SZEGO KERNEL ASYMPTOTICS AND KODAIRA EMBEDDING THEOREMS OF
LEVI-FLAT CR MANIFOLDS
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ABSTRACT. Let X be an orientable compact Levi-flat CR manifold and let L be a positive CR
complex line bundle over X. We prove that certain microlocal conjugations of the associated
Szegb kernel admit an asymptotic expansion with respect to high powers of L. As an appli-
cation, we give a Szeg6 kernel proof of the Kodaira type embedding theorem on Levi-flat CR
manifolds due to Ohsawa and Sibony:.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The problem of global embedding CR manifolds is prominent in areas such as complex
analysis, partial differential equations and differential geometry. A general result is the CR
embedding of strictly pseudoconvex compact CR manifolds of dimension greater than five,
due to Boutet de Monvel [2].

For CR manifolds which are not strictly pseudoconvex, the idea of embedding CR manifolds
by means of CR sections of tensor powers L* of a positive CR line bundle L — X was
considered in [12, 13, 14, 20, 25]. This was of course inspired by Kodaira’s embedding
theorem.

One way to attack this problem is to produce CR sections by projecting appropriate smooth
sections to the space of CR sections. So it is crucial to understand the large k behaviour of the
Szeg6 projection I1y, i. e. the orthogonal projection on space Hp (X, L*) of CR sections, and of
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its distributional kernel, the Szeg6 kernel. To study the Szegé projection it is convenient to
link it to a parametrix of the 0,-Laplacian on (0, 1)-forms (called Kohn Laplacian). This is also
the method used in [2], where the parametrix turns out to be a pseudodifferential operator
of order 1/2.

In [14], we established analogues of the holomorphic Morse inequalities of Demailly [5,
19] for CR manifolds and we deduced that the space H (X, L¥) is large under the assump-
tion that the curvature of the line bundle is adapted to the Levi form. In [12], the first author
introduced a microlocal cut-off function technique and could remove the assumptions link-
ing the curvatures of the line bundle and the Levi form under rigidity conditions on X and
the line bundle. Moreover, in [13], the first author established partial Szeg6 kernel asymp-
totic expansions and Kodaira embedding theorems on CR manifolds with transversal CR S?
actions.

All these developments need the assumptions that either the curvature of the line bundle
is adapted to the Levi form or rigidity conditions on X and the line bundle. The difficulty
of this kind of problem comes from the presence of positive eigenvalues of the curvature of
the line bundle and negative eigenvalues of the Levi form of X. Thus, it is very interesting to
consider Levi-flat CR manifolds. In this case, the eigenvalues of the Levi form are zero and
we will show that it is possible to remove the assumptions linking the curvatures of the line
bundle and the Levi form or the rigidity conditions on X and the line bundle.

Actually, Ohsawa and Sibony [25], cf. also [24], constructed a CR projective embedding of
class ¢~ for any x € N of a Levi-flat CR manifold by using J-estimates. A natural question
is whether we can improve the regularity to x = oo. Adachi [1] showed that the answer
is no, in general. The analytic difficulty of this problem comes from the fact that the Kohn
Laplacian is not hypoelliptic on Levi flat manifolds. Hypoellipticity and subelliptic estimates
are used on CR manifolds with non-degenerate Levi form in order to find parametrices of the
Kohn Laplacian and establish the Hodge decomposition, e. g. [2, 4, 15, 16]. Moreover, the
Szegd projection I, is not a Fourier integral operator in our case.

In this paper, we establish a semiclassical Hodge decomposition for the the Kohn Lapla-
cian acting on powers L* as k — oo and we show that the composition II; o A;, of II; with an
appropriate pseudodifferential operator A is a semiclassical Fourier integral operator, admit-
ting an asymptotic expansion in k£ (see Theorem 1.3). From this result, we can understand
the large k behaviour of the Szeg6 projection and produce many global CR functions. As an
application, we give a Szeg6 kernel proof of Ohsawa and Sibony’s Kodaira type embedding
theorem on Levi-flat CR manifolds.

We now formulate the main results. Let (X, 7"°X) be an orientable compact Levi-flat CR
manifold of dimension 2n—1, n > 2. We fix a Hermitian metric (- | - ) on CT'X such that 7' X
is orthogonal to 7! X. The Hermitian metric (- |- ) on CT'X induces a Hermitian metric (- |- )
on the bundle T*%X of (0, q) forms of X. We denote by dvx the volume form on X induced
by (-|-). Let (L, h) be a CR complex line bundle over X, where the Hermitian fiber metric on
L is denoted by h. We will denote by R” the curvature of L (see Definition 2.6). We say that
L is positive if RL is positive definite at every z € X. Let \;(z), ..., \,_1(x) be the eigenvalues
of RL with respect to (-|-), and set

(1.1 det RY .= \j(2) ... \u_1(2).

For k > 0, let (L*, h¥) be the k-th tensor power of the line bundle (L, h). For u,v € T;*X @ L*
we denote by (u|v )+ the induced pointwise scalar product induced by (- | - ) and h*. We then
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get natural a global L? inner product (- |- ); on Q%4(X, L*),

(a|B)k ::/X<oz|5>hkdvx.

Similarly, we have an L? inner product (-|-) on Q%/(X). We denote by L}, (X, L*) and
L%, (X)) the completions of Q%¢(X, L*) and Q*¢(X) with respect to (-|-); and (|- ), respec-
tively._For q = 0, we write L*(X) := L, , (X), L*(X, LF) := Lf, (X, LF).

Let Oy, : €(X, LF) — Q%1(X, L¥) be the tangential Cauchy-Riemann operator cf. (2.15).
We extend 9y, to L*(X, L*) by

Do Dom By € L*(X, L) = L3, 1y (X, LF), ur— Jppu,

with Dom 0y, := {u € L*(X, L*); O u € L%OJ)(X, L*)}, where 0, ,u is defined in the sense of
distributions. The Szegd projection

(1.2) I, : L2(X, LF) — Ker Oy

is the orthogonal projection with respect to (- |- ).
The Szeg6 projection Il is not a smoothing operator. Nevertheless, our first result shows
that it enjoys the following regularity property.

Theorem 1.1. Let X be an orientable compact Levi-flat CR manifold and let (L, h) be a positive
CR line bundle on X. Then for every { € Ny there exists N, > 0 such that for every k > Ny,
[, (6°°(X, L)) ¢ €4X, LF) and T, : €>(X, L*) — €%(X, L¥) is continuous.

Let us recall now that the Szegé kernel I1(z, y) of the boundary of a strictly pseudoconvex
domain is a Fourier integral operator with complex phase, by a result of Boutet de Monvel-
Sjostrand [3] (here we consider the projection on the space of CR functions or CR sections
of a fixed CR line bundle). In particular, II(x, y) is smooth outside the diagonal of z = y and
there is a precise description of the singularity on the diagonal z = y, where II(x, z) has a
certain asymptotic expansion.

For a Levi-flat CR manifold we do not have such a neat characterization of the singularities
of the Szegd kernel I1;(z,y) for fixed k. The smoothing properties of II; are linked to the
singularities of its kernel I, (z,y) and to its large k behaviour. Although it is quite difficult
to describe them directly, we will show that I1,, still admits an asymptotic expansion in weak
sense.

Let s be a local trivializing section of L on an open set D C X. We define the weight of
the metric with respect to s to be the function ¢ € (D) satisfying |s|; = ¢~2¢. We have an
isometry

(1.3) Ups : L*(D) = L*(D, L"), u s ue™s",

with inverse U, ! : L?(D, L¥) — L*(D), a + e **s~*a. The localization of II; with respect to
the trivializing section s is given by

(1.4 ps : L2 (D) = LX(D), s = Uy I Ups,

comp

where L2, (D) is the subspace of elements of L?(D) with compact support in D. The second

comp

main result of this work shows that for £ — oo, I1}, is rapidly decreasing outside the diagonal,
and describes the singularities of II;, in terms of an oscillatory integral.
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Theorem 1.2. Let X be an orientable compact Levi-flat CR manifold of dimension 2n—1, n > 2.
Assume that there is a positive CR line bundle L over X. Then for every { € Ny, there is N, > 0
such that for every k > N, we have:
(D) X1y = O(k=°) : €°(X, LF) — €4(X, L*), Vx, X € €>(X) with Supp x N Supp X = 0;
(i) s — Sk = O(k=°) : 65°(D) — €4D), where Sy, : €2°(D) — €>(D) is a continuous
operator and the kernel of S;. is equivalent to the oscillatory integral

(1.5) Sk(z,y) = /eikw(’”’y’“)s(x,y,u, k)du mod O(k™),
where

s(z,y,u, k) Nis]xy, K" in S, (1; D x D x R),
(1.6) -

s(x,y,u, k;),sj(x,y,u) eEE*(DxDxR), j=0,1,2,...,
1
2
and the phase function ¢ € €*°(D x D x R) satisfies Im(z,y,u) > 0 and
Aot (@ o) = —2Im Oy () + uwo(z), = € D, u € R,

so(w,z,u) = = "|det RY|, Vze D, Yu€eR,

1.7) dy |z wm) = 2Im Opdp(2) — uwo(x), = € D, u € R,
g—:/:(:c,y,u) = 0and ¢ (x,y,u) = 0ifand only if z = y,

and

(1.8) |dyp(z,y,u)| > clul, YueR, V(zr,y) € D x D,

where ¢ > 0 is a constant. Here wy € €>°(X,T*X) is the positive 1-form of unit length orthogo-
nal to T*'"' X @ T*%1 X, see Definition 2.4.

Note that integrating by parts with respect to y several times in (1.5) and using (1.8), we
conclude that S;, is well-defined as a continuous operator S, : 65°(D) — €>°(D).

Using Theorem 1.2, we will show that by composing Il ; with certain semiclassical pseu-
dodifferential operators we obtain kernels having an asymptotic expansion in k. The freedom
to choose these operators will be crucial for proving Theorem 1.4.

Let A, be a properly supported semi-classical pseudodifferential operator on D of order 0
and classical symbol (see Definition 2.3) with symbol

a(z,n, k k7 a;(x,n) in S)_(1,T*D),
(1.9) Z ’ 1

a(z,n, k) =0, a5(x,n) = O, j=0,1,2,... for |n| > %M, for some M > 0.
The third main result of this work is the following.

Theorem 1.3. Let X be an orientable compact Levi-flat CR manifold of dimension 2n—1, n > 2.
Assume that there is a positive CR line bundle L over X. Then for every ¢ € N, there is Ny > 0
such that for every k > Ny, (I o A)(-,+) € €(D x D) and

(1.10) (g, Ar)(z,y) = /eikw(x’y’“)a(x,y,u, kYdu mod O(k~>) in €Y(D x D),
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where
a(x,y,u, k) ~ Zaj(x y,u)k" 7 in Sp.(1; D x D x (=M, M))
7=0
(1.11) a(w, y,u, k), (2, y,u) € 65°(D x D x (=M, M)), j=0,1,2,...,
1 —
ap(x,z,u) = 5#’” |det RE| g (2, uwo(z) — 2Im Bpi(x)), = € D, |u| < M,

and ¢ € €°(D x D x R) is as in Theorem 1.2.

For more results and references about the singularities of the Szegé kernel and embedding
of CR manifolds we refer to [15].

As an application of Theorem 1.1 and Theorem 1.3, we show that by projecting appropriate
sections through I, we obtain CR sections which separate points and tangent vectors. Hence
we give a Szeg6 kernel proof of the following result due to Ohsawa and Sibony [24, 25].

Theorem 1.4. Let X be an orientable compact Levi-flat CR manifold of dimension 2n—1, n > 2.
Assume that there is a positive CR line bundle L over X. Then, for every { € N there isa M, > 0
such that for every k > M,, we can find Ny CR sections sg, s1, .. .,sn, € €°(X, L*), such that
the map X 3 x — [so(z), s1(x),...,sn,(x)] € CPM* is an embedding.

