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Subject of this note are partial answers to the question whether rank—one convesity implies
quasiconvezity. This problem has been an open one Jor more than 35 years and has resisted
many attempts of solving it completely (8.9,2,5]. Our resulis indicate why it is s0 hard to
find a possible counterezample. Moreover, we show some domoins with a triangulation for
which the condition for quasiconverity resiricted to piecewsse linear testfunctions is implied
by rank—one converity. Also we give o simple triangulation for which this implication is not
yet known. It might help to find o rank-—one conver function that is not quasiconves.

~ Introduction.
To explain the question under investigation we have to introduce some notation. Let

p: R —+!Rm be a vector-valued fanetion. Our main result will be stated for the case
m==n=2. We denote the Jacobian of p, if it exists, by

dyp Bipy

Vi =

Definitions:

Let f:R™ S Rbea continuous map.
“The function flS called rank-—one conveyx, iff

(/\A+(1—A)Bs< M(A) + (1--2)E(B) ‘ S
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The function f is called quasiconvex iff

f(A) < 1p7 ] A(A+Tot)x (2)

for every (constant) matrix A € R™", for any ¢ [W%’“’(D)]m' and . for the cube
D = (—1,1)" with volume |D| = 2" ‘

. Remark 1: v
In the definition of quasiconvexity one may replace the cube D by any bounded domain.
However, the definition which we gave will be convenient for our purposes.

Remark 2: ,

Qﬁasiconvexity'implies rank—one convexity. The converse implication has been shown to
be true under certain additional assumptions, e.g. if f is quadratic or if m=1 or n=1.

We refer to [2,5] for a detailed discussion of the state of the art. Our contribution will
discuss the case n=2.

Remark 3:
If f is of class Cl, then rank—one convexity is equivalent to

{(B) - {(A) > é;ikm)(a_z\)

o

ka

for all A,B € R™™ with rank {A-B} < 1.
Here (-}, , denotes the matrix element in row k € {1,....m} and column o€ {1,..,n}.
Moreover we use the summation convention. '

If f is of class'CZ, then rank—one convexity is equivalent to the Legendre — Hadamard
condition ' '

2
—ia_ij’\i’\j ot >0
0 430

(¢4

for any A € an, peR™
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Analytical results.

Theorem 1:
Suppose that n=2 and that [ is continuous and rank—one convex. Then inequality (2)
holds for every function ¢ € [Wé’m(D)}m which satisfies :

P %) = so(xl,xg) = ¢(—x 1}x2> | - @

Remark 4: ' ' ;
Notice that Theorem 1 does not state that { is quasiconvex. However, Corolla,ry 1 below
states that the quasiconvexity can be established under a structural assumption (H) on f.
‘While previous attempts to disprove that rank—one convexity implies quasiconvexity
have shown that a counterexample would have to use a complicated matrix function f, our
Theorem 1 indicates that a céunterexampie cannot be constructed with a relatively
simple test{unction ¢, that is, a test{unction with some symmetry.

Remark 5: ‘ : ’ , V
The restrigtibn to the case n=2 is of a technical nature. It scems possible to' prove the
result for higher dimensions under additional symmetry assumptions on f. ' Since an
cxtension to h]«rlcr dimensions does not provide any additional mslght we restrict
~ ourselves to n=2..

Hypothesis (I1): - A
© We say that { satisfies (H) if for every A € R°™ and ¢ € [W(IJ""’(B)]m ‘there is some

reflection R with RO = 0, such that

] A+ = é[(AW(Kg&))& : | )

where B is a ball in [RQ with ccm,ef 0.

Remarck 6: .

At present it is not clcar 0 us, how strong an assumptmn {H) js.

I m=2 and il {{A ) <MA,A>, where M s a real 2x2 matrix and <-,-> dcnotes the
scalar product in IR then a simple calculation shows that property (II) holds, Therefore .
Corollary 1 below provides a new prool of the known result, that for such an f
quasiconvexity and rank—one convexity are cquivalent. On the other hand there are
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‘even polyconvex functions f, e.g. f(A)=det A, for which property (H) fails. Polyconvexity
~ implies quasiconvexity. See [5].

Corollary 1:
Suppose that n=2 and that f is rank—one convex and satisfies (H). Then f is quasiconvex.

Proof of Corbllary 1:
Let e [W(l]’m(D)]m. Because of hypothesis (II) there exists a reflexion R such that

] f(A+Yp)dx = [ f(A+VRy)dx .
D RD

Denote the left half of D by D ¢ = (=1,0) x (-1,1). Without loss of generality we may
assume that Ry = . By Remark 1 we may even assume that supp ¢ ¢ D ¢

o(x) inD 0

%(x) mD\D,

It follows from Theorem 1 that

Set - Y(x) = {

1 1
f(A) STD—[- [ {(A+V¢h)dx = T, [ ((A+Vyp)dx .
This implies the quasiconvexity of f. o

We will give two proofs of Theorem 1.

