω0,q

0 (D,E) be the subspace of Ω0,q(D,E) whose elements have compact support in D.
Locally we can choose an orthonormal frame ω1, . . . , ωn−1 of the bundle T ∗1,0X. Then

ω1, . . . , ωn−1 is an orthonormal frame of the bundle T ∗0,1X. The real (2n − 2)-form ω =
in−1ω1 ∧ ω1 ∧ . . . ∧ ωn−1 ∧ ωn−1 is independent of the choice of the orthonormal frame. Thus
ω is globally defined. Locally there is a real 1-form ω0 of length one which is orthogonal to
T ∗1,0X ⊕ T ∗0,1X. The form ω0 is unique up to the choice of sign. Since X is orientable, there
is a nowhere vanishing (2n−1) form Q on X. Thus, ω0 can be specified uniquely by requiring
that ω ∧ω0 = fQ, where f is a positive function. Therefore ω0, so chosen, is globally defined.

Definition 2.4. We call ω0 the positive 1-form of unit length orthogonal to T ∗1,0X ⊕ T ∗0,1X.

We choose a vector field T so that

(2.10) |T | = 1 , 〈T , ω0 〉 = −1 .

Therefore T is uniquely determined. We call T the uniquely determined global real vector
field. We have the pointwise orthogonal decompositions:

CT ∗X = T ∗1,0X ⊕ T ∗0,1X ⊕ {λω0; λ ∈ C} ,
CTX = T 1,0X ⊕ T 0,1X ⊕ {λT ; λ ∈ C} .

(2.11)

9



Chin-Yu Hsiao & George Marinescu Szegő kernel asymptotics and Kodaira embedding theorems

Let

(2.12) ∂b : Ω0,q(X)→ Ω0,q+1(X)

be the tangential Cauchy-Riemann operator. Let U ⊂ X be an open set. We say that a
function u ∈ C∞(U) is Cauchy-Riemann (CR for short) (on U) if ∂bu = 0.

Definition 2.5. Let L be a complex line bundle over a CR manifold X. We say that L is a
Cauchy-Riemann (CR for short) (complex) line bundle over X if its transition functions are
CR.

If X is Levi-flat, then the restriction a CR line bundle to any leaf Y of the Levi-foliation is a
holomorphic line bundle.

From now on, we let (L, h) be a CR line bundle over X, where the Hermitian fiber metric
on L is denoted by h. We will denote by φ the local weights of the Hermitian metric. More
precisely, if s is a local trivializing section of L on an open subset D ⊂ X, then the local
weight of h with respect to s is the function φ ∈ C∞(D,R) for which

(2.13) |s(x)|2h = e−2φ(x) , x ∈ D.

Definition 2.6. Let s be a local trivializing section of L on an open subset D ⊂ X and φ the
corresponding local weight as in (2.13). For p ∈ D, we define the Hermitian quadratic form
Mφ

p on T 1,0
p X by

(2.14) Mφ
p (U, V ) =

〈
U ∧ V , d

(
∂bφ− ∂bφ

)
(p)
〉
, U, V ∈ T 1,0

p X,

where d is the usual exterior derivative and ∂bφ = ∂bφ. Since X is Levi-flat, the definition
of Mφ

p does not depend on the choice of local trivializations (see [14, Proposition 4.2]).
Hence there exists a smooth section RL of the bundle of Hermitian forms on T 1,0X such that
RL|D = Mφ. We call RL the curvature of (L, h). We say that (L, h), or RL, is positive if RL

x is
positive definite, for every x ∈ X. We say that L is a positive CR line bundle over X if there
is a Hermitian fiber metric h on L such that the induced curvature RL is positive.

In this paper, we assume that L is a positive CR line bundle over a Levi-flat CR manifold
X and we fix a Hermitian fiber metric h of L such that the induced curvature RL is positive.
Note that a positive line bundle (L, h) in the sense of Definition 2.6 is positive along the leaves
of the Levi-foliation: its restriction (L, h)|Y to any leaf Y is positive (that is, the curvature of
the associated Chern connection is positive).

Let Lk, k > 0, be the k-th tensor power of the line bundle L. The Hermitian fiber metric on
L induces a Hermitian fiber metric on Lk that we shall denote by hk. If s is a local trivializing
section of L then sk is a local trivializing section of Lk. We write ∂b,k to denote the tangential
Cauchy-Riemann operator acting on forms with values in Lk, defined locally by

(2.15) ∂b,k : Ω0,q(X,Lk)→ Ω0,q+1(X,Lk) , ∂b,k(s
ku) := sk∂bu,

where s is a local trivialization of L on an open subset D ⊂ X and u ∈ Ω0,q(D).

3. THE SEMI-CLASSICAL KOHN LAPLACIAN

We first introduce some notations. For v ∈ T ∗0,qX we denote by v∧ : T ∗0,•X → T ∗0,•+qX
the exterion multiplication by v and let v∧,∗ : T ∗0,•X → T ∗0,•−qX be the adjoint of v∧ with
respect to 〈 · | · 〉. Hence, 〈 v ∧ u | g 〉 = 〈u | v∧,∗g 〉, for all u ∈ T ∗0,pX, g ∈ T ∗0,p+qX.

10
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For any r = 0, 1, . . . , n− 2, we denote by

(3.1) ∂
∗
b,k : Dom ∂

∗
b,k ⊂ L2

(0,r+1)(X,L
k)→ L2

(0,r)(X,L
k)

the Hilbert space adjoint of ∂b,k with respect to ( · | · )k. Let �(q)
b,k denote the (Gaffney extension

of the) Kohn Laplacian given by

Dom�(q)
b,k = {s ∈ Dom ∂b,k ∩Dom ∂

∗
b,k ⊂ L2

(0,q)(X,L
k); ∂b,ks ∈ Dom ∂

∗
b,k, ∂

∗
b,ks ∈ Dom ∂b,k} ,

(3.2)

and �(q)
b,ks = ∂b,k∂

∗
b,ks+ ∂

∗
b,k∂b,ks for s ∈ Dom�(q)

b,k. Note that Ker�(0)
b,k = Ker ∂b,k. By a result of

Gaffney [19, Proposition 3.1.2], �(q)
b,k is a positive self-adjoint operator.

Let s be a local trivializing of L on an open subset D ⊂ X. By using the map (1.3) we have
the unitary identifications:

(3.3)



C∞0 (D,T ∗0,qX)←→ C∞0 (D,Lk ⊗ T ∗0,qX)

u←→ ũ = Uk,su, u = U−1
k,s ũ,

∂s,k ←→ ∂b,k, ∂s,ku = U−1
k,s∂b,kUk,s,

∂
∗
s,k ←→ ∂

∗
b,k, ∂

∗
s,ku = U−1

k,s∂
∗
b,kUk,s,

�(q)
s,k ←→ �

(q)
b,k, �

(q)
s,ku = U−1

k,s�
(q)
b,kUk,s.

It is easy to see that

(3.4) ∂s,k = ∂b + k(∂bφ)∧ , ∂
∗
s,k = ∂

∗
b + k(∂bφ)∧,∗

where ∂
∗
b : Ω0,q+1(X)→ Ω0,q(X) is the formal adjoint of ∂b with respect to ( · | · ), and

(3.5) �(q)
s,k = ∂s,k∂

∗
s,k + ∂

∗
s,k∂s,k.

The operator �(q)
s,k will be called the localized Kohn Laplacian.

Let us choose a smooth orthonormal frame {ej}n−1
j=1 for T ∗0,1X on D. Let {Zj}n−1

j=1 denote the
dual frame of T 0,1X. Let Z∗j be the formal adjoint of Zj with respect to ( · | · ), j = 1, . . . , n−1,
that is, (Zjf | h) = (f | Z∗j h), f, h ∈ C∞0 (D).

Proposition 3.1 ([13, Proposition 3.1]). With the notations used before, using the identifica-
tion (3.3), we can identify the Kohn Laplacian �(q)

b,k with

�(q)
s,k = ∂s,k∂

∗
s,k + ∂

∗
s,k∂s,k

=
n−1∑
j=1

(Z∗j + kZj(φ))(Zj + kZj(φ))

+
n−1∑
j,t=1

ej ∧ e∧,∗t ◦ [Zj + kZj(φ), Z∗t + kZt(φ)]

+ ε(Z + kZ(φ)) + ε(Z∗ + kZ(φ)) + f,

(3.6)

where ε(Z + kZ(φ)) denotes remainder terms of the form
∑
aj(Zj + kZj(φ)) with aj smooth,

matrix-valued and independent of k, for all j, and similarly for ε(Z∗+kZ(φ)) and f is a smooth
function independent of k.

11
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Until further notice, we work with some real local coordinates x = (x1, . . . , x2n−1) defined
on D. Let ξ = (ξ1, . . . , ξ2n−1) denote the dual variables of x. Then (x, ξ) are local coordinates
of the cotangent bundle T ∗D. Let qj(x, ξ) be the semi-classical principal symbol of Zj+kZj(φ),
j = 1, . . . , n− 1. If rj(x, ξ) denotes the principal symbol of Zj, then qj(x, ξ) = rj(x, ξ) +Zj(φ).
The semi-classical principal symbol of �(q)

s,k is given by

(3.7) p0 =
n−1∑
j=1

qjqj.

The characteristic manifold Σ of �(q)
s,k is

Σ = {(x, ξ) ∈ T ∗D; p0(x, ξ) = 0}
=
{

(x, ξ) ∈ T ∗D; q1(x, ξ) = . . . = qn−1(x, ξ) = q1(x, ξ) = . . . = qn−1(x, ξ) = 0
}
.

(3.8)

From (3.8), we see that p0 vanishes to second order at Σ. The following is also well-
known [13, Proposition 3.2]

Proposition 3.2. We have

(3.9) Σ =
{

(x, ξ) ∈ T ∗D; ξ = λω0(x)− 2Im ∂bφ(x), λ ∈ R
}
.

Let σ = dξ ∧ dx denote the canonical two form on T ∗D. We are interested in whether σ is
non-degenerate at ρ ∈ Σ. We recall that σ is non-degenerate at ρ ∈ Σ if σ(u, v) = 0 for all
v ∈ CTρΣ, where u ∈ CTρΣ, then u = 0. We recall that we work with the assumption that X
is Levi-flat. From this observation and Theorem 3.5 in [13] , we conclude that:

Theorem 3.3. σ is non-degenerate at every point of Σ .

4. SEMI-CLASSICAL HODGE DECOMPOSITION FOR THE LOCALIZED KOHN LAPLACIAN

In this section, we will apply the method introduced in [13] to establish semi-classical
Hodge decomposition theorems for �(0)

s,k. Since the procedure is similar, we will only give the
outline. We refer the reader to [13, Section 4 and Section 5] for the details.

4.1. The heat equation for the local operator �(0)
s . We first introduce some notations. Let

Ω be an open set in RN and let f , g be positive continuous functions on Ω. We write f � g if
for every compact set K ⊂ Ω there is a constant cK > 0 such that f ≤ cKg and g ≤ cKf on K.

Let s be a local trivializing section of L on an open subset D b X and |s|2h = e−2φ. In this
section, we work with some real local coordinates x = (x1, . . . , x2n−1) defined on D. We write
ξ = (ξ1, . . . , ξ2n−1) or η = (η1, . . . , η2n−1) to denote the dual coordinates of x. We consider the
domain D̂ := D×R. We write x̂ := (x, x2n) = (x1, x2, . . . , x2n−1, x2n) to denote the coordinates
of D×R, where x2n is the coordinate of R. We write ξ̂ := (ξ, ξ2n) or η̂ := (η, η2n) to denote the
dual coordinates of x̂, where ξ2n and η2n denote the dual coordinate of x2n. We shall use the

following notations: 〈x, η〉 :=
2n−1∑
j=1

xjηj, 〈x, ξ〉 :=
2n−1∑
j=1

xjξj, 〈x̂, η̂〉 :=
2n∑
j=1

xjηj, 〈x̂, ξ̂〉 :=
2n∑
j=1

xjξj.

