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Abstract

When one is young and starts studying boundary value problems for pde, the first assumption
that one usually makes, is to take the boundary smooth ‘enough’. One hopes that the result one
proves for such domains may also hold for less smooth domains, at least if one works hard enough to
crack all those nasty technical details. In this minicourse I’ll hope to demonstrate through several
examples that, although indeed most of the time it is just a lot technical details, sometimes the
results are strikingly different in the presence of corners.

• The first example concerns a semilinear Laplace equation. It has been guessed that stable
solutions of −∆u = f (u) in Ω with u = 0 on ∂Ω should have a fixed sign. This is not true
but, when the domain Ω and f are bounded and smooth, and one considers −∆u = λf (u)
for λ large, then at least a global minimizer seems to be of fixed sign. However, if one allows
some corner in ∂Ω, then suddenly the global minimizer can be sign-changing no matter how
large λ is.

• Sapondzhyan mentioned in 1975 that the model he used for a hinged thin elastic plate resulted
in some inconsistency: Whenever concave corners were present, the energy density blows up
near such a corner which, in a physical sense, is pretty bad for the material.

• The famous Babushka paradox describes how that same model does not give continuity in
the approximation of the solution on a round plate by the solutions on regular n-polygons.

• When using simple finite elements for numerical approximations, one replaces boundary curves
by polygons. Is that always ok? And even if one would be using curvilinear elements, how to
deal with corners?

• When putting a moderate weight on a horizontal plate that is supported at the edges, one
expects it to bend downwards. For a supported plate that is pushed downwards, corners
however result locally in upwards(!) moving plates.
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• For the eigenvalue problem ∆2ϕ = λϕ in Ω with ϕ = ∆ϕ = 0 on ∂Ω, which corresponds to
the hinged plate problem, there is nothing new on smooth domains when compared with the
most well-studied Dirichlet-Laplace eigenvalue problem. The eigenfunctions are indeed the
same and only the eigenvalues are squared. But how can it happen, that whenever Ω has a
concave corner, one may compute two(!) positive eigenfunctions?

It goes without saying that in order to study these examples we have to address the theory
for elliptical problems near corners originating from Williams, Kondrat’ev and Grisvard, which,
besides discussing these examples, I plan to explain for the elliptic operators appearing above.

Finally I would like to mention Sergei Nazarov and Serge Nicaise, who helped me pass around
the corners.
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Some preliminairies with corners

1 A Dirichlet problem on a sector

Let us fix standard sector in R2 with opening angle α ∈ (0, 2π) as follows:

Cα =
{

(r cosϕ, r sinϕ) ∈ R2; 0 < r < 1 and |ϕ| < 1
2α
}
. (1)

Out[ ]= α α α α α α

Figure 1: Some sectors from (1)
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We consider the Dirichlet problem
−∆u = 0 in Cα,

u
(
r cos(1

2α),±r sin(1
2α)
)

= 0 for 0 ≤ r ≤ 1,

u (cosϕ, sinϕ) = cos
(
π
αϕ
)

for |ϕ| ≤ 1
2α.

(2)

One may check directly that a solution to (2) is

uα (r cosϕ, r sinϕ) = rπ/α cos
(
π
αϕ
)
. (3)

Several of these solutions are sketched in Figure 2.

Out[ ]=

Figure 2: Some solutions from 2

In which function spaces are the functions in (3)? By direct computation one finds:
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Lemma 1 Let α ∈ (0, 2π) and uα be defined in (3).

1. If α = π
k for k ∈ N+, then uα ∈ C∞(Cα).

2. If α ∈ (π, 2π), then uα ∈ C0,π/α(Cα).

3. If α ∈
(

π
k+1 ,

π
k

)
for some k ∈ N+, then uα ∈ Ck,π/α−k(Cα).

4. If
(
k − 2

p

)
α < π for some k ∈ N+, then uα ∈W k,p(Cα).
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Figure 3: The relation between the opening angle and the regularity of uα
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Remark 2 A rough conclusion of this lemma would be: smaller angle implies more regularity.

