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ABSTRACT 

Consider the following eigenvalue problem 

(P) { 

-llu 

0 u = 

>.f(u) in fl c lR n, bounded, 

on an, smooth, 

where f changes sign. In this note we will show results which can be found 

by using the so-called sweeping principle of Serrin, 1971. Especially we 

will give estimates for the boundary layer of positive solutions near a 

zero of f. For some f a solution u will have a free boundary. We show for 

such f that f(u)=O except near an. Next to this we improve a result for 

existence of a solution. 

1. INTRODUCTION 

We are interested in pairs (X,u) € lR+ x c2
(fl) satisfying (P) and 

1 
u > 0 in fl. First, note that a solution satisfies f(max u) ~ 0. If f € C , 

the strong maximum principle even shows f(max u) > 0. Secondly, if p is a 

zero of f then u a p satisfies the differential equation for all X. So one 

could expect the existence of a solution (X,u), where Xis large and u is 

near a zero of f (with f(max u) ~ 0) except for a boundary layer. Results 

for this problem were presented by Fife,1973 and by Clement et al., 1986. 

The results here are strongly related to this last paper. 

Assume that there are two numbers 0 < p
1 

< p
2 

such that 

(Fl) 
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(F2) f €Cy(- 00 ,p 2J n c1 (-00 ,p2 ) and there is o > 0 such that f' s O in 

(P2- 0•P2l · 

fig.1 

In 1981 Hess showed, if f(O) > 0, that the following condition is suf

ficient for existence of a positive solution (A,U) with max u € (p
1

,p
2
). 

(F3) 
P2 

J(pJ := I 
p 

f(s)ds > 0 for every PE [O,p
1

J. 

In the first theorem, it will be proven that this condition is sufficient 

and necessary when f € c1[0,max u] , even if f (0) < 0. In the second 

theorem we will show that the solutions, which are found in this way, are 

near p
2

• 

2. THEOREMS AND PROOFS 

Before stating the first theorem we will shortly explain the sweeping 

principle of Serrin, 1971. A formulation can also be found in the paper 

by Clement et al., 1986. 

Fix A, let u be a solution of (P) and let {v(t) € C(Q); t € [0,1] be a 

continuous family of subsolutions, such that v(O) < u in n and for all t 

v(t) < u on on as well as v(t) < p2 inn. Then v(t) < u in n for all 

t € [0,1]. Since, if there exists t* € [0,1] such that v(t*l Su and for 

* * * * some x € n v(t ,x ) = u(x ) , the strong maximum principle implies 

* v(t ) • u, a contradiction. 

THEOREM 1: 

Let f satisfy (Fl) (F2) (F3) and let n satisfy a uniform interior sphere 

condition. Then there exists c 1 > O, c
2 

€ (p
1

,p
2

J and AO> 0 such that for 

all A> AO a positive solution (A,U(A)) of (P) exists with 

(1) min (cl"d(x,ani.A\ c 2 l < u(A) s p
2

• 
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Moreover every solution (A,U) of (P) (not necessarily positive) with 
max u 

max u € (p1 .p2 satisfies J f(s)ds > 0 for every p € [O,p
1 

]. 
p 

PROOF: 

Replace f by f*, where f* satisfies (Fl) and 

* f (u) = 1 for u < -1, 

f*(u) s f(u) for 0 Su S p
2

, 

f* € c1 (:R), 

p2 * J f (s)ds > 0 for all P < P
2

• 
p 

- ... \ f. 

' ' 

fig.2 

one finds for µ large enough, a minimizer v of 

P2 \ 

Like Hess in 1981, 

I(v,µ) = ~bjvvj 2a.x v * - µ J J f (s) ds dx in the cone {v € w1
'
2

(fl); v > -1 in B, 
no 

v = -1 on aB} with max v € (p
1

,p
2
). (B denotes the unit ball). Gidas et al. 

showed in 1979 that v is radially symmetric and v' (r) < 0 for r € (0,1]. 

