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This contribution contains a compiled list of inequalities that are frequently used in the calculus 
of variations ·and elliptic boundary value problems. The selection reflects the authors personal taste 
and experience. Purely one dimensional results are omitted. o proofs are given. For those we refer 
e.g. to [71, 71]. Frequently we refer to textbooks rather than original sources. General references are 
Polya and Szego [88], Morrey [73], Giaquinta [40, 41], Gilbarg and Trudinger [43], Kufner, John and 
Fucik [61], Ziemer [113]. 

We hope that this table will be useful to other mathematicians working in these fields and a 
stimulus to study some of the subjects more deeply. 

A postscript file of this text is available at the WWW site http://www .rnath. uni bas. ch/-flucher/. 
It is periodically updated an improved based on suggestions made by users . If your favourite inequality 
is missing or if you find any unprecise statement, please let us know. Other users will be grateful. 
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1.1 Notation 

Unless otherwise stated D is a bounded , connected domain in IRn with Lipschitz boundary. The 
exterior unit normal is denoted by v , the distance of a point from the boundary by 

d(x) := inf {jx - yj : y ~ D} . 

The letter c stands for a generic constants which is independent of the functions involved , € stands 
for a positive constant that may be arbitrarily small and B E (0 , 1) is an interpolation parameter. The 
positive part of a function is u+ := max(u, 0) . For a set AC IRn we denote by JAJ and J8AJ its volume 
and surface area in the sense of Hausdorff measure. B~ is a ball in IRn of radius p centered at x. The 
symmetrized domain D* is a ball centered at the origin having the same volume as D. The volume 
and surface of the unit ball are 

JBJ 
2rrn/2 

nf(n/2) ' 

2rrn/2 

r(n/2) · 

Let u : D --+ IR be a measurable function. The function 

u,.(a) := sup {t : J{juj ~ t}j ~a} 

is called decreasing rearrangement of u. The function 

defined on D* is called Schwarz symmetrization of the positive function u. It is radially symmetric 
and J{u* > t}j = j{juj > t}j for every t ~ 0. The relative capacity of a set AC Dis defined as 

cap0 (A) := min {fn 1vuj
2 

: u E H5 , u ~ 1 on B , AC B , B open} 

and cap(A) := capIR..(A). The minimum is attained by the capacity potential of A. 

1.2 Function spaces 

All functions (with a few exceptions) are scalar functions defined on 0. Sequences are denoted by (ui). 
Integrals are taken with respect to Lebesgue measure. The mean value of a function is denoted by 
un := rAr Jn u. Convergence almost everywhere with respect to Lebesgue measure is abbreviated as 

a.e. The convolution of two functions given on all of IRn is defined as (u *V)(x) := JIR. dy u(x -y)v(y). 

In particular convolution with the Riesz kernel I<;..(x) := Jxj->. is considered . If).= n - 2 it is used 
to solve the Dirichlet problem -~u =f. The space LP is endowed with the norm 

Jjujj~ := fn JujP 

where 1 ~ p < oo. A sequence (u;) of L 1 functions is said to be equi-integrable or uniformly integrable 
(30] if 

Jim supj Ju;J = 0 or lim sup r Ju;J = 0. 
IAl-+0 i A T-+ oo i J{lu,12'.r} 

Moreover u; --+ u in measure if 

I { x : I U; - u I ~ c} I --+ 0 

for every € > 0. The dual exponent p' of p E (1 , oo] is defined by the relation ~ + #; = 1. The Sobolev 

space Hk ,p is given by the norm 

JJuJJ~,p L l ID"ujP. 
lal~k n 
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If p = 2 we write Hk := Hk •2 . D1•P(O) is defined as the closure of C~(O) with respect to the norm 
ll'Vvllp· In the case of Orlicz spaces the power function is replaced by a more general N-function 
A(t) := J; a with a positive, strictly increasing, upper semi-continuous function a with a(O) = 0. The 

dual N-function is defined as A(t) := J; a- 1 . If A(2t):::; cA(t) for large t, then 

inf { c > 0 : l A o ~ :::; 1} , 
L llD"ullA 
lal~k 

defines the norms on the Orlicz space LA and the Sobolev-Orlicz space Hk ,A respectively. In particular 
u E LA if and only if Jn Ao u < oo. Another important generalization of LP are the Lorentz spaces 
L(p, q) on JR" given by 

llull(p,oo) l
t 

l._1 
suptP u. 
t>O 0 

with u. as in Section 1.1. If 1 < p, q < oo this norm is equivalent to 

fo 00 

t!- 1u.(t)qdt. 

In particular L(p,p) = LP(JR") [113]. Campanato spaces are given by the norm 

The John-Nirenberg space of functions of bounded mean oscillation can be defined as BMO := LP ,n. 
On JR" 

llullsMo 

defines a norm if we identify functions whose difference is a constant. Because the smooth functions 
are not dense in this space it is more convenient to consider the space VMO of functions of vanishing 
mean oscillations defined as the closure of c0 with respect to the BMO-norm. A function u is in VMO 
if the above supremum vanishes in the limit p--+ 0 and p--+ oo. The function x >--+log Ix! is in BMO 
but not in L 00 while x >--+log" lxl is in VMO for a< 1, but not for a= l. BMO is a substitute for 
L00 while the Hardy space 1£ 1 substitutes for L1 . For f E L1 (JR") define 

11/llw := { dxsup I { d~ </> (~) /(y)I 
j'JR.• t>O j'JR.• € € 

where </> E C0 (B6) is a mollifying kernel with JB 1 </> = l. Different </> lead to equivalent norms. 
0 

References on Hardy spaces are [32, 97, 92]. We follow [77]. A local Hardy space was introduced by 
Goldberg [44]. Basic facts on interpolation spaces are summarized in [57]. 

