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1 Introduction and notation

This contribution contains a compiled list of inequalities that are frequently used in the calculus
of variations and elliptic boundary value problems. The selection reflects the authors personal taste
and experience. Purely one dimensional results are omitted. No proofs are given. For those we refer
e.g. to [71, T1]. Frequently we refer to textbooks rather than original sources. General references are
Pélya and Szego [88], Morrey [73], Giaquinta [40, 41], Gilbarg and Trudinger [43], Kufner, John and
Fucik [61], Ziemer [113].

We hope that this table will be useful to other mathematicians working in these fields and a
stimulus to study some of the subjects more deeply.

A postscript file of this text is available at the WWW site http://www.math.unibas.ch/~“flucher/.
It is periodically updated an improved based on suggestions made by users. If your favourite inequality
is missing or if you find any unprecise statement, please let us know. Other users will be grateful.
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1.1 Notation

Unless otherwise stated € is a bounded, connected domain in IR" with Lipschitz boundary. The
exterior unit normal is denoted by v, the distance of a point from the boundary by

dz) = inf{lz—y|:yg&Q}.

The letter ¢ stands for a generic constants which is independent of the functions involved, ¢ stands
for a positive constant that may be arbitrarily small and 6 € (0, 1) is an interpolation parameter. The
positive part of a function is u* := max(u,0). For a set A C IR" we denote by |A| and |§A| its volume
and surface area in the sense of Hausdorff measure. BY is a ball in IR" of radius p centered at z. The
symmetrized domain Q* is a ball centered at the origin having the same volume as . The volume
and surface of the unit ball are

n/2 n/2
B] = 2 I _II _ 27

nl'(n/2)’ ['(n/2)"

Let u : © — IR be a measurable function. The function

u.a) = sup{t: {lul >t} > a)
is called decreasing rearrangement of u. The function

u'(z) = u.(|B[" |z[")
defined on Q* is called Schwarz symmetrization of the positive function u. It is radially symmetric
and [{u* > t}| = |{|u| > t}| for every t > 0. The relative capacity of a set A C Q is defined as

capg(A4) = min{/ |Vu> : ue H}, u>1 on B, AC B, Bopen}

f9)

and cap(A) := capga(A). The minimum is attained by the capacity potential of A.

1.2 Function spaces

All functions (with a few exceptions) are scalar functions defined on Q. Sequences are denoted by (u;).
Integrals are taken with respect to Lebesgue measure. The mean value of a function is denoted by
uq = lé[ Jq u. Convergence almost everywhere with respect to Lebesgue measure is abbreviated as

a.e. The convolution of two functions given on all of IR" is defined as (uxv)(z) := [R. dyu(z—y)v(y).

In particular convolution with the Riesz kernel Ky (z) := |z|™* is considered. If A = n — 2 it is used
to solve the Dirichlet problem —Au = f. The space L? is endowed with the norm

lullp = / ful?
i 0

where 1 < p < co. A sequence (u;) of L' functions is said to be equi-integrable or uniformly integrable
[30] if

lim sup/ luil = 0 or lim sup/ luil] = 0.

|A|=0 A T—00 {luil>7} £
Moreover u; — u in measure if

Hz : |ui—u|>e}| = 0

for every € > 0. The dual exponent p’ of p € [1, o0] is defined by the relation ‘1; - ;% = 1. The Sobolev

space H*? is given by the norm

g, = 3 /n ID%uf.

[al<k



BANDLE, FLUCHER: TABLE OF INEQUALITIES 3

If p =2 we write H* := H*2. DV?(Q) is defined as the closure of C2°(Q) with respect to the norm
||Vv||p. In the case of Orlicz spaces the power function is replaced by a more general N-function

A(t) f(; a with a positive, strictly increasing, upper semi-continuous function a with a(0) = 0. The
dual N—functlon is defined as A(t fo a~1. If A(2t) < c A(t) for large t, then

wfe>o: [actsa),

> [ID%ulla

|| <k
defines the norms on the Orlicz space L4 and the Sobolev-Orlicz space H*# respectively. In particular
u € Ly if and only if fn Ao u < oo. Another important generalization of LP are the Lorentz spaces
L(p,q) on IR" given by

q
1_1_4
Nullfyqy = (tP a u.) dt,
1
4

[[w|[(p,00) = supt /u.
t>0 0

with u, as in Section 1.1. If 1 < p, ¢ < oo this norm is equivalent to

- 2
/ tv L, (t)%dt.
0

In particular L(p,p) = L?(IR") [113]. Campanato spaces are given by the norm

al:

lluulla

[lulx, 4

—A
llulles = lullp + sup p~7||u — up||Le(By)-
BrcQ

The John-Nirenberg space of functions of bounded mean oscillation can be defined as BMO := LP'™,
On IR"

1
[lulleMo = sup—/ u— upr
58 B2 oy " 5

defines a norm if we identify functions whose difference is a constant. Because the smooth functions
are not dense in this space it is more convenient to consider the space VMO of functions of vanishing
mean oscillations defined as the closure of C° with respect to the BMO-norm. A function u is in VMO
if the above supremum vanishes in the limit p — 0 and p — oo. The function z +— log |z| is in BMO
but not in L* while z — log® |z| is in VMO for a < 1, but not for @ = 1. BMO is a substitute for
L while the Hardy space H! substitutes for L'. For f € L*(IR") define

L2 (22Y) )

where ¢ € C§°(B}) is a mollifying kernel with fB, ¢ = 1. Different ¢ lead to equivalent norms.