Let T ∗0,qD̂ be the bundle with fiber T ∗0,qx̂ D̂ := {u ∈ T ∗0,qx D, x̂ = (x, x2n)} at x̂ ∈ D̂. From
now on, for every point x̂ = (x, x2n) ∈ D̂, we identify T ∗0,qx̂ D̂ with T ∗0,qx X. Let 〈 · | · 〉 be the
Hermitian metric on CT ∗D̂ given by 〈 ξ̂ | η̂ 〉 = 〈 ξ | η 〉 + ξ2nη2n, (x̂, ξ̂), (x̂, η̂) ∈ CT ∗D̂. Let
Ω0,q(D̂) denote the space of smooth sections of T ∗0,qD̂ over D̂ and put

Ω0,q
0 (D̂) := Ω0,q(D̂) ∩ E ′(D̂, T ∗0,qD̂).
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Using the identification

ku(x) = e−ikx2n
(
−i ∂

∂x2n

(
eikx2nu

)
(x)

)
, u ∈ Ω0,q(D),

we consider the following operators

∂s : Ω0,r(D̂)→ Ω0,r+1(D̂), ∂s,ku = e−ikx2n+1∂s(ue
ikx2n), u ∈ Ω0,r(D),

∂
∗
s : Ω0,r+1(D̂)→ Ω0,r(D̂), ∂

∗
s,ku = e−ikx2n+1∂

∗
s(ue

ikx2n), u ∈ Ω0,r+1(D),
(4.1)

where r = 0, 1, . . . , n− 1 and ∂s,k, ∂
∗
s,k are given by (3.3). From (3.4) it is easy to see that

∂s =
n−1∑
j=1

(
ej ∧

(
Zj − iZj(φ)

∂

∂x2n

)
+ (∂bej)∧e∧,∗j

)
,

∂
∗
s =

n−1∑
j=1

(
e∧,∗j

(
Z∗j − iZj(φ)

∂

∂x2n

)
+ ej ∧ (∂bej)

∧,∗
)
,

(4.2)

where Z1, . . . , Zn−1, Z∗1 , . . . , Z
∗
n−1 and e1, . . . , en−1 are as in Proposition 3.1. Put

(4.3) �(q)
s := ∂s∂

∗
s + ∂

∗
s∂s : Ω0,q(D̂)→ Ω0,q(D̂).

From (4.1), we have

(4.4) �(q)
s,ku = e−ikx2n�(q)

s (ueikx2n), ∀u ∈ Ω0,q(D),

where �(q)
s,k is given by (3.3). Let u ∈ Ω0,q

0 (D̂). Note that

k

∫
e−ikx2nu(x)dx2n =

∫
i
∂

∂x2n

(e−ikx2n)u(x)dx2n =

∫
e−ikx2n

(
−i ∂u
∂x2n

(x)
)
dx2n.

From this observation and the explicit formulas for ∂s,k, ∂
∗
s,k, ∂s and ∂

∗
s (see (3.4) and (4.2)),

we conclude that

(4.5) �(q)
s,k

∫
e−ikx2nu(x)dx2n =

∫
e−ikx2n(�(q)

s u)(x)dx2n, u ∈ Ω0,q
0 (D̂).

As in Proposition 4.1 in [13], we have:

Proposition 4.1. With the notations used before, we have

�(q)
s = ∂s∂

∗
s + ∂

∗
s∂s

=
n−1∑
j=1

(
Z∗j − iZj(φ)

∂

∂x2n

)(
Zj − iZj(φ)

∂

∂x2n

)

+
n−1∑
j,t=1

ej ∧ e∧,∗t
[
Zj − iZj(φ)

∂

∂x2n

, Z∗t − iZt(φ)
∂

∂x2n

]
+ ε

(
Z − iZ(φ)

∂

∂x2n

)
+ ε

(
Z∗ − iZ(φ)

∂

∂x2n

)
+ zero order terms,

(4.6)

where ε(Z − iZ(φ) ∂
∂x2n

) denotes remainder terms of the form
∑
aj(Zj − iZj(φ) ∂

∂x2n
) with aj

smooth, matrix-valued, for all j, and similarly for ε(Z∗ − iZ(φ) ∂
∂x2n

).
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In this paper, we will only consider q = 0. Consider the problem

(4.7)
{

(∂t +�(0)
s )u(t, x̂) = 0 in R+ × D̂,

u(0, x̂) = v(x̂).

Definition 4.2. We say that a(t, x̂, η̂) ∈ C∞(R+ × T ∗D̂) is quasi-homogeneous of degree j if
a(t, x̂, λη̂) = λja(λt, x̂, η̂) for all λ > 0, |η̂| ≥ 1. We say that b(x̂, η̂) ∈ C∞(T ∗D̂) is positively
homogeneous of degree j if b(x̂, λη̂) = λjb(x̂, η̂) for all λ > 0, |η̂| ≥ 1.

We look for an approximate solution of (4.7) of the form u(t, x̂) = A(t)v(x̂),

(4.8) A(t)v(x̂) =
1

(2π)2n

∫∫
ei(Ψ(t,x̂,η̂)−〈ŷ,η̂〉)a(t, x̂, η̂)v(ŷ)dŷdη̂

where formally a(t, x̂, η̂) ∼
∞∑
j=0

aj(t, x̂, η̂), aj(t, x̂, η̂) ∈ C∞(R+ × T ∗D̂), aj(t, x̂, η̂) is a quasi-

homogeneous function of degree −j. The phase Ψ(t, x̂, η̂) should solve the eikonal equation

∂Ψ

∂t
− ip̂0(x̂,Ψ′x̂) = O(|Im Ψ|N),∀N ≥ 0,

Ψ|t=0 = 〈x̂, η̂〉
(4.9)

with Im Ψ ≥ 0, where p̂0 denotes the principal symbol of �(0)
s . From (4.6), we have

(4.10) p̂0 =
n−1∑
j=1

q̂j q̂j,

where q̂j is the principal symbol of Zj − iZj(φ) ∂
∂x2n

, j = 1, . . . , n − 1. The characteristic

manifold Σ̂ of �(0)
s is given by

(4.11) Σ̂ =
{

(x̂, ξ̂) ∈ T ∗D̂; q̂1(x̂, ξ̂) = . . . = q̂n−1(x̂, ξ̂) = q̂1(x̂, ξ̂) = . . . = q̂n−1(x̂, ξ̂) = 0
}
.

From (4.11), we see that p̂0 vanishes to second order at Σ̂. Let σ̂ denote the canonical two
form on T ∗D̂. As Proposition 3.2 and Theorem 3.3, we have

Theorem 4.3. With the notations used above, we have

(4.12) Σ̂ =
{

(x̂, ξ̂) ∈ T ∗D̂; ξ̂ = (λω0(x)− 2Im ∂bφ(x)ξ2n, ξ2n), λ ∈ R
}
.

Put

Σ̂+ =
{

(x̂, ξ̂) ∈ T ∗D̂; ξ̂ = (λω0(x)− 2Im ∂bφ(x)ξ2n, ξ2n), λ ∈ R, ξ2n > 0
}
,

Σ̂− =
{

(x̂, ξ̂) ∈ T ∗D̂; ξ̂ = (λω0(x)− 2Im ∂bφ(x)ξ2n, ξ2n), λ ∈ R, ξ2n < 0
}
.

(4.13)

Then, σ̂ is non-degenerate at every point of Σ̂+ ∪ Σ̂−.

Put

(4.14) U =
{

(x̂, ξ̂) ∈ T ∗D̂; ξ̂ = (ξ, ξ2n), ξ2n > 0
}
.

Then U is a conic open set of T ∗D̂. Until further notice, we work in U . Since σ̂ is non-
degenerate at each point of U ∩ Σ̂ = Σ̂+, (4.9) can be solved with Im Ψ ≥ 0 on U . More
precisely, we have the following.
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Theorem 4.4. There exists Ψ(t, x̂, η̂) ∈ C∞(R+ × U) such that Ψ(t, x̂, η̂) is quasi-homogeneous
of degree 1 and Im Ψ ≥ 0 and such that (4.9) holds where the error term is uniform on every set
of the form [0, T ]×K with T > 0 and K ⊂ U compact. Furthermore, Ψ is unique up to a term
which is O(|Im Ψ|N) locally uniformly for every N and

Ψ(t, x̂, η̂) = 〈x̂, η̂〉 on Σ̂+,

dx̂,η̂(Ψ− 〈x̂, η̂〉) = 0 on Σ̂+.
(4.15)

Moreover, we have

(4.16) Im Ψ(t, x̂, η̂) �
(
|η̂| t |η̂|

1 + t |η|

)(
dist

(
(x̂,

η̂

|η̂|
), Σ̂+

))2

, t ≥ 0, (x̂, η̂) ∈ U.

Furthermore, we can take Ψ(t, x̂, η̂) so that

(4.17) Ψ(t, x̂, η̂) = Ψ(t, (x, 0), η̂) + x2nη2n.

Theorem 4.5. There exists a function Ψ(∞, x̂, η̂) ∈ C∞(U) with a uniquely determined Taylor
expansion at each point of Σ̂+ such that Ψ(∞, x̂, η̂) is positively homogeneous of degree 1 and for

every compact setK ⊂ U there is a cK > 0 such that Im Ψ(∞, x̂, η̂) ≥ cK |η̂|
(

dist
(
(x̂, η̂|η̂|), Σ̂+

))2

,

dx̂,η̂(Ψ(∞, x̂, η̂) − 〈x̂, η̂〉) = 0 on Σ̂+. If λ ∈ C(U), λ > 0 and λ(x̂, ξ̂) < minλj(x̂, ξ̂), for all
(x̂, ξ̂) = (x̂, (λω0(x) − 2Im ∂bφ(x)ξ2n, ξ2n)) ∈ Σ̂+, where λj(x̂, ξ̂) are the eigenvalues of the Her-
mitian quadratic form ξ2nR

L
x , then the solution Ψ(t, x̂, η̂) of (4.9) can be chosen so that for every

compact set K ⊂ U and all indices α, β, γ, there is a constant cα,β,γ,K > 0 such that

(4.18)
∣∣∣∂αx̂∂βη̂ ∂γt (Ψ(t, x̂, η̂)−Ψ(∞, x̂, η̂))

∣∣∣ ≤ cα,β,γ,Ke
−λ(x̂,η̂)t on R+ ×K.

For the proofs of Theorem 4.4 and Theorem 4.5, we refer to Menikoff-Sjöstrand [23], [11]
and [13, Section 4.1].

From now on, we assume that Ψ(t, x̂, η̂) has the form (4.17) and hence

(4.19) Ψ(∞, x̂, η̂) = Ψ(∞, (x, 0), η̂) + x2nη2n.

We let the full symbol of �(0)
s be:

full symbol of �(0)
s =

2∑
j=0

p̂j(x̂, ξ̂),

where p̂j(x̂, ξ̂) is positively homogeneous of order 2 − j. We apply ∂t + �(0)
s formally under

the integral in (4.8) and then introduce the asymptotic expansion of �(0)
s (aeiΨ). Setting

(∂t +�
(0)
s )(aeiΨ) ∼ 0 and regrouping the terms according to the degree of quasi-homogeneity,

we obtain for each N the transport equations

(4.20)
{
T (t, x̂, η̂, ∂t, ∂x̂)a0 = O(|Im Ψ|N),

T (t, x̂, η̂, ∂t, ∂x̂)aj +Rj(t, x̂, η̂, a0, . . . , aj−1) = O(|Im Ψ|N) .