There are no compact Levi-flat real hypersurfaces in a Stein manifold, due to the maximum
principle. On the other hand, the non-existence of smooth Levi-flat hypersurfaces in complex
projective spaces P attracted a lot of attention, cf. [18, 26]. The non-existence has been
settled for n > 3 but a famous still open conjecture is whether this is true for n = 2.

The paper is organized like follows. In Section 2 we collect some notations, terminology,
definitions and statements we use throughout In Section 3, we give an explicit formula for
the semi-classical Kohn Laplacian D( in local coordinates and we determine the characteris-

tic manifold for Db .- In Section 4 we exhibit a semi-classical Hodge decomposition for D(‘I)
In Section 5, we establish the regularity of the Szeg6 projection and we prove Theorem 1. 1
In Section 6, by using the semi-classical Hodge decomposition theorem established in Sec-
tion 4 and the regularity for the Szeg6 projection, we prove Theorem 1.2 and Theorem 1.3.
In Section 7, we prove Theorem 1.4.

2. PRELIMINARIES

2.1. Definitions and notations from semi-classical analysis. ‘We use the following nota-
tions: N = {1,2,...}, Ny = NU {0}, R is the set of real numbers, R, := {z € R; x > 0}. For a

multiindex o = (o, ..., a,) € Nj we set || = a3 + ...+ . For z = (24, ..., z,) we write
%) ale!
o « Qn _ o (0% QA
x=at . oap, 8%_6_%7 ax_am;__.axn_axa’
1 1
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Let 2z = (21,...,2n), 2j = Xgj_1 +1i%q;, j = 1,...,n, be coordinates of C". We write
2¥ =22, =27
0 1 0 0 0 1 0 0
83]-:_:_( _Z >7 8§J:T:_< +/L )7
82’]' 2 6x2j_1 8x2j 82’]‘ 2 a(I)Qj_l al‘gj
olel olel

0 =00 ... 0" =—, 02=0J"...00" = —.

z z1 Zn aza F Z1 Zn o7

Let M be a ¢ orientable paracompact manifold. We let 7'M and T*M denote the tangent
bundle of M and the cotangent bundle of M respectively. The complexified tangent bundle
of M and the complexified cotangent bundle of M will be denoted by CI'M and CT*M
respectively. We write (-,-) to denote the pointwise duality between 7'M and T*M. We
extend (-, -) bilinearly to CT M x CT*M.

Let £ be a ¥ vector bundle over M. The fiber of £/ at x € M will be denoted by E,. Let
F be another vector bundle over M. We write £ X F' or F' X E* to denote the vector bundle
over M x M with fiber over (z,y) € M x M consisting of the linear maps from E, to F,.

Let Y C M be an open set. The space of smooth sections of £ over Y is denoted by
%> (Y, ) and the subspace of smooth sections with compact support is denoted by €;°(Y, E).
Let K, be the canonical bundle of M. The space Z'(Y, E) of distribution sections of E is the
dual of 65°(Y, E*® Kr). Since M is orientable we can identify €5°(Y, E*® Ky/) to 65°(Y, E¥)
by using a volume element on M, so we can think Z'(Y, E) as the dual of €;°(Y, E*).

Let &'(Y, E) be the subspace of 2'(Y, E') whose elements have compact support in Y. For
m € R, we let H™(Y, E') denote the Sobolev space of order m of sections of F over Y. Put

H? (Y,E)={ue 2'(Y,E); pu e H™(Y,E), Vo € 6;°(Y)},
HZ (Y, E) = HE(Y,E)N &'(Y, E) .

comp

We recall the Schwartz kernel theorem [9, Theorems5.2.1, 5.2.6], [19, Thorem B.2.7]. Let
E and F be smooth vector bundles over M. Let A(-,-) € 2'(Y x Y, F X E*). For any fixed
u € 6;°(M, E), the linear map 6;°(M, F*) 3 v — (A(-,-),v ® u) € C defines a distribution
Au € Z'(Y, F). The operator A : 65°(M, E) — 9'(M, F), u — Au, is linear and continuous.
The Schwartz kernel theorem asserts that, conversely, for any continuous linear operator
A6 (M, E) - 2'(M, F) there exists a unique distribution A(-,-) € (M x M,F X E*)
such that (Au,v) = (A(-,-),v ® u) for any u € 65°(M, E), v € €5°(M, F*). The distribution
A(-,-) is called the Schwartz distribution kernel of A. We say that A is properly supported if
the canonical projections on the two factors restricted to Supp A(+,-) C M x M are proper.
The following two statements are equivalent:

(a) A can be extended to a continuous operator A : &'(M, E) — €>(M, F),

(b) A(-,-) € €°(M x M,F X E*).
If A satisfies (a) or (b), we say that A is a smoothing operator. Furthermore, A is smoothing
if and only if forall N > 0and s € R, A: HS (M, E) — H:™N(M, F) is continuous.

comp loc

Let A be a smoothing operator. Then for any volume form dyu, the Schwartz kernel of A is
represented by a smooth kernel K € €>°(M x M, F K E*), called the Schwartz kernel of A
with respect to dyu, such that

2.1) (Au)(z) = /M K(xz,y)u(y)du(y), foranyu e 6;°(M,FE).
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Then A can be extended as a linear continuous operator A : &'(M, E) — € (M, F') by setting
(Au)(z) = (u(-), K(z,-)), z € M, for any u € &"(M, E).

Definition 2.1. The Szegd kernel of the pair (X, L*) is the the Schwartz distribution kernel
(-, ) € 2'(X x X, L*¥ X L¥) of the Szegb projection II,, given by (1.2).

Let W;, W, be open sets in R" and let £ and F be complex Hermitian vector bundles
over W, and W,. Let s,s' € R and ny € R. For a k-dependent continuous function Fj, :
HE (W), E) — HE (Ws, F) we write

comp loc
Fp.=O(k™): H, (W1, E) — H}

comp loc <W27 F)7
if for any xo € €>°(W,),x1 € 65°(W1), there is a positive constant ¢ > 0 independent of £,

such that

(2.2) IO Frxa)ully < k™ [lull,, Yu € Hy, (Wi, E),

where ||-||, denotes the usual Sobolev norm of order s. We write
Fo=0(k): H__(Wh,E) — HE, (Wa, F),

comp
if F, = O(k™N) : Hy,, (W1, E) — HE (W, F), for every N > 0. Similarly, let ¢ € N, for a

k-dependent continuous function Gy, : 65°(W1, E) — €*(W», F) we write
Gr=O0(k™) : € (W, E) = €4(Ws, F),

if for any xo € €>*(Ws),x1 € 65°(W1) and N > 0, there are positive constants ¢ > 0 and
M € Ny independent of £, such that

(2.3) ||(X0GkX1)U||<ﬂ(W2,F) < ek HUH%M(Wl,E) Vu € 657 (Wi, E),

A k-dependent continuous operator Ay, : 65° (W1, E) — Z'(Ws, F) is called k-negligible on
Wy x Wy if for k large enough A is smoothing and for any K € W, x Wj, any multi-indices
a, fand any N € N there exists Ck , 35 > 0 such that

(2.4) |8a85Ak ‘ < C}ga,g’Nk_N , on K.

Let Cy : €5° (W1, E) — 2'(W,, F) be another k-dependent continuous operator. We write
A = Cy, mod O(k=>) (on Wy x Wy) or Ag(z,y) = Ck(z,y) mod O(k~>°) (on Wy x W) if
Ay — C}, is k-negligible on W5 x Wi,

Similarly, for £ € Ny, Ay : 6°(Wy, E) — 2'(Wy, F) is called k-negligible in the 4 norm on
Wy x Wy if Ag(z,y) € €4(Wy x Wy, E, X F,) for k large and (2.4) holds for multi-indices «,
p with |a| + 8] < L.

Let Cy : 65°(Wh, E) — 2'(W,, F) be another k-dependent continuous operator. We write
A = Cr mod O(k~*) in the ¢* norm (on Wy x Wy) or Ag(z,y) = Ci(x,y) mod O(k~*°) in
%" norm (on Wy x W,) if A;, — O}, is k-negligible in ¢ norm on W, x W;.

Let By : L*(X,L*) — L*(X,LF) be a continuous operator. Let s, s; be local trivializing
sections of L on open sets Dy € M, D, € M respectively, |s|: = e~2?, |s;|} = e 2. The
localized operator (with respect to the trivializing sections s and s;) of By is given by

(2.5) Bis,s, : L*(D1) N&'(Dy) = L*(D), ur— e *s " By(sie"” u) = U, ) BrUss, ,
and let By, ¢, (x,y) € Z2'(D x D) be the distribution kernel of By, ; ,,. We write
B, = O(k™) : H*(X,LF) —» H* (X, L"), ngeR,
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if for all local trivializing sections s, s; on D and D, respectively, we have

Bios, = O(K™) : HS (D)) — H (D).

comp loc
We write
By = O(k™°) : H*(X,LF) —» H¥ (X, LF), ng €R,
if for all local trivializing sections s, s; on D and D, respectively, we have

Brss, = O(k™): HS (D)) — HS. (D).

comp

Fix ¢ € N. We write
By = O(k™) : € (X, L") — €“(X, L"),
if for all local trivializing sections s, s; on D and D, respectively, we have
Bias, = O(k™®) : €.°(Dy) — €4(D).
We recall semi-classical symbol spaces (see Dimassi-Sjostrand [7, Chapter 8]):

Definition 2.2. Let W be an open set in R, Let

S(1; W) = {a € (W) |Va € NY : sup [0%a(z)| < oo},
xeW
S (1L, W) = {(a(-, E))ren | Yo € NY ¥y € €5°(W) = sup sup |0%a(z, k)| < oo} :

keN xeW
For m € R let
S (W) = { (@ ke | (57 "a( k) € S5 (1) }.

Hence a(-, k)) € S (1; W) if for every o € N}’ and x € ¢5°(W), there exists C, > 0, such
that |0%(xa(-, k))| < Cok™ on W.
Consider a sequence a; € S,7 (1), j € Ny, where m; \, —oco, and let a € S]"°(1). We say

loc loc
that

a( k) ~ Y a;(-, k), in (1),
§=0

if for every ¢ € Ny we have a — Zﬁ:o a; € S7'(1) . For a given sequence a; as above, we

loc

can always find such an asymptotic sum «a, which is unique up to an element in S, >°(1) =
Sl (L W) := N, S (1).

loc

We say that a(-, k) € S[

loc

(1) is a classical symbol on W of order m if

(2.6) a( k) ~ Y k" Va;in S70(1), aj(z) € Sie (1), j=0,1....
j=0
The set of all classical symbols on W of order my is denoted by S}/ (1) = S|}0 , (1; W).

Definition 2.3. Let IV be an open set in R"V. A semi-classical pseudodifferential operator on
W of order m and classical symbol is a k-dependent continuous operator A : 65°(W) —
%> (W) such that the distribution kernel Ay (x,y) is given by the oscillatory integral

EN ,
Ap(z,y) = e*@=vm g (z. y,n, k)dn  mod O(k~>),
@7 k(@ y) (%)N/ (2,y,m, k)dn (F™)

a’(xvyan7k) S Slrgc,cl“-;w x W x RN)
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We shall identify A, with Ag(z,y). It is clear that A, has a unique continuous extension
Ay E'(W) — P'(W). For u € 65°(W) we have

kN ”
= ? (a:—y,n) —00
(2.8) Apu(z) = @) /e a(x,n, k)u(y)dn mod O(k™>),
with symbol
(2.9) a(z,n, k) € S, o (LW x RY) =57 (1, T*W).