£l == dz sup
R® e>0

References on Hardy spaces are [32, 97, 92]. We follow [77]. A local Hardy space was introduced by
Goldberg [44]. Basic facts on interpolation spaces are summarized in [57].

An embedding of normed spaces, denoted by X C Y, is a bounded linear injection j € £(X,Y). If
j is a compact map we write X CC Y.

1.3 Elliptic boundary value problems

In the most general case we consider uniformly elliptic operators of the form

Eu = —.Zl 61‘,62:] ;b (z)u
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defined for u € H'. Several estimates deal with the Dirichlet problem

(1) Lu = f in Q,
u = 0 on 9Q

which is the prototype of an elliptic boundary value problem. The natural space for its solutions is
H} where the subscript refers to homogeneous Dirichlet boundary values. The corresponding principal
Dirichlet eigenvalue is denoted by A;. For simplicity most results are stated for the Laplacian although
they carry over to more general elliptic operators. The Dirichlet Green’s function Gy is the solution
of

-AGy = 4y in Q,
Gy = 0 on 0Q

where d, is the Dirac distribution with singularity at y.

2 [LP-spaces
Most inequalities of this section are proved in standard books on functional analysis (see e.g. [1, 3]).

2-1 Cauchy-Schwarz’s inequality:

[wo < lulalola
Q
2-2 Holder’s inequality: If 1 < p < oo then

/ w < [ullpllolly-
o

A useful variant in one dimension is the following optimal inéquality.

o0 1 o oo
/ fo. < swpm /| f / 9
0 T>01 Jo 0
for measurable f,g > 0 and non-increasing g. Extremal functions are known [33]. With the
Orlicz norm as defined in Section 1.2 [1, p. 237] one has

/n w < 2lullallollz

A ST 11 4.1
It =3 +p and g =g +g, then

llurvallpg) < [lwallpy,qn)llu2llpa,ga)-
In fact the dual space of the Lorentz space L(p,q) is L(p’,q’) [113].

2-3 Calderon’s lemma: If p; < ps then

AL
lullp, < 19217772 [Julp,

hence LP? C LP'. If ¢; < g9 then

1

i T
1\ 9
llullp,gs) < (;) llell(p,1)

hence L(p,q1) C L(p,¢2) [113, p.37].
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2-4 Young’s inequality: [61, 1, p.229]. If 1 < p < co then

/uv
Q

/uv
o)
/uv < /Aou+/gov
Q Q Q

where A is an N-function with dual A as defined in Section 1.2 and u,v > 0.

IA

1 1 '
g+ ol

8}7 E_PI Y
iy + Il

IA

2-5 Bank’s inequality: [11, p.69]. If uy,uz,¢ € L? with [yu; > [ uz and 0 < ¢ (21) < ¢ (22)
whenever u; (z1) < ua (21) and uy (22) > ua (22), then

/ﬂm > fnuw.

2-6 Jensen’s inequality: If ¢ > 0 is convex then

‘(mhe) s mhee

2-7 Minkowski’s inequality:

lutoll, < llull, +llvllp,

1\
[lrer < e | |u|*’+(1+—) [
Q Q € Q

for e > 0.

2-8 Clarkson’s inequalities: [4, p.89)].

llu+ollp + llu— vl < 227 (w2 +[l0]2), 2<p< o0,
llu+ ol +[lu—vlt" > 2(|lulls + [l2]B)" !, 2<p< oo,
lu+olp +llu—olt" < 2(llullz+ (o), 1<p<2,
llu+olp + llu—volf > 227 ([ullz +[l0]), 1<p<2.

2-9 Monotonicity of p-Laplacian: If p > 2 then
(IVuP 2 Vu— [VoP 2 Vo) - (Vu— Vo) > ¢ |Vu— Vo] (|Vuf 2 + |Vo]f?)

with ¢, > ¢c2 = 0.5 and ¢, =1 for p > 3.

2-10 Interpolation inequality: [43, p.146]. If p<r < g and % >

ESITS

1-6
+ . then

lull- < lellpllullg™.

2-11 Riesz-Thorin theorem: [57]. If a linear operator T' satisfies ||Tu|lg, < collullp,, ||Tullg, <

4pl_1=6 4 8 1 _1-6 L 68 - -
cillullp, with 3 ===+ =, 2 ===+ ~,0< 0 < 1 then

-0
ITully < g~ cHllullp.
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2-12 Convolution inequality: [4, p.89], [113, p. 96]. If 1 = ;1;+ ;11- —1,1<p, ¢ < oo then
lux vl < (lullpllvllg
: : . 11 1 _ LR |
with u % v as in Section 1.2. If > = ts; 1 and s=xtis then

[y * u2”(p,q) 5 3P||“1“(p1,qx)““2”(p:,q:)-
If one of the factors is the Riesz kernel K then K € L (}, oo) and

”KA*UH n S ”K/\” ) ”u”(p,q)-
(n—in—)ip ’q) (T )

