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The Laplacian operator A on a bounded domain & in R" containing 0, with Dirichlet
boundary condition, is perturbed by a pseudopotential 4, the Dirac measure at 0. Such a
perturbation will be defined in L,(Q) forn=2, 1 <p< o, and forn=3,3<p<3,andis
shown to be the generator of an analytic semigroup. Thus solutions of the corresponding
evolutionary system are well defined. The necessary estimates involve the Gagliardo—
Nirenberg inequality and the Kato inequality.

1. Imtroduction

Let Q be a bounded domain in RY (N > 1) that contains 0, and has a C*boundary.
Consider the evolution type system

8
(_~A+5)u(£,')=0 inQ, >0,

ot
(1.1}
u(t,*}= 0 on 0Q, t>0,
u(oa ) = u(}(') in Q’

where d(u)(t, ) = u(t, 0) 8, and &, is the Dirac measure at 0 € Q. The perturbation of
—A by the pseudopotential § is called a point interaction. We show that, at least for
some N and p, one can solve (1.1} by

u(t)=S(t)u,,

where {S(t)}.x0 is an analytic semigroup on L#(Q).

It will be sufficient to give an appropriate version of —A + ¢ with domain D,
corresponding to the Dirichlet boundary condition, such that for all A ¢ € with Re 4
large

A—A+86:DS LF(Q) - IF(Q)
has an inverse and, with some constant M,

1
16~ A+8) loaran S M.

Then, see [ 14, Theorem 2.5.2], — A + é will be the negative generator of an analytic
semigroup on L7().

For our approach to work we need W2P(Q) and W2%(Q), with ¢ defined by
(1/p)+(1/g) =1, to be both continuously embedded in C°(Q), that is 2 —(N/p) >0
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and 2 — (N/g) > 0. Hence the restriction will be

N N
2 PN %
which implies N=2and pe(l, ®),or N=3 and 2<p<3.

The paper is organised as follows. In Section 2 we summarise some facts on point
interactions in LP(R"). In Section 3, respectively 4, we construct the point interaction
and its resolvent operator. In Section 5 we show pointwise estimates for the Green
function @, = G, o(0,) at zero. The L? norm of ¢, will be estimated from above
using the Gagliardo—Nirenberg inequality. The main result is proved in the last
section.

Application of point interactions to the study of singular solutions of the semilinear
problem —Au + |uff"! u= —ou with ¢ >0 will be treated in a forthcoming paper.
For results on point interactions on bounded domains with periodic boundary
conditions, see [3].

2. Preliminaries

In this section we summarise some facts on point interactions in LP(R?) taken from
[2,5,6].

Point interactions in L*>(R*)
Consider the Laplacian operator in L*(R?)
A WP(R?) < LA(R?) - LA(R?).
The point interaction in I*(R®) can be defined as a selfadjoint extension of the
restricted Laplacian operator A, in L2(R®) with
D(4,) = {ug e W>*([R?):u(0) =0}, Agtio = —Aug

(see [27]). Note that by the Sobolev embedding theorem (see e.g. [1]) W**(R3) can
be embedded into the space of continuous functions. So for u € W>?(R?) the value
u(0) is well defined. If N = 4 this is no longer the case and this approach fails. (For
point interactions in higher dimensions, see [7, 16]) The adjoint operator A} can
be described as follows. For Ae p(—A), let G gox, y) denote the Green function
corresponding to (1 — A)™Y, that is
e—ﬁlx—yl
Gupsl(x, y) = m for x #y,

and define ¢, (%) = G, (0, x} for x #0. Then (see e.g. [15])
DA§)={u+clp-i+0;):ue W2(R®), ce C},
Af(u+clp-;+ o) = —Au+clip-; — ipy).

Note that every selfadjoint extension of A4, is a symmetric restriction of A%. All
selfadjoint extensions are given by the one-parameter family of operators
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{—=A}e(-nm (see [2, L117), with
D(—A) = {ug+ cle ™ p_; + e¥9,) :uy € WH*(R?), 4,(0)=0, ce C},
—A o+ cle ™ Hp_ + e )= — Auy + clie o _, —ietp,).

This family of selfadjoint extensions defines a family of point interactions in the
following way.

The domain of the point interaction is contained in D(AF). We extend the pseudo-
potential, the Dirac measure, such that it is defined on ¢.; and ¢; as well. The
Laplacian operator will also be extended. The sum of this extended Laplacian
operator and a multiple of the extended pseudopotential is an operator in D{4}).
For suitable t € (—, 7] the operator — A, is the restriction of this sum to D(—A,).