2.2. CR manifolds and bundles. A Cauchy-Riemann (CR) manifold (of hypersurface type)
is a pair (X, T1°X) where X is a smooth manifold of dimension 2n — 1, n > 2, and T*°X is
a sub-bundle of the complexified tangent bundle CTX := C ® T'X, of rank (n — 1), such that
THX NTHX = {0} and the set of smooth sections of 7'°X is closed under the Lie bracket.
We call T1°X the CR structure of X and we denote T%!X := T10X,

We say that (X, 71°X) is a Levi-flat CR manifold if the set of smooth sections of T"°X &
T X is closed under the Lie bracket. If X is Levi-flat, there exists a smooth foliation of X, of
real codimension one and whose leaves are complex manifolds: it is obtained by integrating
the distribution (T°X & T*!'X)NTX.

In this paper, we assume throughout that X is an orientable Levi-flat manifold.

Fix a smooth Hermitian metric (-|-) on CTX so that T'X is orthogonal to 7' X and
(u|v) is real if u, v are real tangent vectors. Then locally there is a real non-vanishing vector
field T of length one which is pointwise orthogonal to T'°X ¢ T%'X. T is unique up to the
choice of sign. For u € CTX, we write |u|* := (u|u). Denote by 7*'°X and T**'X the
dual bundles of T*°X and T%! X, respectively. They can be identified with subbundles of the
complexified cotangent bundle CT*X.

Define the vector bundle of (0, ¢)-forms by 77X := A9T*%1 X, The Hermitian metric (- |-)
on CTX induces, by duality, a Hermitian metric on C7*X and also on the bundles of (0, ¢)
forms T*%9X, ¢ = 0,1,...,n — 1. We shall also denote all these induced metrics by (- |- ). Let
Q%4(D) denote the space of smooth sections of 7*%¢X over D and let Q0*(D) be the subspace
of 2%9(D) whose elements have compact support in D. Similarly, if £ is a vector bundle over
D, then we let Q°4(D, F') denote the space of smooth sections of 7**X ® E over D and let
QYY(D, E) be the subspace of Q%¢(D, E)) whose elements have compact support in D.

Locally we can choose an orthonormal frame wy,...,w,_; of the bundle 7*'°X. Then
W1,...,Ws 1 is an orthonormal frame of the bundle 7**' X. The real (2n — 2)-form w =
"ty AWy A ... Aw,—1 AN w,_; is independent of the choice of the orthonormal frame. Thus
w is globally defined. Locally there is a real 1-form w, of length one which is orthogonal to
79X @ T*%1 X. The form wy is unique up to the choice of sign. Since X is orientable, there
is a nowhere vanishing (2n — 1) form () on X. Thus, w, can be specified uniquely by requiring
that w Awy = fQ, where f is a positive function. Therefore wy, so chosen, is globally defined.

Definition 2.4. We call w, the positive 1-form of unit length orthogonal to 7*'°X ¢ T*%1 X,
We choose a vector field 7" so that
(2.10) T =1, (T,wy)=-1.
Therefore T is uniquely determined. We call 7' the uniquely determined global real vector
field. We have the pointwise orthogonal decompositions:
CT*X =T"°X @ T*' X @ {\wo; A € C},

2.11
(210 CTX =T"X @ T™' X @ {\T; A € C}.
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Let
(2.12) Oy : QM(X) — QH(X)

be the tangential Cauchy-Riemann operator. Let U C X be an open set. We say that a
function v € ¥*°(U) is Cauchy-Riemann (CR for short) (on U) if 9,u = 0.

Definition 2.5. Let L be a complex line bundle over a CR manifold X. We say that L is a
Cauchy-Riemann (CR for short) (complex) line bundle over X if its transition functions are
CR.

If X is Levi-flat, then the restriction a CR line bundle to any leaf Y of the Levi-foliation is a
holomorphic line bundle.

From now on, we let (L, k) be a CR line bundle over X, where the Hermitian fiber metric
on L is denoted by h. We will denote by ¢ the local weights of the Hermitian metric. More
precisely, if s is a local trivializing section of L on an open subset D C X, then the local
weight of h with respect to s is the function ¢ € (D, R) for which

(2.13) s(z)[} =e 2@z eD.

Definition 2.6. Let s be a local trivializing section of L on an open subset D C X and ¢ the
corresponding local weight as in (2.13). For p € D, we define the Hermitian quadratic form
Mg on T}°X by

(2.14) MI?(U, V) = <U/\V,d(5b¢ - 8b@) (p)>a UV e TpLOX’

where d is the usual exterior derivative and 0,¢ = 0,¢. Since X is Levi-flat, the definition
of M]? does not depend on the choice of local trivializations (see [14, Proposition 4.2]).
Hence there exists a smooth section R of the bundle of Hermitian forms on 7'°X such that
RF|p = M?. We call R the curvature of (L, ). We say that (L, h), or RF, is positive if RE is
positive definite, for every x € X. We say that L is a positive CR line bundle over X if there
is a Hermitian fiber metric /4 on L such that the induced curvature R’ is positive.

In this paper, we assume that L is a positive CR line bundle over a Levi-flat CR manifold
X and we fix a Hermitian fiber metric h of L such that the induced curvature R’ is positive.
Note that a positive line bundle (L, /) in the sense of Definition 2.6 is positive along the leaves
of the Levi-foliation: its restriction (L, h)|y to any leaf Y is positive (that is, the curvature of
the associated Chern connection is positive).

Let L*, k > 0, be the k-th tensor power of the line bundle L. The Hermitian fiber metric on
L induces a Hermitian fiber metric on L* that we shall denote by h*. If s is a local trivializing
section of L then s* is a local trivializing section of L. We write J;, to denote the tangential
Cauchy-Riemann operator acting on forms with values in L*, defined locally by

(2.15) Oppe : QX LF) — QYPHX LY, Opp(s™u) := s"Opu,

where s is a local trivialization of L on an open subset D C X and u € Q%4(D).

3. THE SEMI-CLASSICAL KOHN LAPLACIAN

We first introduce some notations. For v € T**7X we denote by vA : T*0*X — T*0etaX
the exterion multiplication by v and let v"* : T*%*X — T*0*~9X be the adjoint of vA with
respect to (-|-). Hence, (vAu|g) = (u|v™*g), forallu € TP X, g € T*OP+1X,

10
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Foranyr =0,1,...,n — 2, we denote by
(3.1) Oyr : Dom 3y, C LYy (X, LF) — L) (X, LF)

the Hilbert space adjoint of 0, with respect to (- |- );. Let Dl()q,z denote the (Gaffney extension
of the) Kohn Laplacian given by

(3.2)
Dom [ qk); = {5 € Dom 9, N Dom 8bk C L(Oq (X, L¥); Opps € Domgz’k, 5;k5 € Dom Oy}

and Dbf’ks = 01,045 + 0,0 for s € Dom Déq,z Note that Ker D,(Jo,z = Ker 9y ;. By a result of

Gaffney [19, Proposition 3.1.2], D,()q,z is a positive self-adjoint operator.
Let s be a local trivializing of L on an open subset D C X. By using the map (1.3) we have
the unitary identifications:

(6:°(D, T*X) +— 6°(D, LF @ T X)

u— U = Upsu, u="U, 1,

(3.3) O < Oy, Ospu = Umab,k;U/c,s,
5:k — 521@7 5: rU = UI;;EZkUksa
\ Dik Dz(;qka Dsku_Ukle Uk,s-

It is easy to see that
(3.4 Dk = Oy + k(Dud)A, Dyp = 0, + k(Dp0) "™
where 3, : Q%1 (X) — Q%4(X) is the formal adjoint of 9, with respect to (-|-), and
(3.5) O = 3,40, ), + 0. 1 Ds i
The operator D w111 be called the localized Kohn Laplaaan
Let us choose a smooth orthonormal frame {e; }7—| for 7**' X on D. Let {Z;}"~| denote the

dual frame of 7%' X. Let Z; be the formal adjoint of Z; with respectto (-|-),j =1,...,n—1,
that iS: (ij | h) = (f | Zj*h>7f7h € (gOOO(D)

Proposition 3.1 ([13, Proposition 3.1]). With the notations used before, using the identifica-
tion (3.3), we can identify the Kohn Laplacian D,(f,z with

D(s(,]li = 5s,lcg:,k: + 5Z,k557k

= Z(Z; + kZ;j(0)(Z; + kZ;())
(3.6) =
S e nel o 12, + K200, 2 +KZ)

7,t=1
+e(Z+kZ(9) +e(Z*+kZ(9) + f
where €(Z + kZ(¢)) denotes remainder terms of the form > a;(Z; + kZ;(¢)) with a; smooth,
(Z

matrix-valued and independent of k, for all j, and similarly for (Z* +kZ(¢)) and f is a smooth
function independent of k.

11
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Until further notice, we work with some real local coordinates z = (z1, ..., zs, 1) defined
on D. Let £ = (&,...,&,_1) denote the dual variables of x. Then (z, &) are local coordinates
of the cotangent bundle 7" D. Let ¢;(z, ) be the semi-classical principal symbol of Z;+kZ;(¢),
jg=1,....,n—1.If r;(z,§) denotes the principal symbol of Z;, then ¢;(z, &) = r;(z,£) + Z;(¢).
The semi-classical principal symbol of ng,l is given by

n—1
(3.7) po =Y T4
j=1

The characteristic manifold ¥ of Diqli is
¥ ={(z,§) € T"D; po(w, &) = 0}
- {(xvé) S T*Dv Q1($,f) == qn—l(xag) = ql(xvé-) == qn—l(x7§) = O} :

From (3.8), we see that p, vanishes to second order at Y. The following is also well-
known [13, Proposition 3.2]

(3.8)

Proposition 3.2. We have
(3.9) Y= {(z,£) € T*D; £ = wy(z) — 2Im 0pp(z), A € R}.

Let 0 = d¢ A dx denote the canonical two form on 7*D. We are interested in whether o is
non-degenerate at p € ¥.. We recall that o is non-degenerate at p € X if o(u,v) = 0 for all
v € CT,3, where v € CT,X%, then v = 0. We recall that we work with the assumption that X
is Levi-flat. From this observation and Theorem 3.5 in [13] , we conclude that:

Theorem 3.3. o is non-degenerate at every point of 3.

4. SEMI-CLASSICAL HODGE DECOMPOSITION FOR THE LOCALIZED KOHN LAPLACIAN

In this section, we will apply the method introduced in [13] to establish semi-classical
Hodge decomposition theorems for Dgo,z Since the procedure is similar, we will only give the
outline. We refer the reader to [13, Section 4 and Section 5] for the details.

4.1. The heat equation for the local operator 0. We first introduce some notations. Let

() be an open set in R" and let f, g be positive continuous functions on 2. We write f < g if
for every compact set K C € there is a constant cx > 0 such that f < cxg and g < c¢xf on K.

Let s be a local trivializing section of L on an open subset D € X and |s|} = e¢2%. In this
section, we work with some real local coordinates = = (x, ..., z2,_1) defined on D. We write
&= (&,..-,&n_1)0rn=(M,...,Mm,_1) to denote the dual coordinates of . We consider the
domain D := D xR. We write 7 := (x,29,) = (21,22, ..., T, 1, Ta,) to denote the coordinates
of D x R, where x,, is the coordinate of R. We write E = (£, &) or 1] := (0, m2,) to denote the
dual coordinates of =, where &,,, and 7, denote the dual coordinate of x,,,. We shall use the

2n—1 2n—1 2n ~ 2n
fOHOWing notations: <$a77> = Zl Tjinj, <:L‘7£> = Z xjgj) </.I'\, 7/7\> = Z TiNj, <&:\7 g) = le]fj‘
Jj= Jj=1 Jj=1 Jj=

Let T*%¢D be the bundle with fiber 72D := {u € T:D, % = (x,2,,)} at 7 € D. From
now on, for every point 7 = (r,2s,) € D, we identify 7:"D with T%9X. Let (-|-) be the

Hermitian metric on CT*D given by (Ey ny = (&n) + &Lanlin, (T, 5), (z,7) € CT*D. Let

~

Q%4(D) denote the space of smooth sections of 7*%4D over D and put
QYD) := QD) N &' (D, T**1D).