2-13 Hardy-Littlewood-Sobolev inequality: [51, 94, 57]. If 0 < A < n, 1 < p < 25, and
:—, + % = ;}- + 1 then

[[Ex * ullLaray < cf|ul|lLegra)-

2-14 Hardy-Littlewood maximal function theorem: [98, p. 55-58]. The mazimal function Mu(z) :=
SUP,>o0 ]ﬁ[ fBr |u| of u € L! satisfies

c
{Mu>r} < —llull,
| Ml

INA

c||ullp, for p>1.
2-15 Hardy inequalities in one dimension: [49, 50]. If u(0) = 0 then
1 2 1
/ 4" < 4/ WP
0 ‘& 0
More generally, if o > 2k — 1 then

o gk a2
o= < N '
/0 e HF|fF < (l_a)2_._(2k_1—a)2‘/0‘ z%|

Ifao<1and fO0)=0fori=0,...,k—1then

o 4k = a2
a— < : ’
/0 z IfI* < (1—a)2...(2k—1—a)2/0 | f*

2-16 Hardy inequalities in higher dimensions: [80]. If p > 1 then

/nmp < c/n|vu|"

P P
for all u € Hy* (), d=distance from boundary, ¢ > (;;Ll) . For convex domains ¢ = (—{—1) :
In 3 dimensions

2
/ Iul - S 4/ lvu|2
al+|z| f9)
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for every u € H} () [18]. If 0 # Q then also

2
/IEI < 4/[Vu|2.
ol® [}

For the exterior domain Q = IR" \ BZ" one has

ju? ( . )" [t
— &L e \v4
/nw’ < \m=pt) JoIV

for p#n and u € Hy?(Q) and

L < G2) fmer

for u € Hy'™ () [80].
2-17 Hardy inequality: [57, 113, p.35]. If p > 1, 7 > 0, U(z) := 1 [ u for z > 0 and 0(z) :=
SUP¢s: Fop [ u for z € IR then

r

o0 P o0
/ U@Pe-Tldt < (3)/ u(t)P P~ dt,
0 r 0
Y4 .

U < Uflp,

“‘ lp < p_1|| Il

| p21/p

o, < .

ol < 2l

3 Convergence theorems in L”

3-1 Fatou’s lemma: [3]. If u; > 0 then

/liminfu; < liminf/ uj.
9) o)

If u; < v; = v in L' then also

lim sup/ u; < / lim sup u;.
Q Q
3-2 Lebesgue’s differentiation theorem: [55]. If u € L' then -

lim — u = u(z
r—=0 |BZ| Jp; (=)

for a.e. z € Q.

3-3 Equi-integrability theorem: If u € L! and € > 0 then

/|u|<6
A

for all A C Q with |A4| < d(¢).
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3-4 Lusin’s continuity theorem: If u € L' and ¢ > 0 then u is uniformly continuous on Q \ E
with |E| < e.

3-5 Egoroff’s theorem: If u; — u a.e. (all measurable) and ¢ > 0 then
u; — u uniformly on Q\ E

with |E| < e.

3-6 Lebesgue’s convergence theorem: If u; — u a.e. and |u;| < v; = v in L' then
i — u in L.
3-7 Vitali’s convergence theorem: If (u;) is equi-integrable and u; — u in measure then
ui > u in L.
If u; € L?, u; = u a.e., and (u!) is equi-integrable then

u; — u in L7,

4 Sobolev spaces
Most inequalities of this section can be found in [73, 1, 61, 43, 66, 113]. See Section 1.2 for definitions.

4-1 Poincaré’s inequalities:

(a) For every u € H}

/ WP o< = / Vuf?.
Q A1 Ja

(b) For every u € Hy*
lully < clIVullp.
(c) For every u € H' and B, C Q
/ |u— up: o Cnpz/ [Vul®.
B B:

=

(d) [73]. If0 < 6 < 1 then
llull2 < ca||Vull2

for every u € H' with |[{u =0} > 0|Q|.
(e) [38, p.15]. If u vanishes on a set of non-vanishing capacity (Section 1.1) then

2 c 2
L s oy [y
(f) [26]. If u € H}(2 x IR™) then

1
/ W < —/ Vul?.
QxR™ A1 Jaxmm

(g) If Q bounded in one direction then

[ < c(/nu)hc/nwu.z

for every u € H!.
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(h) A one dimensional version is Wirtinger’s inequality: If u € H'(0,2r) is periodic with
vanishing mean value then

2n 27
/ u? < / (u')2.
0 0
Equality holds if and only if u(t) = acos(t) + bsin(t) [106, 15].

4-2 Garding’s inequality: [41, p.7-9] If A is a uniformly positive definit matrix and A € L*,
be L™ and d € L™'? then there is a constant ¢; > 0 such that

/Vu-A(x)Vu+2ub(z)-Vu+d(z)uv > c1/ IVU|2+62/ Jul?
Q Q Q

for every u € H'. The same is true for systems with continuous A satisfying the Legendre
Hadamard condition.

4-3 Korn’s inequality: [112]. In terms of the symmetric gradient E := 1 (Du + Du”)

[l +1Dul?
Q
1Dul,

IA

c/ Tr (ETE) for u € H}(Q,IR")
Q
c(llullo + |1 Ellp) for ue HP(Q,RR).