Remark 3 The last item implies that for any α ∈ (0, 2π) one finds that uα ∈ W 1,2(Cα). Since
solutions in W 1,2(Cα) are unique, the function uα is the unique (weak) solution of (2).

For the first item one should notice that

uπ(x) = x1, uπ/2(x) = x1x2, uπ/3(x) = x1

(
x2

1 − 3x2
2

)
etc.

For the Sobolev spaces one finds for noninteger coefficients π/α that uα ∈W k,p(Cα), if and only if∫ 1

0

(
rπ/α−k

)p
r dr <∞,

which is equivalent to
(
π
α − k

)
p+ 1 > −1.
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2 Poisson problems and corners

Without going into details we will compare the solutions ue and φ1 of{
−∆u = 1 in Ω,
u = 0 on ∂Ω,

and

{
−∆ϕ = λ1ϕ in Ω,

ϕ = 0 on ∂Ω,
(4)

for some special domains Ω in R2. The solution on the left we ue. On the right is λ1 the first eigenvalue
and ϕ1 the first eigenfunction that we may take positive. For a smooth domain such as the disk one
finds that there are positive constants c1 and c2 such that

c1ue(x) ≤ ϕ1(x) ≤ c2ue(x) for all x ∈ Ω. (5)

In that case we will write ue ∼ ϕ1 on Ω. For the disk see Figure 4.

Figure 4: On the left the solution of (4); on the right the first eigenfunction.
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If ∂Ω is smooth, then Hopf’s boundary point Lemma states that for a solution of{
−∆u = f 
 0 in Ω,

u = 0 on ∂Ω,

a constant cf > 0 exists, such that u(x) ≥ cfd (x, ∂Ω) for all x ∈ Ω. The function x 7→ d (x, ∂Ω) is the
distance to the boundary:

d (x, ∂Ω) = inf {|x− x∗| ;x∗ ∈ ∂Ω} .

The estimate from above depends on the regularity of the solution. On smooth domains one finds
that u ∈ C1(Ω), whenever f ∈ Lp (Ω) with p > n. See [24].
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Example 4 We take

Ω =
{

(r cos θ, r sin θ) ; 0 < θ < 3
2π and 0 < r < 1

}
.

Near the reentrant corner in 0 one finds for ue and for ϕ1 the same behaviour:

ue (r cos θ, r sin θ) ∼ ϕ1 (r cos θ, r sin θ) ∼ r2/3 sin
(

2
3θ
)

for r < 1
2 .

Figure 5: ue and ϕ1 on a 3 quarter disk
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Example 5 For the square Ω = {(x, y) ; x, y ∈ (0, 1)} something different happens:

ue (r, r) ∼ r2 log
(
r−1
)

and ϕ1 (r, r) ∼ r2.

One has different behaviour for constant and linear terms on the right hand side.

Figure 6: ue and ϕ1 on the square

One may show that in 2d the behaviour of ue and ϕ1 is different if and only if the angle is less
than or equal π/2.
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Example 6 Finally the intersection of two disks:

Ω = B√5 (0, 2) ∩B√5 (0,−2) .

The two end points of the intersection are (±1, 0). One finds near the left end point the following
behaviour:

ue (x, 0) ∼ (x+ 1)2 and ϕ1 (x, 0) ∼ (x+ 1)3.3879....

Figure 7: u and ϕ on the intersection of 2 disks

So, what will be the behaviour of u on domains with corners for f(u) = c1 + c2u{
−∆u = f(u) in Ω,

u = 0 on ∂Ω,

or even more general f?
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Semilinear and corners

3 A second order semilinear elliptic eigenvalue problem and corners

This first example is second order, and being second order it has a huge advantage above higher order,
namely one is able to employ the maximum principle, which allows one to transfer pointwise estimates
on the source to pointwise estimates of a solution.

Consider for Ω ⊂ Rn a bounded domain the semilinear boundary value problem{
−∆u = λf(u) in Ω,

u = 0 on ∂Ω.
(6)

A domain is an open and connected subset of Rn. The specific f we are interested in, is a bounded
sign changing function like the one sketched in Figure 8.