12
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Using the identification

ku(z) = e~ kwzn <—i—a

axQn

(e™#2m ) (x)) , u € Q¥(D),

we consider the following operators

55 : QO’T(B) —y Ot (B)’ gs,ku _ e—ikx2n+158(u€ikx2n>’ = QO,’I‘(D)’

*

9, : Q" (D) — Q°"(D), Oy pu = e~ ket g (ye'kren) - € QOTY(D),
where r = 0,1,...,n — 1 and 0,4, 5; are given by (3.3). From (3.4) it is easy to see that

n—1

55 = Z (6]‘ VAN (ZJ - ZZJ(QZS)%) + (556]‘)/\@;\7*) 7

(4.2) - ;
a9, = (%M (ZJ* B 173‘(625)%) € A (Ebej)A’*) :
j=1 "
where 7y, ..., Z, 1, Zf,...,Z"_,and ey, ..., e, are as in Proposition 3.1. Put
(4.3) 09 .= 9,0, + 0.0, : Q%4(D) — Q°4(D).

From (4.1), we have
(4.4) O 9u = e~ (ye'koon) vy € Q(D),

s

where ng,i is given by (3.3). Let u € Q)(D). Note that

k/elkanu(x)deHI/Z a <€ikx2")u($)d$2nz/6ikx2n <_Z (9u (x))den

81’2n axQn

From this observation and the explicit formulas for d, s, 5;, 9, and 9, (see (3.4) and (4.2)),
we conclude that

~

“.5) 0 [ etz = [ et @00) @), u e 97D,

As in Proposition 4.1 in [13], we have:

Proposition 4.1. With the notations used before, we have

0 — 3.3 + 973,
n—1
. = 0 , 0
= ; (Zj - ZZj(éb)@) (Zj - ZZj(Gb)@)
(4.6) n—1 9 B
3 e nel (2= 12005 2 - o) ]
=1 n n
+e|Z—1iZ(p) 0 ‘el 2" —iZ(9) + zero order terms
8x2n 81'271 ’

where £(Z — iZ(¢)52-) denotes remainder terms of the form " a;(Z; — iZ;(¢)52-) with a;

2n Oxan

smooth, matrix-valued, for all j, and similarly for e(Z* —iZ(¢)=2-).

843271
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In this paper, we will only consider ¢ = 0. Consider the problem

0, + 0Pt 2) =0 inR, x D,
4.7 { u(0,7) = v(7).

Definition 4.2. We say that a(t,2,7) € €>°(R, x T*f)) is quasi-homogeneous of degree j if
a(t,z, \n) = Ma(\t,z,7) for all A > 0, || > 1. We say that b(z,n) € €>(T*D) is positively
homogeneous of degree j if b(z, A\j) = Mb(z,7) for all A > 0, || > 1.

A~

We look for an approximate solution of (4.7) of the form u(t,z) = A(t)v(Z),

- 1 (U (457 — (G N g
T n
where formally a(t,Z,7) ~ > a;(t,7,7), a;(t,7,7) € €*(Ry x T*ZA)), a;(t,z,n) is a quasi-
i=0
homogeneous function of degree —j. The phase V¥ (¢, z,7) should solve the eikonal equation

ov
—— — ipo(@, U%) = O(|Im ¥|™), VN >0,

(4.9) ot
U)o = (,7)

with Im ¥ > 0, where p, denotes the principal symbol of 0. From (4.6), we have

n—1
(4.10) Po=>_ U,
=1
where g, is the principal symbol of Z; — iZj(gb)%, j = 1,...,n — 1. The characteristic
manifold & of O\ is given by
@1 S={EHeTDa@EH = =5 1@ =0E@ = .. =7,.(7.8 =0}

From (4.11), we see that p, vanishes to second order at 5. Let & denote the canonical two
form on T7*D. As Proposition 3.2 and Theorem 3.3, we have

Theorem 4.3. With the notations used above, we have

(4.12) 5= {(@, §) € T*D; € = (Mwo(w) — 20m pd(2)Eam, Ean), A € R} .
Put

£, = {(@9 € 7°D; €= (hwn(e) — 21mByd(x)6an, §20). A € R G2 > 0
S = {(f,{) eT

Then, o is non-degenerate at every point of §]+ us..

(4.13)

~

D; E: (Awo(z) — 2Im 0y (7)€, E20), A € R, &g < 0

3
J

Put
(4.14) U= {(55,2) € T*D; € = (€, Ean), Eon > o} .

Then U is a conic open set of 7*D. Until further notice, we work in U. Since & is non-
degenerate at each point of U N ¥ = 3., (4.9) can be solved with Im¥ > 0 on U. More
precisely, we have the following.

14
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Theorem 4.4. There exists V(t,7,7) € €=(R, x U) such that ¥(t,,7) is quasi-homogeneous
of degree 1 and Im W > 0 and such that (4.9) holds where the error term is uniform on every set
of the form [0,T] x K with T > 0 and K C U compact. Furthermore, ¥ is unique up to a term

which is O(|Im U|™) locally uniformly for every N and
U(t,7,7) = (Z,7) on o,
4.15) (¢, 2,7) = (z,7) Zy
ds (W — (3,7)) = 0 on 5.

Moreover, we have

o . tn ) SRR TP 2 PN
(4.16) ¥ (t,7,7) = (|7 H'ﬂm)(dlst((az,%%&)) L t20, @9) €U

AN

Furthermore, we can take V(t,x, 1) so that

(417) \I[(t/'f’ ﬁ) = \I](ta (xvo)vﬁ) + TonMon-

Theorem 4.5. There exists a function V(oco,x,7) € €°°(U) with a uniquely determined Taylor

expansion at each point of ¥, such that V(oco, 7, 7)) is positively homogeneous of degree 1 and for
o~ 2

every compact set K C U thereis a cx > 0such that Im ¥(oco0,Z,7) > cx |7]] <dist (@ &), E+)> ,

ds (U (00, Z,7) — (£,7)) = 0on Sy. If A € C(U), A > 0 and A(Z,§) < min);(Z,€), for all

(7,€) = (T, Awo(z) — 2Im 0y (x)Ean, E2n)) € o, where \;(T, &) are the eigenvalues of the Her-

mitian quadratic form &, RL, then the solution W(t, 7, 7)) of (4.9) can be chosen so that for every
compact set K C U and all indices o, 3, v, there is a constant c, 3 x > 0 such that

(4.18) 020500 (U (t,2,7) — U(00,Z,7))| < Capare TN on Ry x K.

For the proofs of Theorem 4.4 and Theorem 4.5, we refer to Menikoff-Sjostrand [23], [11]
and [13, Section 4.1].
From now on, we assume that W(¢, z, 7)) has the form (4.17) and hence

(419) \I](OO,/.I’\, ﬁ) = ‘11(007('%.70)7;’\) +x2n772n-
We let the full symbol of 0 be:

2
full symbol of O = 3~ 5;(2, ),
=0

where p; (7, 2) is positively homogeneous of order 2 — j. We apply 0; + m formally under
the integral in (4.8) and then introduce the asymptotic expansion of Dgo)(ae”’). Setting
(0 + ng)(aew) ~ 0 and regrouping the terms according to the degree of quasi-homogeneity,
we obtain for each N the transport equations
T(ta :/L'\7 7/7\7 at; aﬁf)ao = O(|Im klllN)a
(4.20) DS  ~ N
T(t,z,n, 0, 0z)a; + Ri(t, 2,7, ap, .. .,aj—1) = O(|Im ¥|™).

Here

2n ~
P ~—~0po, . ., O PR
T(t,[L‘ﬂ’],gt,agg):8t—lzﬂ($,\P§)f+Q(t,I7n>,

15
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where
0%po(@, ¥5) O°U(t,Z,7)
t ~ \I// ? Y
Q( 735777) (ZL‘ )+ 2 ; afjaft 8$j83§'t
and R; is a linear differential operator acting on ao, a1, ...,a;—1. We note that ¢(¢,7,7) —

q(o0,Z,m) as t — oo, exponentially fast in the sense of (4.18) and the same is true for the
coefficients of R;, for all j.

Following [13], we can solve the transport equations (4.20). To state the results precisely,
we pause and introduce some symbol spaces.

Definition 4.6. Let 1 > 0 be a non-negative constant. We say that a € §,T(R+ x U) if

a € €°(R, x U) and for all indices o, 3 € N2", v € Ny, every compact set K &€ D, there exists
a constant ¢ > 0 such that

0 0205a(t, 7, 7)| < ce”™mel(L - [n))" 71, T e K, (@,7) € U.

Put
SRy x U) = () SRRy x U).
meR
Let a; € Sii(Ry x U), j € Ny, with m; — —o0, j — oo. Then there exists a € §L”0(Rr x U),
~ — k-1 ~
unique modulo S;*(R; x U), such thata — »_ a; € S;*(Ry x U) for k =0,1,2,.... If a and
j=0

S ~ —_—
a; have the properties above, we write a ~ Zo a; in SRy x U).
]:

Following the proof of [13, Theorem 4.15] we get:

Theorem 4.7. We can find solutions a;(t,z,7) € §gj (R, xU), j =0,1,...of the system (4.20),
where a;(t,7,n) is a quasi-homogeneous function of degree —j, for each j, with

ao(0,Z,) =1on U,

4.21
( ) aj(t,z,n) =00nU, j=1,2,...,

a;(t,2,7) — a;(00,,7) € S (Ry x U), j=0,1,2,...,
ap(00, 3, 7) #0, V(Z,7) € 5,

where > 0 is a constant and aj(c0,z,7) € €<(U), j = 0,1,..., a;(c0,Z,7n) is a positively
homogeneous function of degree —j, for each j.

(4.22)

Letm € R, 0 < p,d < 1. For a conic open subset I" of 7% D, let S7(T') denote the Hormander
symbol space on I' of order m type (p,d) (see [?, Definition 1. 1]) and let S(I") denote the
space of classical symbols on I' of order m (see [?, p.35]). Let B C D be an open set. Let
LT{L 1( ) and L7} (B) denote the space of pseudodifferential operators on B of order m type

(2, 2) and the space of classical pseudodifferential operators on B of order m. The classical
result of Calderon and Vaillancourt [10, Theorem 18.6.6] tells us that for any A € L7, (B),

(4.23) A:H:  (B)— H; ™(B)is continuous, for every s € R.

comp loc
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We return to our situation. For j € Ny, leta;(¢,7,7) € Sy (R, xU) and aj(00,z,m) € €=(U)
be as in Theorem 4.7. Let

(L(OO,/f, ﬁ) ~ Z aj(oo,f, ﬁ) in S?,O(U)v

J
(4.24) 2,7) ~ 3 a;(t,7,7) in SR, x U),
a(t, 7)) — a(00,7,7) € SYR, x U), 1> 0.

Take a(ns,) € €(R) with «(n2,) = 1 if no, < 3, a(mpn) = 0 if 15, > 1. Choose x € 65°(R*")
so that x(77) = 1 when || < 1 and x(7) = 0 when |7j| > 2. For ¢ > 0, put

1 Qo
ol (Y (t,z,0)—(Y.n) o
G.(7,9) 2 /(/O (e a(t,,n)
= VBT g 00, 7, 7)) (1 = X(7)X(ER)(1L — alin)dt ) di
By Chapter 5 in part I of [11], we have for any u € %OOO(IA?),

lim | G.(Z,9)u(@)di € €=(D),

e—0

and the operator

G:6°(D) = €=(D), ur lim | G.(T,9)u(y)dy,

e—0

is continuous, has a unique continuous extension: G : £'(D) — D/(D) and G € Lt

11
272

(D) with
symbol

a(7,7) = / (cHrem D= Gy, 3, 7) — = EDED (00,7, 7)) di(1 — (1)
0

— VTN =T g (00, 7, 1)) (1 — x(7)(1 — a<”2n))dt> 4.