A

4-4 Poincaré’s inequality for capacity potentials: [35]. Let (u;) be a sequence of capacity
potentials (Section 1.1) with cap(4;) — 0 and p < 2. Then

[lillp

— = 0.
Vil

4-5 Gagliardo-Nirenberg’s inequality: [39, 79], [4, p. 38].

1
lull 2 < §|IVUII1
for every u € Hy''. This implies: If £+ 128 =0 then

lullayy < (20)~°(IVullpllullg™

for every u € Hy".

4-6 Ehrling-Browder’s inequality: [1], [4, p. 94]. If ,f—, <#<1and
then
IV5ully < eIV ullgfully .

For n > 3 Sobolev’s inequality follows. Moreover

2
IVulla < (| Al |ullp

for every u € Hg’p. If n = 2 then
p=t 1
lull, < ellVully® [Jullf.

4-7 Sobolev’s inequalities:
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(a) [80, 3].If 1 < p < n/k then
lull 2= < cllD*ully

for all u € Hy”*.
(b) [103], [4, p.39]. If 1 < p < n then

pi— 13 4 (1+n/2)T L
-1/2,-1/p
el <o <"-P> ((n/P) I'(n+1- n/p) Vel

for u € Hy'*. Extremal functions are of the form u(z) = (c + |z — zo|PT )l
(c)
ol < TLERAR
for every u € Hy'' [31].
(d) [36]. If & > 0 then
lull 22, < colVull

IVullx

for every u € H} with |{u =0} > 09|
(¢) If0 <a <k—2 then

lullce < cllullk,p,
H™ ¢ (O°.

(f) If}%:Il,—k'T"l,ka’ZOandlgpgp’then

lullerpr < ellullep-

4-8 Weighted Sobolev inequalities: [66, p. 98]. If kp < n, 1 <p<gqg< n—'_‘%, and 3 + ;—’ =
a—k+ % > 227 (spacial homogeneity) then

- zm)Pully < elli@...zm)* Drull,

for all u with compact support in IR". If 99 is Lipschitz and 1 < p < oo then
/ WP d@)*? < ¢ [ [VuPd@)® if a>p—1,
Q
[1Fd@ < e [ [VuPd@)* it a<p-1
Q Q

for every £ > 0 [60].
4-9 Radial Sobolev inequality: [78, 99].

= 2-n
u(@)| < ((n=2)|5") " |2 | Vulls
for every u € DL (IR™).

1-n
[u(z)| < cnlz| ™ [Jullye

for every u € H'(IR"). Moreover H,4(IR") CC L? (IR") for p < ;225 [17].
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4-10 Generalized Sobolev inequality: [36]. If 0 < f(7) < ¢|r|*=7 then

/fou < §|vuli

where S/ := sup { [z f(v) : v € CZ(IR"), ||Vv||2 < 1}. This statement can be localized. For
every d > 0 there is an optimal ratio k(d) (explicit) such that

2*/2
< s (/ vaf'+5 [ |Vu|2) ,
B BR R®

f(u)
2*/2
7 2 2
/IR“\Bf f(u) S (/RH\B; [Vu| +5/an [Vul )

for every p/R < k(d), z € R", and u € DV?(IR").

A

IN

4-11 Traces: [3, p.168]. If 1 < p < oo then
[ < e[ rour,
HYY C LF(09).

The embedding is compact for p < co and continuous for p = co. [1, p. 114], [61, p. 328 and 337].
If OQ is C* then

B c LS (09) if kp <n,
H*? C LI(0R) for every q if kp > n,
HY® C H"»?(5Q).

If M is a m-dimensional submanifold of Q and 7 < ﬁ then

H* c HF(MNQ).

5 Critical Sobolev embeddings

In this section we consider the spaces H*? with kp = n. In this case the measure |D* uIP dz which
contributes to the leading term of the norm is conformally invariant. By Sobolev’s theorem H*? cC L9
for every ¢ < oo but H*¥? ¢ L. See Section 1.2 for definitions of spaces and norms.

5-1 Orlicz’ inequality: [4, p.63].

[ewo@ < cow(afur+s [ var).

5-2 Strichartz’s inequality: [1, p.242]. If kp = n and A(t) := exp (tF;Ll) — 1 then

llulla < ellullep-
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5-3 Trudinger-Moser’s inequality: [4, p. 65].

/ exp (n |.S"“1|"_:T |u|7:—‘)
9)

-/r; exp (47ru2)

IA

clQ,

IN

clQ (n=2)

for every u € Hy™ with ||V, < 1.

5-4 Orlicz-Sobolev embedding: [1, p.252]. If [;° %dt < oo then
t ™ n

for every u € HY4. In fact u is continuous.

5-5 Wente’s inequality: [110, 53]. For f,g,h € H'(IR?) one has
[ 13et(Va,90) < VAVl TAL

5-6 Higher integrability of Jacobians: [28, 68, 76]. If u € H»"(IR",IR") then
ldet Dullas < cl|Dull3.
5-7 Poincaré-Sobolev inequality for BMO functions: If p < co then

lull, < cllullemo < eflulloo.