An embedding of normed spaces, denoted by X C Y, is a bounded linear injection j E .C(X, Y) . If 
j is a compact map we write X CC Y . 

1.3 Elliptic boundary value problems 

In the most general case we consider uniformly elliptic operators of the form 

n [)2 n {) - L a;j(x)--u- + L b;(x)~ + c(x)u 
. . 1 OX;OXj . OXi 
•,J= •=l 

Lu := 
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defined for u E H 1. Several estimates deal with the Dirichlet problem 

(1) Lu f m 0, 

u 0 on 80 

which is the prototype of an elliptic boundary value problem. The natural space for its solutions is 
HJ where the subscript refers to homogeneous Dirichlet boundary values. The corresponding principal 
Dirichlet eigenvalue is denoted by .A 1 . For simplicity most results are stated for the Laplacian although 
they carry over to more general elliptic operators. The Dirichlet Green 's function Gy is the solution 
of 

oy in 0, 

0 on 80 

where oy is the Dirac distribution with singularity at y. 

2 V-spaces 

Most inequalities of this section are proved in standard books on functional analysis (see e.g. (1 , 3]). 

2-1 Cauchy-Schwarz's inequality: 

2-2 Holder's inequality: If 1 ::; p::; oo then 

A useful variant in one dimension is the following optimal inequality. 

l 1T l oo :S: sup -T f g 
T>O O O 

for measurable f , g ~ 0 and non-increasing g . Extremal functions are known [33] . With the 
Orlicz norm as defined in Section 1.2 [1 , p . 237] one has 

If l = ...!.. + ...!.. and l = ...!.. + ...!.. then 
P Pi P2 q q1 q2 

In fact the dual space of the Lorentz space L(p, q) is L(p', q') [113]. 

2-3 Calderon's lemma: If P1 :S: P2 then 

hence LP2 C LP 1 • If q1 :S: q2 then 

llull (p,q2) < ( ~) t-f> llull (p,q1) 

hence L(p, q1) C L(p, q2 ) [113, p . 37]. 
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2-4 Young's inequality: [61, 1, p. 229]. If 1 < p < oo then 

l UV < ~llull~ + ~llvll~;, 
p p 

l UV 

c;P €-p' I 

< -llull~ + -, llvll~,, 
p p 

l UV < l Aou+ l Aov 
where A is an N-function with dual A as defined in Section 1.2 and u, v ~ 0. 

2-5 Bank's inequality: [11, p. 69]. If u1, u2, <P E L2 with In u1 ~ In u2 and 0 ::; <P (x1) ::; <P (x2) 
whenever u1 (x1) ::; u2 (x1) and u1 (x2) ~ u2 (x2), then 

2-6 Jensen's inequality: If <P ~ 0 is convex then 

2-7 Minkowski's inequality: 

llu + vllP < llullP + llvllp , 

fo 1u + vlP < (1+c)p-lfo1ulP + ( 1 + ~) p-l fo 1vlP 

for c > 0. 

2-8 Clarkson's inequalities: [4, p. 89]. 

llu +vii~+ llu - vii~ < 2P- 1 (llull~ + llvll~) , 2:::; p < oo, 

llu +vii~' + llu - vii~' > 2(llull~ + llvll~)p'-l, 2::; p < oo, 

llu +vii~' + llu - vii~' < 2(llull~ + llvll~)p'-l , 1 < p ::; 2, 
llu +vii~+ llu - vii~ > 2P- 1 (llull~ + llvll~), 1 < p ::; 2. 

2-9 Monotonicity of p-Laplacian: If p ~ 2 then 

with Cp ~ c2 = 0.5 and Cp = 1 for p ~ 3. 

2-10 Interpolation inequality: [43, p. 146]. If p::; r::; q and :: ~ * + 1 ~ 8 then 

2-11 Riesz-Thorin theorem: [57] . If a linear operator T satisfies llTullqo ::; callullPo> llTullq, < 
c llull with !. = l -O + J_ .!. = !.=! + J_ 0 < () < 1 then . 

1 Pt p Po Pt ' q qo qt ' - -
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2-12 Convolution inequality: (4, p . 89], (113, p. 96]. If: = ; + ~ - 1, 1 ~ p, q ~ oo then 

with u * v as in Section 1.2. If l = ...l. + ...l. - 1 and l = .!... + .!... then P P1 P2 q q, q2 

If one of the factors is the Riesz kernel I<>. then J( >. E L ( X, oo) and 

2-13 Hardy-Littlewood-Sobolev inequality: [51 , 94, 57]. If 0 < .A < n , 1 < p < n'.:'..>. , and 

l + ~ = .!. + 1 then 
p n q 

2-14 Hardy-Littlewood maximal function theorem: (98, p. 55-58]. The maximal function M u(x) := 
supp>D 1.JPI JB; lul of u E L1 satisfies 

l{ Mu > r }I 

llMullP 

c 
< -l lulJi , 

T 

< cllullp , for p > l. 