Let J, denote the Dirac measure at zero. Using the Fermi pseudopotential 6(0/0r)r
[2, 8] the operator 476 : W>?(R*)— (W2>2(R3)Y with 6(u) = 4nu(0)J, can be extended
to an operator 418(5/0r)r: D(AE) —(W>*(R3)Y, where for ue W*%(R>®) and ce €

4nd 5% ru+clp-;+9)) = [;% (4rmru + c(e"ﬁ’ +e” "))] (0)6g = [4nu(0) — \/50] dg.

Next one can extend the Laplacian operator to the operator
—A_ 2t PR s (W RP) » (W R)Y
by taking the closure of the Laplacian operator in (W2%(R3)y. (Compare [4,

Section 2].) Fix te(—n,m]. Then for uy+cle **p_;+e*p,)e D(—A,) and
v e W22(R3)

é . ,
I:( —~A_,,+4nad a 1‘) (o + cle ¥ p_; + e%”%)):] (v)

= —Augvdx + J clie™ g, —iet" gy dx + cle ~*" + ¥ )p(0)
JR3 R
+ c(e~§it23/4m’ + e»,%ire-3/41:i) . U(O)
= | (—Aug+clie”gp_;—iet"o)v dx
JR3

for suitable a,, assuming cos 37 — 47 # 0, that is 7 % 1x. For this a, the operator —A,
is the part in L*(R?) of —A ., + 47a,8(0/0r)r: D(A¥) = (W>A(R?)Y - (WA (R?)).

Point interactions in 17 (R?)
For 1 < p < o, consider the Laplacian operator in L2(R?)

— A WP R < LP(R3)— L2(R).

We define —A_, ,:LP(R?) = (W>4R) -»(W>4(R3)) as the closure of —A in
(W24(R3)y. (Compare [4].) Here (1/p) + (1/g) = 1. Under the restriction 3 < p < 3, it
follows from the Sobolev embedding theorem that W?(R3) and W>4R?) can be
embedded continuously into the space of bounded continuous functions. There-
fore the value u(0) is well defined for ue W2?(R%) and &, e (W>4R3)Y. Define
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4nd(0/3r)r: W P(R®) @ [p, 5] = (WH4(R?)Y by

4né :33; r(u+ c@) = (4nu(0) — ¢)d,.

For notational convenience, we make use of p,gs instead of ¢.,. Note that
P — 30 + 9;) € H*P(R®). The point interaction

9
5rr

in I7(R?) is by definition the part in L7(R*) of — A _, , + 4r5(8/0r)r. Explicit formulae
for the resolvents of point interactions can be derived using [117, see [5,6]. In
order to prove that — A4 4né(0/0r)r is the negative generator of an analytic
semigroup on LP(R3), estimates on the function g, gs(x) = G, g3(0, x) are needed.
The IP-norm of ¢, gs has to be estimated from above, whereas estimates on
{9103 — @1 x21(0) are needed from below. These estimates can be obtained from the
explicit expression g, gs(x) = e ~¥2//47| x|. Similar results hold for point interactions
in I7(R?) with 1 <p < oo. See [5].

~A +4nd

3. The construction of point interactions in L7(Q)

Let Q be a bounded open subset of RY with N =2 or 3. Assume that 6Q is C* and
0eQ. Let 4, be the Laplacian operator

Ay WP Q)N WEHP(Q) = LP(Q)— L7(Q),
Au=—Au
(For the definitions of W*?(Q) and W§?(Q), see e.g. [1].) This operator 4, is the
negative generator of an analytic semigroup on I7(Q). Assume N =2 and 1 <p < o0,
or N =3 and 3 <p<3. Then the spaces D(4,) and D(4,), supplied with the graph
norm (where (1/p)+(1/q)=1) can be embedded continuously into the space of

bounded continuous functions supplied with the supremum norm (see e.g. [1]).
Therefore the operator §:D(A4,)—(D(4,)) with

O(u):=u{0}é,

for ue W2P(Q)), is well defined. Here §, denotes the Dirac measure centred at zero.
We want to define point interactions, that is the perturbation of 4 by a complex
number of times J, as an operator in I#()). For that we extend the operators 4,
and & and define the point interaction as the part in IP{(Q) of the sum of these
extended operators. Define

A1, Q) = (DAY —~ (D(A,)Y

as the closure of 4, in (D(4,)) under the usual identification I?(Q) = (I(Q)). (See
[4, Section 2].) Moreover, extend the operator § to the operator dy with

D(dy)={u+cp:ue D(4,),ceC},
dy(u + cp)=(u(0) — c)d,,
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where
p=(A_1,) 8. (3.1)

We use (3.1) throughout the paper. Observe that ¢eC(@Q\{0}) and
limy, o @(] x|)/ten(Ix}) exits and is positive, with g, (|x|)=1In |x| and pa(]x])=|x|7"
It follows from our assumption on N and p that ¢e I?(Q) and consequently
Didy) € [7(Q). For u+ cp € D(dy),

(A_y,, +dy)(u+cp) = —Au+ cdy + (u(0) — ¢)d,
= —Au + u(0)dg.