Condition 7 The semilinear term f in (6) is as follows:

1. f ∈ C1 (R;R);

2. it has a positive falling zero: ∃ρ > 0 with f(ρ) = 0 and such that f ′(s) < 0 for s ∈ (ρ− ε, ρ);

3.

∫ ρ

s
f(t)dt > 0 for all s ∈ [0, ρ).
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Figure 8: An example for the f in (6)

For the function sketched in Figure 8 one takes ρ = ρ3. For that f Condition 7.3 means that the
red area is smaller than the blue area in Figure 9.

ρ1 ρ2 ρ3I

II

Figure 9: The integral condition in Condition 7 means I < II.
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Theorem 8 (Clément-S. [10], [50]) Let f satisfy Condition 7. If Ω ⊂ Rn is a bounded domain
with ∂Ω ∈ C3,γ for some γ > 0, then there is ε0 > 0 and λ0 > 0 such that for all λ > λ0 there is
precisely one solution (λ, uλ) ∈ R+ × C2(Ω) satisfying (6),

uλ > 0 in Ω and max
x∈Ω

(uλ) ∈ (ρ3 − ε0, ρ3) .

For smooth domains it hardly plays a role if we have f(0) ≥ 0 or f(0) < 0. For the existence proof
one starts by constructing a sub- below a supersolution and use the result, that with such preliminaries
one may use the maximum principle and a fix-point argument to find that a solution in between exists.

The case f(0) ≥ 0. Suppose that Br(x0) ⊂ Ω. By ode-methods one may find a radially symmetric
solution (λ, vλ) on the domain Br(0) f or all λ > λBr(0). One defines a subsolution by

u(x) =

{
vλ (x− x0) for x ∈ Br(x0),

0 for x 6∈ Br(x0).
(7)

and a supersolution by u = ρ3.
Although we call u a subsolution, it is not so in the classical sence, since it is just Lipschitz and

not C2. The classical definition of a subsolution is a function satisfying (6) with ≤ instead of =, that
is {

−∆u ≤ λf(u) in Ω,
u ≤ 0 on ∂Ω.

(8)

For a subsolution the inequalities are reversed. One may even take sub- or supersolutions in C(Ω)
and consider the differential equation in distributional sense.
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ρ1

ρ2

ρ3

Ω

Figure 10: The initial sub- and supersolution for (6) when f(0) ≥ 0

Definition 9 u is a C-subsolution to (6) if u ∈ C(Ω) with u ≤ 0 on ∂Ω and∫
Ω

(u (−∆ϕ)− λf(u)ϕ) dx ≤ 0 for all 0 ≤ ϕ ∈ C∞0 (Ω) .

For C-supersolutions both inequalities involving u are reversed.

Lemma 10 If u1 and u2 are C-subsolutions, then u, defined by u(x) = max (u1(x), u2(x)), is a C-
subsolution.

Theorem 11 (See [3, 46, 10]) Let ∂Ω be regular in the sense of Perron. Suppose that f is Lipschitz-
continuous. Fix λ. If there exists a C-subsolution u and a C-supersolution u to (6) with u ≤ u, then
there exists a solution u ∈ [u;u].
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The u in (7) is such a C-subsolution. Setting M = max {|f ′ (t)| ; t ∈ [0, ρ3]} one finishes with a
fix-point argument for

Tλ· = (−∆ + λM)−1
0 (λf(·) + λM ·) : C(Ω)→ C(Ω)

on the ordered set [u, u] ⊂ C(Ω). Indeed

u 7→ λf(u) + λMu (9)

is increasing and for (−∆ + λM)−1
0 one uses the maximum principle. Together they imply that

u ≤ v =⇒ Tλu ≤ Tλv.

Remark 12 For the function in (9) to be increasing on [0, ρ3] for some large it is sufficient that f is
the difference f1 − f2 of an increasing function f1 and a Lipschitz-function f2. For (−∆ + λM)−1

0 :
L∞ (Ω)→ C(Ω) to be well-defined ∂Ω should be regular in the sense of Perron, which holds for example
if ∂Ω is Lipschitz. So when f (0) ≥ 0 corners are allowed for the existence statement in Theorem 8.

For a C-subsolution and for a C-supersolution one also finds

Tλu ≥ u and Tλu ≤ u respectively.