Here

T (t, x̂, η̂, ∂t, ∂x̂) = ∂t − i
2n∑
j=1

∂p̂0

∂ξj
(x̂,Ψ′x̂)

∂

∂xj
+ q(t, x̂, η̂) ,

15
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where

q(t, x̂, η̂) = p̂1(x̂,Ψ′x̂) +
1

2i

2n∑
j,t=1

∂2p̂0(x̂,Ψ′x̂)

∂ξj∂ξt

∂2Ψ(t, x̂, η̂)

∂xj∂xt

and Rj is a linear differential operator acting on a0, a1, . . . , aj−1. We note that q(t, x̂, η̂) →
q(∞, x̂, η̂) as t → ∞, exponentially fast in the sense of (4.18) and the same is true for the
coefficients of Rj, for all j.

Following [13], we can solve the transport equations (4.20). To state the results precisely,
we pause and introduce some symbol spaces.

Definition 4.6. Let µ ≥ 0 be a non-negative constant. We say that a ∈ Ŝmµ (R+ × U) if
a ∈ C∞(R+×U) and for all indices α, β ∈ N2n

0 , γ ∈ N0, every compact set K b D̂, there exists
a constant c > 0 such that∣∣∣∂γt ∂αx̂∂βη̂ a(t, x̂, η̂)

∣∣∣ ≤ ce−tµ|η2n|(1 + |η|)m+γ−|β|, x̂ ∈ K, (x̂, η̂) ∈ U.

Put

Ŝ−∞µ (R+ × U) :=
⋂
m∈R

Ŝmµ (R+ × U).

Let aj ∈ Ŝ
mj
µ (R+ × U), j ∈ N0, with mj → −∞, j → ∞. Then there exists a ∈ Ŝm0

µ (R+ × U),

unique modulo Ŝ−∞µ (R+ × U), such that a−
k−1∑
j=0

aj ∈ Ŝmk
µ (R+ × U) for k = 0, 1, 2, . . .. If a and

aj have the properties above, we write a ∼
∞∑
j=0

aj in Ŝm0
µ (R+ × U).

Following the proof of [13, Theorem 4.15] we get:

Theorem 4.7. We can find solutions aj(t, x̂, η̂) ∈ Ŝ−j0 (R+×U), j = 0, 1, . . . of the system (4.20),
where aj(t, x̂, η̂) is a quasi-homogeneous function of degree −j, for each j, with

a0(0, x̂, η̂) = 1 on U,

aj(t, x̂, η̂) = 0 on U , j = 1, 2, . . .,
(4.21)

aj(t, x̂, η̂)− aj(∞, x̂, η̂) ∈ Ŝ−jµ (R+ × U), j = 0, 1, 2, . . . ,

a0(∞, x̂, η̂) 6= 0, ∀(x̂, η̂) ∈ Σ̂+,
(4.22)

where µ > 0 is a constant and aj(∞, x̂, η̂) ∈ C∞(U), j = 0, 1, . . ., aj(∞, x̂, η̂) is a positively
homogeneous function of degree −j, for each j.

Letm ∈ R, 0 ≤ ρ, δ ≤ 1. For a conic open subset Γ of T ∗D̂, let Smρ,δ(Γ) denote the Hörmander
symbol space on Γ of order m type (ρ, δ) (see [?, Definition 1.1]) and let Smcl (Γ) denote the
space of classical symbols on Γ of order m (see [?, p. 35]). Let B ⊂ D be an open set. Let
Lm1

2
, 1
2

(B) and Lmcl (B) denote the space of pseudodifferential operators on B of order m type

(1
2
, 1

2
) and the space of classical pseudodifferential operators on B of order m. The classical

result of Calderon and Vaillancourt [10, Theorem 18.6.6] tells us that for any A ∈ Lm1
2
, 1
2

(B),

(4.23) A : Hs
comp(B)→ Hs−m

loc (B) is continuous, for every s ∈ R.
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We return to our situation. For j ∈ N0, let aj(t, x̂, η̂) ∈ Ŝ−j0 (R+×U) and aj(∞, x̂, η̂) ∈ C∞(U)
be as in Theorem 4.7. Let

a(∞, x̂, η̂) ∼
∞∑
j=0

aj(∞, x̂, η̂) in S0
1,0(U),

a(t, x̂, η̂) ∼
∞∑
j=0

aj(t, x̂, η̂) in Ŝ0
0(R+ × U),

a(t, x̂, η̂)− a(∞, x̂, η̂) ∈ Ŝ0
µ(R+ × U), µ > 0.

(4.24)

Take α(η2n) ∈ C∞(R) with α(η2n) = 1 if η2n ≤ 1
2
, α(η2n) = 0 if η2n ≥ 1. Choose χ ∈ C∞0 (R2n)

so that χ(η̂) = 1 when |η̂| < 1 and χ(η̂) = 0 when |η̂| > 2. For ε > 0, put

Gε(x̂, ŷ) =
1

(2π)2n

∫ (∫ ∞
0

(
ei(Ψ(t,x̂,η̂)−〈ŷ,η̂〉)a(t, x̂, η̂)

− ei(Ψ(∞,x̂,η̂)−〈ŷ,η̂〉)a(∞, x̂, η̂)
)
(1− χ(η̂))χ(εη̂)(1− α(η2n))dt

)
dη̂.

By Chapter 5 in part I of [11], we have for any u ∈ C∞0 (D̂),

lim
ε→0

∫
Gε(x̂, ŷ)u(ŷ)dŷ ∈ C∞(D̂),

and the operator

G : C∞0 (D̂)→ C∞(D̂), u 7→ lim
ε→0

∫
Gε(x̂, ŷ)u(ŷ)dy,

is continuous, has a unique continuous extension: G : E ′(D̂)→ D′(D̂) and G ∈ L−1
1
2
, 1
2

(D̂) with
symbol

q(x̂, η̂) =

∫ ∞
0

(
ei(Ψ(t,x̂,η̂)−〈x̂,η̂〉)a(t, x̂, η̂)− ei(Ψ(∞,x̂,η̂)−〈x̂,η̂〉)a(∞, x̂, η̂)

)
dt(1− α(η2n))

in S−1
1
2
, 1
2

(T ∗D̂). We denote

G(x̂, ŷ) =
1

(2π)2n

∫ (∫ ∞
0

(
ei(Ψ(t,x̂,η̂)−〈ŷ,η̂〉)a(t, x̂, η̂)

− ei(Ψ(∞,x̂,η̂)−〈ŷ,η̂〉)a(∞, x̂, η̂)
)
(1− χ(η̂))(1− α(η2n))dt

)
dη̂.

(4.25)

Similarly, for ε > 0, put

Sε(x̂, ŷ) =
1

(2π)2n

∫
ei(Ψ(∞,x̂,η̂)−〈ŷ,η̂〉)a(∞, x̂, η̂)(1− χ(η̂))χ(εη̂)(1− α(η2n))dη̂.

By [11, Chapter 5, part I]) we have for u ∈ C∞0 (D̂),

lim
ε→0

∫
Sε(x̂, ŷ)u(ŷ)dŷ ∈ C∞(D̂),

the operator

S : C∞0 (D̂)→ C∞(D̂), u 7→ lim
ε→0

∫
Sε(x̂, ŷ)u(ŷ)dy,

17
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is continuous, has a unique continuous extension: S : E ′(D̂)→ D′(D̂) and S ∈ L0
1
2
, 1
2

(D̂) with

symbol s(x̂, η̂) = ei(Ψ(∞,x̂,η̂)−〈x̂,η̂〉)a(∞, x̂, η̂)(1− α(η2n)) ∈ S0
1
2
, 1
2

(T ∗D̂). We denote

(4.26) S(x̂, ŷ) =
1

(2π)2n

∫
ei(Ψ(∞,x̂,η̂)−〈ŷ,η̂〉)a(∞, x̂, η̂)

(
1− χ(η̂)

)(
1− α(η2n)

)
dη̂.

Put

(4.27) Ĩ = (2π)−2n

∫
ei〈x̂−ŷ,η̂〉

(
1− α(η2n)

)
dη̂.

We can repeat the proof of [11, Proposition 6.5] with minor changes and obtain:

Theorem 4.8. With the notations used above, we have

S +�(0)
s ◦G ≡ Ĩ on D̂,

∂s ◦ S ≡ 0 on D̂, �(0)
s ◦ S ≡ 0 on D̂.

The next result follows from the complex stationary phase formula of Melin and Sjöstrand [22]
with essentially the same proof as of [13, Theorem 4.29].

Theorem 4.9. With the notations and assumptions above, let S = S(x̂, ŷ) ∈ L0
1
2
, 1
2

(D̂) be as in

Theorem 4.8. Then, on D̂, we have

(4.28) S(x̂, ŷ) ≡
∫
u∈R,t∈R+

eiΦ(x̂,ŷ,u,t)b(x̂, ŷ, u, t)(1− α(t))dudt

with

b(x̂, ŷ, u, t) ∼
∞∑
j=0

bj(x̂, ŷ, u, t) in Sn−1
1,0 (D̂ × D̂ × R× R+),

bj(x̂, ŷ, u, t) ∈ C∞(D̂ × D̂ × R× R+), j = 0, 1, 2, . . . ,

bj(x̂, ŷ, λu, λt) = λn−1−jbj(x̂, ŷ, u, t), ∀(x̂, ŷ, u, t) ∈ D̂ × D̂ × R× R+, λ ≥ 1, ∀j,

b0(x̂, x̂, u, t) 6= 0, ∀(x̂, ŷ, u, t) ∈ D̂ × D̂ × R× R+, λ ≥ 1,

(4.29)

Φ(x̂, ŷ, u, t) = (x2n − y2n)t+ ϕ(x, y, u, t),

ϕ(x, y, u, t) ∈ C∞(D ×D × R× R+),

ϕ(x, y, λu, λt) = λϕ(x, y, u, t), ∀(x, y, u, t) ∈ D ×D × R× R+, λ ≥ 1,

Imϕ(x, y, u, t) ≥ 0,

ϕ(x, x, u, t) = 0, ∀x ∈ D, u ∈ R, t ∈ R+,

dxϕ|(x,x,u,t) = −2tIm ∂bφ(x) + uω0(x), ∀x ∈ D, u ∈ R, t ∈ R+,

dyϕ|(x,x,u,t) = 2tIm ∂bφ(x)− uω0(x), ∀x ∈ D, u ∈ R, t ∈ R+,

∂ϕ
∂u

(x, y, u, t) = 0 and ∂ϕ
∂t

(x, y, u, t) = 0 if and only if x = y.

