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Subject of this note are partial answers to the question whether rank-·one convexity implies 
quasiconvexity. This problem has been an open one for more than 35 year,> and has resisted 
many attempts of solving it completely [8,9,2,5]. Our resultt1 indicate why it is so hard to 
find a possible counterexample. M oreO'l1e'I', we show some domo,ins with a triangulation for 
which the condition for quasiconvexity restricted to piecewise linear testfenctions is implied 
by rank-one convexity. Also we give a simple t·rirmgulcttion for which this implication is not 

yet known. It might help to find a rank-one convex function that is not quasiconvex. 

Introduction. 

To explain the question under investigation we have to introduce some notation. Let 

rp : IRn -+ !Rm be a vector-·valued function. Our main result will be stated for the case 

m=n=2. We denote the Jacobian of rp, if it exists, by 

Let £ : IRnm -+ IR be a continuous map. 

·The function f is called rank-one conve.~ iff 

f(,\A+(l-,\)B) 5 Af(A) + (1·-A.)f(B) (J) 
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The function f is called quasiconvex iff 

f(A) ~ Tfrr b f(A+vcp(x))dx (2) 

for every (constant) matrix A E !Rnm, for any cp E [W5'00(D)]m and. for the cube 

D = (-1,1 )n with volume ID I = 2n . 

. Remark 1: 

In the definition of quasiconvexity one may replace the cube D by any bounded domain. 

However, the definition which we gave will be convenient for our purposes. 

Remark 2: 

Quasiconvexity implies rank-one convexity. The converse implication has been shown to 

be true under certain additional assumptions, e.g. if f is quadratic or if m=l or n=l. 

We refer to [2,5] for a detailed discussion of the state of the art. Our contribution will 

discuss the case n=2. 

Remark 3: 

If f is ofclass c1' then rank-one convexity is equivalent to 

f(B) - f(A) ~ of k(A)(B-A)1w 
Optl' 

for all A,B E IRnm with rank { A-B} ~ 1. 

Here (·)ka denotes the matrix element in row k E {1, .. .,m} and column aE {1, .. .,n}. 

Moreover we use the summation convention. 

If f is of class C2, then rank-one convexity is equivalent to the Legendre - IIa.cla.ma.rd 

condition 

for any A E IR11
, ft E Olm. 
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Analytical results. 

Theorem 1: 

Suppose that n=2 and that f is continuous and rank-{)ne convex. Then inequality (2) 

holds for every function cp E [W6'00(D)]m which satisfies 

(4) 

Remark 4: 

Notice that Theorem 1 does not state that f is quasiconvex, However, Corollary 1 below 

states that .the quasiconvexity can be established under a structural assumption (H) on f. 

While previous attempts to disprove that rank-{)ne convexity implies quasiconvexity 

have shown that a counterexample would have to use a complicated matrix function f, our 

Theorem 1 indicates that a counterexample cannot be constructed with a relatively 

simple testfunction cp, that is, a testfunction with some symmetry. 

Remark5: 

The restriction to the case n::::2 is of a technical nature. It seems possible to prove the 

result for higher dimensions under additional symmetry assumptions on f. Since an 

extension to higher dimensions docs not provide any additional insight, we restrict 

ourselves to n=2. 

Hypothesis (II): 

We say that f satisfies (H) if for every A E IR2m and cp E [W6'00(B)]m there is some 

reflection R with RO O, such that 

J f(A+Vcp)dx 
B 

j f(A+V(Rcp))dx, 
B 

where D is a ball in IR2 with ce1iter 0. 

Remark G: 

At present it, is not clear i,o us, how strong an MStunption (H) is. 

(5) 

If rn=2 and if f(A)=<MA,A>, where M is a real 2x2 ma.trix and < ·, · > denotes the 

sta.lar product in IR4, then a. simple calculation shows tha.t propert.y (H) holds. Therefore 

Corollary I below provides a new proof of the known result, tha.t for such an f 

quasiconvcxity and ra.nk-{)ne convexity a.re equivalent. On the other hand there arc 
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even polyconvex functions f, e.g. f(A)=det A, for which property (H) fails. Polyconvexity 
implies quasiconvexity. See [5]. 

Corollary 1: 

Suppose that n=2 and that f is rank-one convex and satisfies (H). Then f is qua.siconvex. 

Proof of Corollary 1: 

Let ip E [w6•00(D)]m. Because of hypothesis (H) there exists a reflexion R such that 

j f(A+Vip)dx = j f(A+VRip)dx. 
D RD 

Denote the left half of D by De= (-1,0) x (-1,1). Without loss of generality we may 

assume that Rip= (p. By Remark 1 we may even assume that supp ip c D t 

{
ip(x) inDe, 

Set 7/J(x) := · 
(p(x) in D\D t 

It follows from Theorem 1 that 

f(A) ~ m f f(A+Vl/J)dx =Th j f(A+Vip)clx. 
D e De 

This implies the quasiconvexity of f. 0 

We will give two proofs of Theorem 1. 