If kp = n then
lullsmo < clullkp-

5-8 Fefferman-Stein duality: [97, 32, 92, 107].

|19 < clflalglimo.

In fact BMO is the dual space of #' and #! is the dual space of VMO.

5-9 John-Nirenberg’s inequality: [97, 43]. For p < co and 7 > 0 one has

/
u up
|E.1:| B:’

CaoT
>T < c1|Bh|ex <————) .
}l = ll :L'l p “u”BMO

p

IA

Cp”“”%MOv

l{ve B; : |u(y) — up;

If Q is convex, u € HY?, [, |[Vu| < Ap"~? for all balls then

[ewGlu-ual) < clol.
Q

12
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6 Maximum and comparison principles

In this section all functions are supposed to be C? (except for the weak maximum principle).
6-1 Maximum principle: [89, 43]. If Au+g(-,u) > Av+g(-,v) in Q and u > v on 9.
(a) If g (x,-) is non-increasing for every z, then
u > v in Q.
(b) If in addition g (z, ) is Lipschitz and u # v then
u > v in Q.

(c) If Q satisfies an interior ball condition and if u(z) = v(z) for some z € 9Q and u # v, then

Ou v
5(1‘) < a—u(‘”)

(d) If (A = A)u >0 with u=0o0n 92, A < A\; and u # 0 then
u > 0 in Q.

6-2 Weak maximum principle: [43, p.179]. If u € H' is subharmonic ( fn VuVe¢ < 0 for all
¢ € Hi, ¢ > 0) then

supu < sup ut.
aQ N

6-3 Giraud’s maximum principle: [70]. If 9Q is Holder continuous —Au < 0 and u assumes its
maximum at a point z € 9, then

lu(z) —u(y)l < cle—yl
for every y € Q.
6-4 Bernstein inequality: If auy, + 2busy + cuyy = f then

ul, + 2u§yu§y + 2A(UgzUyy — u;‘:y) < Bf?

2 24 .2 _
where A > %a ;taczf_j_b < and B > zA(ac_b,)’:(:,ub;Jrc,)-
6-5 Bernstein type inequalities:
(a) If Au=0, then A|Vu|> > 0 and the maximum of |Vu|” is attained on 9.

(b) [90]. If Lu = 0 then for some constant ¢ the maximum of |[Vu|* + ¢ |u|? is attained on O.
(c) [69, 95]. Let u be the solution of the torsion problem
—Au = 1 in Q,
u = 0 on 9Q.

Then the maximum of |[Vu|? + 2 |u|? is attained on 6.

6-6 Payne-Philippin maximum principle: [85]. Let u be a solution of the elliptic problem
V- (g (1vul) vu) +p(Ivul’) f(w) = 0in @
with g (t) + 2tg’ (t) > 0. Define

— [T g +20' (€)
P) = /o p(€)

Then the maximum of P is attained on 952 or at a critical point of u.

u(z)
de+2/0 £ (n) dn.
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6-7 Miranda’s biharmonic maximum principle: [69]. If Q is sufficiently smooth and A%u = 0
then max |Vu|? — uAu is attained at the boundary.

6-8 Boundary blow up: [62, 13]. If Au > u? then

u(z) < eo(d(z)) if p>1,
u(z) - ¢(d(z)) < cif p>3

where ¢(t) := (ﬁt)

6-9 Whitney’s inequality: [91]. There exists a function d € C* with bounded gradient such that
42 &% ool lAJlgi.
c d

7 Elliptic regularity theory

We start with the weakest hypothesis on Lu.

7-1 Weinberger’s inequalities: [109]. Let Lu := V - A(z)Vu be an elliptic operator in divergence
form and A := infg A;(A). Then the Dirichlet Green’s function Gy of L satisfies:

1 -1
[IGyllpr < cpmxml" o

where ¢, , 1= (n — 2 —2t3 n%“%ﬂl_% -1 2. _ LB ~% and (3 is the beta function [22].
P, p—1'n-1 p—1
Forp>n

Lok
IVGyllpr < CpaAlQ>77

1=k
where T, ,, := |B|” o ( ":_;n) " n=~%. For the Laplacian equality holds when §2 is a ball centered

at . As a consequence the solution of (1) satisfies

| I 1 n
lullo < oy Q7 [Ifllp for p> 3.
If f=V v, then

d-1
lullo < TpuA|Q* 77 ||v|l, for p> n.

7-2 Estimates for the Green’s function near the boundary: [101]. The Dirichlet Green’s
function of a second order uniformly elliptic operator L with C'*-coefficients on a C1'* domain
satisfies

ag(z,y) < Gz(y) <cag(z,y)

with positive constants and

|z — y|*~" min (1, i(f)i(%l) (n>3),

|lz—y|

g(z,y) = log (1 + %(3)1(%1) (n=2),

z—y|

d(z)d(y) min (1, dii):(”)) (n=1).
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7-3 Grisvard’s inequality: [45, 46, 65]. If OQ is smooth, —Au € L? and d,u € H'/? then
u€ H?.

7-4 Hardy-Littlewood-Sobolev inequality: [51, 94, 57]. If 1 < p < % then the solution u =
Kp_o % f of —Au = f satisfies

lull e < cnpllAull.