So
u ≤ Tλu ≤ T 2

λu ≤ T 3
λu ≤ · · · ≤ T 3

λu ≤ T 2
λu ≤ Tλu ≤ u on Ω.

Both T kλu and T kλu converge to functions satisfying Tλu = u, that is, a solution u exists with u ∈ [u, u].
See [3].
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The case f(0) < 0. If f(0) < 0, for example as in Figure 11 on the left, one cannot use u = 0 for a
subsolution since 0 is no subsolution. In order not to violate Condition 7.3, one may need to modify
f(t) for t < 0. See Figure 11 on the right. If one does find a positive solution, the values of f(t) for
t < 0 do not matter. If not, then one doesn’t have a solution to the original problem.

ρ1 ρ2 ρ3 ρ1 ρe ρ2 ρ3
I

II

Figure 11: An f with f(0) < 0 and a modified f to have I < II.

So we consider f as on the right in Figure 11. Let (λ, vλ) be a radially symmetric solution of{
−∆v = λf(v) in Br(0),

v = ρe on ∂Br(0),
(10)

with vλ(0) ∈ (ρ2, ρ2), which is radially symmetric and can be obtained as the solution of an ode.
We construct the subsolution by

ux0
(x) =

{
vλ (x− x0) for x ∈ Br(x0),

ρe for x 6∈ Br(x0).
(11)
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Keeping u = ρ3 as a supersolution one finds again a solution in
[
ux0

, u
]
. However, such a solution is

not a priori positive.

ρe

ρ2

ρ3

Ω

0 ← below 0

Figure 12: The initial sub- and supersolution for (6) when f(0) < 0

What helps us, is a result that combines the maximum principle with a continuity argument:

Theorem 13 (McNabb [35], Serrin’s Sweeping Principle [47]) Suppose that u is a supersolu-
tion to (6) in the sense of Definition 9 and that {ut; t ∈ [0, 1]} is a continuous family in C(Ω) of
subsolutions to (6). If u0 ≤ u in Ω, then either

1. ut < u in Ω for all t ∈ [0, 1], or

2. ut = u in Ω for some t ∈ [0, 1].
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If ∂Ω ∈ C1,1 holds, then Ω satisfies a uniform interior sphere condition and hence for some r > 0
the domain can be filled with balls of radius r:

Ω =
⋃
x∈Ωr

Br (x) ,

where also Ωr = {x ∈ Ω; d (x, ∂Ω) > ε} is a connected set. For this r we consider the C-subsolution in
(11). Since the solution is radially symmetric one finds {x;u (x) > 0} = Br′(x0) for some r′ < r. Also
Ωr′ is a connected set and one applies Theorem 13 to any curve in Ωr′ starting in x0. It follows that
the solution u ∈

[
ux0

, u
]

satisfies
u > ux̃ for all x̃ ∈ Ωr′ ,

which implies that u > 0 in Ω. See Figure 13. Moreover, only if u ≥ 0 one finds that the solution with
the modified f is a solution with the original f .

ρe

ρ2

ρ3

ρe

ρ2

ρ3

0 0

Ω Ω

Figure 13: Sliding subsolutions for (6) when f(0) < 0
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Figure 14: Smooth domains can be filled with uniformly sized balls

Remark 14 Notice that this argument uses that Ω satisfies a uniform interior sphere condition. Even
if one started with another set Qx0 instead of Br(x0), the set Q′x0

:= {x ∈ Qx0 ; v (x) > 0} would be
smooth. One cannot fill up a domain Ω with Q′x̃ when ∂Ω has convex corners.