Proof of Theorem 1 by analytical methods: 

Using the symmetry of ip and replacing -x1 by x1 one finds 
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(6) 

Hence 

Ily the rank-one convexity inequality one finds 

[
o acp] · J f(A+Vcp)dx? J f(A+ 2 1 )dx. 

D D O 82cp2 

Since every pair of m_atrices A + (0,82cp(x)) differ by a rank-one matrix, the rank-one 

convexity implies 

J f(A+(o,a2cp))dx? 
D 

1 . 
. ~ IDI f(TDT~ (A+(o,a2cp))dx) = 

=ID! f(A). (7) 

Since f is convex on the hyperplane {A+(0° 1\ >., /LE IR} one uses Jensen's incqua.lity in 
JL 

the last step. 0 

Remark 7: 

Notice that is if sufficient for this proor to assume cp(x1,-l) = cp(x1,l) for all x E [-1,IJ, 

instead of assuming cp = 0 everywhere cin the boundary. 
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Discrete Results. 

Proof of Theorem 1 by using finite elements: 

It is known, see [3,7], that a function V E WB'00(D) can be approximated in the 

II· I! l ,oo -norm by functions v11 E c0(D) which are linear on each triangle of a mesh of 
sufficiently small triangles. For the proof it will be convenient to choose a fishbone mesh 

· as in Figure 1 which is symmetric with respect to {x1 =0} and which ha.s 4NM congruent 
triangles. Notice that the mesh-lengths are not essential Therefore, without loss of 
generality, we may set the mesh length equal to one. Now if suffices to prove inequalit.y 

(2) for those functions 1/J E [C((-N;N)x(O,M))]m [C(D)]m which satisfy. 

1/J is linear on ea.eh triangle, 

1,b(x1 ,0) 1,b(xpM), 

1,b(xpx2) = i,b(-x1 ,x2). 

(-N,Ml 

Figure 1. (-N. 0 J 

For n E { 1, .. .,N} let (S 
11

) be the following statement: 

l M 11 
f(A) ~ 2Mi1 f f f(A+V1f;(xl'x2))dx1<lx2 0 -n 

for a.II A E R~2m and 1,b satisfying (8)(9)( 4 ). 

( O,Ml 

(O,OL 

(8) 

(9) 

(4) 

(M,Nl 

(N,O l 

The validity of (SN) implies Theorem L We intend to verify (SN) by induction with 

respect to 11 E {1, ... ,N}. Step I will be that property (S 1) holds. This will be shown in 

Lemma 1 below. For step 2 we suppose that. Property (S
11

) holds. Then a direct 

computation which uses (S1) and (Sn) gives 

1\1 n+l 
f f f( A+Vefi(xpx2) )<lx 1 dx2 = 
0 -n-1 · 
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~ 2M f(A) + 2nM f(A) = 2(n+l)M f(A). 

This proves (S
11
+ 1) and completes the proof of Theorem L 0 

Lemma 1: 

Let n (-1,1) x (O,M) and Qi (-1,1) x (i,i+l), i E {0, ... ,M-1}. 

Suppose \.hat tf; E [C(n)]m satisfies (8)(9)(4). 
Then (S1) holds, i.e. 

f{A) ~ k f f(A+VefJ)dx for all A E IR2m. 
n 

(-1,i+1) (0,i+1) (1,i+1) 
..--~~~..;...,...~---.,..~---; 

Figure 2. ( 1, i ) ( O,i l ( 1, i ) 

Proof of Lemma 1: 

We introduce some Notation. Let. Tij denote the triangles in ni as depicted in Figure 2, 

i E {O,. . .,M}, · j E {1, ... ,4} .. For ea.se of writing we use \.he notaLion rpi = efJ(O,i), 
wi == ef!(l,i). Then one directly calculates, using (4), 

im Til , 

im T. 9 , 
1-

i m Ti3' 

imTi4 . 

We observe I.hat Vtf; on 1\1 (resp. Ti2) differs by rank one from Vtf; on Ti4 (rcsp. Ti3). 
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Therefore we may use the rank-one convexity of f to obtain 
4 1 

f f(A+Vl/i)dx = .~ 2 f(A+Vl/i(T .. )) = 
fl. j=l · IJ 

I 

1 1 . 1 . 1 . 
= 2" f(A+Vl/i(Til)) + 2 f(A+Vl/i(Ti4)) + "2 f(A+V1{i(Ti 2)) + 2 f(A+V1{i(Ti 3)) ~ 

~ f(A+(O,wi+Cwi)) + f(A+(O,cpi+l-cpi))~ 

1 
~ 2f(A+(0,2( cpi+Ccpi+wi+Cwi)). 

A repeated use of the rank-one convexity off allows us to sum over i: 
M-1 l 

f f(A+Vcp) = 2 E f(A+(o,-2(cp.+ 1-cp.+w.+1-w.)) ~ 
f2 i =O I I I I 

1 
.~ 2M f(A+(0,21VI(cpM-cpo+wM-w0)). 

Now we observe that cpM '== cp0 and wM = w0 due to (9). 