Similarly, for £ > 0, put

[ I T (o0, 371 = X@INERL - )7
By [11, Chapter 5, part I]) we have for u € ‘50”(13),

lim [ S.(Z, )u(@)dy € €=(D),
the operator

S 62°(D) = €°(D), uw— lim [ S.(Z,7)u@)dy,

e—0

17
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is continuous, has a unique continuous extension: S : £ (D) — D'(D) and S € LY , (D) with

symbol s(z, 7)) = e (¥ (&N -EM) (00, 7, 7)(1 — alne)) € SO, (T*D). We denote

=

)

=

(4.26) S(@,7) = # / VTN =T a (00, 7,7) (1 = X(1) (1 = a(r120)) d7.
Put
4.27) I= (27r)_2”/ei<5_§7ﬁ>(1 — a(nZn))dﬁ.

We can repeat the proof of [11, Proposition 6.5] with minor changes and obtain:
Theorem 4.8. With the notations used above, we have

S+0%cG=1 onD,

9,08=0onD, O%0S=0 onD.

The next result follows from the complex stationary phase formula of Melin and Sjostrand [22]
with essentially the same proof as of [13, Theorem 4.29].

Theorem 4.9. With the notations and assumptions above, let S = S(%,7) € LY (D) be as in

1
29

N

Theorem 4.8. Then, on lA), we have

(4.28) S(z,7) = / @Iy 7w, t)(1 — aft))dudt
u€ERtER L

with

b(E,J,u,t) ~ 3 bi(F, 7, u,t) in S7oH(D x D x R x Ry),
=0

J
4.29) bi(@ T ut) €E(DxDxRxRL), j=0,12. ..,
b (Z, 7, Au, \t) = XV I0(Z, 5, u,t), V(T Gut) € Dx DxRxRy, A>1, V),
bo(Z,%,u,t) #0, V(Z,J,u,t) €D x DxRxRy, A>1,

(7,7, u,t) = (v2n — yan)t + (2,9, u,1),

o(x,y,u,t) € €°(D x D x RxR,),

o(x,y, \u, At) = Ap(x,y,u,t), V(z,y,u,t) € Dx DxR xRy, A>1,
Imp(z,y,u,t) 20,

olx,z,u,t) =0, Yre D, ueR, teRy,

A2 P|(z,zut) = —2t1m5b¢>(m) +uw(z), Ve €D, ueR, teRy,

dy ol wawty = 2tIm Opd(x) — uwp(x), Vo € D, u€R, t € Ry,

(4.30)

5,y u,t) = 0 and G (,y,u,t) = 0 if and only if x = .

We can repeat the method in [13, Section 4.4] with minor changes to compute the tangen-
tial Hessian of the phase function ¢(z,y, u,t). Since the computation is simpler therefore we
omit the details. We state the result.
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Theorem 4.10. With the notations above, put (x,y,u) := p(z,y,u,1). Fix p € D and let

Z1,...,Zn_1 be an orthonormal frame of T}°X varying smoothly with x in a neighbourhood
of p, for which the Hermitian quadratic form RL is diagonalized at p. Let x = (z1,...,%Ton 1),
Zj = Toj_1+1ixg;, = 1,...,n—1, be local coordinates of X defined in some small neighbourhood
of p such that
0
= = d n—1, T = —
z(p) =0, wo(p) = dra,—1, T(p) Dra
0 0
— — = 20; ,t=1,...,2n —2

< axj (p) 8xt (p) > 7,ty 7 3 , 2T )

_ o 0 0 2

7. - +0 L i=1,....,n—1,
(4.31) 0= (9,2] +Z;Tjt2tax2n 1 T 1(9332n—1 (), "

n—1

1 n—1 n—1
Ox) = Branr 3 {0y +85%) 5 D ozt D (e + i)

j=1 lt=1 lt=1

—_

+ ) (djz@an1 + djZwan1) + O(|wana|”) + O(J2]*),
1

.
Il

where B S R, Tjts Cjy Oy Lyt aj’t,dj € (C, it = Et,j’ Tt + th =0, j,t = 1, o, = 1. We also
write y = (Y1, ..., Y2n—1), Wj = Y2j-1+1y2j, j = 1,...,n—1. Then, in some small neighbourhood
Dq of p we have for all (z,y,u) € Dy X Dy X R,

I (x,y,u) > cla’ =y,
(4.32) o
IHN/J(% y,U) + %(ﬂf, yau) Z c(’xQn—l - y2n—l‘ + |~T/ - y/|2)7
9 2n—2 9
where ¢ > 0 is a constant, &' = (z1,...,%on—2), ¥ = (Y2, -, Yon—2), |2 = V| = > |z; — yj]
and
(4.33)
U(@,y,u)
n—1 n—1 i -1
= —i;aj(zj —w;) +1 2. @;(Z; — ;) + u(@on—1 — Y2n—1) ~ 5 z:: ar; + aj)(zz — wiw)
i n—1 1 n—1
+ 5 (al,j + a]l)(z]zl @jwl + 5 Z X0 le T]l ijl — 'ijl)
jvlzl ] =1
n—1 n—1
+ (—iCjﬂ - UC]' — Z'dj)(ij'znfl - wijnfl) + Z(Zajﬂ — 'LLE]' + idj)(ijgn,l — wjygn,ﬁ
j=1 J=1
i n—1 i n—1
. 2 3
— 5 Z )\j(zjwj - ijj> + 5 Z )\j |Zj - wj‘ + ('T2n71 - y2n71)f('r7 yvu) + O(‘(I,y)‘ )7
j=1 j=1
fe®>”, f(0,0,u) =0, YuéeR,
where Ay > 0,..., \,_1 > 0 are the eigenvalues of R with respect to (-|-).
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4.2. Semi-classical Hodge decomposition for DSJ; In this section we apply Theorem 4.8

and Theorem 4.9 to describe the semi-classical behaviour of Dg?,z.

Let s be a local trivializing section of L on an open subset D C X and |s|; = e 2%, Let
X(Zan), X1(x2n) € E5°(R), x,x1 > 0. We assume that x; = 1 on Supp x. We take x so that
[ x(x2,)dzs, = 1. Put

(4.34) X (Tan) = €72 X (22y).

We say that a sequence (g;) in C is rapidly decreasing and write g, = O(k~*°) if for every
N > 0, there exists Cy > 0 independent of k such that for all k£ we have |g,.| < Cyk.

Proposition 4.11. With the notations before, let I = (2)~>" [ /@7 (1 — a/(ny,))d7} be as in
(4.27). Let I, be the continuous operator ¢5°(D) — €°°(D) given by

T 62(D) > €2(D), fr— / Ry (o) Tt F) ().

Then, I, = (1 + gi)I on €.°(D), where I is the identity map on 6:°(D) and (g;) is a rapidly
decreasing sequence.

Proof. It is easy to see that
I = (27r)_2”/ei@_g’m_ik(“”_w")xl(argn)x(ygn)dﬁdygn dxe, on 6;° (D).
From this observation, we can check that I, = (1 + gx)I where

(4.35) gr = —(2m) 7" / e/ tmen e =) oy (o Y1 (220 X (Yon ) AT dYan dan.

Since «a(n9,) = 0if n > 1, we can integrate by parts in (4.35) with respect to ys,,, several times
and conclude that g, = O(k~). O

Let S € LY ! (D) be as in Theorem 4.8. For s € N, define

1
2

|

1
4.36 S, H?
( ) 2 T+ o

comp

(D) = Hy (D), fr—

/ e 8720 () S (i f) (B)

1 ‘ ~
o /ekaz”X1($C2n)G(ka)(95>d372n-

~ ~

(D) — H{.(D) is continuous for every s € R,

loc

(4.37) i« Hyyo (D) = Hyt' (D), fr—

loc

From (4.36), (4.37) and the fact that S : Heonp

~ ~

G: H:, (D) — H:tY(D) is continuous for every s € R, it is straightforward to check that

comp loc
4.38) Sk =O(K*) : Hp (D) — Hi\ (D), Vs € Ny,
' Gr = O(k*) : H},p (D) = HEEH(D), Vs € Ny.

Repeating the proof of [13, Theorem 5.4] by making use of Proposition 4.11 we get:

Theorem 4.12. Let s be a local trivializing section of L on an open subset D C X and |5|Z =
e 2%, Let S;, and G, be as in (4.36), (4.37) respectively. Then,

S5 Sy =O0(k*): H: (D) — HE (D), Vs € Z,

comp

Gi G =O(k®) - H (D) — HEN(D), Vs €Z,

comp loc

(4.39)
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and we have on D,

(4.40) 0s1xS,k =0 mod O(k™™),
(4.41) 098 =0, 09 =0 mod O(k™),
(4.42) S +00%G =1,

(4.43) GO +8: =1,

where S}, G; are the formal adjoints of Sy, G, with respect to (- |- ) respectively and Dio,z is given
by (3.3).

Theorem 4.13. We have

(4.44) Sk(z,y) — /eik¢(x’y’“)s(x, y,u, k)du = O(k™>) : HS (D) — H} . (D), Vs € Z,

comp
where
S(x,y,u, k) € Sﬁ)c,cl (1,D X D X R)7
(4.45) s(a,y,uk) ~ Y si(z,y, w)k" 7 in S (1; D x D x R),
j=0

sij(z,y,u) € €¢°(D x DxR), j=0,1,2,...,
and Y(z,y,u) = p(z,y,u, 1), (x,y,u,t) is as in Theorem 4.9.

Proof. From the definition (4.36) of S, and Theorem 4.9, we see that the distribution kernel
of Sy is given by

(4.46)

Si(z,y) = / e @Gty =ihrantikvon 3 G 1) X1 (Ton) X (Yan) (1 — a(t))dwandtdys,du
t>0

= / cttovimmtibean =D 20b (T, §, ko, ko)xi (t20) x(y20) (1 = (ko)) dwandodysdu,
UGR,UER+

mod O(k~*°), where the integrals above are defined as oscillatory integrals. Let (o) €
%5° (R4 ) with v(o) = 1 in some small neighbourhood of 1. Put

Io(z,y)
@ar) = [ o o) o, ko)1~ a(ko)
>0
X X1(2n) X (Yon ) dxondodys, du,
I(z,y)
(@a8) = [ S N1 o)l b, ko) (1~ alko)
>0
X X1(Z2n) X (Yon )dxondodys,du.
Then,
(4.49) Sk(z,y) = Ip(z,y) + Li(z,y) mod O(k™).
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First, we study I, (z,y). Note that when o # 1, dy,, (09(z, y, u)+ (22, —Yy2n) (0 —1)) = 1—0 # 0.
Thus, we can integrate by parts in y,,, several times and get that

(4.50) I =0(k™): H:, (D) — H{, (D), Vs € Z.

comp

Next, we study the kernel /y(z,y). We may assume that b(, y, kou, ko) is supported in some
small neighbourhood of z = 7. We want to apply the stationary phase method of Melin and
Sjostrand [22, p. 148] to carry out the dxs,do integration in (4.47). Put

®(§7 @\7 J) = U¢($, Y, U) + (xQn - y2n)(0 - 1)

We first notice that d,0(Z,y, 0)|z=; = 0 and d,,,O(Z,y,0)|,=1 = 0. Thus, z =y and o = 1 are
real critical points. Moreover, we can check that the Hessian of ©(Z,y,0) atz =y, 0 = 1, is

given by
o), (z,z,1) o] (z,z,1) \ (01
o (z,z,1) ©! (z,z,1) )\ 1 0 /)"

Thus, O(7,y,0) is a non-degenerate complex valued phase function in the sense of Melin-
Sjostrand [22]. Let

T2nT2n

@(/33\, /y\7 5) = w(ga ’yv’ u)& + (an - ?7271)(5 - 1)
be an almost analytic extension of O(z, y,7), where o (Z,y,u) is an almost analytic extension
of ¢)(x,y,u). Here we fix u. We can check that given y», and (z,y), Ton = yon — ¥(z,y,u),
o = 1 are the solutions of B B
00 00
o6 7 OTgp

From this and by the stationary phase formula of Melin-Sjostrand [22], we get

= 0.

comp

4.51)  Iy(z,y) — /eikwx’y’“)s(m, y,u, k)du = O(k™>) : H:., (D) — H} (D), Vs € Z,

where s(v,y,u, k) € Sit. 4 (1,D x D x R),

o0

s(z,y,u, k) ~ Zsj(x,y,u)k:”_j in Sl (1,D x D x R),
=0
si(z,y,u) € €°(D x D xR), 7 =0,1,2,.... From (4.50), (4.51) and (4.49), the theorem
follows. O

From Theorem 4.13 and the stationary phase method of Melin and Sjostrand, we deduce:

Theorem 4.14. Let Ay be a properly supported classical semi-classical pseudodifferential opera-
tor on D of order 0 as in (2.8) and (2.9) with symbol 3 € S}, , (1;T* D) such that 3(z,n,k) = 0
if |n| > 1M, for some large M > 0. We have

(4.52) (Sko Ag)(x,y) = /eikw(x’y’“)a(x,y,u, k)du mod O(k™),

where
a(z,y,u, k) € €5°(D x D x (=M, M)) NS

loc ,cl

(1% D x (M, M),
(4.53) a(x,y,u, k) ~ Zaj(x,y,u)k:”_j in Si'.(1; D x D x —|M, M),
=0

aj(x,y,u) € 65°(D x D x (=M, M)), j7=0,1,2,...,
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and (z,y,u) = ¢(x,y,u, 1), p(x,y,u,t) is as in Theorem 4.9.