7-5 Regularity in Lorentz spaces: If f € L(p,q) with 1 < p < 5 and —Au = f in IR" then
u = ug+ h with —Ah =0 and

IN

llwoll( 22 q) ¢l fll.q)»

||“0||L,,—2§7(,R,,) < cllflleeme-

This follows by convolution with K, _, and the Hardy-Littlewood-Sobolev inequality.

7-6 Regularity in Hardy spaces: [32]. If f € H! and —Au = f in IR" then u = ug + h with
—Ah =0 and

|1D%uollzr < e|lfllar-
In two dimensions also

IVuollzz + [luollee < ¢||fllar-

7-7 Riesz operators: The operators
—A~19,8; : I? — I?, L® — BMO, BMO — BMO

are bounded.

7-8 Calderén-Zygmund’s inequality: [43, Lemma9.17]. If Qis C?,1 < p < coand u € H*PNH}
then

[ullzp < c|lAu|lp.

7-9 Brézis-Merle inequality: [21]. If n = 2 and u = 0 on 99 then

foo () < (P22

7-10 Meyers’ inequality: [67]. If A is bounded and |p — 2| small enough then

llullipy < cllV(AVU)|-1,p.

7-11 Regularity theorem for smooth operators: [4, p.85]. If L has C* coefficients, k > 0,
l<p<ooand 0 < a < 1 then :

llelli+2,p ¢ | Lullk p,

<
lullextasa < cl|Lullcrsa.
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7-12

7-13

7-14

7-15

7-16

7-17

7-18

Schauder estimates: [3, 41, p.48-53]. If 9Q is C?** then

lllgass < e(lullze +[|Aullca),
IVulles < e(lullzs + 1 Aullc)
<

l|ullca+a ¢ (llullce + llAullca + [|ullca+a(any) -
If L has trivial kernel then

llullz2 < ellLullca.

Cordes-Nirenberg’s inequality: [4].

lullgz=e < clllullze + | Aullze).

Holder regularity near boundary: [48, Lemma 2]. For open sets U and U’ satisfying Q2 C
U’ CcC U one has
lullp +llullcre@wy < c(lAull + [|Aullcew))

for p < ;25 and every function u vanishing on 9.

De Giorgi-Nash-Moser regularity theorem: [74, 40, p.53]. If u is a weak solution of V -
A(z)Vu = 0 with uniformly positive A € L*° and Q' CC Q then

lullcaay < cllullz

for some a > 0.

A priori estimates for nonlinear equations: [42]. Every positve solution of the Dirichlet
problem Lu = f(z,u) with subcritical f satisfies

lullo < eaq.

F g grie

Campanato’s theorem: [61, 40, p.70-72], [41, p.41].If 0 < a < 1 and [, |u — up;

then
u€ Cl%c'
If n< A< n+pthen
lull szn < elullzen.

In fact LP* = C°5" are isomorphic.

Morrey’s Dirichlet growth theorem: [40, 41]. If a > 0, u € H” and [g: |Vuff < epn-ptow
for every ball then :

u€ Cl%C'
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8 Further integral inequalities for solutions of elliptic differ-

ential equations
8-1 Mean value properties: If —Au < 0 then

u(z) < : u
= |0B?| Jop

whenever Bl C Q. If —Au = 0 then
ID°u(z)] < ca—me|lullLace
F ap%‘Hal ( z:)'

If n =2 and —Au < Ke* then
2
/ P . L
Br = 14cop?
for p small enough. Best constants are known [8].

8-2 Harnack’s inequality: [43]. If K CC  then

supu < cinfu
K K

for every u € C? with Au =0 and u > 0 in Q.
8-3 Weak Harnack inequality: [75, 43, p.194]. If u > 0, 1 < p < ;%5 and ¢ > n then

1 3 = 2 . .3
=p= (supu—p2 °||Aullq) < lulleesry < cp? (g;{uﬂlz "“Au“q)-

Bs

8-4 Caccioppoli’s inequality: [40, p. 77]. If —Au = 0 then

c 2
Vu? < —S / uf?.
/B (r=p)p? B;\B;’l

r
x

8-5 Reverse Holder inequality: [40, p.119, 136]. If —Au = 0 then
i .

[t < S( [ wu) "
B P B

/ Ve £ —
By p=

A
o
PN
T
%
<
<
Y
S

for p > 2.

8-6 Monotonicity formula for harmonic maps: [93]. If u : Q = IR" is a harmonic map (strongly)

and R > p then

p2—n/
B

Du? < R / \Dul?
BR

r
z
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8-7

8-8

9-3

Kato’s inequality: [58, Lemma 9]. If u € C?, ¢ € C§°, ¢ > 0 then
/ Adlul > / sign (u) ¢Au.
Q Q

Inequality for sub- and supersolutions: [64]. A pointwise maximum (minimum) of subso-
lutions (supersolutions) of Lu = f is a subsolution (supersolution). The same is true for H'!
functions.

Pohozaev identity: [100]. If

—Au = f'(u) in Q,
u = 0 on 99

n_2/|Vu|2—n/fou+l/ |Vul*z-v = 0.
2 Ja ) 2 Joa

If Q is starshaped, then

2 2n /
< .
/QIVu| £ —3 afou

Calculus of variations

then

Direct method: [100, p.4]. A weakly lower semicontinuous coercive functional on a reflexive
Banach space attains its minimum. Le. if F(u;) — inf F and u; — u weakly then F(u) <
lim inf F'(u;) = inf F.