As in R2 we will fix a standard cone in Rn with opening angle α ∈ (0, π) as follows:

Cα =
{(
x1, x

′) ∈ R+ × Rn−1;
∣∣x′∣∣ < x1 tan

(
1
2α
)}
. (12)

Theorem 15 (S. [51]) Let f satisfy Condition 7 and be such that f(0) < 0. Suppose that Ω is a
bounded domain with ∂Ω ∈ C0,1. Then there is αf ∈ (0, π) such that if

Ω ∩Bε (0) = Cα ∩Bε (0)

for some ε > 0 and α < αf , (6) does not have a positive solution.
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α

Figure 15: A standard cone Cα
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Proof. If u in C(Ω), then f(u) ∈ C(Ω) ⊂ Lp(Ω) and since ∂Ω ∈ C0,1 we find that u ∈ W 2,p
loc (Ω) for

all p ∈ (1,∞). For p large enough, we then find that u ∈ C1(Ω). So f(u) ∈ C0,1(Ω) ⊂ W 1,p
loc (Ω) and

u ∈W 3,p
loc (Ω) for all p ∈ (1,∞) and u ∈ C2,γ(Ω). Note that C(Ω) and Lp(Ω) are normed vectorspaces

(even Banach) while C0,1(Ω) or W 3,p
loc (Ω) are just vectorspaces.

Through a scaling argument, xnew := λ1/2x and εnew := λ1/2ε, we may assume that λ = 1. We
proceed through a series of pointwise estimates. We may take αf a priori as small as we like and with
the square in mind, with π/2 as the angle where the behaviour of ue and ϕ1 diverged, see Example 5,
we take αf ≤ 1

2π.

Figure 16: In blue part of the domain with the supersolution u1 above and constant subsolution below

1. Set fm = max {f(u); 0 ≤ u ≤ ρ3}, K =
√

2ρ3fm and

u1(x) =

{
Kx1 − 1

2fmx
2
1 for x1 ≤ K/fm,

ρ3 for x1 > K/fm.
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One finds that −∆u1 (x) = fm and together with the boundary conditions it implies that u1 is
a supersolution and by sweeping from above, i.e. considering u+ t and t ↓ 0 one finds u ≤ u1.

2. Fix ε∗ ∈ (0,K) such that f(s) ≤ 1
2f(0) for s ∈ [0, ε∗] and fix the subdomain

Ω∗ ⊂
{
x ∈ Ω ∩Bε (0) ;x1 < K−1ε∗

}
.

Figure 17: The supersolution vc

Consider
vc (x) = −1

8f(0)
(
x2

1 − x2
2

)
log (cx1) (13)

to find, independent of c ∈ R+, that

−∆vc(x) =

(
3 +

(
x2

x1

)2
)

1
8f(0) ≥ 1

2f(0) for x ∈ Ω∗.
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Next we take c such that

vc (x) ≥ u (x) for all x ∈
{
x ∈ ∂Ω∗; x1 = K−1ε∗

}
.

On the rest of ∂Ω∗ we have vc (x) ≥ 0 = u (x). Note that the function vc has a negative minimum
in

x̃ =
(

1
c
√
e
, 0
)
.

3. Again we use the Sweeping Principle with t > 0 and large such that

vc (x) + t > u (x) for x ∈ Ω∗.

In fact, we suppose that u ≥ 0 and and reduce t until

vc (x) + t ≥ u (x) for all x ∈ Ω∗ and

vc (x̃) + t = u (x̃) for some x̃ ∈ Ω∗.

If such t is strictly positive, then x̃ ∈ Ω∗ and by the Strong Maximum Principle vc (x)+ t = u (x)
for all x ∈ Ω∗, which cannot be true at all of the boundary ∂Ω∗ whenever t > 0. So t = 0
remains and this implies that

u (x̃) ≤ vc (x̃) < 0.

Whenever f(0) < 0 and α ≤ 1
2π no positive solution exists.

Remark 16 It is not clear if αf = 1
2π is optimal.

Remark 17 In higher dimensions one may use similar arguments when replacing vc in (13) by

vc
(
x1, x

′) = −1
8f(0)

(
x2

1 − 1
n−1

∣∣x′∣∣2) log (cx1) .
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Two paradoxes through corners

4 The paradox of Saponzhyan

Saponzhyan interested in the fourth order problem{
∆2u = f in Ω,

u = ∆u = 0 on ∂Ω,
(14)

which is known for Ω ⊂ R2 as the hinged plate problem. The name supported plate, which one also
finds for (14), is not appropriate, since it assumes the plate to stick to the supporting edges all around.
For Saponzhyan one refers to his book [45] and earlier computations on some special domains in [44].