(4.30)

We can repeat the method in [13, Section 4.4] with minor changes to compute the tangen-
tial Hessian of the phase function ϕ(x, y, u, t). Since the computation is simpler therefore we
omit the details. We state the result.
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Theorem 4.10. With the notations above, put ψ(x, y, u) := ϕ(x, y, u, 1). Fix p ∈ D and let
Z1, . . . , Zn−1 be an orthonormal frame of T 1,0

x X varying smoothly with x in a neighbourhood
of p, for which the Hermitian quadratic form RL

x is diagonalized at p. Let x = (x1, . . . , x2n−1),
zj = x2j−1+ix2j, j = 1, . . . , n−1, be local coordinates of X defined in some small neighbourhood
of p such that

x(p) = 0, ω0(p) = dx2n−1, T (p) = − ∂

∂x2n−1

(p),〈 ∂

∂xj
(p) | ∂

∂xt
(p)
〉

= 2δj,t, j, t = 1, . . . , 2n− 2,

Zj(p) =
∂

∂zj
+ i

n−1∑
t=1

τj,tzt
∂

∂x2n−1

+ cjx2n−1
∂

∂x2n−1

+O(|x|2), j = 1, . . . , n− 1,

φ(x) = βx2n−1 +
n−1∑
j=1

(
αjzj + αjzj

)
+

1

2

n−1∑
l,t=1

µt,lztzl +
n−1∑
l,t=1

(
al,tzlzt + al,tzlzt

)
+

n−1∑
j=1

(
djzjx2n−1 + djzjx2n−1

)
+O(|x2n−1|2) +O(|x|3),

(4.31)

where β ∈ R, τj,t, cj, αj, µj,t, aj,t, dj ∈ C, µj,t = µt,j, τj,t + τ t,j = 0, j, t = 1, . . . , n − 1. We also
write y = (y1, . . . , y2n−1), wj = y2j−1 +iy2j, j = 1, . . . , n−1. Then, in some small neighbourhood
D0 of p we have for all (x, y, u) ∈ D0 ×D0 × R,

Imψ(x, y, u) ≥ c |x′ − y′|2 ,

Imψ(x, y, u) +

∣∣∣∣∂ψ∂u (x, y, u)

∣∣∣∣ ≥ c(|x2n−1 − y2n−1|+ |x′ − y′|2),
(4.32)

where c > 0 is a constant, x′ = (x1, . . . , x2n−2), y′ = (y2, . . . , y2n−2), |x′ − y′|2 =
2n−2∑
j=1

|xj − yj|2

and

ψ(x, y, u)

= −i
n−1∑
j=1

αj(zj − wj) + i
n−1∑
j=1

αj(zj − wj) + u(x2n−1 − y2n−1)− i

2

n−1∑
j,l=1

(al,j + aj,l)(zjzl − wjwl)

+
i

2

n−1∑
j,l=1

(al,j + aj,l)(zjzl − wjwl) +
1

2

n−1∑
j,l=1

iu(τ l,j − τj,l)(zjzl − wjwl)

+
n−1∑
j=1

(−icjβ − ucj − idj)(zjx2n−1 − wjy2n−1) +
n−1∑
j=1

(icjβ − ucj + idj)(zjx2n−1 − wjy2n−1)

− i

2

n−1∑
j=1

λj(zjwj − zjwj) +
i

2

n−1∑
j=1

λj |zj − wj|2 + (x2n−1 − y2n−1)f(x, y, u) +O(|(x, y)|3),

f ∈ C∞, f(0, 0, u) = 0, ∀u ∈ R,

(4.33)

where λ1 > 0, . . . , λn−1 > 0 are the eigenvalues of RL
p with respect to 〈 · | · 〉.
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4.2. Semi-classical Hodge decomposition for �(0)
s,k. In this section we apply Theorem 4.8

and Theorem 4.9 to describe the semi-classical behaviour of �(0)
s,k.

Let s be a local trivializing section of L on an open subset D ⊂ X and |s|2h = e−2φ. Let
χ(x2n), χ1(x2n) ∈ C∞0 (R), χ, χ1 ≥ 0. We assume that χ1 = 1 on Suppχ. We take χ so that∫
χ(x2n)dx2n = 1. Put

(4.34) χk(x2n) = eikx2nχ(x2n).

We say that a sequence (gk) in C is rapidly decreasing and write gk = O(k−∞) if for every
N > 0, there exists CN > 0 independent of k such that for all k we have |gk| ≤ CNk

−N .

Proposition 4.11. With the notations before, let Ĩ = (2π)−2n
∫
ei〈x̂−ŷ,η̂〉(1 − α(η2n))dη̂ be as in

(4.27). Let Ĩk be the continuous operator C∞0 (D)→ C∞(D) given by

Ĩk : C∞0 (D)→ C∞(D), f 7−→
∫
e−ikx2nχ1(x2n)Ĩ(χkf)(x̂)dx2n.

Then, Ĩk = (1 + gk)I on C∞0 (D), where I is the identity map on C∞0 (D) and (gk) is a rapidly
decreasing sequence.

Proof. It is easy to see that

I = (2π)−2n

∫
ei〈x̂−ŷ,η̂〉−ik(x2n−y2n)χ1(x2n)χ(y2n) dη̂ dy2n dx2n on C∞0 (D).

From this observation, we can check that Ĩk = (1 + gk)I where

(4.35) gk = −(2π)−2n

∫
ei〈x2n−y2n,η2n−k〉α(η2n)χ1(x2n)χ(y2n)dη2n dy2n dx2n.

Since α(η2n) = 0 if η ≥ 1, we can integrate by parts in (4.35) with respect to y2n several times
and conclude that gk = O(k−∞). �

Let S ∈ L0
1
2
, 1
2

(D̂) and G ∈ L−1
1
2
, 1
2

(D̂) be as in Theorem 4.8. For s ∈ N0 define

(4.36) Sk : Hs
comp (D)→ Hs

loc (D), f 7−→ 1

1 + gk

∫
e−ikx2nχ1(x2n)S(χkf)(x̂)dx2n ,

(4.37) Gk : Hs
loc (D)→ Hs+1

loc (D), f 7−→ 1

1 + gk

∫
e−ikx2nχ1(x2n)G(χkf)(x̂)dx2n .

From (4.36), (4.37) and the fact that S : Hs
comp (D̂)→ Hs

loc (D̂) is continuous for every s ∈ R,
G : Hs

comp (D̂)→ Hs+1
loc (D̂) is continuous for every s ∈ R, it is straightforward to check that

Sk = O(ks) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ N0,

Gk = O(ks) : Hs
comp (D)→ Hs+1

loc (D), ∀s ∈ N0.
(4.38)

Repeating the proof of [13, Theorem 5.4] by making use of Proposition 4.11 we get:

Theorem 4.12. Let s be a local trivializing section of L on an open subset D ⊂ X and |s|2h =
e−2φ. Let Sk and Gk be as in (4.36), (4.37) respectively. Then,

S∗k ,Sk = O(ks) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ Z,
G∗k ,Gk = O(ks) : Hs

comp (D)→ Hs+1
loc (D), ∀s ∈ Z,

(4.39)
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and we have on D,

∂s,kSk ≡ 0 mod O(k−∞) ,(4.40)

�(0)
s,kSk ≡ 0, S∗k�

(0)
s,k ≡ 0 mod O(k−∞) ,(4.41)

Sk +�(0)
s,kGk = I ,(4.42)

G∗k�
(0)
s,k + S∗k = I ,(4.43)

where S∗k , G∗k are the formal adjoints of Sk, Gk with respect to ( · | · ) respectively and �(0)
s,k is given

by (3.3).

Theorem 4.13. We have

(4.44) Sk(x, y)−
∫
eikψ(x,y,u)s(x, y, u, k)du = O(k−∞) : Hs

comp (D)→ Hs
loc (D), ∀s ∈ Z,

where
s(x, y, u, k) ∈ Snloc ,cl (1;D ×D × R),

s(x, y, u, k) ∼
∞∑
j=0

sj(x, y, u)kn−j in Snloc (1;D ×D × R),

sj(x, y, u) ∈ C∞(D ×D × R), j = 0, 1, 2, . . . ,

(4.45)

and ψ(x, y, u) = ϕ(x, y, u, 1), ϕ(x, y, u, t) is as in Theorem 4.9.

Proof. From the definition (4.36) of Sk and Theorem 4.9, we see that the distribution kernel
of Sk is given by

Sk(x, y) ≡
∫
t≥0

eiΦ(x̂,ŷ,u,t)−ikx2n+iky2nb(x̂, ŷ, u, t)χ1(x2n)χ(y2n)(1− α(t))dx2ndtdy2ndu

≡
∫

u∈R,σ∈R+

eikσψ(x,y,u)+ik(x2n−y2n)(σ−1)k2σb(x̂, ŷ, kσu, kσ)χ1(x2n)χ(y2n)(1− α(kσ))dx2ndσdy2ndu,

(4.46)

modO(k−∞), where the integrals above are defined as oscillatory integrals. Let γ(σ) ∈
C∞0 (R+) with γ(σ) = 1 in some small neighbourhood of 1. Put

I0(x, y)

:=

∫
σ≥0

eikσψ(x,y,u)+ik(x2n−y2n)(σ−1)γ(σ)k2σb(x̂, ŷ, kσu, kσ)(1− α(kσ))

× χ1(x2n)χ(y2n)dx2ndσdy2ndu,

(4.47)

I1(x, y)

:=

∫
σ≥0

eikσψ(x,y,u)+ik(x2n−y2n)(σ−1)(1− γ(σ))k2σb(x̂, ŷ, kσu, kσ)(1− α(kσ))

× χ1(x2n)χ(y2n)dx2ndσdy2ndu.

(4.48)

Then,

(4.49) Sk(x, y) ≡ I0(x, y) + I1(x, y) mod O(k−∞).
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First, we study I1(x, y). Note that when σ 6= 1, dy2n
(
σψ(x, y, u)+(x2n−y2n)(σ−1)

)
= 1−σ 6= 0.

Thus, we can integrate by parts in y2n several times and get that

(4.50) I1 = O(k−∞) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ Z.

Next, we study the kernel I0(x, y). We may assume that b(x̂, ŷ, kσu, kσ) is supported in some
small neighbourhood of x̂ = ŷ. We want to apply the stationary phase method of Melin and
Sjöstrand [22, p. 148] to carry out the dx2ndσ integration in (4.47). Put

Θ(x̂, ŷ, σ) := σψ(x, y, u) + (x2n − y2n)(σ − 1).

We first notice that dσΘ(x̂, ŷ, σ)|x̂=ŷ = 0 and dx2nΘ(x̂, ŷ, σ)|σ=1 = 0. Thus, x = y and σ = 1 are
real critical points. Moreover, we can check that the Hessian of Θ(x̂, ŷ, σ) at x̂ = ŷ, σ = 1, is
given by (

Θ′′σσ(x̂, x̂, 1) Θ′′x2nσ(x̂, x̂, 1)
Θ′′σx2n(x̂, x̂, 1) Θ′′x2nx2n(x̂, x̂, 1)

)
=

(
0 1
1 0

)
.

Thus, Θ(x̂, ŷ, σ) is a non-degenerate complex valued phase function in the sense of Melin-
Sjöstrand [22]. Let

Θ̃(˜̂x, ˜̂y, σ̃) := ψ̃(x̃, ỹ, u)σ̃ + (x̃2n − ỹ2n)(σ̃ − 1)

be an almost analytic extension of Θ(x̂, ŷ, σ̂), where ψ̃(x̃, ỹ, u) is an almost analytic extension
of ψ(x, y, u). Here we fix u. We can check that given y2n and (x, y), x̃2n = y2n − ψ(x, y, u),
σ̃ = 1 are the solutions of

∂Θ̃

∂σ̃
= 0 ,

∂Θ̃

∂x̃2n

= 0.