Weak lower semi-continuity of norm: If (u;) is a bounded sequence in a reflexive Banach
space then

u; — u weakly

for a subsequence. If u; — u weakly in a Banach space then
llull < liminf]ju].

If u; — u weakly and ||u;|| = ||u|| in a uniformly convex Banach space then
U = u.

Brézis-Lieb’s lemma: [20]. If a bounded sequence (u;) in LP converges pointwise a.e. to a
function u then

liminf||lu; —u|ff = liminf||u|[f — [[u][.
Maximal distance to weak LP-limits: [34]. If u; — u weakly in L? then

liminf(lu; — u|ff < ¢ liminf||u;|[

p—1
with ¢ = maxogagi (0?71 + (1 - af ') (a7 4+ (1-)77)" .

Semicontinuity theorem: [40, p.23 and 25], [41, p.13]. If f € C(Q,IR™,IR™) is bounded
below and convex and continuous in the last argument, u; — u weakly in H{;’f or u; — u in L,loc

then

/f(-,u,Du) < liminf/ f(-, ui, Dusj).
Q Q
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10 Compactness theorems

10-1 Ascoli’s compactness theorem: [3]. If (u;) is a bounded sequence of equi-continuous functions
in C(K) with compact K then

ui — u in C(K)

for a subsequence.

10-2 Dunford-Pettis compactness criterion: [3, p 176]. [30, Theorem 25]. If the sequence (u;) is
bounded and equi-integrable in L' then

w; — wu in L!

for a subsequence.

10-3 Fréchet-Kolmogorov compactness theorem: Suppose (u;) is a bounded sequence in L?
" with p < oo. If for every ¢ a compact set K CC Q exists such that sup; ||u;||L»@\x) < € and
sup; ||ui(- — h) — u;||, = 0 as h — 0 then

u; — u in L?

for a subsequence.

10-4 Rellich-Kondrachov compactness theorem: [3].

H*? cc L7 for q<—i
n—kp

H¥? cc C% for a<k—%.

)

10-5 Weak compactness in non-reflexive Sobolev spaces: [40, p. 29]. If (u;) is bounded in H'!
with (Vu;) uniformly equi-integrable then '

u; — u weaklyin HY!

for a subsequence.

10-6 Murat’s compactness theorem: [100, p.30]. If u; — u weakly in H} and (Aw;) is bounded
in L' then

Vu; - Vu in L7

for every ¢ < 2 and a.e.

10-7 Ehrling lemma: [3]. For every triple of nested Banach spaces X CC Y C Z one has

llzlly < ellellx + cellz]|z-



BANDLE, FLUCHER: TABLE OF INEQUALITIES 20

11 Geometric isoperimetric inequalities
The perimeter of a set A C IR" is defined as

|0A] = sup {/AV-v : v € C°(R",IR"), |v| < 1}
while the relative perimeter of A C € is given by

Al = sup{/Av-v . v e C° (Q,IRY), |v|§1}.
For smooth sets [0A|, = |04 \ 09

11-1 Isoperimetric inequality for perimeter: [81, 24, 47].

141

5] n|S"1|T |4

AT > |5

with equality for balls. The Fourier analysis proof of Hurwitz and Lebesgue in two dimensions
can be found in [106] as well as a variational approach to the general case. A similar inequality
holds in spaces of constant curvature [24].

11-2 Bonnesen’s inequality: For every set A C IR? one has the following quantitative stability
estimate involving the deviation from a disk

|0A|® —4r|A| > =%R?

where h denotes the minimal width of an annulus containing 0A. Similar results for higher
dimensional convex sets can be found in [82].

11-3 Relative isoperimetric inequality: [24, 83]. If Q satisfies an interior cone condition, then

min{|4], [\ A} < cldAIFT .

If Q is a ball equality holds for half balls.

11-4 Relative isoperimetric inequality for planar sets: [7, 9]. Suppose A C IR? is simply con-
nected with 4 = 9A; |JOA, (disjoint). Denote by « the curvature of A with respect to the
exterior normal. Then ,

|04s> > 2(1r-/ n:*') |A].
A,

Equality holds for sectors.

11-5 Isoperimetric inequality for two-dimensional manifolds: [2, 10, 19, 56]. Let Q C IR? be
a simply connected domain endowed with the conformal metric p |dz| of Gaussian curvature K,
i.e. —Alog(p) = Kp?. Then

2 2 +
002 > arql, /n P -210) /n K

where |Q, := [, p* and ]69]; := [3qp- Equality holds for balls in the limit as K tends to a
Dirac measure at the center. Moreover

L? > 4r 2, — (sup K) |Q|I2,,
Q

Equality holds e.g. if Q is a ball, K a constant and p(z) = FKIW
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11-6 Gromov’s isoperimetric inequality: [16]. Let M be a compact Riemannian manifold of
dimension n and A C M. If the Ricci curvature of M satisfies Ric (M) > Ric(S™) = n— 1 then

041 (IMI)
oar] = \I5|

where A* is a gedodesic ball on S™ = B} C IR™" with |A*| = |A].

n—1
n

11-7 Isoperimetric inequality of Reilly and Chavel: If A C IR" has smooth boundary then

|0A] % n
[A] = Vn-1

where 5 denotes the first nonzero eigenvalue of the Laplace-Beltrami operator on dA [106].

p2(0A)

12 Symmetrization
The decreasing rearrangement of a function u : @ — IRT has been defined in Section 1.1.

12-1 Cavalieri’s principle: [88]. The decreasing rearrangement of a positive function satisfies

fou = fous,
Q 0

12|
P / wr,
0

12-2 Rearrangement inequalities: [52].