This completes the proof of Lemma 1. 

In the proof of Theorem 1 we showed 

a) that condition (H) allows us to work on a rather "narrow" mesh, and 

b) that on a narrow mesh rank-one convexity implies quasiconvexity. 

D 

In the remainder of this note we shall drop assumption (H) and try Lo enlarge the mesh. 
Recall that one has to show 

N N 
f( E ,\.A.)< E ,\.f(A.) 

i=l I I - i=l I I 
( l 0) 

for constant matrices A. = A + 'ill/! on triangles, where 1/; satisfies (8) and 1/; = O on DD, 
I 

N 
aJ1d where ,\. > 0, E ,\. = 1. 

I - i=l I 

If (10) were true for arbitrary matrices Ai E 3{11111
, then f would even be convex. One set. of 

assumptions on (\,Ai) which makes sure that rank-one convexit.y implies the validity of 

(10) was described by Dacorogna in [4,5]. Here is another result, of this type. 
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Theorem 2: 
N 

Let f: !Rn_. IRm be of class c1 and suppose that (>.l'Ai) satisfy E >.j = 1 and 

N 
rank {A. - l: >..A.}< 1 

I j=l J J -

Then (10) follows from rank-{Jne convexity. 

for i = 11 •• .,N. 

Remark 8: if N = 2 (10) is just the inequality from rank-{Jne--convexity. 

N 

(11) 

Proof: To prove the converse we set A= l: >..A. and use Remark 3 and (11) to obtain 
j=l J J 

f(Ai) - f(A) ~ 8\ (A)(Ai-A)ka' (12) 
' fJp Q; 

Now we mult,iply (12) by\ a.nd sum over i to obta.h1 (10). 

Remark 9: 

0 

Theorem 2 could be used for an alternate proof of Theorem 1 a.s follows. Set 2Aj sum of 

(A+'i/if;) on two symmetric triangles. Then rank {Aj} = 1 and ra.nk {A} O. Therefore 

Theorem 2 applies, provided f is differentiable. 

We have attempted to verify inequality (10) for more general meshes, in particular 
without symmetry assumption (H). The only essential case that we could trea.t is depicted 

in Figure 3 below: 

Figure 3. 

Notice tha.t the meshes in Figure 4 can be treated as special cases of Figure 3. 
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' , ' , .. , ...... 
, ' ; ' 

,: _ - - .. '!:"'--.;.!£..-~:_____;;i.,~ - ,.; _ .:-._ 

Figure 4. 

Ball [1,p.355] and Dacorogna [6) have expressed doubts Lhat (10) holds for N = 16. The 

configuration of 16 triangles which they had in mind was a triangulation which cannot be 

considered a special case of Figure 3. 

For the meshes in Figure 5, with N = 11 and N = 10, we could not find a direct way to 

derive (10) from rank-one convexity. Maybe it will be possible to ,use this mesh in order 

to find a counterexample. 

Figure 5. 
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Theorem 3: 

Suppose that a rectangle D c IR2 is divided into 8N triangles according to Figure 3 and 

suppose f is continuous and rank-one convex. Then the quasiconvexity inequality (2) 
holds for functions. ?/J E [C(D)]m which are linear on each triangle and which vanish on 
aD. 

For the proof we suppose that ai'bi etc denotes A + V?/J in the corresponding triangle. 
Then a repeated use of rank-one convexity in the right order leads to 

1 f f(A+Vifa)dx =SN {f(a1 )+f(~)+f(a3)+f(a4)+f(b1 )+ ... }? 
D 

1 1 1 1 
? 4N {f(2(a1+~))+f(2(a3+a.4))+f(2(b1 +b2))+ ... }? 

1 1 . 1 
? 2N {f(4(a1+ ... +a4))+f(4(b1+ ... +b4))+ ... }? 

1 1 · . I 
? N {f(3(a1+ ... +a4+b1+ ... +b4))+f(s(c1+ ... +d4))+ ... }? 

1 
~ f(m(a1+ ... +d1+ ... )). 

In the last step we have used the fact that the mean values over opposing squares differ 

by a rank-one matrix (~ith vanishing second column). 0 

Although the meshes which are considered up till now look quite simple, i!, is possible to 
prove inequality (2) on a more complicated mesh without a symmetry assumption. 

Lemma 2: 

Suppose f is continuous and ra.nk-one convex. Let D c IR2 be di~ided into triangles 

according to figure 6. Then inequality (2) holds for functio11s tfa E [C(D)] 111 which are 

linea.r on cacht triangle and which vanish on 8D. 

Figure G. 
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Proof: 

Using the inequality of rank--01Je convexity in the right order shows inequality (2). 

Denoted in shorthand: 

(((a+d)+(b+e))+(c+f)) +g. D 

Finally, by combining the results of-Theorem .3 1).nd Lemma 2 one can even prove the 

statement of Lemma 2 for the meshes in figure 7. However it is not possible to 

approximl:l.te every w5•00-Iunction by refining a mesh in such a way . 

. Figure 7. 
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