Let A, = (2’“3—2;1,1 [ e*k@=vmg(x,n,k)dn mod O(k~°) be as in Theorem 4.14. Put
(4.54) Bz, m. k) ~ > Bilx, k™, Bi(x,n) € €=(T"D), j=0,1,2,....
=0

From the last formula of (4.29), it is straightforward to see that
(4.55) ao(w,x,u) # 0 if Bo(x, uwo(z) — 2Im Dy (x)) # 0,

where ag(x,y,u) is as in (4.53). In the rest of this section, we will calculate ay(x, z,u).
Fix Dy € D and let x,x € 6;°(D,[0,1]), x = X = 1 on Dy and y = 1 on some neighbour-
hood of Supp ¥.

Lemma 4.15. With the notations above, we have

(4.56) (XALSEX) (X SkARX) = XALSKAX  mod O(k™),
where A; is the formal adjoint of Ay.

Proof. From (4.43), we have

(4.57) RALGIO Y + RALSiX = XA
From (4.57), we have
(4.58) RAGOODES AR + RALSIC S AR = XA SAR.

From (4.52), it is not difficult to check that S;.A4,. is k-negligible away the diagonal. From this
observation, (4.39) and (4.41), we conclude that

(4.59) XAGOOS AR =0 mod O(K™).

From (4.59) and (4.58), we get

(4.60) RALSI SR ALY = XAXCSRAXY mod O(k™).

Again, since Sy Ay is k-negligible away the diagonal, we deduce that

(4.61) AN S ALY = YA SLALX - mod O(k™°).

From (4.60) and (4.61), we get (4.56). O

From (4.56), (4.52) and the complex stationary phase formula of Melin-Sjostrand [22], we
deduce that
(4.62)

(RASE) (XSeAX)) (2, y) = (RALSARX) (2, y) = / B g (i, y,u, k)du mod O(k™),

where
9(@1/7%]5) S CKOOO<D X D X (_M7 M)) m*SVITCL)C,CI<1;‘Z) X D x (_M7 M))7

(4.63) g(z,y,u, k) ~ Zgj(x,y,u)k"_j in SI'.(1; D x D x R),
=0
gj(z,y,u) € 65°(D x D x (=M, M)), j=0,1,2,...,
and

(4.64) go(z,2,u) = ao(x, z,u)Bo(z, uwy(z) — 2Im Oy (), V(x,z,u) € Dy x Dy x (—M, M).

23



Chin-Yu Hsiao & George Marinescu Szegé kernel asymptotics and Kodaira embedding theorems

On the other hand, we can repeat the procedure of Section 5 in [13] (see the discussion after
Theorem 5.6 in [13]) and deduce that

(4.65) (RALSEX) (XSkARX)) (z,y) = /eikwl(x’y’“)h(x,y,u, k)du mod O(k™)

with
h(z,y,u, k) € Sipe (1, D x D x (=M, M)) N6 (D x D x (=M, M)),

loc,cl

(4.66) h(w,y,u k) ~ Y i,y w)k™ in S, (1,D x D x (=M, M)),
7=0

hi(z,y,u) € 6€5°(D x D x (=M, M)), j=0,1,2,...,

ho(x,,u) = 27" |det Rgﬂ_l \ao(z, z,u)[*, V(z,z,u) € Dy x Dy x (=M, M),
go(z,x,u) = ho(z,z,u), Y(r,z,u) € D x D X (=M, M),
and for all (z,z,u) € D x D x (=M, M), we have

wl(iﬁ,ﬂ?,u) = Oa dz%(ﬂi,x,u) = dx¢($7$au)> dy¢1(x,x,u) = dy¢($,$7u)7
Im iy (z,y,u) >0, V(z,y,u) € D x D x (=M, M).

(4.67)

(4.68)

From (4.67) and (4.64), we get for all (z,z,u) € Dy x Dy x (=M, M),
(4.69) ao(z, ,u) Bo(x, uwo (x) — 2Im By(x)) = 27" |det Rgﬂ_l lag(x, z,u)|”.

If Bo(w, uwo(x) — 2Im Oy (x)) = 0, we get ag(z, x,u) = 0. If Bo(x, uwy(z) — 2Im dyo(z)) # 0, in
view of (4.55), we know that aq(z, z,u) # 0. From this observation and (4.69), we obtain

Theorem 4.16. For ag(x,y,u) in (4.53),
1 _
aop(x,z,u) = §7r_” |det RE| Bo(z, uwo(z) — 2Im Bpé(z)), (z,x,u) € D x D x (=M, M),

where fy(x,1) € €(T*D) is as in (4.54) and det R% as in (1.1).

5. REGULARITY OF THE SZEGO PROJECTION II},

In this section, we will prove Theorem 1.1. For this purpose we first establish the spectral
gap for the Kohn Laplacian Dl()l,z and then Sobolev estimates for the associated Green operator
and finally for II.

We start with a local form of the spectral gap estimate for (0, 1)-forms.

Lemma 5.1. Let s be a local trivializing section of L on an open set D C X. Then, there is a
constant C' > 0 independent of k such that

— 2 = 1
[Osally + 135l = (Ck = =) lullf, Y€ Q4'(D, LF).
Proof Letwu € Q' (D, L¥). Put u = s*0, & € Q' (D). In view of (3.3), we have

(5.1) Dl()llzu = ek‘z’skDgllz(e_k‘bﬂ).

)
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n—1
Putu = Y uje;, whereey, ... e, € T*"' X is as in Proposition 3.1. From (3.6), we have
j=1

O (e a) | e M)

n—1 n—1
(5.2 =Y |2 +kZ()e D) + (12, +kZ,(0), ~Ze + kZu@))(e i) | T )
=1 Git=1
+((e(Z +kZ(9)) +e(Z* + kZ(9)) (e ) | e *u) + ( fe *u|e ™).
Here we use the same notations as in Proposition 3.1. Fix j,t = 1,2,...,n — 1. Put
n—1
2, —Z) = (a)'Z, = V' Z,), al' bt € €(D), Vs.
s=1

Recall than by [14, Lemma 4.1], for any U,V € 7,°X and any U,V € C>(D,T'°X) that
satisfy U(p) = U, V(p) = V, we have

(5.3) RI(U, V)= MU, V) =—([U,V](p),0sd(p) — Dd(p)) + (UV + VU)(p).
By using (5.3) we obtain
[Zj + kZ; (#), —Z: + k?t(‘lﬁ)}

3
—

(al'Zs = V' Z) + k(Z; 2+ Z0Z;)(9)

s=1
(5.4 nt o o _
= > (al'(Zs + kZ(¢)) + V(= Zs + kZ4(9)))
s=1
—k([Z;,=Z)], 0o — Ou) + k(Z; Zy + Z,2;) (o)

=e(Z+kZ(¢)) +e(—Z +kZ(p)) + kRE(Z,, Z;).
From (5.4) and (5.2), we get
(O e a) e a)

n—1

5.5) _ Z 12, + KZ @) D) + &k S (RE(Zn Z)(e 0 |0, )

Jit=1

+ ((e(Z +kZ(9)) + £(Z" + KZ(9)) (e Ha) | ) + (fe ™| e ™),

where fis a smooth function independent of k. Since R” > 0, from (5.5), it is not difficult to
see that

(5.6) (O e™a) | eq)= (Ck - )He—WH

where C' > 0 is a constant independent of £ and . From (5.1), we can check that
(O e ™) [e*a) = (Ofulu), = Bppul} + 15,8l

Moreover, it is clearly that |jul|, = ||le”**ul|. From this observation and (5.6), the lemma

follows. O
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Ohsawa and Sibony [25] established analogues of the Nakano and Akizuki vanishing the-
orems for Levi flat CR manifolds. The following result can be seen as an analogue of the
spectral gap and Kodaira-Serre vanishing theorem [19, Theorems 1.5.5-6].

Theorem 5.2. There is a constant C, > 0 independent of k such that
— 2 —% 1 — —%
H8b7kqu + ||8bku|]i > <C’0k‘ — E> HUHZ» Vu € Dom 0,1, N Dom 9y, ;, C L%OJ)(X, Lk).
0

Hence, for k large, Ker Dl(,l,z = {0} and Dl()l,z has L? closed range.
From Theorem 5.2, we deduce that Déllz is injective for large k so we can consider the Green

operator N,il) : L% (X, L¥) — Dom Dl(:,z, which is the inverse of Dl()l,g We have

(0.1)
1 1

5.7) Oy N =Ton L2, (X),

N0 = I on Dom ).

Proof. We first claim that there is a constant C; > 0 independent of & such that
— 2 — 1
(5.8) (8o xe|)? + 119 ull2 > (Cok - 5) lull?, Vu € Q(X, LF).
0
Let X = U;V:l D;, where D; C X is an open set with L|p, is trivial. Take x; € 65°(D;, [0,1]),
N
j=1,...,N,with > y; = 1 on X. Let u € Q%(D, L*). From Lemma 5.1, we see that for

7=1
every j = 1,2,..., N, we can find a constant C; > 0 independent of k£ and « such that

_ s 1
(5.9) Hab,k(Xju)Hi + 10, O[5 > ((ij - 5) sl

J

It is easy to see that
1oy P0Gl 180w < Bl + @l + M el
< Bl + 118, ll? + M lul

where M, > 0 is a constant independent of £ and u. From (5.10) and (5.9), we get

N(HEb,kuHi + H@fwl\i)

(5.11) > i((cyk - Cij) Il = 245 llul})
j=1
> (k=) llul

where ¢ > 0 is a constant independent of k. From (5.11), the claim (5.8) follows.

Now, let u € Dom 9, ;, N Dom 5Z,k. From Friedrichs’ Lemma (see Appendix D in [4]), we can
find u; € Q01 (X, L¥), 5 =1,2,.., withu; — win L, (X, L¥), Oy pu; — Oppu in L 5 (X, LF)
and 8;,€uj — 6Z’ku in L*(X, L¥). From (5.8), we have

J— 2 J— . — 2 —
0|, + 10,0l = lim ({[Obps |, + 110y susll7
k : Fae k :

J

> (Cok— ;) Jim Il = (o = )l
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The theorem follows. 0

We pause and introduce some notations. Let s be a local trivializing section of L on an
openset D C X, |s|} = 2. Let u € Qy%(D, L¥). On D, we write u = s*u, u € QY‘(D). For
every m € Ny, define

~ _ 2
= Y [lo@e ) dox.
|a|§m,a€N(2)"_1

By using a partition of unity, we can define Hqun . forall u € Q%(X, L*) in the standard way.
We call [|-|,,, , the Sobolev norm of order mn with respect to 1*. We will need the following.