Proof of Theorem 1 by analytical methods: .
Using the symmetry of ¢ and replacing X by X; one finds

d - ’ d
01 (x:%9) ety (Xy%g)
J (A+To)dx = | [(A+ & IR dxy TR

| dx1(1x2 =
d ¢
E¢2(x1’x2) HYQ—(‘OQ(XI’XQ)

d d
P (—%1,Xg) =1 (% ,%o)
=ff(A+[a?ql 1 22&51 172 )dxldx2=
D ,

d oy o d .
. ax_l‘LPQ(—xl 7‘\2) ax_?:‘pz (—xl a>\2)
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[ —0y 01 (=1 %g) By (—x1,%)

= | {A+ )dx, dxy =
Dt eyl xg) Gaiglxy %)
o =00y (X)5%q) Oy (x1,%,) v o
= [ {(A+ T2 2Rn2 dx dx, . (6)
b —0) 9y(x1:%9) OyPy(x7,%0) 4
Hence ) ) , ,
—0.91 Oy ¢, B
ff(A+V<p)dx=%jf(A+[ 12 g 1 L g gas [ 10 "20)g
b =0)¢y 950y 9,0q 00y

By the rank—one convexity inequality one finds

8 Gy
] HA+Vp)dx > | f(A+[ 2 1})dx ,.
D D 0 3y,

Since evéry pair of matrices A + (0,d,¢(x)) differ by a rank—one matrix, the rank~one

convexity implies

i{){(AH{I,E}Qq}))dx >
1 ; A
> D] iy J (A+(0,059))dx) =
21D} py [ (A+(0,9,

= DI €(A). R (1
Since { is convex on the hyperplane {A+{g ;\L); A, jt € R} one uses Jensen's inequality in
the last step. S . S : u
Rematk 7:

Notice that is if sullicient for this prool Lo assume ga(xl,——l} = ga(xl,l) for all x € [~1,1},
instead of assuming ¢ = 0 everywhere on the boundary. '
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Discrete Results.

Proof of Theorem 1 by usmg finite eiements

It is known, see [3,7], that a function V € Wé?w(D) can be approximated in the
I {[1 —norm by functions V € CD(D) which are linear on each triangle of a mesh of
sufﬁmently small triangles. For the proof it will be convenient to choose a fxshbone mesh

-~ as in Figure 1 which is symmetric with respect to {x;=0} and which has 4NM congruent -
triangles. Notice that the mesh-lengths are not essential. Therefore, without loss of
generality, we may set the mesh length equal to one. Now if suffices to prove mequahry
(2) for those functions g& € [C((~=N;N)x(0,M)]™ = [C(D)]™ which satisfy

¥ is linear on each triangle, : (8)
Bx;,0) = ¥(x),M), o O
B xo) = Wxy ) @)
- {-NM) {0.M) {M.N}
Figure L. NO) ‘ {0,0).- (N,0)

For n € {1,...N} let (S ) be the following sta.temcm: ‘
((A) < gy j f (AT, x5))dx dix,

for all A € R?™ and P satislying (8)}(9)(4).

The validity of (SN) impliesThéorem 1. We intend to- verify (SN). by induction with
respect, to n € {1,...,N}. Step 1 -will be that property (Sl)' holds. This will be shown in
Lemma 1 below. For step 2 we suppose that Property (Sn) holds. Then a direct
computation which uses (Sl) and (S)) gives : ‘ '

Mn+l ,
j f f(A+V¢(xi,x2))dxltiX2 =

...n_
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@

-+l ’ M
{ f + [ ) f(A+V¢(x1,x2))dxldx2 + [ ? fA+V(x, %)) dx, dx, =
-n-1 'n .o 0 —n ,

n

M —
=]
0
M ' o M : '

é f(A+Vﬂxl+(N—l)Slgn(xl-),xg)dxldxgf é _{1 fA+VP(xx9))dx dxy 2

,__...._,,_..

2 2M f{A) + 2nM f( ) = 2(n+1)M {(A).

This proves {Sn +1) and comp}etes the proof of Theorem 1. - o

Lenima 1: -
Let @ = (=1,1) x (0,M) and &, = (=1,1) x (i,i+1), i € {0,...,M-1}.

Suppose that % € [C(Q)]™ satisties (8)(9)(4).
Then (S) holds, i.c. :

I(A) < 35 s;fl [(A+Vg)dx  for all A e RE™,

(-1,0i+1) © (01) (1.i+1)
1-'52 Ti3
TH Tia
TFigure 2. () (0§ i)

Proof of Lemma 1:

We introduce some Notation. Let T;; denote the triangles in Qi as depicled in Figure 2,
i€{0,...M}, = je{l,.,4}. For casc ol writing we usc the notation g = (0,1},
w = P{1,i}. Then one direcily calculates, using (4), :

(w05 4wy . S im Ty, ,
Ty = ((pi—{-l_wi +1%4179) | im Ty,
[ (4 1705 41095 4179) * im Ty,
(wi—“ﬂpi,wi_{_l--wi) : im rM

We obsarve that V¢ on T, 1 {resp. Tiz) differs by rank one from V¢ on T, (resp. Ti3)'
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Therefore we may use the ra.nk—one convexity of f to obtam

jf(A+V1/))dx— z 11‘(A+V¢(TU))—

»-l

= %—f(A+V¢(Ti1l)) + LRAvYTy)) + S HATUT) + 5 (A+TY(T,,) 2

> {(A+(0,0, 1—w)) + [A+(05 4 ) 2
1 ,
2 AA+ 050 =)
A repeated use of the rank—one convexity of [ allows us to sum over i:

M—1
[fA+To) =2 EOfY(A+(0,%(<pi e ) 2

2 2M H(A+(0,g57{ ey 2yt ep—ep))-
Now we observe that oM = Py and wyp = W due to (9).