2-15 Hardy inequalities in one dimen sion: (49 , 50]. If u(O) = 0 then 

More generally, if a > 2k - 1 then 

{OOO Xet-2kl f l2 _< 4k roe Ct lf(k)l2 
Jo (1 - a) 2 .. . (2k-l-a)2 }0 x · 

If a < 1 and f (i) (0) = 0 for i = 0, ... , k - 1 then 

1
00 4k 100 

0 

xa-2klfl2 <_ alf (k)l2 
(1-a)2 . .. (2k-l-a)2 0 x · 

2-16 Hardy inequalities in higher dimen sions: (80] . If p > 1 then 

for all u E H6 •P(O) , d=distance from boundary, c ~ (0Y· For convex domains c = (0Y· 
In 3 dimensions 
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for every u E HJ (n) [18]. If 0 "# IT then also 

For the exterior domain n = IR n \ B5r one has 

for p -f; n and u E H~ ·P (n) and 

r luln < 
Jn Jxt logn(JxJ /r) (

_n )n r JV'uJn 
n- l Jn 

for u E H6·n(n) [80]. 

2-17 Hardy inequality: [57, 113, p. 35]. If p > 1, r > 0, U(x) := ~fox u for x > 0 and B(x) 

supE>x E~:r: J! u for x E IR then 

100 

U(t)Ptp-r-ldt < 

JIUllP 

/1e11p 

3 Convergence theorems in V 

3-1 Fatou's lemma: [3]. If u; ~ 0 then 

l lim inf u; :5 lim inf l u;. 

If u; :5 v; -r v in L1 then also 

limsup l u; :5 fo 1imsupu;. 

3-2 Lebesgue's differentiation theorem: [55]. If u E L1 then · 

1. 1 1 1m- u 
p-+ 0 IB; I Br 

"' 

= u(x) 

for a .e. x E n. 

3-3 Equi-integrability theorem: If u E L1 and c > 0 then 

for all Ac n with IAI < <i(c). 

7 
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3-4 Lusin ' s continuity theorem: If u E L1 and c > 0 t hen u is uniformly continuous on n \ E 
with IEI < € . 

3-5 Egoroff 's theorem: If Ui --+ u a.e . (all measurable) and c > 0 then 

Ui --+ u uniformly on n \ E 

with IEI < €. 

3-6 Lebesgue's convergen ce theorem: If Ui--+ u a.e. and luil ~Vi --+ v in L1 then 

Ui --+ u in L 1
. 

3-7 Vitali ' s converge n ce theorem: If (ui) is equi-integrable and Ui --+ u in measure then 

u;--+ u in L 1
. 

If u; E LP, u; --+ u a.e., and (uf) is equi-integrable then 

Ui --+ u in LP . 

4 Sobolev spaces 

Most inequalities of this section can be found in [73, 1, 61, 43, 66, 113]. See Section 1.2 for definitions. 

4-1 Poincare' s ine qualitie s: 

(a) For every u E HJ 

fn 1ul
2 < 1 i 2 Ai n l'Vul . 

(b) For every u E Hci·P 
llullP < c ll'Vujlp· 

(c) For every u E H 1 and B; C n 

{ /u - UB~ 12 < CnP2 { j\7ul2 . 
JB; jB~ 

(d) (73]. If 0 < B < 1 then 

llull2 ~ ce ll'Vull2 
for every u E H 1 with l{u = O}I 2: B IOI. 

(e) (38, p.15]. If u vanishes on a set of non-vanishing capacity (Section 1.1) then 

fn 1ul2 < cap( {~= O}) fn i'Vul2. 

(f) (26]. If u E HJ(n x IRm) then 

1 i 2 \ l'Vul · 
" 1 nxJR.m 

(g) If n bounded in one direction then 

for every u E H 1 . 
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(h) A one dimensional version is Wirtinger 's inequality: If u E H 1 (0, 2rr) is periodic with 
vanishing mean value then 

12rr u2 :::; 1 2rr(u')2. 

Equality holds if and only if u(t) = a cos(t) + b sin(t) [106, 15]. 

4-2 Garding's inequality: [41 , p. 7-9] If A is a uniformly positive definit matrix and A E L00
, 

b E Ln and d E Ln/ 2 then there is a constant c1 > 0 such that 

l \i'u · A(x)\i'u + 2u b(x) · \i'u + d( x)uv 2:: c1 fn1\7ul2+c2 fn1ul2 

for every u E H 1 . The same is true for systems with continuous A satisfying the Legendre 
Hadamard condition. 

4-3 Korn's inequality: [112]. In terms of the symmetric gradient E := ~(Du+ DuT) 

fn 1ul2+1Dul2 < cl Tr (ETE) for u E H6{s1, IRn) 

JIDullP < c(llu llP + llEllp) for u E HP(D,, IRn). 