Proposition 5.3 ([25, Proposition 1]). For every m € Ny there is N,, > 0 such that for every
k> Np,

(5.12) (

gzkuH < EMOm) HDl(,l,zuH L vu € QX LF),

m,k

where M (m) > 0 is a constant independent of k and w.
Theorem 5.4. For every m € N, there is N,,, > 0 such that for every k > N,,,
Ty w NV QO (X, L) — H™(X, LF)

and
185, NSt < KM |

where M (m) > 0 is a constant independent of k and w.

vu € QUY(X, LF),

m,k

Proof. The theorem essentially follows from Proposition 5.3 and the elliptic regularization
method introduced by Kohn-Nirenberg [4, p.102], [17, p.449]. Namely, for every ¢ > 0,
consider the operator DS,Z = D,(Jl,z + eT*T, where T is defined in (2.10) and 7™ is its formal
adjoint with respect to (- |- ). Fix m € N. From Theorem 5.2 and Proposition 5.3, there is a
N,,, > 0 such that for every & > N,,,

lullf < (O |u), Yue Q¥(X, L),

(5.13) 1
lull,, < KOO uller, Vu € QOY(X, L), Ve Ny, < m,

where M (m) > 0 is a constant independent of k£ and .
Take g € Q%(X, L¥) and put N,gl)g = v. We have D,E?,zv = g. From (5.13), it is easy to see
that for every k£ > N,, and every ¢ > 0, Dgllz is injective and has range L?o,n(X , L*). Now,

we assume that k > N,,. For every ¢ > 0, we can find v. € Q%'(X, L*) such that [Is,zva = g.
Moreover, from (5.13) and the proof of Proposition 5.3 (see also [25, Proposition 1]), it is

straightforward to see that for every ¢ > 0,

lvelly, < Nlglli s N0bxvelli < llgll -

(5.14) .
105 xVellese < M lgll, .. V€ No, £ < m.

From (5.14), we can find ¢; \, 0 such that v.; — v'in L}, (X, L¥) as j — 00, Oy yv=; — Op 0
in L3, 5 (X, L"), Dy e, — 0,0 in HY(X, LF), V0 € Ny, ¢ < m, and Dél,z'ﬁ = g in the sense of
distributions. Since 9,40 € L, 5 (X, L*), 9,0 € H'(X, L*), we have ¥ € Dom dj,), N Dom 9, ,

(’_9;,?5 € Dom 0y ;. Note that 5;@%5 =g- 567;65:#5 € L%o,1)(X , L¥). From this observation,
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we can check that 9,3 € Dom3, . Thus, & € Dom ;. Since ;)3 = g = O{)v and [0} ) is

injective, we conclude that v = v. Thus, EZ,kngl)g = 52,/4) € H™(X, L*) and ||52,kN1§1)9||m,k <
M@m) || 9l - The theorem follows. 0

Theorem 5.5. With the notations above, for every m € N, m > 2, there is a N,, > 0 such that
for every k > N,,,

(5.15) [y =1 — 8y N3y s on €=(X, LF),

(5.16) I, : €°(X, L*) = H™(X, LF)

and

(5.17) (1 = p)ull,, . < MO [ Oppul] . Vu € €2(X, LF),

where M (m) > 0 is a constant independent of k and w.

Proof. Fix m € N, m > 2 and let V,,, > 0 be as in Theorem 5.5. We assume that £ > N,,. Let
g € €= (X, LF). From Theorem 5.4, we know that 5Z’kN,£1)5bvkg € H™(X, L*). Since m > 2, it
is clearly that 5;;kN él)ém g € Dom D}()?,z. Moreover, it is easy to check that

(518) gzjkngl)gb,kg 1 Keréhk = Ker Dl()(,]l?:
We claim that
(5.19) 9= 0, Ny g € Ker O3

Let f € €>(X, L*). We have

(g~ 0y N Dorg | O )i = (00091 £ )i — (TN By ieg | O i
= (OO )k = (Borg | NODps OO f )i
= (Dz(,okg | f )k — (8b k9 | N ngab,kf)k

= ( b,k9|f)k— (Obxg | Opif )k = 0.

The claim (5.19) follows. From (5.18) and (5.19), we get (5.15). Theorem 5.4 and (5.15)
yield (5.16) and (5.17). O

From Theorem 5.5 and the Sobolev embedding theorem, we get Theorem 1.1.

6. ASYMPTOTIC EXPANSION OF THE SZEGO KERNEL

In this section, we will prove Theorem 1.2 and Theorem 1.3. Let s be a local trivializing
section of L on an open set D C X and let I, ; be the localized operator of I, (see (1.4)). Let
S, and G, be as in Theorem 4 12. From the constructions of G, and Sy, it is straightforward
to see that we can find Gy, : (D) = HZHY(D), S : (D) — Hy . (D), for every s € Z,

loc loc

such that G, and S, are properly supported on D,
Sy — 8 =0(k®): H°, (D) — H_(D), VseZ,

comp

comp comp

(6.1) —

Gk — Gr = O(k™) : Hyypp (D) = HptH(D), Vs € Z,
and
(6.2) XSkx = O(k™) : Hiypy (D) = Hi\o (D), Vs € Z,
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for every Y, x € C§°(D) with Supp X N Supp x = 0, and

(6.3) 09 Gy + Sy =1+ Ry on D,

where Ry, is properly supported on D and

(6.4) Ry, =0(k™): H{.(D) — H: '(D), Vs € Z.
From (6.3), it is easy to see that

(6.5) I, + I, Ry, = I .S, on D.

Theorem 6.1. With the notations above, for every { € Ny, there is a N, > 0 such that for every
k> Ny, XIpx = O(k=®) : €°(X, L*) — €*(X, L), for every x € €°(D), X € €>(X) with
Supp X N Supp x = 0, and

(6.6) (2, y) = S(w,y) = O(k™) : €5°(D) — €“(D).

Proof. Fix ¢ € Ny. From Theorem 5.5, there exists N, > 0 such that for every &k > N,,
g = 1 — 8, NV Byx on (X, L¥),

(6.7) Il : (X, LF) — H"™(X, LF),

(1 = T0)all,, o < KM ]|0y pu

Yu € €°(X, L¥),

‘n+€,k ’

where M (¢) > 0 is a constant independent of £ and u. Now, we assume that £ > N,. By the
Sobolev embedding theorem we have H*"(X, L*) Cc €*(X, L*).
Fix N; > 0 and let u € ¢5°(D). Consider

(6.8) v = Up oSt — (U s Spu) = (I — T (Uy s Siw).
From (6.5), we have

v = Uk,s(g; — Hk,srgvk)u on D,

v = Up.o(Sptt) — Iy (Ups(I + Ry,)u) on X.
From (6.7) and (6.8), we obtain
(6.10) H (I — 10 (Uy s Spu)

(6.9)

< /{JM(Z) thk (Uk,sggu)

n+lk

Note that 557,3,; = O(k=) : H:_ (D) — H '(D) for all s € Z. From this observation,

comp loc

(6.10) and the second formula of (6.9) we conclude that

(6.11) UsSi — U s — LU Ry = O(k™) : €2°(D) — €4(X, LY).
From (6.4) and (6.7), it is easy to see that

(6.12) U Ry, = O(k™) : 6.°(D) — €4(X, LF).

From (6.11) and (6.12), we conclude that

(6.13) UpsSie — IiUks = O(k™) : €5°(D) — €°(X, LF).

From (6.13) and (6.1), (6.6) follows. -

Finally, from (6.13), (6.2) and noting that S, is properly supported on D, we deduce
that YII,x = O(k~) : €=(X,LF) — €*(X, L*), for every x € ¢°(D), X € €>(X) with
Supp Y N Supp x = 0. O

nttk
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Proof of Theorem 1.3. Let A, be as in Theorem 1.3. It is not difficult to see that for every
s € Z and N € N, there exists n(N, s) > 0 independent of %, such that

(6.14) Ap = O(k" ™) - HE (D) = %3 (D).
From (6.14), (6.6) and since A;, : Heop

(6.15) Hk,s-Ak =S A, mod O(kioo)
From (6.15) and Theorem 4.14, Theorem 1.3 follows. O

(D) — ¢5°(D) for every s € Z, we conclude that

7. KODAIRA EMBEDDING THEOREM FOR LEVI-FLAT CR MANIFOLDS

In this section, we will prove Theorem 1.4. Let s be a local trivializing section of L on an
openset D C X. Fixp € D and let x = (x1,...,%9,-1), 2j = Toj_1 +1i%q;, j = 1,...,n—1,
be local coordinates of X defined in some small neighbourhood of p such that (4.31) hold.
We may assume that the local coordinates x defined on D. We write 2/ = (xy, ..., 72, 2). Let
M > 1 be a large constant so that

2
(7.1) |—2Im5b¢(aj) —{—uwo(x)|2 < %7 Ve e D, lu| < 1.
Take 7, x € ¢5°(R,[0,1]) with 7 =1on [1,1], 7 =00n (—oo,0]U[1,00) and y = 1 on [—1, 1],
x =0on (—oo,—1]U[1l,00) and x(t) = x(—t), for every t € R. Fix 0 < § < 1. Put
_({nlwol@))y (40l 0 (1
(7.2) as(x,n, k) = 7'< 5 >X< e > € S,(1,T*D)

and let A; 5 be a properly supported classical semi-classical pseudodifferential operator on D
with

k2n—1
(27[-)27171
Fix / € N, ¢ > 2. In view of Theorem 1.3, we see that there is a N, > 0 such that for every
k Z NE} Hk,sAk,fs(xvy) € %Z(D X D) and

Aps(z,y) = / M) o (2,7, k)dy mod O(k).

7.3) (DA (e,y) = / eFEI a5,y u, k)du mod O(k™) in (D x D),

where
as(x,y,u, k) € 65°(D x D x (=M, M)) NSy, o (1; D x D x (=M, M)),

o0

74 aslwyuk) ~ > ags(e,y, )k in S (15D x D x (—M, M)),
=0
ajs(z,y,u) € 65°(D x D x (=M, M)), j=0,1,2,....

From (1.11), (7.1) and (7.3), we get
(7.5) aos(z,x,u) = %W‘” |det RE| T<%>, V(x,z,u) € D x D x (=M, M).