From this and by the stationary phase formula of Melin-Sjöstrand [22], we get

(4.51) I0(x, y)−
∫
eikψ(x,y,u)s(x, y, u, k)du = O(k−∞) : Hs

comp (D)→ Hs
loc (D), ∀s ∈ Z,

where s(x, y, u, k) ∈ Snloc ,cl (1, D ×D × R),

s(x, y, u, k) ∼
∞∑
j=0

sj(x, y, u)kn−j in Snloc (1, D ×D × R),

sj(x, y, u) ∈ C∞(D × D × R), j = 0, 1, 2, . . . . From (4.50), (4.51) and (4.49), the theorem
follows. �

From Theorem 4.13 and the stationary phase method of Melin and Sjöstrand, we deduce:

Theorem 4.14. Let Ak be a properly supported classical semi-classical pseudodifferential opera-
tor on D of order 0 as in (2.8) and (2.9) with symbol β ∈ S0

loc ,cl (1;T ∗D) such that β(x, η, k) = 0

if |η| ≥ 1
2
M , for some large M > 0. We have

(4.52) (Sk ◦ Ak)(x, y) ≡
∫
eikψ(x,y,u)a(x, y, u, k)du mod O(k−∞),

where
a(x, y, u, k) ∈ C∞0 (D ×D × (−M,M)) ∩ Snloc ,cl (1;D ×D × (−M,M)),

a(x, y, u, k) ∼
∞∑
j=0

aj(x, y, u)kn−j in Snloc (1;D ×D ×−]M,M [),

aj(x, y, u) ∈ C∞0 (D ×D × (−M,M)), j = 0, 1, 2, . . . ,

(4.53)
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and ψ(x, y, u) = ϕ(x, y, u, 1), ϕ(x, y, u, t) is as in Theorem 4.9.

Let Ak ≡ k2n−1

(2π)2n−1

∫
eik〈x−y,η〉β(x, η, k)dη mod O(k−∞) be as in Theorem 4.14. Put

β(x, η, k) ∼
∞∑
j=0

βj(x, η)k−j, βj(x, η) ∈ C∞(T ∗D), j = 0, 1, 2, . . . .(4.54)

From the last formula of (4.29), it is straightforward to see that

(4.55) a0(x, x, u) 6= 0 if β0(x, uω0(x)− 2Im ∂bφ(x)) 6= 0,

where a0(x, y, u) is as in (4.53). In the rest of this section, we will calculate a0(x, x, u).
Fix D0 b D and let χ, χ̂ ∈ C∞0 (D, [0, 1]), χ = χ̂ = 1 on D0 and χ = 1 on some neighbour-

hood of Supp χ̂.

Lemma 4.15. With the notations above, we have

(4.56) (χ̂A∗kS∗kχ)(χSkAkχ̂) ≡ χ̂A∗kSkAkχ̂ mod O(k−∞),

where A∗k is the formal adjoint of Ak.

Proof. From (4.43), we have

(4.57) χ̂A∗kG∗k�
(0)
s,kχ+ χ̂A∗kS∗kχ = χ̂A∗kχ.

From (4.57), we have

(4.58) χ̂A∗kG∗k�
(0)
s,kχ

2SkAkχ̂+ χ̂A∗kS∗kχ2SkAkχ̂ = χ̂A∗kχ2SkAkχ̂.
From (4.52), it is not difficult to check that SkAk is k-negligible away the diagonal. From this
observation, (4.39) and (4.41), we conclude that

(4.59) χ̂A∗kG∗k�
(0)
s,kχ

2SkAkχ̂ ≡ 0 mod O(k−∞).

From (4.59) and (4.58), we get

(4.60) χ̂A∗kS∗kχ2SkAkχ̂ ≡ χ̂A∗kχ2SkAkχ̂ mod O(k−∞).

Again, since SkAk is k-negligible away the diagonal, we deduce that

(4.61) χ̂A∗kχ2SkAkχ̂ ≡ χ̂A∗kSkAkχ̂ mod O(k−∞).

From (4.60) and (4.61), we get (4.56). �

From (4.56), (4.52) and the complex stationary phase formula of Melin-Sjöstrand [22], we
deduce that
(4.62)(

(χ̂A∗kS∗kχ)(χSkAkχ̂)
)
(x, y) ≡ (χ̂A∗kSkAkχ̂)(x, y) ≡

∫
eikψ(x,y,u)g(x, y, u, k)du mod O(k−∞),

where
g(x, y, u, k) ∈ C∞0 (D ×D × (−M,M)) ∩ Snloc ,cl (1;D ×D × (−M,M)),

g(x, y, u, k) ∼
∞∑
j=0

gj(x, y, u)kn−j in Snloc (1;D ×D × R),

gj(x, y, u) ∈ C∞0 (D ×D × (−M,M)), j = 0, 1, 2, . . . ,

(4.63)

and

(4.64) g0(x, x, u) = a0(x, x, u)β0(x, uω0(x)− 2Im ∂bφ(x)), ∀(x, x, u) ∈ D0 ×D0 × (−M,M).
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On the other hand, we can repeat the procedure of Section 5 in [13] (see the discussion after
Theorem 5.6 in [13]) and deduce that

(4.65)
(
(χ̂A∗kS∗kχ)(χSkAkχ̂)

)
(x, y) ≡

∫
eikψ1(x,y,u)h(x, y, u, k)du mod O(k−∞)

with

h(x, y, u, k) ∈ Snloc ,cl (1, D ×D × (−M,M)) ∩ C∞0 (D ×D × (−M,M)),

h(x, y, u, k) ∼
∞∑
j=0

hj(x, y, u)kn−j in Snloc (1, D ×D × (−M,M)),

hj(x, y, u) ∈ C∞0 (D ×D × (−M,M)), j = 0, 1, 2, . . . ,

(4.66)

h0(x, x, u) = 2πn
∣∣detRL

x

∣∣−1 |a0(x, x, u)|2 , ∀(x, x, u) ∈ D0 ×D0 × (−M,M),

g0(x, x, u) = h0(x, x, u), ∀(x, x, u) ∈ D ×D × (−M,M),
(4.67)

and for all (x, x, u) ∈ D ×D × (−M,M), we have

ψ1(x, x, u) = 0, dxψ1(x, x, u) = dxψ(x, x, u), dyψ1(x, x, u) = dyψ(x, x, u),

Imψ1(x, y, u) ≥ 0, ∀(x, y, u) ∈ D ×D × (−M,M).
(4.68)

From (4.67) and (4.64), we get for all (x, x, u) ∈ D0 ×D0 × (−M,M),

(4.69) a0(x, x, u)β0(x, uω0(x)− 2Im ∂bφ(x)) = 2πn
∣∣detRL

x

∣∣−1 |a0(x, x, u)|2 .

If β0(x, uω0(x)− 2Im ∂bφ(x)) = 0, we get a0(x, x, u) = 0. If β0(x, uω0(x)− 2Im ∂bφ(x)) 6= 0, in
view of (4.55), we know that a0(x, x, u) 6= 0. From this observation and (4.69), we obtain

Theorem 4.16. For a0(x, y, u) in (4.53),

a0(x, x, u) =
1

2
π−n

∣∣detRL
x

∣∣ β0

(
x, uω0(x)− 2Im ∂bφ(x)

)
, (x, x, u) ∈ D ×D × (−M,M),

where β0(x, η) ∈ C∞(T ∗D) is as in (4.54) and detRL
x as in (1.1).

5. REGULARITY OF THE SZEGŐ PROJECTION Πk

In this section, we will prove Theorem 1.1. For this purpose we first establish the spectral
gap for the Kohn Laplacian �(1)

b,k and then Sobolev estimates for the associated Green operator
and finally for Πk.

We start with a local form of the spectral gap estimate for (0, 1)-forms.

Lemma 5.1. Let s be a local trivializing section of L on an open set D ⊂ X. Then, there is a
constant C > 0 independent of k such that∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2

k ≥
(
Ck − 1

C

)
‖u‖2

k , ∀u ∈ Ω0,1
0 (D,Lk).

Proof. Let u ∈ Ω0,1
0 (D,Lk). Put u = skû, û ∈ Ω0,1

0 (D). In view of (3.3), we have

(5.1) �(1)
b,ku = ekφsk�(1)

s,k(e
−kφû).
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Put û =
n−1∑
j=1

ûjej, where e1, . . . , en−1 ∈ T ∗0,1X is as in Proposition 3.1. From (3.6), we have

(�(1)
s,k(e

−kφû) | e−kφû )

=
n−1∑
j=1

∥∥(Zj + kZj(φ))(e−kφû)
∥∥2

+
n−1∑
j,t=1

( [Zj + kZj(φ),−Zt + kZt(φ)](e−kφût) | e−kφûj )

+ ( (ε(Z + kZ(φ)) + ε(Z∗ + kZ(φ)))(e−kφû) | e−kφû ) + ( fe−kφû | e−kφû ).

(5.2)

Here we use the same notations as in Proposition 3.1. Fix j, t = 1, 2, . . . , n− 1. Put

[Zj,−Zt] =
n−1∑
s=1

(aj,ts Zs − bj,ts Zs), aj,ts , b
j,t
s ∈ C∞(D), ∀s.

Recall than by [14, Lemma 4.1], for any U, V ∈ T 1,0
p X and any U ,V ∈ C∞(D,T 1,0X) that

satisfy U(p) = U , V(p) = V , we have

(5.3) RL
p (U, V ) = Mφ

p (U, V ) = −
〈[
U ,V

]
(p), ∂bφ(p)− ∂bφ(p)

〉
+
(
UV + VU

)
φ(p).

By using (5.3) we obtain

[Zj + kZj(φ),−Zt + kZt(φ)]

=
n−1∑
s=1

(aj,ts Zs − bj,ts Zs) + k(ZjZt + ZtZj)(φ)

=
n−1∑
s=1

(aj,ts (Zs + kZs(φ)) + bj,ts (−Zs + kZs(φ)))

− k〈 [Zj,−Zt] , ∂bφ− ∂bφ 〉+ k(ZjZt + ZtZj)(φ)

= ε(Z + kZ(φ)) + ε(−Z + kZ(φ)) + kRL
x (Zt, Zj).

(5.4)

From (5.4) and (5.2), we get(
�(1)
s,k(e

−kφû) | e−kφû
)

=
n−1∑
j=1

∥∥(Zj + kZj(φ))(e−kφû)
∥∥2

+ k
n−1∑
j,t=1

(
RL
x (Zt, Zj)(e

−kφût) | e−kφûj
)

+ ( (ε(Z + kZ(φ)) + ε(Z∗ + kZ(φ)))(e−kφû) | e−kφû ) + ( f̃ e−kφû | e−kφû ),

(5.5)

where f̃ is a smooth function independent of k. Since RL > 0, from (5.5), it is not difficult to
see that

(5.6)
(
�(1)
s,k(e

−kφû) | e−kφû
)
≥
(
C̃k − 1

C̃

)∥∥e−kφû∥∥2
,

where C̃ > 0 is a constant independent of k and u. From (5.1), we can check that(
�(1)
s,k(e

−kφû) | e−kφû
)

=
(
�(1)
b,ku |u

)
k

= ‖∂b,ku‖2
k + ‖∂∗b,kû‖2

k.

Moreover, it is clearly that ‖u‖k = ‖e−kφû‖. From this observation and (5.6), the lemma
follows. �
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Ohsawa and Sibony [25] established analogues of the Nakano and Akizuki vanishing the-
orems for Levi flat CR manifolds. The following result can be seen as an analogue of the
spectral gap and Kodaira-Serre vanishing theorem [19, Theorems 1.5.5-6].

Theorem 5.2. There is a constant C0 > 0 independent of k such that∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2

k ≥
(
C0k −

1

C0

)
‖u‖2

k , ∀u ∈ Dom ∂b,k ∩Dom ∂
∗
b,k ⊂ L2

(0,1)(X,L
k).