4-4 Poincare's inequality for capacity potentials: [35]. Let (u;) be a sequence of capacity 
potentials (Section 1.1) with cap(A;)-+ 0 and p < n2!:2 . Then 

llu;llP 
ll\i'u;llP 

-+ o. 

4-5 Gagliardo-Nirenberg's inequality: [39, 79], [4, p. 38]. 

< 

for every u E H~ · 1 . This implies: If~+ 1 ~ 8 = B then 

for every u E H~ ·P. 

4-6 Ehrling-Browder's inequality: [1], [4, p. 94). If f,:::; B:::; 1 and t = ~ + B (?- ~) + 1 ~ 8 

then 

For n 2:: 3 Sobolev's inequality follows. Moreover 

2 
ll\7ull2 :::; ll~ullPllullp 1 

for every u E H5 ·P . If n = 2 then 

4-7 Sobolev's inequalities: 
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(a) [80, 3]. If 1 :=:; p < n/k then 

!lull n'.'.lp :::; cllDkullP 

for all u E H6•P. 
(b) [103], [4, p. 39). If 1 < p < n then 

llull...!!:L :::; 7r-1/2n-1/p (p -1) 1-1/p ( f(l + n/2)f(n) ) 1/n ll'Vull 
n-p n - p f(n/p)f(n + 1 - n/p) p 

for u E H6·P. Extremal functions are of the form u(x) = (c +Ix - xal~ ) l- ~. 
(c) 

llull n~l :=:; f(l +;L2)l/n ll'Vull1 

for every u E H6· 1 [31]. 

(d) (36]. If B > 0 then 

llull-2.!L :::; cell'Vull2 
n-l 

for every u E HJ with l{u = O}l 2: B IOI. 
(e) If 0 <a< k - ~ then 

l!ullc<> :::; c llullk,p, 
Hn,1 c co. 

(f) If 1, = l - k-k' k > k' > 0 and 1 < p < p' then 
pp n' - - --

10 

4-8 Weighted Sobolev inequalities: [66, p. 98]. If kp < n, 1 :=:; p :::; q :::; n~~P, and {3 + ~ = 
a - k + ~ > n~m (spacial homogeneity) then 

for all u with compact support in IRn. If 80 is Lipschitz and 1 < p < oo then 

fn iulP d(x)':t-p < c fn i'VulP d(x)a if a> p - 1, 

fn iulp d(x)-1+• < c. fn i'Vulp d(x)a if a:=:; p - 1 

for every c > 0 (60]. 

4-9 Radial Sobolev inequality: (78, 99]. 

1-n 

lu(x)I :::; Cn lxl-, llull1,2 
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2n 

4-10 Generalize d Sobolev inequality: [36]. If 0:::; f(r):::; c lr l n- 2 then 

l f o u :::; sf ll'Vuil/~2 

where Sf :=sup {JJR.n f(v) : v E C~(JRn), ll'Vvll2:::; 1}. This statement can be localized. For 
every o > 0 there is an optimal ratio k ( o) (explicit) such that 

l~ f(u) 

for every p/R:::; k(o), x E JRn, and u E D1•2 (JRn). 

4-11 Tra ces: [3, p.168]. If 1:::; p < oo then 

!an lulP < c fn 1vulP, i.e. 

H 1·P c LP(an). 

The embedding is compact for p < oo and continuous for p = oo. [1 , p.114], [61, p. 328 and 337]. 
If on is ck then . 

Hk,p c L <::::kl," ( oD) if kp < n, 
Hk,p c Lq(oD) for every q if kp 2: n, 
H1,p c H1- *·P(oD). 

If M is am-dimensional submanifold of IT and p < n-t;::.k)p then 

5 Critical Sobolev embeddings 

In this section we consider the spaces Hk ,p with kp = n. In this case the measure IDkulP dx which 
contributes to the leading term of the norm is conformally invariant. By Sobolev's theorem Hk ,p CC Lq 
for every q < oo but Hk ,p cf._ L 00

. See Section 1.2 for definitions of spaces and norms. 

5-1 Orlicz' inequality: [4, p. 63]. 

5-2 Strichartz's inequality: [1, p. 242]. If kp = n and A(t) := exp (t~) - 1 then 
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5-3 Trudinger-Moser's inequality: [4, p. 65]. 

l exp ( n 1.sn-11 n: l Jui n'.'..1) < c 1n1 ' 

l exp (47ru2
) < c JOI (n = 2) 

for every u E H~ ·n with JIVulln :5 l. 

5-4 Orlicz-Sobolev embedding: [1 , p . 252] . If Ji°', ~ dt < oo then 
t n 

for every u E H 1•A . In fact u is continuous. 

5-5 Wente's inequality: [llO , 53]. For f , g , h E H 1 (JR.2) one has 

5-6 Higher integrability of Jacobians: [28, 68 , 76]. If u E H 1•n (IR" , IR") then 

5-7 Poincare-Sobolev inequality for BMO functions: If p < oo then 

If kp = n then 

5-8 Fefferman-Stein duality: [97, 32, 92 , 107]. 

{ fg :5 c JJ/Jlw JJgJJBMO· lm.· 
In fact BMO is the dual space of 1i1 and 1i1 is the dual space of VMO. 