DerFmiTION 3.1. The point interaction —A +dy in L7(Q) is the part of A_, , + dy in
I7(Q)). In other words,

D(—A +dy)={uy +cp:uge D(4,), u(0) =0, c e C},
(—A +dy)(uy + cp)= — Aug.

For a € C\{0} the point interaction —A + ady in IF(Q) is the part of 4_, ,+ ady in
IP(Q). In other words,

D(—A + ady):= {ug + c(p + u,) : g € D(4,), up(0) =0, c € C},
(— A+ ady) (g + clp + u, )= — Aty — cAu,,
where u, € D(4,) such that u,(0)= (« — 1)/a.
Remarx 3.2. This second characterisation is independent of the choice for u,.

4. The resolvent of the point interaction

Let a € C\{0} and u, € D(4,) such that u,(0) = (@ — 1)/ be fixed. In order to describe
the resolvent of the point interaction — A + ady, auxiliary operators are needed. For
4 € p(—A,), define

L,:C—I(Q),
L}.(C) =005,

for ce €, where ¢,:=(1+ A_; ,)"'8,. Note that for 1€ p(—A,) we have g, € [P(Q)
and ¢;— @€ D(A4,). So due to the Sobolev embedding theorem the expression
(9, — 9){0) makes sense. We make use of this observation in the sequel. The other
auxiliary operator we need is ¥ : D(W)— € with

D(¥):={u+clp+u,):ueD(4,),ceC},
Yu + clp + u, )):=u(0) —c.
Using these operators we can prove the following theorem (see also [5] or [16, 117).
THEOREM 4.1. Let 2 € p(— A,). Then i e p(A — ady) if and only if

a—1
(wrgo)(O)#T.
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Moreover if 4 & p(A — ady) then for fe IP(Q)
So[(A+A4,)""f]

Pi
o—1
Solo— w1+ Y

A—Adady) 'f=(A+4,)"f+

Proof. From the resolvent identity it follows that
pi=(A+ 41,07
=—MA+A,) Ay ,) T+ (Ao )1
={—MA+A_,,) " o—u} +{p+u}
e D(¥).

Therefore the operator

(4.1

I+ L,P):D(¥)-D(Y)
is well defined. Moreover, for u + ¢(p + u,) € D(W),
(I +L,¥)u+clp+u,)
=utc(p+u)+@0) —{—Al+A4-1,) o —u} +{p+ul)
=u+w0)—){—AA+A4-,,) 0 —u} +u(0)(p +u,).

So (I + L;¥ )(u+ c(p +u,)) € D(4,) if and only if u(0) = 0 or equivalently, if and only
if u+elp +u,) € D(— A + ady). Furthermore, for u + c{p +u,) € D{(— A + ady)

A+ AT+ L¥)u+clo+u)) =R+ A)u—c{ A0+ A_1 ;) o —u})
= {(Au— Au + clp + cAu, — cAu,)
= (Au + clp + u,)) — Au — cAu,)
= (A — A+ ody )1 + c{e + u,)).
So le p(A—ady) if and only if I + LY : D(W) - D(¥) is invertible and in that case
(A—A+oady) 'f=(I+L,¥) A+ 4,)'f (4.2)

It is not difficult to verify that I+ L;¥ 1s invertible if and only if I +WL,:C-C is
invertible, and that, if those operators are invertible,

. (I+L,¥) ' =1—L,(I+¥L) '¥. (43)
Finally we remark that for ¢ € C (see (4.1))
T+YL))=c+P[(-DA+4-1,) o —u +(p+u)lc

=c+<‘1’[¢a-¢]~%l~l)c

-1
=(50[‘}‘»’A—¢]"mOC )C-

The statement of the theorem now follows from (4.2) and (4.3). [J
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5. Estimates on the Green function at (0, x)

In order to prove that point interactions are negative generators of analytic semi-
groups on I7(Q)), we need estimates on the function ¢, for Re A = 0. Let 1€ p(—A4,).
When G, q(x,y) denotes the Green function corresponding to (i+ A4,)”', then
@:(x) = G; (0, x). That is, for ue D(4,),

“ 9,(A — Ayu dx = u(0).
Q

Y

We write ¢, gv(x) = G, g~(0, x). The relation between ¢, and ¢, g~ is given by

@r=Pary — U (5.1)
on Q, where v, satisfies
(A—Ap,=0 Q,
[?Jz = @rry 0Q.