Hence, for k large, Ker�(1)
b,k = {0} and �(1)

b,k has L2 closed range.

From Theorem 5.2, we deduce that�(1)
b,k is injective for large k so we can consider the Green

operator N (1)
k : L2

(0,1)(X,L
k)→ Dom�(1)

b,k, which is the inverse of �(1)
b,k. We have

�(1)
b,kN

(1)
k = I on L2

(0,1)(X),

N
(1)
k �

(1)
b,k = I on Dom�(1)

b,k.
(5.7)

Proof. We first claim that there is a constant C0 > 0 independent of k such that

(5.8)
∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2

k ≥
(
C0k −

1

C0

)
‖u‖2

k , ∀u ∈ Ω0,1(X,Lk).

Let X =
⋃N
j=1Dj, where Dj ⊂ X is an open set with L|Dj

is trivial. Take χj ∈ C∞0 (Dj, [0, 1]),

j = 1, . . . , N , with
N∑
j=1

χj = 1 on X. Let u ∈ Ω0,1(D,Lk). From Lemma 5.1, we see that for

every j = 1, 2, . . . , N , we can find a constant Cj > 0 independent of k and u such that

(5.9)
∥∥∂b,k(χju)

∥∥2

k
+ ‖∂∗b,k(χju)‖2

k ≥
(
Cjk −

1

Cj

)
‖χju‖2

k .

It is easy to see that∥∥∂b,k(χju)
∥∥2

k
+ ‖∂∗b,k(χju)‖2

k ≤
∥∥χj∂b,ku∥∥2

k
+ ‖χj∂

∗
b,ku‖2

k +Mj ‖u‖2
k

≤
∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2

k +Mj ‖u‖2
k ,

(5.10)

where Mj > 0 is a constant independent of k and u. From (5.10) and (5.9), we get

N
(∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2

k

)
≥

N∑
j=1

((
Cjk −

1

Cj

)
‖χju‖2

k −Mj ‖u‖2
k

)
≥
(
ck − 1

c

)
‖u‖2

k ,

(5.11)

where c > 0 is a constant independent of k. From (5.11), the claim (5.8) follows.
Now, let u ∈ Dom ∂b,k ∩Dom ∂

∗
b,k. From Friedrichs’ Lemma (see Appendix D in [4]), we can

find uj ∈ Ω0,1(X,Lk), j = 1, 2, . . ., with uj → u in L2
(0,1)(X,L

k), ∂b,kuj → ∂b,ku in L2
(0,2)(X,L

k)

and ∂
∗
b,kuj → ∂

∗
b,ku in L2(X,Lk). From (5.8), we have∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2

k = lim
j→∞

(∥∥∂b,kuj∥∥2

k
+ ‖∂∗b,kuj‖2

k

)
≥
(
C0k −

1

C0

)
lim
j→∞
‖uj‖2

k =
(
C0k −

1

C0

)
‖u‖2

k .
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The theorem follows. �

We pause and introduce some notations. Let s be a local trivializing section of L on an
open set D ⊂ X, |s|2h = e−2φ. Let u ∈ Ω0,q

0 (D,Lk). On D, we write u = skũ, ũ ∈ Ω0,q
0 (D). For

every m ∈ N0, define

‖u‖2
m,k :=

∑
|α|≤m,α∈N2n−1

0

∫ ∣∣∂αx (ũe−kφ)
∣∣2 dvX .

By using a partition of unity, we can define ‖u‖2
m,k for all u ∈ Ω0,q(X,Lk) in the standard way.

We call ‖·‖m,k the Sobolev norm of order m with respect to hk. We will need the following.

Proposition 5.3 ([25, Proposition 1]). For every m ∈ N0 there is Nm > 0 such that for every
k ≥ Nm,

(5.12)
∥∥∥∂∗b,ku∥∥∥

m,k
≤ kM(m)

∥∥∥�(1)
b,ku
∥∥∥
m,k

, ∀u ∈ Ω0,1(X,Lk),

where M(m) > 0 is a constant independent of k and u.

Theorem 5.4. For every m ∈ N, there is Nm > 0 such that for every k ≥ Nm,

∂
∗
b,kN

(1)
k : Ω0,1(X,Lk)→ Hm(X,Lk)

and
‖∂∗b,kN

(1)
k u‖m,k ≤ kM(m) ‖u‖m,k , ∀u ∈ Ω0,1(X,Lk),

where M(m) > 0 is a constant independent of k and u.

Proof. The theorem essentially follows from Proposition 5.3 and the elliptic regularization
method introduced by Kohn-Nirenberg [4, p. 102], [17, p. 449]. Namely, for every ε > 0,
consider the operator �(1)

ε,k := �(1)
b,k + εT ∗T , where T is defined in (2.10) and T ∗ is its formal

adjoint with respect to ( · | · )k. Fix m ∈ N. From Theorem 5.2 and Proposition 5.3, there is a
Nm > 0 such that for every k ≥ Nm,

‖u‖2
k ≤ (�(1)

b,ku |u )k, ∀u ∈ Ω0,1(X,Lk),

‖u‖`,k ≤ kM(m)‖�(1)
b,ku‖`,k, ∀u ∈ Ω0,1(X,Lk), ∀` ∈ N0, ` ≤ m,

(5.13)

where M(m) > 0 is a constant independent of k and u.
Take g ∈ Ω0,1(X,Lk) and put N (1)

k g = v. We have �(1)
b,kv = g. From (5.13), it is easy to see

that for every k ≥ Nm and every ε > 0, �(1)
ε,k is injective and has range L2

(0,1)(X,L
k). Now,

we assume that k ≥ Nm. For every ε > 0, we can find vε ∈ Ω0,1(X,Lk) such that �(1)
ε,kvε = g.

Moreover, from (5.13) and the proof of Proposition 5.3 (see also [25, Proposition 1]), it is
straightforward to see that for every ε > 0,

‖vε‖k ≤ ‖g‖k , ‖∂b,kvε‖k ≤ ‖g‖k ,

‖∂∗b,kvε‖`,k ≤ kM(m) ‖g‖`,k , ∀` ∈ N0, ` ≤ m.
(5.14)

From (5.14), we can find εj ↘ 0 such that vεj → ṽ in L2
(0,1)(X,L

k) as j →∞, ∂b,kvεj → ∂b,kṽ

in L2
(0,2)(X,L

k), ∂
∗
b,kvεj → ∂

∗
b,kṽ in H`(X,Lk), ∀` ∈ N0, ` ≤ m, and �(1)

b,k ṽ = g in the sense of
distributions. Since ∂b,kṽ ∈ L2

(0,2)(X,L
k), ∂

∗
b,kṽ ∈ H1(X,Lk), we have ṽ ∈ Dom ∂b,k ∩Dom ∂

∗
b,k,

∂
∗
b,kṽ ∈ Dom ∂b,k. Note that ∂

∗
b,k∂b,kṽ = g − ∂b,k∂

∗
b,kṽ ∈ L2

(0,1)(X,L
k). From this observation,
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we can check that ∂b,kṽ ∈ Dom ∂
∗
b,k. Thus, ṽ ∈ Dom�(1)

b,k. Since �(1)
b,k ṽ = g = �(1)

b,kv and �(1)
b,k is

injective, we conclude that v = ṽ. Thus, ∂
∗
b,kN

(1)
k g = ∂

∗
b,kv ∈ Hm(X,Lk) and ‖∂∗b,kN

(1)
k g‖m,k ≤

kM(m) ‖g‖m,k. The theorem follows. �

Theorem 5.5. With the notations above, for every m ∈ N, m ≥ 2, there is a Nm > 0 such that
for every k ≥ Nm,

(5.15) Πk = I − ∂∗b,kN
(1)
k ∂b,k on C∞(X,Lk),

(5.16) Πk : C∞(X,Lk)→ Hm(X,Lk)

and

(5.17) ‖(I − Πk)u‖m,k ≤ kM(m)
∥∥∂b,ku∥∥m,k , ∀u ∈ C∞(X,Lk),

where M(m) > 0 is a constant independent of k and u.

Proof. Fix m ∈ N, m ≥ 2 and let Nm > 0 be as in Theorem 5.5. We assume that k ≥ Nm. Let
g ∈ C∞(X,Lk). From Theorem 5.4, we know that ∂

∗
b,kN

(1)
k ∂b,kg ∈ Hm(X,Lk). Since m ≥ 2, it

is clearly that ∂
∗
b,kN

(1)
k ∂b,kg ∈ Dom�(0)

b,k. Moreover, it is easy to check that

(5.18) ∂
∗
b,kN

(1)
k ∂b,kg ⊥ Ker ∂b,k = Ker�(0)

b,k.

We claim that

(5.19) g − ∂∗b,kN
(1)
k ∂b,kg ∈ Ker�(0)

b,k.

Let f ∈ C∞(X,Lk). We have

( g − ∂∗b,kN
(1)
k ∂b,kg |�(0)

b,kf )k = (�(0)
b,kg | f )k − ( ∂

∗
b,kN

(1)
k ∂b,kg |�(0)

b,kf )k

= (�(0)
b,kg | f )k − ( ∂b,kg |N (1)

k ∂b,k�
(0)
b,kf )k

= (�(0)
b,kg | f )k − ( ∂b,kg |N (1)

k �
(1)
b,k∂b,kf )k

= (�(0)
b,kg | f )k − ( ∂b,kg | ∂b,kf )k = 0.

The claim (5.19) follows. From (5.18) and (5.19), we get (5.15). Theorem 5.4 and (5.15)
yield (5.16) and (5.17). �

From Theorem 5.5 and the Sobolev embedding theorem, we get Theorem 1.1.

6. ASYMPTOTIC EXPANSION OF THE SZEGŐ KERNEL

In this section, we will prove Theorem 1.2 and Theorem 1.3. Let s be a local trivializing
section of L on an open set D ⊂ X and let Πk,s be the localized operator of Πk (see (1.4)). Let
Sk and Gk be as in Theorem 4.12. From the constructions of Gk and Sk, it is straightforward
to see that we can find G̃k : Hs

comp (D)→ Hs+1
loc (D), S̃k : Hs

comp (D)→ Hs
loc (D), for every s ∈ Z,

such that G̃k and S̃k are properly supported on D,

S̃k − Sk = O(k−∞) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ Z,

G̃k − Gk = O(k−∞) : Hs
comp (D)→ Hs+1

loc (D), ∀s ∈ Z,
(6.1)

and

(6.2) χ̃ S̃k χ = O(k−∞) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ Z,
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for every χ̃, χ ∈ C∞0 (D) with Supp χ̃ ∩ Suppχ = ∅, and

(6.3) �(0)
s,k G̃k + S̃k = I +Rk on D,

where Rk is properly supported on D and

(6.4) Rk = O(k−∞) : Hs
loc (D)→ Hs−1

loc (D), ∀s ∈ Z.

From (6.3), it is easy to see that

(6.5) Πk,s + Πk,sRk = Πk,sS̃k on D.

Theorem 6.1. With the notations above, for every ` ∈ N0, there is a N` > 0 such that for every
k ≥ N` , χ̃Πkχ = O(k−∞) : C∞(X,Lk) → C `(X,Lk), for every χ ∈ C∞0 (D), χ̃ ∈ C∞(X) with
Supp χ̃ ∩ Suppχ = ∅, and

(6.6) Πk,s(x, y)− Sk(x, y) = O(k−∞) : C∞0 (D)→ C `(D).