Let 0 € (0,1) be the number such that v(0) = 0. Since 11 satisfies a uni

form interior sphere condition, 11 = U{B(x,e:); x € n(e:)} for all e: € (O,e:
0
), 

where e:0 is some positive constant and B(x,e:) {y € :RN; lx-yj < e:}, 

fl(e:) {x € O; d(x,an) > d. Then w(A,x) :=sup {v('S.e:-1 .lx-yj); y € fl(e:)}, 

with A = µ. (0/E) 2 , is a subsolution of (P), with f replaced by f*, for all 

2 * A ~ AO := µ. (9/e:
0

) • Since O < w(A) < p2 and f sf on [O,p2J , w(A) is 

also a subsolution of the original (P). Note that W(A) s p2 is a super

solution of (P) for all A. By an iteration scheme one shows the existence 

of a solution in between. By condition (F2) there exist two strictly in

creasing continuous functions f 1 and f 2 such that f = f 1 - f 2 on [O,p2 J 
and f 2 CO) = 0. Because of (F2) one may assume f

1
€ c1

[o,p2 J. Define T by 

u = T(v), where u is the unique solution of 

{

-6u + Af
2

(u) = Af
1

(v) 

u = 0 

in n, 

on an. 

See the paper of Brezis et al. from 1973. Define W = Tn(W(A)) and 
n 

w = Tn(w(A)). {W }and {w} are sequences of respectively decreasing n n n 

78 



supersolutions and increasing subsolutions. Since Wn > wn in n the se

quences converge to a solution of (P}. Standard regularity theory shows 
2 

that these solutions, or maybe just one solution , are C (n) . The estimate 

(1) is valid since the solutions are between w(A} and W(A}. 

The last part will also be proven with a sweeping argument. Suppose there 
maxu 

is a solution of (P) with max u E (P
1

,P 2} and 

* P E [O,pl ]. 

Let u be the solution of 

Set 

-u" = H<u> 
u(O} = max u 

U.· co> = o. 

U(t,x1 , •.• ,xN} 

I t E :RI 

u(x
1
-t} for x € RN. 

* 

f f(s)ds = 0 for some 
p* 

* Note that max U max u and inf U c: p . Moreover there exists t and x 
* = n n {x " 

N > t*} with n :R ;xl , such that 

uct*> c: u in n*, 

* * * * * * U(t ,x } = u(x } and VU(t ,x } Vu(x } . 

* 

* 

The strong maximum principle shows U(t } = u, which is a contradiction. 

For a more detailed proof see the authors paper of 1986. o 

THEOREM 2: 

* 
"n 

Let n satisfy an interior sphere condition and let f satisfy (Fl} and 

(F2) with p
1 

not necessarily positive. If pl > 0 then assume (F3) is also 

satisfied. 
a 

Suppose that f(u) > c(p
2
-ul for u E (p 2-o,p 2}, where c,a,o > 0. Then 

, 

there is C > 0 such that for any nonnegative z E C~(fl), with max z E (p
1

,p 2}, 

A(z} > AO exists for which the following holds. 

Let (A,u} be a solution of (P} with z s us p
2 

inn and A> A(Z}. 

1) If o <a< 1 then u(x) c: min (C.A~.d(x,an},p 2 }. 
2) If a ~ 1, then u(x} > p

2
(1-exp(-C.A .d(x,ofl))}, 

3) If 1 < a, then u(x} 
-1 

p = 2(a-1) 

REMARK 1. 

> P 2 Cl-(1+c.A~.d(x,an))-pl 
for x € n. 

for x € n, with 

case 1) shows that a solution near p2 will have a free boundary with

in a distance of order A-~ from an. 
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* Define m := ~(p 1 +max z) and M := v(O). Then there exists a ball B(x ,r), 

such that B(x*,r) c {x E n; z(x) > m}, and a constant a, such that 

f(u) > a(u-m) for u E [m,M). By the lemma one finds 

* -~ u(x) > M for x E B(x ,r-(a.A/V) ). 

When r-(a.A/v)-~ > 9 . (A/µ)-~ the first step is finished since 

~ *I * -~ u(x) > M 2 v((l/µ) lx-x ) for x E B(x ,9(1/µ) ) 

-2 ~ ~ 2 Hence set 1 (z) = max (1
0

, r ( (v/a) + µ ) ) • 

P1 !>----------------- -- ------ Pt 1>-------------------------

... ·· 

Oz 02 

n n 

-I 

fig.3 fig.4 

In the second step we prove that a solution (1,u), with u E (w(l),p
2
J and 

1 > A(z), satisfies the statement of the theorem. If p
1 

< 0 set M = 0. 

We may assume that c is such that 

f(u) > c(p
2
-u) Cl for u E [M,p 2J 

-k 
Define Mk = p2 - 2 · (p2-M) 

and a = c. 2-(k+l).(a-1) a-1 
k (p2-M) . 

Then f(u) > ak . (u-Mk) for u E [Mk,Mk+l). 

Pt .. ------------ -------------
H, 

M1 

H 

H Oz 

n 
fig.S fig.6 
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REMARK 2. 