It is very tempting to write (14) as a system:{
−∆v = f in Ω,
v = 0 on ∂Ω,

and

{
−∆u = v in Ω,
u = 0 on ∂Ω.

(15)

Without any condition on Ω besides being bounded, for each f ∈ L2(Ω) the left hand side of (15) has
a unique weak solution in W 1,2

0 (Ω).

Definition 18 A weak solution v of (15-left) is a function v ∈W 1,2
0 (Ω) satisfying∫

Ω
(∇v · ∇ϕ− f ϕ) dx = 0 for all ϕ ∈W 1,2

0 (Ω).
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Such a solution can even be found for f ∈ W−1,2(Ω) =
(
W 1,2

0 (Ω)
)′

when we replace
∫

Ω f ϕdx by

the duality relation.
The existence of such a weak solution follows from Riesz’ Representation Theorem and doesn’t

need any regularity of the boundary. The only condition that is necessary is u 7→ ‖∇u‖L2(Ω) being a
norm and for that one uses the Poincaré-Friedrichs inequality

‖u‖L2(Ω) ≤ CΩ ‖∇u‖L2(Ω)

for which it is sufficient that Ω is bounded.

Problem 19 (Sapondzhyan) Suppose that Ω has a reentrant corner such as for example

Ω = (−1, 1)2 \ (−1, 0]2 or Ω = B1 (0, 0) \ (−1, 0]2 .

The system solution u obtained through iteration of weak solutions in (15) satisfies

(u,∆u) ∈W 1,2
0 (Ω)×W 1,2

0 (Ω). (16)

If 0 � f ∈ C∞(Ω), then u, v from (15) satisfy v (x) > 0 in Ω and u ∼ r2/3 sin
(

2
3ϕ+ 1

3π
)
. So

E (u) ∼ ‖u‖W 2,2(Ω) ≥ c
∫ 1/2

r=0

(
r2/3−2

)2
rdr = c

∫ 1/2

r=0
r−4/3dr =∞.

However, simplifying the model somewhat, a solution consistent to the elastic energy model should be
a minimizer of

J (u) =

∫
Ω

(
1
2 (∆u)2 − f u

)
dx (17)
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Figure 18: L-shaped domains

and the correct space would be
u ∈ W := W 2,2(Ω) ∩W 1,2

0 (Ω), (18)

or written similarly to (16)
(u,∆u) ∈ W × L2(Ω). (19)

The first thing that one should notice, is that u from (16) has two, while u from (19) seems to
have to satisfy just one boundary condition. Indeed ∆u ∈W 1,2

0 (Ω) implies that in the sense of traces
∆u = 0 on the boundary in the sense of traces. See [20]. A minimizer of the functional J in (17)
satisfies ∫

Ω
(∆u ∆ϕ− f ϕ) dx = 0 for all ϕ ∈ W

and assuming that u ∈ W 4,2
loc (Ω), where the local restriction means inside and on every smooth

boundary part, we may test with ϕ having support in the subdomain where u is W 4,2, and find after
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integration by parts for all those ϕ ∈ W ⊂W 1,2
0 (Ω), that

0 =

∫
∂Ω

(
∆u ∂

∂nϕ−
(
∂
∂n∆u

)
ϕ
)
dσx +

∫
Ω

(
∆2u− f

)
ϕdx

=

∫
∂Ω

∆u ∂
∂nϕ dσx +

∫
Ω

(
∆2u− f

)
ϕdx.

Restricting moreover to ϕ ∈W 2,2
0 (Ω), it follows that∫

Ω

(
∆2u− f

)
ϕdx = 0.

Hence also ∫
∂Ω

∆u ∂
∂nϕ dσx = 0

and this implies ∆u = 0 on smooth boundary parts. The second boundary condition appears as a
natural condition from the variational formulation.

Now for the difference of the solutions in (16) and (19).