From now on, we assume that k& > N,. Let
(7.6)
n—1 — — . 1 n—1y 12
Ukp i= HkUk,s-Ak,é (6k(21:1 (eqwy =@y ) +iuyen—1+35 25—; Ajlwjl )X(ky2n—1)x(\/Ey1) o X(\/Eyzn—2)),
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where w; = y9;_1 +iyp; and o; € C, j =1,...,n — 1, are as in (4.31). Then, u, ), is a global
%" CR section. On D, we write uy 5, = Uy, sUk s> U5, € C*(D). Then,

Put wo(l‘, Y, U) = @Z)([E, Y, u) —1 Z;L:_ll (Oéj’l,Uj — ijj) + UYoap—1 — % Z;L:_ll )‘j |wj|2. From (73), we
can check that we have mod O(k=*°) in ¢*(D),

Up5p(1) = / 0@y s (2 g, k) x (kyan—1 )X (VE) - - X (VEYan_2)

(7.7)
= / ko (z,Fyy, u)k CL5<$ Fk Yy, u, k?) (ygn_1)X(y1) .. .X(ygn_g)dudy7
Y1 Y2 Yon—2 Yon—1
where Fi'y := T T gt 5 . Put
= (v )
n—1
(7.8) Uk,o,p = €XP (—k Z(ajzj — ajzj)> Uksp € (D).
7j=1

Lemma 7.1. With the notations above, there is a ko > 0 such for all k > kqand p € X,

1 ~
§5cp < [uksp) (P)| < 20cy,

1 8uk K} '
—620 P < 28%,,
(7.9) P — k’@xgn 1( ) — P
1 auk é,p 4 .
— - <4 =1,2,...,2n—2
‘kaxj(m—’] '2,...,2n — 2,
where ¢, = ‘det RL| X (W2n—1)x(1) - - - X(Y2n—2)dy.
Proof. From (7.7) (7.5), (4 33) and note that 14(0,0,u) = 0, Vu € R, we can check that
kh_>nolo Uk 5.5(P) " ‘det RL} / X(Yon—1)xW1) - - - X(Y2n—2)dydu,
lim 1% (p) ——f"|detRL\ ur(2)y( )x (1) ( )dydu
Kosoo | | O2gn 1 =3 P 5Xyzn71XZ/1 - X(Yan—2)ayau,
1 aUk ,0,p . -
klﬁrgo‘g D, (p)|=0, j=1,2,...,2n—2.
Since ¢ < [7(%)du < ¢ and 5 < [ur(%)du < 6%, there is ko > 0 such that for every k > k,
(7.9) hold Smce X is compact ko can be taken to be independent of the point p. O

Forevery j =1,2,...,n—1, let
= Uy sAk5< (Ei (=) +uyan 1045 2351 Ayl Wk(yajor + iys))

X (kyan—1)Xx(Vky1) .. -X(\/Ey%fz))-

Then, u{:@p is a global ¥ CR section. On D, we write U’{c,&p = Uk,sﬂi@p, ﬁf;y&p € ¢*(D). From
(7.3), we can check that

(7.11)

W, () = / R0 B0 (B, k) (a1 + 6923) X (Yan-1)X (1) - - X (yan—o)dudy,

uk,é,p

(7.10)
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mod O(k~>°) in ¢*(D). Put

—_

(7.12) ﬂi@p = exp (— EY (agz — EZZZ))%’M c¢YD), j=1,2,...,n— 1.
I=1

Lemma 7.2. With the notations above, there exists kq > 0 such that for all p € X and k > kg,

1 9
—=—"(p)

| 5t
- k Ox9n—1

|, 5., (p <6 j=1,2,....n—1,

Y

1 8uk5p
k 0%,

(p)| <, j,s=1,2,...,n—1,

(7.13)
1 OUMP

k 074

(p) §64a j58:172a"'7n_17 j?ésv

101, oo
k 8zj p

1
> 0Ndy, j=12...n-1,

~—

where {)\;}"_| are the eigenvalues of R- with respect to (-|-) and

1 -n .
dp - §7T |det RI€| / |y1 + Zy2|2 X(an—l)X(y1) C X(y2n—2)dy-

Proof.: From (7.11), (7.5), (4.33) and observing that 1)(0,0,u) = 0 for all u € R, it is straight-
forward to check that for every j,s,t =1,...,n— 1, s # j,

100 B U ,
kh_)]m z 8’;617(]9) T " }det Rﬂ Aj /T<g> |Y2j—1 + Zy2j|2 X (Yon—1)X (W) - - - X (y2n—2)dydu,
o0 J
A 1 0uj 13@5 10, 5
3 ~J _ _ — ] 9P — — —
Jon [T, ()] = Jinn | = )| = Jim = ) = Jim |25 )| = 0.

Smce 2 < f %)du < 4, there is a constant ky > 0 such that (7.13) holds for every k > k.
Since X is compact kq can be taken to be independent of the point p. The lemma follows. [

Consider the ¢* map

~ al ﬂ" 1
(7.14) Bpp: D= C", x> <3k’5’p (), =222 (x), .. ’“—“’(x)) :
U652 ,p Ug,62,p Uk,52 p
The following Lemma is a consequence of (7.13) and (7.9) together with a straightforward
computation and therefore we omit the details.

Lemma 7.3. With the notations above, there are ky > 0 and 0 < &g < 1 such that for all k > k,
0 <0 < épand p € X, the differential of @y, is injective at p.

Let dist (-, -) denote the Riemannian distance on X and for x € X and r > 0, put B(z,r) :=
{y € X; dist (z,y) < r}. From now on, we fix k > kg and 0 < & < &y, where k, > 0 and
0 < dp < 1 are as in Lemma 7.3. Since X is compact there exists r, > 0 such that for every
zo € X, Uk 52 4, () # 0 for every x € B(xo,2r;) and the maps @y 5., and d®y s, are injective
on B(x,2r). We can find x4, zs, ..., z4, € X such that

(7.15) X = B(wy,r,) UB(z2,7%) U...UB(xq4,, 7).
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For every j = 1,2,...,dy, let U2 o), Ukgay Ugp s - - ,u};’g’lxj € ¢'(X,L*) be as in (7.6) and
(7.10). Consider the map:

Pps: X — CPHDde—1
(7.16)

1 n—1 1 n—1
x 7 | Uk02,215 Uk Sa1 Wk §ays -+ W g wys -« » Uk 62,24, » Ukb,2q, 5 uk,&,mdka S 7uk,6,:cdk (:L‘)

Let ¢ € X. Then, ¢ € B(xj, ;) for some j = 1,2,...,d,. From the discussion before (7.15),
we see that uy, ;2 ;. (q) # 0. Thus, @ s is well-defined as a * map.

Theorem 7.4. With the notations above, the differential of @y s is injective at every v € X and
for every xg,yo € X with dist (zo, yo) < &, we have ®y 5(x0) # Pr.s5(yo)-

Proof. Let g € X. Assume that ¢ € B(xy, 7). Then, uy g2 ., (¢) # 0. On B(z4, 1), consider the
map:

U B(xy,rg) — C(”H)dk_l,

7.17 1 n—1 1 yn=1
( ) (y) — (Uk,6,a:1 Ul 5.2 Uk 5,2, Uk 62,24, Ukbrq, Uksza, k7671'dk) )
= , s ey , , e .

Uk,52,01 Wk,52,21 Uk,62 21 Uk,62,21  Uk,s2,21  Uk,62,a1 Uk,62,2:

From the discussion before (7.15), we see that d®y 5., is injective on B(z4, 2r). Thus, dV is
injective at ¢ and hence d®y s is injective at q.

Let xo,yo € X with dist (29, ) < %. We may assume that zy € B(x1,7:). Thus, zo,y0 €
B(z1,2r;). From the discussion before (7.15), we see that &, is injective on B(z1, 2ry).
Hence,

(7.18) P 5,01 (20) # Prs,er (Yo)-
From the definition of ® s ,, (see (7.14)), we see that (7.18) implies that &, s(x¢) # Prs(vo)-
The lemma follows. U

Let s be a local trivializing section of L on an open set D C X. As before, we fix p € D and
let x = (x1,...,%90-1), 2j = Toj—1 + %95, j = 1,...,n — 1, be local coordinates of X defined
in some small neighbourhood of p such that (4.31) hold. We may assume that the local coor-
dinates x defined on D. Take m > N, be a large constant and let w,, ;, be as in (7.6). On D,

We Write Uy, 5, = Uk slm.sp> Umsp € (D). Put D, == {x = (z1,...,%on1); 2] < =2 }

m logm

We need the following.

Lemma 7.5. With the notations above, there exists my > 0 such that rkmé/ > 4and for all
m>mgoandp € X,

1
(7.19) inf {[tm,sp(2)|ym ; © € Dy} > g(Scp,

where ¢, = 77" |det RE| [ X(y2n—1)X(¥1) - - . X(y2n—2)dy, and for every q € X with dist (¢, z) >
o, forall x € D, m, we have

1.
(7.20) U 6.0(@) | < 5 inf {|um75,p(:v)|hm c € Dpjm} ,

where r;, > 0 is as in Theorem 7.4.
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Proof. Let m > N, be large enough so that
(7.21) rpm!'/? > 4,
As in (7.7), we have mod O(m~>) in ¢*(D)

(7.22) Umsp(T) = /eimwO(x’F’?y’“)m"ag(x, Fry,u,m)x(yan—1)X(1) - - - X(Yon—2)dudy.

From (7.22), we can repeat the proof of the first formula of (7.9) with minor changes and
get (7.19). We only need to prove (7.20). Let ¢ € X with dist (¢,z) > “, forall z € D, ,,. If
q ¢ D, from (i) in Theorem 1.2, we can check that |u,, ;,(¢)|,.» = O(m™>).

We may thus assume that ¢ € D. For simplicity, we may suppose that dist (z1,x2) =

x1 — o] on D. We write ¢ = (¢q1,...,Gon—1). Since dist (¢,z) > =, for all x € D, ,,, from
4 P,

(7.21), we have |¢| > =7 for m large. Thus, |¢| > m or |gan—1| > 5, Where

¢ =(q,...,qom2) If|q| > m, by using the fact that

mImo(q, Fhy,u) > em*/? Yy € Supp X (Y2n—1)X (1) - - - X(Y2n—2),

(logm)?’
where ¢ > 0 is a constant independent of m, we conclude that

~ . —00 . / A
(7.23) [tmsp(g)l = Om™), i |¢']| 2 o —— log m

If [gon_1| > 8m+/3 and || < 3 ! , from (4.33), we can integrate by parts with respect to

ml/3logm
u several times and conclude that
1

d|lf| < ——-
an |q’<8m1/310gm

(7.24) [mgp(@)] = O(m™%), i |gona| 2 gy

From (7.23) and (7.24), (7.20) follows. O

Now, we fix m > N, + my, where m, is as Lemma 7.5. From Lemma 7.5, we see that we
canfind z; € X, 25 € X, ... x4, € X such that X = U?Zl U.,m, where for each j, U, ,, is an
open neighbourhood of z; with Sup {dist (¢1, ¢2); q1,¢2 € Us;m} < 7, and for each j, we can
find a ¢ global CR section u,, s, such that

(7.25) inf{|um,5,x]~ (x)lhm HEUAS Uarj,m} >0,

and for every ¢ € X with dist (¢, z) > ¢, for all v € U, ,n, we have

L.
(726) |um,6,xj (Q) ‘hm < 5 inf { ‘um,é,wj (I) ‘hm NS Uarj,m} )
where 7, > 0 is as in Theorem 7.4. Consider the map:
(727) \Ilmﬁ X = C]P)dm_la T+ [um,é,xla Um, 6,xqy - - - 7um76,xdm](x)~

Let ¢ € X. Then, ¢ € U,,,, for some j = 1,2,...,d,. In view of (7.25), we see that
Umsa;(q) # 0. Thus, ¥, 5 is well-defined as a smooth map.

Theorem 7.6. The map (@45, V,,5) : X — CP+Dd4—1  CP4n—1 is a 6 CR embedding, where
®,, 5 is given by (7.16)
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Proof. In view of Theorem 7.4, we only need to show that (®,,,V,,;) is injective. Let
q1,q2 € X, q1 # q2. Assume first that dist (¢1,¢2) < “. From Theorem 7.4, we know that

Dy 5(q1) # Prs(q2) and hence (Prs(q1), Yims(q1)) # (Prs(q2), Vims(ge)). We assume that

dist (q1,q2) > “¢. From (7.26), it is straightforward to check that ¥, 5(¢1) # ¥pms(¢2) and

thus (®1.5(q1), Yins(q1)) # (Prs(q2), Vi s(q2)). The theorem follows. O
Proof of Theorem 1.4. With the notations above, consider the Segre embedding:
Y : CPU D% 5 CPom ! — CPHD%dm =1
([#1, - Zmtnya ), [wes - - wa,,]) = [2awn, 21Wa, - .. 21Wa,, 22W1,5 - - - 5 Z(n41)d Waly ) -

It is easy to see that T is a smooth holomorphic embedding. From this observation and
Theorem 7.6, we conclude that

T o (Phs, Upps) s X — CPFDdrdn =1

is a ¥* CR embedding. We have proved that for every M > k + N, + mg, we can find CR
sections sy € €4 X, LM), s, € €4 X, LM), ..., sq4,, € € (X, LM), such that the map z € X —
[so(z),51(2), ..., 84, (z)] € CP¥ is an embedding. Theorem 1.4 follows. O

Let us finally mention that a projective CR manifold admits Lefschetz pencil structures of
degree k, for any k large enough, cf. [21].
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conversations.
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