5-9 John-Nirenberg's inequality: [97, 43] . For p < oo and r > 0 one has 

If n is convex, u E H 1•1 , fs;, IVul:::; Apn-l for all balls then 

l exp (b lu - uni) :::; c IOI . 

12 
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6 Maximum and comparison principles 

In this section all functions are supposed to be C 2 (except for the weak maximum principle). 

6-1 Maximum principle: [89, 43]. If ~u + g (., u) 2: ~v + g (-, v) inn and u 2: v on on. 
(a) If g (x, ·)is non-increasing for every x, then 

u 2: v in n. 

(b) If in addition g (x, ·) is Lipschitz and u f; v then 

u > v in n. 

13 

(c) If n satisfies an interior ball condition and if u(x) = v(x) for some x Eon and u f; v, then 

au (x) < ov (x) 
01.I 01.I 

(d) If(-~ - .X)u 2: 0 with u = 0 on on, .X < .X1 and u # 0 then 

u > 0 in n. 

6-2 Weak maximum principle: [43, p.179]. If u E H 1 is subharmonic Un Vu"V</> :S 0 for all 
</> E HJ, </> 2: 0) then 

supu :S supu+. 
n an 

6-3 Giraud's maximum principle: [70]. If on is Holder continuous -~u :S 0 and u assumes its 
maximum at a point x Eon, then 

lu(x)-u(y)I :S cjx-yl 

for every y E n. 

6-4 B ernstein inequality: If auxx + 2buxy + cuyy = f then 

u;x + 2u;Yu~Y + 2A(uxxUyy - u;y) :S B/2 

1 a2+2b2+c2 A-1 
where A > 2 ac-b2 and B 2: 2A(ac-b2)-(a2+2b2+c2) · 

6-5 Bernstein type inequalities: 

(a) If ~u = 0, then ~ jVuj2 2: 0 and the maximum of 1Vul2 is attained on on. 
(b) [90] . If Lu= 0 theO: for some constant c the maximum of 1Vul2 + c lu12 is attained on on. 
(c) (69, 95] . Let u be the solution of the torsion problem 

-~u = 1 in n, 
u = 0 on on. 

Then the maximum of jVuj2 + 2 lul 2 is attained on on. 
6-6 Payne-Philippin maximum principle: [85]. Let u be a solution of the elliptic problem 

with g (t) + 2tg' (t) > 0. Define 

f 1Vu(x)l
2 

g (~) + 2~g' (~) r(x) 
P(x) := Jo p(~) d~+2}0 f(1J)d1J. 

Then the maximum of P is attained on on or at a critical point of u. 
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6-7 Miranda's biharmonic maximum principle: (69]. If n is sufficiently smooth and ~2u = 0 
then max !'Vu!2 

- u~u is attained at the boundary. 

6-8 Boundary blow up: [62, 13]. If ~u ~ uP then 

u(x) < c<fJ(d(x)) if p > 1, 

u(x) - <P(d(x)) < c if p > 3. 

where <P(t) := (~t)- P~•. 
2(p+l) 

6-9 Whitney's inequality: [91]. There exists a function J E C 00 with bounded gradient such that 

c 

d 

7 Elliptic regularity theory 

We start with the weakest hypothesis on Lu. 

7-1 Weinberger's inequalities: [109]. Let Lu:= \7 · A(x)'Vu b~ an elliptic operator in divergence 
form and >. := infn >. 1 (A). Then the Dirichlet Green's function Gy of L satisfies: 

1 1r.12._.!. < C -Hn p - p ,n A 

where Cp ,n := (n - 2)- 2+~ n%-~ .13 1 -~ ( ~P-=-}, n~l - p~l ) !Er* and /3 is the beta function [22]. 
For p > n 

1 ( ) 1- l. 1 1 
where Cp ,n := IBl- n :=~ p n -;;-;; . For the Laplacian equali ty holds when n is a ball centered 

at x. As a consequence the solution of (1) satisfies 

If f = \7 · v, then 

7-2 Estimates for the Green's function near the boundary: [101]. The Dirichlet Green 's 
function of a second order uniformly elliptic operator L with C 1·a-coefficients on a C 1•a domain 
satisfies 

with positive constants and 

Ix - Yl 2
- n min ( 1, d1(;2~(I~)) ( n ~ 3) , 

g(x ,y) log (1 + d1~2~(I~)) (n = 2) , 

Jd(x)d(y) min ( 1, d;~:(y ) ) (n = 1) . 
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7-3 Grisvard's inequality: [45, 46, 65]. If an is smooth, -~u E L 2 and avu E H 112 then 

7-4 Hardy-Littlewood-Sobolev inequality: [51, 94, 57]. If 1 < p < ~ then the solution u = 
I<n-2 * f of -~u = f satisfies 

7-5 Regularity in Lorentz spaces: If f E L(p, q) with 1 < p < ~ and -~u = f in IRn then 
u = uo + h with -~h = 0 and 

lluoll(n'.'.~P 'q) < cllfll(p,q), 

lluollLn'.'.~p (IR") < c ll!llLP(IR.0
)· 

This follows by convolution with I<n-2 and the Hardy-Littlewood-Sobolev inequality. 