Proof. Fix ` ∈ N0. From Theorem 5.5, there exists N` > 0 such that for every k ≥ N`,

Πk = I − ∂∗b,kN
(1)
k ∂b,k on C∞(X,Lk),

Πk : C∞(X,Lk)→ H`+n(X,Lk),

‖(I − Πk)u‖n+`,k ≤ kM(`)
∥∥∂b,ku∥∥n+`,k

, ∀u ∈ C∞(X,Lk),

(6.7)

where M(`) > 0 is a constant independent of k and u. Now, we assume that k ≥ N`. By the
Sobolev embedding theorem we have H`+n(X,Lk) ⊂ C `(X,Lk).

Fix N1 > 0 and let u ∈ C∞0 (D). Consider

(6.8) v = Uk,sS̃ku− Πk(Uk,sS̃ku) = (I − Πk)(Uk,sS̃ku).

From (6.5), we have

v = Uk,s(S̃k − Πk,sS̃k)u on D,

v = Uk,s(S̃ku)− Πk(Uk,s(I +Rk)u) on X.
(6.9)

From (6.7) and (6.8), we obtain

(6.10)
∥∥∥(I − Πk)(Uk,sS̃ku)

∥∥∥
n+`,k

≤ kM(`)
∥∥∥∂b,k(Uk,sS̃ku)

∥∥∥
n+`,k

.

Note that ∂s,kS̃k = O(k−∞) : Hs
comp (D) → Hs−1

loc (D) for all s ∈ Z. From this observation,
(6.10) and the second formula of (6.9) we conclude that

(6.11) Uk,sS̃k − ΠkUk,s − ΠkUk,sRk = O(k−∞) : C∞0 (D)→ C `(X,Lk).

From (6.4) and (6.7), it is easy to see that

(6.12) ΠkUk,sRk = O(k−∞) : C∞0 (D)→ C `(X,Lk).

From (6.11) and (6.12), we conclude that

(6.13) Uk,sS̃k − ΠkUk,s = O(k−∞) : C∞0 (D)→ C `(X,Lk).

From (6.13) and (6.1), (6.6) follows.
Finally, from (6.13), (6.2) and noting that S̃k is properly supported on D, we deduce

that χ̃Πkχ = O(k−∞) : C∞(X,Lk) → C `(X,Lk), for every χ ∈ C∞0 (D), χ̃ ∈ C∞(X) with
Supp χ̃ ∩ Suppχ = ∅. �
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Proof of Theorem 1.3. Let Ak be as in Theorem 1.3. It is not difficult to see that for every
s ∈ Z and N ∈ N, there exists n(N, s) > 0 independent of k, such that

(6.14) Ak = O(kn(N,s)) : Hs
comp (D)→ C N

0 (D).

From (6.14), (6.6) and since Ak : Hs
comp (D)→ C∞0 (D) for every s ∈ Z, we conclude that

(6.15) Πk,sAk ≡ SkAk mod O(k−∞).

From (6.15) and Theorem 4.14, Theorem 1.3 follows. �

7. KODAIRA EMBEDDING THEOREM FOR LEVI-FLAT CR MANIFOLDS

In this section, we will prove Theorem 1.4. Let s be a local trivializing section of L on an
open set D ⊂ X. Fix p ∈ D and let x = (x1, . . . , x2n−1), zj = x2j−1 + ix2j, j = 1, . . . , n − 1,
be local coordinates of X defined in some small neighbourhood of p such that (4.31) hold.
We may assume that the local coordinates x defined on D. We write x′ = (x1, . . . , x2n−2). Let
M > 1 be a large constant so that

(7.1)
∣∣−2Im ∂bφ(x) + uω0(x)

∣∣2 ≤ M2

8
, ∀x ∈ D, |u| ≤ 1.

Take τ, χ ∈ C∞0 (R, [0, 1]) with τ = 1 on
[

1
4
, 1

2

]
, τ = 0 on (−∞, 0]∪ [1,∞) and χ = 1 on

[
−1

2
, 1

2

]
,

χ = 0 on (−∞,−1] ∪ [1,∞) and χ(t) = χ(−t), for every t ∈ R. Fix 0 < δ < 1. Put

(7.2) αδ(x, η, k) := τ
(〈 η |ω0(x) 〉

δ

)
χ
(4 |η|2

M2

)
∈ S0

cl (1, T
∗D)

and let Ak,δ be a properly supported classical semi-classical pseudodifferential operator on D
with

Ak,δ(x, y) ≡ k2n−1

(2π)2n−1

∫
eik〈x−y,η〉αδ(x, η, k)dη mod O(k−∞).

Fix ` ∈ N, ` ≥ 2. In view of Theorem 1.3, we see that there is a N` > 0 such that for every
k ≥ N`, Πk,sAk,δ(x, y) ∈ C `(D ×D) and

(7.3) (Πk,sAk,δ)(x, y) ≡
∫
eikψ(x,y,u)aδ(x, y, u, k)du mod O(k−∞) in C `(D ×D),

where
aδ(x, y, u, k) ∈ C∞0 (D ×D × (−M,M)) ∩ Snloc ,cl (1;D ×D × (−M,M)),

aδ(x, y, u, k) ∼
∞∑
j=0

aj,δ(x, y, u)kn−j in Snloc (1;D ×D × (−M,M)),

aj,δ(x, y, u) ∈ C∞0 (D ×D × (−M,M)), j = 0, 1, 2, . . . .

(7.4)

From (1.11), (7.1) and (7.3), we get

(7.5) a0,δ(x, x, u) =
1

2
π−n

∣∣detRL
x

∣∣ τ(u
δ

)
, ∀(x, x, u) ∈ D ×D × (−M,M).

From now on, we assume that k ≥ N`. Let
(7.6)
uk,δ,p := ΠkUk,sAk,δ

(
ek(

∑n−1
l=1 (αlwl−αlwl)+iuy2n−1+ 1

2

∑n−1
j=1 λj |wj |2)χ(ky2n−1)χ(

√
ky1) . . . χ(

√
ky2n−2)

)
,
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where wj = y2j−1 + iy2j and αj ∈ C, j = 1, . . . , n− 1, are as in (4.31). Then, uk,δ,p is a global
C ` CR section. On D, we write uk,δ,p = Uk,sũk,δ,p, ũk,δ,p ∈ C`(D). Then,

|uk,δ,p(x)|hk = |ũk,δ,p(x)| , x ∈ D.

Put ψ0(x, y, u) := ψ(x, y, u)− i
∑n−1

j=1 (αjwj −αjwj) + uy2n−1− i
2

∑n−1
j=1 λj |wj|

2. From (7.3), we
can check that we have modO(k−∞) in C `(D),

ũk,δ,p(x) ≡
∫
eikψ0(x,y,u)aδ(x, y, u, k)χ(ky2n−1)χ(

√
ky1) . . . χ(

√
ky2n−2)

≡
∫
eikψ0(x,F ∗k y,u)k−naδ(x, F

∗
k y, u, k)χ(y2n−1)χ(y1) . . . χ(y2n−2)dudy,

(7.7)

where F ∗k y :=
( y1√

k
,
y2√
k
, . . . ,

y2n−2√
k
,
y2n−1

k

)
. Put

(7.8) ûk,δ,p := exp
(
−k

n−1∑
j=1

(αjzj − αjzj)
)
ũk,δ,p ∈ C `(D).

Lemma 7.1. With the notations above, there is a k0 > 0 such for all k ≥ k0 and p ∈ X,
1

8
δcp ≤ |ûk,δ,p)(p)| ≤ 2δcp,

1

32
δ2cp ≤

∣∣∣∣1k ∂ûk,δ,p∂x2n−1

(p)

∣∣∣∣ ≤ 2δ2cp,∣∣∣∣1k ∂ûk,δ,p∂xj
(p)

∣∣∣∣ ≤ δ4, j = 1, 2, . . . , 2n− 2,

(7.9)

where cp = 1
2
π−n

∣∣detRL
p

∣∣ ∫ χ(y2n−1)χ(y1) . . . χ(y2n−2)dy.

Proof. From (7.7), (7.5), (4.33) and note that ψ0(0, 0, u) = 0, ∀u ∈ R, we can check that

lim
k→∞
|ûk,δ,p(p)| =

1

2
π−n

∣∣detRL
p

∣∣ ∫ τ(
u

δ
)χ(y2n−1)χ(y1) . . . χ(y2n−2)dydu,

lim
k→∞

∣∣∣∣1k ∂ûk,δ,p∂x2n−1

(p)

∣∣∣∣ =
1

2
π−n

∣∣detRL
p

∣∣ ∫ uτ(
u

δ
)χ(y2n−1)χ(y1) . . . χ(y2n−2)dydu,

lim
k→∞

∣∣∣∣1k ∂ûk,δ,p∂xj
(p)

∣∣∣∣ = 0, j = 1, 2, . . . , 2n− 2.

Since δ
4
≤
∫
τ(u

δ
)du ≤ δ and δ2

16
≤
∫
uτ(u

δ
)du ≤ δ2, there is k0 > 0 such that for every k ≥ k0,

(7.9) hold. Since X is compact, k0 can be taken to be independent of the point p. �

For every j = 1, 2, . . . , n− 1, let

ujk,δ,p : = ΠkUk,sAk,δ
(
ek(

∑n−1
l=1 (αlwl−αlwj)+iuy2n−1+ 1

2

∑n−1
j=1 λj |wj |2)

√
k(y2j−1 + iy2j)

× χ(ky2n−1)χ(
√
ky1) . . . χ(

√
ky2n−2)

)
.

(7.10)

Then, ujk,δ,p is a global C ` CR section. On D, we write ujk,δ,p = Uk,sũ
j
k,δ,p, ũ

j
k,δ,p ∈ C `(D). From

(7.3), we can check that

ũjk,δ,p(x) ≡
∫
eikψ0(x,F ∗k y,u)k−naδ(x, F

∗
k y, u, k)(y2j−1 + iy2j)χ(y2n−1)χ(y1) . . . χ(y2n−2)dudy,

(7.11)
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modO(k−∞) in C `(D). Put

(7.12) ûjk,δ,p := exp
(
− k

n−1∑
l=1

(αlzl − αlzl)
)
ũjk,δ,p ∈ C `(D), j = 1, 2, . . . , n− 1.

Lemma 7.2. With the notations above, there exists k0 > 0 such that for all p ∈ X and k ≥ k0 ,∣∣ûjk,δ,p(p)∣∣ ≤ δ4,

∣∣∣∣∣1k ∂û
j
k,δ,p

∂x2n−1

(p)

∣∣∣∣∣ ≤ δ4, j = 1, 2, . . . , n− 1,∣∣∣∣∣1k ∂û
j
k,δ,p

∂zs
(p)

∣∣∣∣∣ ≤ δ4, j, s = 1, 2, . . . , n− 1,∣∣∣∣∣1k ∂û
j
k,δ,p

∂zs
(p)

∣∣∣∣∣ ≤ δ4, j, s = 1, 2, . . . , n− 1, j 6= s,∣∣∣∣∣1k ∂û
j
k,δ,p

∂zj
(p)

∣∣∣∣∣ ≥ 1

8
δλjdp, j = 1, 2, . . . , n− 1,

(7.13)

where {λj}n−1
j=1 are the eigenvalues of RL

p with respect to 〈 · | · 〉 and

dp =
1

2
π−n

∣∣detRL
p

∣∣ ∫ |y1 + iy2|2 χ(y2n−1)χ(y1) . . . χ(y2n−2)dy.