LemMa 5.1, Let Aep(4,) and 1 <p <co. Then

loall,=160(A + 4)) ™ | eawy.0)-
Proof. For fe L)),

18o(A+ 47" = Sloallp IS llg

J 9(x)f(x) dx
Q

So 1 66(4 + A) "l gaecy S 1941l ,- Moreover, defining

oF =l eal377@alwal* % € LY(Q),

we bave [ ¢7 [, = [ ¢:l, and

llq

10o(A + A)) FoFl = =le. 2= lel 1o,

J 90 dx
0

So | 50("2“+AQ)-1 | 2aaey 2 loall,. O

PROPOSITION 5.2. Let 1 < p < 0. For every 8 €(0, n/2), there is an My =0 such that
for e Zpmie

M, , _
leil, = W and  ||8o(A+ 4)) " 2@ = W(_;@

(Here Z(pj5y 9= {z € C:larg z| £ (n/2) + 6}.)
Proof. Let 6 €(0, 2r) and choose Dy 2 0 such that, for every A€ X )46,

D
A+ 49 gun = ﬁ

Such a Dy exists as 4, is the negative generator of an amalytic semigroup. Let
A€Zpm+eand fe LH(Q) and u= (4 + 4,)"'f. According to the Gagliardo-Nirenberg
inequality (see e.g. [9])

lulle < Null2g?lull
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with 5= 1 — (N/2q). We have for some constant C, 20, independent of A,

H“qu C&”f”q
(see e.g. [14, Chapter 5]) and

[lu Hqiﬂllfli

Therefore for some constant M, = 0, independent of 4,

uunmgwi,—ﬂ;;uqu

and consequently

106(h + 4) H ppog = [A[L- 2D

The statement follows from Lemma 5.1. [T
ProrosrrioN 5.3. Let Re A 2 0. Then
foallec—0
as | A} —»o.
Proof. Due to Kato’s inequality [12, Lemma A], v, satisfies
Ajv;|ZRe Ay Q,
[lﬁﬂ =g~ Q.
As Re 1 20, it follows by the maximum principle that

sup |v,] < sup |v;].
1) F:19)

(5.2)

The statement of this proposition follows from the fact that |¢, g~|— 0 uniformly on

0Q as {A]l— oo, [

ReMARK 54. Inequality (5.2) alse follows from [13, Corollary 1.3], with

L=(—(8/8t) + A) and F(t, x) = e"™'v,(x).

6. The point interaction is the negative generator of an analytic semigroup on L2({2)
THEOREM 6.1. Let N=2 and 1 <p < oo or N =3 and 3 < p <3. Then, for xe C\{0},

— A4 ody

is the negative generator of an analytic semigroup on IP((}).

Proof. Let «e C\{0}. We shall show that for e C with Re A= 0 and || large

enough: A € p(A — ady) and
IO — A+ ady) | gar@y=O(A™),
as |A|— o0 and Re A= 0.
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For /€ p(—A,) we have with (5.1)
0ol9s— ¢l =0dolps— 91+ 91— ¢]
= So[@sm¥ — 01a¥] — So[va — 011 + dolp1 — @]
It follows from Proposition 5.3 that §y[v;]—0 as [4] — co. Moreover, for | 4] large

enough, do[¢; g — ¢, g~ ] behaves like In \/?—u when N =2, and like |A|* when N =3.
Indeed
1 -
Pase(x) = 5 Ko lx)

{see [17, p. 78]) and
—ilxl
e
@;{’RB(X)-T- 4‘71'7[} .

By [17, formula (14), p. 80] one finds that Ky{z)=C—1Inz+ o(z) for |z|>0 and
ze C\{—c0,0]. Consequently for |A] large enough and Reiz0 we have
dolw, — 01 #{a — 1)/ and therefore, by Theorem 4.1, A € p(A — ady). It also follows,
using Lemma 5.1 and Proposition 5.2 and the fact that 4, is the negative generator
of an analytic semigroup on I7(Q), that

A~ A+ ady)™ | garop
6o[(A 4+ A,)” '] | 2as@.00

SN+ A waray + . ffeallp
dolo—0,1+ T

B {O(M['l)+ O(jA| 1+ O(1)O(jA| "1 M)y when N =2

—LoQAIT Y + 0(| 411 42P)O(14] 7H)O([A| "1+ 4P9)  when N =3

=0(4™)

as |A|-»o0 and Re 420. O
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