7-6 Regularity in Hardy spaces: [32]. If f E 1i1 and -~u = f in IRn then u = uo + h with 
-~h = 0 and 

In two dimensions also 

!l'VuollL2 + lluollu"' < c 11/llw · 

7-7 Riesz operators: The operators 

-~ - 1a;aj: LP--+ LP , L00 --+ BMO, BMO--+ BMO 

are bounded. 

7-8 Calder6n-Zygmund's inequality: (43, Lemma9.17] . If an is C 2 , 1 < p < oo and u E H2,PnHJ 
then 

7-9 Brezis-Merle inequality: [21] . If n = 2 and u = 0 on an then 

7-10 Meyers' inequality: [67]. If A is bounded and IP - 21 small enough then 

llull1 ,p :S c ll'V(A'Vu)ll-1 ,p· 

7-11 Regularity theorem for smooth operators: [4, p. 85]. If L has C 00 coefficients, k > 0, 
1 < p < oo and 0 < a < 1 then 

llullk+2 ,p < c llLullk ,p, 

llullck+2+.,. < c II Lu II ck+<>. 
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7-12 Schauder estimates: [3, 41, p. 48-53]. If an is c2+a then 

1iullc2+" 
loc 

llVullc" 
1iullc2+" 

< c (liui1L 00 + ll~ullc<>)' 
< c (llullp + ll~ullc") , 
< c (llullc 0 + ll~ullc<> + 1iullc2+<>(an)) · 

If L has trivial kernel then 

7-13 Cordes-Nirenberg's inequality: [4]. 

16 

7-14 Holder regularity near boundary: [48, Lemma 2]. For open sets U and U' satisfying an c 
U' CC U one has 

for p < n'.'..1 and every function u vanishing on an. 
7-15 De Giorgi-Nash-Moser regularity theorem: [74, 40 , p. 53]. If u is a weak solution of V · 

A(x)Vu = 0 with uniformly positive A E L00 and n' CC n then 

for some a> 0. 

7-16 A priori estimates for nonlinear equations: [42]. Every positve solution of the Dirichlet 
problem Lu= f(x , u) with subcritical f satisfies 

7-17 Campanato's theorem: [61, 40, p. 70-72], [41, p. 41]. If 0 < a < 1 and f w lu - UB,;; IP ~ cpn+ap 
then "' 

If n < >. ~ n + p then 

In fact LP•J.. = c"'-;,n are isomorphic. 

7-18 Morrey's Dirichlet growth theorem: [40, 41]. If a> 0, u E H1~~ and fBr IVulP ~ cpn-p+ap 
for every ball then "' 
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8 Further integral inequalities for solutions of elliptic differ­
ential equations 

8-1 M ean value properties: If -~u :::; 0 then 

u(x) :::; -
1

- r u 
joBPj JaBr 

" 

whenever B; c 0. If -~u = 0 then 

If n = 2 and -~u:::; I<eu then 

for p small enough. Best constants are known [8]. 

8-2 Harnack's inequality: [43]. If I< CC 0 then 

sup u < c infu 
K - K 

for every u E C 2 with ~u = 0 and u > 0 in 0 . 

8-3 W eak Harnack inequality: [75, 43, p.194]. If u 2: 0, 1 < p < n~ 2 and q > n then 

~p~ ( sup u - P2
- ~ ll ~ullq) 

c B~/> 

8-4 Caccioppoli 's inequality: [40, p . 77]. If -~u = 0 then 

c f I 12 
(r - p)2 }B;\B~ u . 

8-5 R everse Holder inequality: [40, p.119 , 136]. If -~u = 0 then 

for p > 2. 

l; j\7ul2 < 

l ; j\lujP < 

C (1 2n ) ~ - j\7ul~ , 
p2 B~P 

~ ( r, l \7u1 2) ~ 
p > JB,,P 

8-6 Monotonicity formula for harmonic maps: [93]. If u : 0--=+ lRn is a harmonic map (strongly) 
and R 2: p then 
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8-7 Kato's inequality: [58, Lemma 9]. If u E C 2 , </J E Cg'°, </J ~ 0 then 

l b.<P Jui ~ l sign (u) </Jb.u. 

18 

8-8 Inequality for sub- and supersolutions: (64]. A pointwise maximum (minimum) of subso­
lutions (supersolutions) of Lu = f is a subsolution (supersolution). The same is true for H 1 

functions. 

8-9 Pohozaev identity: [100]. If 

-b.u !'(u) in n, 
u 0 on an 

then 

n -
2 

[ JV'uj 2 - n [ f o u + ~ [ jV'uj2 x · 11 = 0. 
2 Jn Jn 2 l &n 

If n is starshaped, then 

2n l --
2 

Jou. 
n- n 

9 Calculus of variations 

9-1 Direct method: [100, p. 4] . A weakly lower semicontinuous coercive functional on a reflexive 
Banach space attains its minimum. I.e. if F(u;) -+ inf F and u; ----" u weakly then F(u) :::; 
liminfF(u;) = infF. 

9-2 Weak lower semi-continuity of norm: If (u;) is a bounded sequence in a reflexive Banach 
space then 

u; ----" u weakly 

for a subsequence. If u; ----" u weakly in a Banach space then 

llull :::; lim inf Jiu; 11 · 

If u; ----" u weakly and IJu;JI -+ llull in a uniformly convex Banach space then 

u; -+ u . 