For the cases ii) and iii) it was proven by Clement et al. in 1986, if 
1 y 3 

f € c ' [O,p
2

] and an€ c , that there exists a unique solution u E'. [z,p
2

J 

for every A large enough. 

The key to the proof of theorem 2 will be the following lemma. 

LEMMA : 

Let (A,u) be a solution of (P) and let v be the first eigenvalue of 

in B(0,1), 
(L) 

on ilB(O,l). 

If f(u) > o.(u-m) for u E'. [m,M] and u > m on B(y,(o.A/V)-~) then u(y) > M. 

PROOF : 

Let w be the associated eigenfunction of (L) with W(O) 

~ I I -~ v(t,x) = m + (t-m) .w( (o.A/v) • x-y ) for x € B(y, (o.A/v) ) • 

Then 
-!iv (t) (t-m). (O.A/V). (-tiw> 

A.a. (t-mlw = 

A.a. (v(t)-m) < Af(v(t)) for t t: [m,M]. 

1. Define 

Since v(t,x) m < u(x) for x E'. ClB(y,(oA/v)-~), v(t) is a subsolution of 

(P) for all t E'. [m,MJ. And since v(m,x) mm < u(x) the sweeping principle 

shows v(M,x) < u(x) in B(y, (oA/V)-~). Hence v(M,y) = M < u(y). a 

PROOF OF THEOREM 2: 

In the first step we will show that there exists A(z) such that if 

(A,u) is a solution of (P) with A> A(z) and z < u then u > w(A), which is 

also defined in the proof of theorem 1. If p
1 

< 0 then set w(A) = O. If 

(F3) is satisfied there exists a radially symmetric solution (µ,v) of 

J !iv = µ.f* (v) 

1. v = -1 

as before, and set 

in B(0,1), 

on oB(0,1) 

2 which is a positive subsolution of (P) for A~ AO= µ.(6/E
0

) • If one can 

show u(x) > v((A/µl~lx-yll for some y E'. n (6.(A/µ)-~) then by sweeping and 

the fact that Q(6.(A/µ)-~) is connected by arc, this inequality holds for 

ally€ S'l(6.(A/µ)-~). 
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Since u > w(A) one finds that 

-~ u(x) > M for x E n(6.(A/µ) ) . 

The lemma then yields 

~ ~ -~ u(x) > M
1 

for x E 0((6.µ + (v/o1) ).>. >. 

And after applying the lemma n times 

n 
u(x) >Mn for x E n((a.µ~+v~. L (Ok)-~).A-~). 

k=l 

By the definition of ok one finds,· if a of. 1, that 

If a 

n -~ -~ 1 n 
E ( q ) = c • (-(p -M)) q E (.!._) qk 

k=l k 2 2 • 2 k=l 

1 
q = 2(1-a). 

n 
1, then E (o )-~ 

k=l k 
n.c -~ 

CASE 1 : 0 <a < 1. 

-~ 1 q 
c . (4(P

2
-M)) • 

1-(.!._) qn 
2 
1 1-(-)q 
2 

I With 

-~ ~ ~ -~ 1 q For every n EN, u >Mn in O(c
1 

. .>.. ), with c
1 

= 6.µ + v .c <4<P
2
-M)). 

(1-(i)q)-l. Hence u = p2 in ncc 1 .A-~), which proves together with 

u > w(A) the first statement. 

CASE 2 : a= 1. 

For every n E N,u > M in 0((6.µ~+n.v~.c-~).A-~). The inequality 
n 

u > Mn is equivalent with 

P
2 

- u < (P
2

-M) • exp (-n ln 2). 

By setting. n = [ (d/v) ?d (x, Clfl) -6. (cµ/v) ~], where [.] denotes the integer 

function, one finds 

p
2
-u < (p 2-Ml exp(-ln2.((cA/v)~.d(x,Cln)-6(cµ/v)~-1)). 

Together with u > w(A) this proves the second statement. 

1 
CASE 3: a> 1 (hence q = 2<1-a) < O). 

~ -qn -~ ~ -~ For every n E N, u >Mn in n((6.µ +c
1 

.2 )A ) with c
1
= v .c • 

1 q -q -1 -1 ~ -1 ~ -p c4 cP 2-M)) .(2 -1) • Then u(x) > p2-2(p
2

-M) .(c
1 

• .>.. .d(x,ani-c
1 

.6.µ) 

with p = (-q)-l = 2. (a-1)-1 . Together with u > w(A) this proves the third 

statement. a 
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