This completes tvhe proof of Lemmia 1. ' ‘ ‘ u]

In the proof of Theorem 1 we showed
a) that condition {H) allows us to work on a rather "narrow" mesh, and

- b) that on a narrow mesh rank—one convexity implies quasiconvexity.

In the remainder of this note we shall drop assumption (H) and try to enlarge the mesh.
Recall that one has to show ’

N
<2AA) RS | (10)
for constant matncce A = A + V¢ on triangles, whelc ¥ satisfies (8) and 9 = 0 on 4D,

and wherc/\ >0, E A =1.
i=1

If (10) were true for arbitrary matrices A € RN

, then f would even be convex. One set of
assumptions on (A,,A.) which makes sure that rank—onc convexit implics the validity of
Ssump Y Y )

. (10) was described by Dacorogna in [4,5]. Tlere is another result of this type.
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Thegrem 2:- ‘ ‘
: . N
Let [ : R = R™ be of class G and suppose that (Al,Ai) satisfy © ’\‘j =1 and
=1

N : ,
rank {A; — ¥ )‘jAj} <1 fori=1,.,N. (11)

=1
Then {10} follows from rank—one convexity.

Remark 8: if N = 2 (10) is jilst the inequality {rom rénk—-bne—convexity.

N S ,
Proofl: To prove the converse weset A = L Aj Aj and use Remark 3 and (11) to obtain
=1
af ' ‘
1(A) ~1(A) 2 L (A)AA), (12)
‘ oy .
Now we multiply (12} by A; and sum over i to obtain (10). o

Remark 9: .

Theorem 2 could be used for an alternate proof of Theorem 1 as follows. Set 2A; = sum of
(A+V¢) on two symmetric triangles. Then rank {Aj} =1 and rank {A} = 0. Therefore
Theorem 2 -applies, provided I is differentiable.

We have attempted to verily inequality (10) for more general meshes, in particular
without symmetry assumption (H). The only essential case that we could treat is depicted
in Figure 3 below:

ah ch
al X a3ic1 X3
32 N c2
ba dé
b1 Xb3id1 Xd3
b2} d2

Figure 3.

Notice that the meshes in Figure 4 can be treated as special cases of Figure 3.
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N=& ) : N=8

N=16 - > N=18(16)
. . N=25{20)
Figure 4.

Ball [1,p.355] and Dacorogna [6] have expressed doubts that (10) holds for N = 16. The
configuration of 16 triangles which they had in mind was a tri‘a.ngulation which cannot be
considered a special case of Figure 3.

For the meshes in Figure 5, with N = 11 and N = 10, we could not {ind a direct way to
derive {10} {rom rank—one convexity. Maybe it will be possible to use this mesh in order
to find a counterexample. o

Figure 5.
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Theorem 3: : ,

Suppose that a recta,hgle D ¢ R? is divided into 8N triangles according to Figure 3 and
suppose f is continuous and rank—one convex. Then the quasiconvexity inequality (2)
holds for functions % € [C(D)]™ which aré linear on each triangle and which vanish on
aD. '

For the proof we suppose that a’i’bi etc denotes A + V¢ in the corresponding triangle.
Then a repeated use of rank—one convexity in the right order leads to

ff(A+\?¢:)dx=%—N{f(a,l-)+f( J+(ag)+(ag)+(b )+ 2

> 0 {13a +a2>>+f<2<a3+a4>>+f< (by+bg))+.} 2

21“ %”’

[AYd

{(4( a+. +a4))+f(4(b+ b))t} 2

{f(;é—(al-%-...—Fa.4+§31+...+b4))+f(—§(cl+...+d4))+...} >

1Y
P

2

by

1

(grla+.tdg+)) ,

In the last step we have used the fact that the mean values over owosmg squares differ
by a rank—one matrix (with vanishing second column). ; o

Although the meshes which are considered up till now look quite simple, it is possible to
prove inequality (2) on a more complicated mesh without a symmetry assumption.
Lemma 2: ‘ )

Suppose { is continuous and rank—one convex. Let D ¢ R% be divided into triangles
according 1o figure 6. Then inequality (2) holds for functions % € [C(D)]™ which are
lincar on cacht triangle and which vanish on 9D.

Figure 6.
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Proof:
Using the inequality of rank—one convexxty in the right order shows nmquam,y (2).

Denoted in shorthand: .
((3+d)+(o+e)+(c+D) + 5. -

Finally, by combining the results of Theorem .3 and Lemma 2 one can even prove the
statement of Lemma 2 for the meshes in figure 7. However it is not possible to
approximate every W ®—function by refining a mesh in such a way. -

_ Figure 7.
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