9-3 Brezis-Lieb's lemma: [20]. If a bounded sequence (u;) in I.J' converges pointwise a.e. to a 
function u then 

liminfllu; - ull~ = liminfjju;JI~ - !lull~-

9-4 Maximal distance to weak I.J'-limits: (34]. If u; ----" u weakly in I.J' then 

liminfjju; - ull~ :::; c liminflludl~ 

· ( -1) ( _I _I )p-1 w1thc=maxo~a~1 aP- 1+(1-at ap- 1 +(l-a)p- 1 • 

9-5 Semicontinuity theorem: (40 , p. 23 and 25], (41, p . 13]. If f E C(O, IRm , IRm0
) is bounded 

below and convex and continuous in the last argument , u; ----" u weakly in H1:·~ or u; -+ u in Lfoc 
then 

l J(-, u, Du) :::; liminf l f(· , u;, Du;). 
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10 Compactness theorems 

10-1 Ascoli 's compactn ess theorem: [3] . If (u;) is a bounded sequence of equi-continuous functions 
in C(K) with compact K then 

u; -+ u in C(K) 

for a subsequence. 

10-2 Dunford-Pe ttis compactness criterion: [3, p 176]. [30, Theorem 25] . If the sequence (u;) is 
bounded and equi-integrable in L1 then 

u; ----' u in L 1 

for a subsequence. 

10-3 Frech e t-Kolmogorov compactness theorem: Suppose (u;) is a bounded sequence in LP 
with p < oo. If for every c a compact set K CC n exists such that sup; !lu1llLP(O\K) < c and 
sup; llu;(- - h) - u;llP-+ 0 as h-+ 0 then 

u; -+ u in LP 

for a subsequence. 

10-4 R ellich-Kondrachov compactness theorem: [3]. 

Hk ,p cc u for 
np 

q < --k- , 
n- p 

Hk,p C°' for 
n 

cc a< k- - . 
p 

10-5 W eak compactness in non-reflexive Sobolev sp aces: [40, p. 29]. If (u;) is bounded in H 1•1 

with (V'u;) uniformly equi-integrable then · 

u; ----' u weakly in H 1•1 

for a subsequence. 

10-6 Murat 's compactness theorem : [100, p. 30] . If u; ----' u weakly in HJ and (~u;) is bounded 
in L1 then 

for every q < 2 and a.e . 

10-7 Ehrling lemma: [3] . For every triple of nested Banach spaces X CC Y C Zone has 

!lxllY ~ cllxllx + c,llxllz. 
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11 Geometric isoperimetric inequalities 

The perimeter of a set A C IR n is defined as 

l8AI := sup {L V' · v : v E CQ°(IRn, IRn) , lvl:::; 1} 

while the relative perimeter of Ac D is given by 

l8Aln := sup {i V' · v : v E CQ° (D, IRn), lvl ::=; 1}. 

For smooth sets l8Aln = 18A \ 8DI. 

11-1 Isoperimetric inequality for perimeter: (81, 24, 47]. 

> 

20 

with equality for balls. The Fourier analysis proof of Hurwitz and Lebesgue in two dimensions 
can be found in (106] as well as a variational approach to the. general case. A similar inequality 
holds in spaces of constant curvature (24]. 

11-2 Bonnesen's inequality: For every set A C IR2 one has the following quantitative stability 
estimate involving the deviation from a disk 

where h denotes the minimal width of an annulus containing 8A. Similar results for higher 
dimensional convex sets can be found in (82]. 

11-3 Relative isoperimetric inequality: (24, 83]. If D satisfies an interior cone condition, then 

n 

min {IAI ) ID\ Al} :::; c l8Aln-l . 

If n is a ball equality holds for half balls. 

11-4 Relative isoperimetric inequality for planar sets: (7, 9]. Suppose AC IR2 is simply con­
nected with 8A = 8A1 LJ8A2 (disjoint). Denote by"' the curvature of oA with respect to the 
exterior normal. Then 

Equality holds for sectors. 

11-5 Isoperimetric inequality for two-dimensional manifolds: (2, 10, 19, 56]. Let D c IR2 be 
a simply connected domain endowed with the conformal metric p ldxl of Gaussian curvature I< , 
i.e. -.D. log (p) = I<p2 . Then 

1an1~ ~ 4rr IDIP fn P2 
- 2 IDIP fn J<+ 

where IDIP := In p2 and l8DI~ := Ian p. Equality holds for balls in the limit as I< tends to a 
Dirac measure at the center. Moreover 

Equality holds e.g. if D is a ball, I< a constant and p(x) = i+flxl2. 
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11-6 Gromov's isoperimetric inequality: [16] . Let M be a compact Riemannian manifold of 
dimension n and A C M. If the Ricci curvature of M satisfies Ric ( M) 2: Ric ( sn) = n - 1 then 

> 

where A* is a gedodesic ball on sn = 8B6 c lR"+l with IA*I = IAI. 
11-7 Isoperimetric inequality of R eilly and Chavel: If AC lR" has smooth boundary then 

18AI 
IAI > 

where µ2 denotes the first nonzero eigenvalue of the Laplace-Beltrami operator on aA [106]. 