Proof. From (7.11), (7.5), (4.33) and observing that ψ0(0, 0, u) = 0 for all u ∈ R, it is straight-
forward to check that for every j, s, t = 1, . . . , n− 1, s 6= j,

lim
k→∞

∣∣∣∣∣1k ∂û
j
k,δ,p

∂zj
(p)

∣∣∣∣∣ =
1

2
π−n

∣∣detRL
p

∣∣λj ∫ τ
(u
δ

)
|y2j−1 + iy2j|2 χ(y2n−1)χ(y1) . . . χ(y2n−2)dydu,

lim
k→∞

∣∣ûjk,δ,p(p)∣∣ = lim
k→∞

∣∣∣∣∣1k ∂ûjk,δ
∂x2n−1

(p)

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣1k ∂û
j
k,δ,p

∂zs
(p)

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣1k ∂û
j
k,δ

∂zt
(p)

∣∣∣∣∣ = 0.

Since δ
4
≤
∫
τ(u

δ
)du ≤ δ, there is a constant k0 > 0 such that (7.13) holds for every k ≥ k0.

Since X is compact, k0 can be taken to be independent of the point p. The lemma follows. �

Consider the C ` map

(7.14) Φk,δ,p : D → Cn, x 7−→

(
ũk,δ,p
ũk,δ2,p

(x),
ũ1
k,δ,p

ũk,δ2,p
(x), . . . ,

ũn−1
k,δ,p

ũk,δ2,p
(x)

)
.

The following Lemma is a consequence of (7.13) and (7.9) together with a straightforward
computation and therefore we omit the details.

Lemma 7.3. With the notations above, there are k0 > 0 and 0 < δ0 < 1 such that for all k ≥ k0,
0 < δ ≤ δ0 and p ∈ X, the differential of Φk,δ,p is injective at p .

Let dist (·, ·) denote the Riemannian distance on X and for x ∈ X and r > 0, put B(x, r) :=
{y ∈ X; dist (x, y) < r}. From now on, we fix k > k0 and 0 < δ < δ0, where k0 > 0 and
0 < δ0 < 1 are as in Lemma 7.3. Since X is compact there exists rk > 0 such that for every
x0 ∈ X, ũk,δ2,x0(x) 6= 0 for every x ∈ B(x0, 2rk) and the maps Φk,δ,x0 and dΦk,δ,x0 are injective
on B(x0, 2rk). We can find x1, x2, . . . , xdk ∈ X such that

(7.15) X = B(x1, rk) ∪B(x2, rk) ∪ . . . ∪B(xdk , rk).
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For every j = 1, 2, . . . , dk, let uk,δ2,xj , uk,δ,xj , u
1
k,δ,xj

, . . . , un−1
k,δ,xj

∈ C `(X,Lk) be as in (7.6) and
(7.10). Consider the map:

Φk,δ : X → CP(n+1)dk−1,

x 7−→
[
uk,δ2,x1 , uk,δ,x1 , u

1
k,δ,x1

, . . . , un−1
k,δ,x1

, . . . , uk,δ2,xdk , uk,δ,xdk , u
1
k,δ,xdk

, . . . , un−1
k,δ,xdk

]
(x).

(7.16)

Let q ∈ X. Then, q ∈ B(xj, rk) for some j = 1, 2, . . . , dk. From the discussion before (7.15),
we see that uk,δ2,xj(q) 6= 0. Thus, Φk,δ is well-defined as a C ` map.

Theorem 7.4. With the notations above, the differential of Φk,δ is injective at every x ∈ X and
for every x0, y0 ∈ X with dist (x0, y0) ≤ rk

2
, we have Φk,δ(x0) 6= Φk,δ(y0).

Proof. Let q ∈ X. Assume that q ∈ B(x1, rk). Then, uk,δ2,x1(q) 6= 0. On B(x1, rk), consider the
map:

Ψ : B(x1, rk)→ C(n+1)dk−1,

Ψ(x) =
( uk,δ,x1
uk,δ2,x1

,
u1
k,δ,x1

uk,δ2,x1
, . . . ,

un−1
k,δ,x1

uk,δ2,x1
, . . . ,

uk,δ2,xdk
uk,δ2,x1

,
uk,δ,xdk
uk,δ2,x1

,
u1
k,δ,xdk

uk,δ2,x1
, . . . ,

un−1
k,δ,xdk

uk,δ2,x1

)
(x).

(7.17)

From the discussion before (7.15), we see that dΦk,δ,x1 is injective on B(x1, 2rk). Thus, dΨ is
injective at q and hence dΦk,δ is injective at q.

Let x0, y0 ∈ X with dist (x0, y0) ≤ rk
2

. We may assume that x0 ∈ B(x1, rk). Thus, x0, y0 ∈
B(x1, 2rk). From the discussion before (7.15), we see that Φk,δ,x1 is injective on B(x1, 2rk).
Hence,

(7.18) Φk,δ,x1(x0) 6= Φk,δ,x1(y0).

From the definition of Φk,δ,x1 (see (7.14)), we see that (7.18) implies that Φk,δ(x0) 6= Φk,δ(y0).
The lemma follows. �

Let s be a local trivializing section of L on an open set D ⊂ X. As before, we fix p ∈ D and
let x = (x1, . . . , x2n−1), zj = x2j−1 + ix2j, j = 1, . . . , n − 1, be local coordinates of X defined
in some small neighbourhood of p such that (4.31) hold. We may assume that the local coor-
dinates x defined on D. Take m > N` be a large constant and let um,δ,p be as in (7.6). On D,

we write um,δ,p = Uk,sũm,δ,p, ũm,δ,p ∈ C `(D). Put Dp,m :=
{
x = (x1, . . . , x2n−1); |x| < 1

m logm

}
.

We need the following.

Lemma 7.5. With the notations above, there exists m0 > 0 such that rkm
1/3
0 > 4 and for all

m ≥ m0 and p ∈ X,

(7.19) inf
{
|um,δ,p(x)|hm ; x ∈ Dp,m

}
≥ 1

8
δcp,

where cp = 1
2
π−n

∣∣detRL
p

∣∣ ∫ χ(y2n−1)χ(y1) . . . χ(y2n−2)dy, and for every q ∈ X with dist (q, x) ≥
rk
4

, for all x ∈ Dp,m, we have

(7.20) |um,δ,p(q)|hm ≤
1

2
inf
{
|um,δ,p(x)|hm ; x ∈ Dp,m

}
,

where rk > 0 is as in Theorem 7.4.
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Proof. Let m > N` be large enough so that

(7.21) rkm
1/3 > 4.

As in (7.7), we have modO(m−∞) in C `(D)

ũm,δ,p(x) ≡
∫
eimψ0(x,F ∗my,u)m−naδ(x, F

∗
my, u,m)χ(y2n−1)χ(y1) . . . χ(y2n−2)dudy.(7.22)

From (7.22), we can repeat the proof of the first formula of (7.9) with minor changes and
get (7.19). We only need to prove (7.20). Let q ∈ X with dist (q, x) ≥ rk

4
, for all x ∈ Dp,m. If

q /∈ D, from (i) in Theorem 1.2, we can check that |um,δ,p(q)|hm = O(m−∞).
We may thus assume that q ∈ D. For simplicity, we may suppose that dist (x1, x2) =
|x1 − x2| on D. We write q = (q1, . . . , q2n−1). Since dist (q, x) ≥ rk

4
, for all x ∈ Dp,m, from

(7.21), we have |q| ≥ 1
4m1/3 for m large. Thus, |q′| ≥ 1

8m1/3 logm
or |q2n−1| ≥ 1

8m1/3 , where
q′ = (q1, . . . , q2n−2). If |q′| ≥ 1

8m1/3 logm
, by using the fact that

m Imψ0(q, F ∗my, u) ≥ cm1/3 1

(logm)2
, ∀y ∈ Suppχ(y2n−1)χ(y1) . . . χ(y2n−2),

where c > 0 is a constant independent of m, we conclude that

(7.23) |ũm,δ,p(q)| = O(m−∞) , if |q′| ≥ 1

8m1/3 logm
·

If |q2n−1| ≥ 1
8m1/3 and |q′| < 1

8m1/3 logm
, from (4.33), we can integrate by parts with respect to

u several times and conclude that

(7.24) |ũm,δ,p(q)| = O(m−∞) , if |q2n−1| ≥
1

8m1/3 logm
and |q′| < 1

8m1/3 logm
·

From (7.23) and (7.24), (7.20) follows. �

Now, we fix m ≥ N` + m0, where m0 is as Lemma 7.5. From Lemma 7.5, we see that we
can find x1 ∈ X, x2 ∈ X, . . . , xdm ∈ X such that X =

⋃dm
j=1 Uxj ,m, where for each j, Uxj ,m is an

open neighbourhood of xj with Sup {dist (q1, q2); q1, q2 ∈ Uxj ,m} < rk
4

, and for each j, we can
find a C ` global CR section um,δ,xj such that

(7.25) inf
{∣∣um,δ,xj(x)

∣∣
hm

; x ∈ Uxj ,m
}
> 0,

and for every q ∈ X with dist (q, x) ≥ rk
4

, for all x ∈ Uxj ,m, we have

(7.26)
∣∣um,δ,xj(q)∣∣hm ≤ 1

2
inf
{∣∣um,δ,xj(x)

∣∣
hm

; x ∈ Uxj ,m
}
,

where rk > 0 is as in Theorem 7.4. Consider the map:

Ψm,δ : X → CPdm−1, x 7−→ [um,δ,x1 , um,δ,x2 , . . . , um,δ,xdm ](x).(7.27)

Let q ∈ X. Then, q ∈ Uxj ,m for some j = 1, 2, . . . , dm. In view of (7.25), we see that
um,δ,xj(q) 6= 0. Thus, Ψm,δ is well-defined as a smooth map.

Theorem 7.6. The map (Φk,δ,Ψm,δ) : X → CP(n+1)dk−1×CPdm−1 is a C ` CR embedding, where
Φk,δ is given by (7.16)
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Proof. In view of Theorem 7.4, we only need to show that (Φk,δ,Ψm,δ) is injective. Let
q1, q2 ∈ X, q1 6= q2. Assume first that dist (q1, q2) ≤ rk

4
. From Theorem 7.4, we know that

Φk,δ(q1) 6= Φk,δ(q2) and hence (Φk,δ(q1),Ψm,δ(q1)) 6= (Φk,δ(q2),Ψm,δ(q2)). We assume that
dist (q1, q2) > rk

4
. From (7.26), it is straightforward to check that Ψm,δ(q1) 6= Ψm,δ(q2) and

thus (Φk,δ(q1),Ψm,δ(q1)) 6= (Φk,δ(q2),Ψm,δ(q2)). The theorem follows. �

Proof of Theorem 1.4. With the notations above, consider the Segre embedding:

Υ : CP(n+1)dk−1 × CPdm−1 → CP(n+1)dkdm−1,

([z1, . . . , z(n+1)dk ], [w1, . . . , wdm ])→ [z1w1, z1w2, . . . , z1wdm , z2w1, . . . , z(n+1)dkwdm ].

It is easy to see that Υ is a smooth holomorphic embedding. From this observation and
Theorem 7.6, we conclude that

Υ ◦ (Φk,δ,Ψm,δ) : X → CP(n+1)dkdm−1

is a C ` CR embedding. We have proved that for every M ≥ k + N` + m0, we can find CR
sections s0 ∈ C `(X,LM), s1 ∈ C `(X,LM), . . . , sdM ∈ C `(X,LM), such that the map x ∈ X →
[s0(x), s1(x), . . . , sdM (x)] ∈ CPdM is an embedding. Theorem 1.4 follows. �

Let us finally mention that a projective CR manifold admits Lefschetz pencil structures of
degree k, for any k large enough, cf. [21].

Acknowledgements. We are grateful to Masanori Adachi and Xiaoshan Li for several useful
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