2]
/uv < / Uy Vs,
Q 0
/¢ou < /¢ov
9} Q

if ¢ is non-decreasing and convex and [;' u. < f; v. for every a < |Q|.

=
S
I

12-3 Schwarz symmetrization: [88, 11, 59, 104, 105, 6]. The symmetrized function u* defined in
Section 1.1 satisfies

/n.‘f’('VU‘I) < /ﬂ¢(|vu|)

for every convex, non-decreasing positive function ¢ and every u € H{. In particular

[ver < [ivap,
Q* 9]

fou" = fou
o Q

for 1 < p < co. Equality in the first relation with p > 1 implies that u = u* a.e. up to translation
provided that no level set below the top level has positive measure [23].

12-4 Schmidt’s inequality: [47]. For every A C B C IR" one has

dist (94, 0B) < dist (9A*,8B").
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12-5

12-6

12-7

12-8

12-9

12-10

Brunn-Minkowski’s inequality: [47, 24]. For A, B C R" one has

1

A+ (1—8)B|* > 60|A|* +(1-0)|B|*

where A + (1 —0)B :={fa+ (1—0)b : a€ A,be B} and 0 < # < 1. The same is true for the
exterior Lebesgue measure. If A and B are convex and 0 < @ < 1 then equality holds if and only
if A and B are homothetic.

Riesz’ rearrangement inequality: [52, 25].

/dw dy f(y)9(z —y)h(z) < / de [ dyf*(y)g"(z —y)h*(z).
i s

n Rn
Weinberger-Talenti’s inequality: [104]. If

—Au = f in Q,
u = 0 on 99

and
-Au = f* in Q7
u = 0 on 0Q"
then
uw* < U in QF.
Harmonic transplantation: [54, 12]. Let r(z) denote the harmonic radius of Q at z. For

radially symmetric u = po Gy : BS(I) — IR define u; := o G;. Then

[ vut / IVul?,

Q Bj®)
/foux > / fou
n B;(-‘)

for every f : IR — IRT. This fact allows to derive upper bounds for eigenvalues and related
quantities while symmetrization gives lower bounds.

Isoperimetric inequality for capacity: [88, 37].

capg(4) . cap(B)

= a(n-2)|BH* (n23),

n—-2 e 1n_—2
1Al |Bo| ™
Q B} |
capn(A>log|'7: > capp; (BY)log 'IBZ,l = 4r (n=2)

Equality holds if and only if A is a ball and Q@ = IR" (in two dimensions if Q and A are concentric
balls).

Subadditivity of modulus: [84, 54, 12]. If A C B C C then
1 1 1
— > e .
capc(A) ~ capg(A)  cape(B)

Equality holds if and only if B is a level set of the capacity potential of A with respect to C.
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13 Inequalities for eigenvalues

Let A\; < Ay < A3 < ... be the Dirichlet eigenvalues of Q with corresponding L? orthogonal eigenfunc-
tions (¢;) and E; := span(¢i, ..., ¢;). The Neumann eigenvalues are denoted by 0 = p; < ps < pz <
... A survey on this subject can be found in [84].

13-1 Rayleigh-Ritz characterization of eigenvalues: [29, 7].

Tul?

% = wmp SalPR
u€E;\{0} fn“

V 2

Mot = it JalVUC

weBF\{0} [ u?

13-2 Poincaré principle: [87]

Vul?
Ap = inf sup M;I—
EC H} ueB\{o} Jou
dimFE =1

and similarly for y; with H} replaced by H'. This implies:

pi <A

13-3 Barta’s inequalities: [14, 90]. For every u € C?, u > 0

. . —Au(z)
Aoz b=y

If in addition u = 0 on 92 then

—-A
A1 < sup u(z)
zeq u(z)

In both cases equality holds for the principal eigenfunction.

13-4 Rayleigh-Faber-Krahn’s inequality:

2
B\ ™ .
AL > M (QY) = ('IQ—Il) 12n+2

where j";ﬁ is the first zero of the Bessel function J?.;,. Equality holds for balls.
2 2

13-5 Cheeger-Yau’s inequality: [27, 5, 111, 63].

1 % 1 v\
A1 > - inf (—-) = - inf i1 5] -
4 aca \ |A| dueny' \ [olul® )

13-6 Szegs-Weinberger’s inequality: [102, 108].

pa < p2 (7).
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13-7 Payne-Weinberger’s inequality: [86]. If Q is convex then

he > (m,(m)z

13-8 Lichnerowicz-Obata’s inequality: [111]. The first nontrivial eigenvalue of a compact Rie-
mannian manifold M is

pz(M) >

= - inf Ric(M).

n—
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