12 Symmetrization 

The decreasing rearrangement of a function u : n -t lR + has been defined in Section 1.1. 

12-1 Cavalieri 's principle : [88]. The decreasing rearrangement of a positive function satisfies 

{ IOI 
lo f o u., 

1101 p 
u. , 

0 

12-2 R earrangem ent inequalities: [52]. 

if <P is non-decreasing and convex and J0a u. ~ J0a v. for every a ~ IOI. 
12-3 Schwarz symmetrization: [88, 11, 59, 104, 105, 6]. The symmetrized function u* defined in 

Section 1.1 satisfies 

for every convex, non-decreasing positive function <P and every u E HJ. In particular 

r f 0 u* 
ln· 

for 1 ~ p < oo. Equality in the first relation with p > 1 implies that u = u* a.e . up to translation 
provided that no level set below the top level has positive measure [23]. 

12-4 Schmidt ' s inequality: [47]. For every AC BC lR" one has 

<list (aA, aB) ~ <list (8A*, 8B*). 
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12-5 Brunn-Minkowski 's inequality: [47, 24]. For A , BC IRn one has 

1 l l 

IBA+ (1- B)BI;; ~ B IAI;; + (1- B) IB I;; 

where BA+ (1 - B)B := {Ba+ (1 - B)b : a EA, b E B} and 0:::; B:::; 1. The same is true for the 
exterior Lebesgue measure. If A and B are convex and 0 < B < 1 then equality holds if and only 
if A and B are homothetic. 

12-6 Riesz ' r earrangem ent inequality: [52, 25] . 

r dx r dy f(y)g(x - y)h(x) 
}JR. }JR. 

< r dx r dyf*(y)g*(x - y)h*(x). 
}JR. }JR. 

12-7 W einberger-Ta lenti's inequality: [104] . If 

-~u f Ill n, 
u 0 on an 

and 

-~u f* in n* , 
u 0 on 80* 

then 

u* :::; u in n•. 

12-8 Harmonic transplantation: [54, 12] . Let r( x) denote the harmonic radius of 0 at x . For 
radially symmetric u = µ o Go : B~(x) -+ Ill define u., := µ o G.,. Then 

for every f : Ill -+ IR+. This fact allows to derive upper bounds for eigenvalues and related 
quantities while symmetrization gives lower bounds. 

12-9 Isoperimetric inequality for capacity : [88, 37] . 

cap0 (A) cap(BJ) 2 

n-2 > n - 2 = n(n - 2) IBJI;; (n ~ 3) , 
IAI - .. IBJI-.. 

101 > ( P) 1 IBJ I 47r (n = 2) cap0 (A) log 1Af capB~ Bo og IB~I = 

Equality holds if and only if A is a ball and 0 = IRn (in two dimensions if 0 and A are concentric 
balls) . 

12-10 Subadditivity of modulus: [84, 54, 12]. If AC BC C then 

1 
> 

1 1 
capB(A) + capc(B) · 

Equality holds if and only if B is a level set of the capacity potential of A with respect to C. 
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13 Inequalities for eigenvalues 

Let )q < .A 2 :5 .Aa :5 ... be the Dirichlet eigenvalues of n with corresponding L 2 or thogonal eigenfunc­
tions (</J;) and E; := span(</J1 , . .. , </J;). The eumann eigenvalues are denoted by 0 = µi < µ2 ::; µa::; 
... A survey on this subject can be found in [84]. 

13-1 Rayleigh-Ritz characterization of eigenvalues: [29, 7]. 

.A; = In IV'ul2 

sup r 2 , 
uEE;\ {O} Jn u 

In IV'ul2 

inf r 2 . 
uEEf\{O} Jn u 

13-2 Poincare principle : [87] 

.A; = In IY'ul2 

inf 
Ee HJ 

dimE = i 
sup r 2 

uEE\{O} Jn u 

and similarly forµ ; with HJ replaced by H 1 . This implies: 

µ; ::; .A;. 

13-3 Barta' s inequalities: (14, 90]. For every u E C 2
, u > 0 

. -~u(x) 
.A1 2:: mf ( ) . xen u x 

If in addition u = 0 on an then 

-~u(x) 
::; sup ( ) . 

xen u x 

In both cases equality holds for the principal eigenfunction. 

13-4 Rayleigh-Faber-Krahn's inequality: 

.A i >_ .A i (n*) = ( IBI) * .2 Tm J .. ;2 

where j~_ 2 is the first zero of the Bessel function J;_2 . Equality holds for balls. 
-2- --.-

13-5 Cheeger-Yau's inequality: [27, 5, 111 , 63] . 

! inf 18AI = ! inf In IY'ul 2 ( ) 2 

4 Acn ( IAI ) 4 uEH~.i In lul 2 

13-6 Szego-Weinberger 's inequality: [102, 108]. 
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13-7 Payne-Weinberger's inequality: (86). If n is convex then 

13-8 Lichnerowicz-Obata's inequality: (111). The first nontrivial eigenvalue of a compact Rie­
mannian manifold M is 

_n_ inf Ric(M). 
n-1 
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