Theorem 20 (see [39]) Let Ω ⊂ R2 be a bounded domain and suppose that ∂Ω has one reentrant
corner in (0, 0). More precisely, we assume for some ε > 0 and α ∈ (π, 2π) that

Ω ∩Bε (0, 0) =
{
r (cos θ, sin θ) ; 0 < r < ε and |θ| < 1

2α
}
.
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Then there exists a function s ∈ C
(
Ω
)
∩ C∞ (Ω), with O = {(0, 0)}, satisfying

∆2s (x) = 0 for all x ∈ Ω,
s (x) = 0 for all x ∈ ∂Ω,

lim
Ω3y→x

∆s (y) = 0 for all x ∈ ∂Ω \ {(0, 0)} ,

and a constant c, such that with u the solution for (16), one has that

u2 := u+ cs ∈ W (20)

is the minimizer of J from (17) in (19).

Remark 21 For this function s one finds s 6∈ W as well as ∆s 6∈W 1,2
0 (Ω).

Remark 22 For the sector Cα one finds the explicit formula

s (x) =

(
1 + π

α

)
r2−π/α −

(
1− π

α

)
r2+π/α − 2παr

π/α

4π
(
1 + π

α

) (
1− π

α

) cos
(
π
αθ
)
, (21)

writing x = (x1, x2) = r (cos θ, sin θ) if convenient.

The construction of s is as follows. We start with

ζ0 (x) = 1
π r
−π/α cos

(
π
αθ
)

.
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One finds ζ0 ∈ C∞
(
Ω \O

)
for O = {(0, 0)} and moreover ζ0 = 0 on (∂Ω \O) ∩Bε (0, 0). Notice that

α > π implies that ζ0 ∈ L2 (Ω) \W 1,2 (Ω). Next let χ be a C∞
(
R2
)

function with

χ (x) = 0 for |x| < 1
2ε and χ (x) = 1 for |x| > ε.

and set ζ1 to be the W 1,2
0 (Ω) solution of{

−∆ζ = −∆ (χζ0) in Ω,
ζ = 0 on ∂Ω.

Notice that ∆ (χζ0) ∈ C∞
(
Ω
)
. We set

ζ = (1− χ) ζ0 − ζ1.

Near 0 one finds that (1− χ) ζ0 = ζ0 and hence (1− χ) ζ0 ∈ L2 (Ω) \W 1,2 (Ω). Since ζ1 ∈ W 1,2 (Ω)
the function ζ is nontrivial and satisfies{

−∆ζ = 0 in Ω,
ζ = 0 on ∂Ω.

(22)

Remark 23 Although this might seem a contradiction, it is not. Uniqueness for (22) holds in W 1,2 (Ω)
and not in L2 (Ω).

Finally we define s, the so-called dual singular function, as the solution in W 1,2
0 (Ω) of{

−∆s = ζ in Ω,
s = 0 on ∂Ω.

(23)
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Combining (22) and (23) one finds that for any c ∈ R the function u2 = u+ cs satisfies
∆2u2 = f on Ω,
u2 = 0 on ∂Ω,

“ ∆u2 = 0 ” on ∂Ω \ {(0, 0)} .

The equations need some explanation. Only for smooth f these are satisfied pointwise inside Ω and
on smooth boundary parts.

So how do we need to choose c ∈ R such that u2 ∈ W?

We will give the formula, but the actual explanation needs the theory initiated by Kondrat’ev,
Grisvard. For that formula for u2 it is convenient to use the notation

G : W−1,2 (Ω)→W 1,2
0 (Ω)

for the weak solution operator for the Poisson problem, namely,

u = Gf is the weak solution of

{
∆u = f on Ω,
u = 0 on ∂Ω.

Proposition 24 Suppose that Ω is as in Theorem 20, f ∈ L2 (Ω) and u = G2f . Let ζ and s be as in
(22,23). Then

u2 =
(
G2 − GPζG

)
f with Pζv =

∫
Ω v ζ dx∫
Ω ζ

2 dx
ζ

so Pζ is the L2 (Ω)-projection on ζ.
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Remark 25 In other words: for the c in (20), which is called the ‘stress intensity factor’, one has

c = −
〈Gf, ζ〉L2(Ω)

〈ζ, ζ〉L2(Ω)

.

The following result concerning solutions for (14) can be found in [39], where also domains with
cones in higher dimensions are considered.

Theorem 26 (Nazarov-S. [39]) If Ω ⊂ R2 is a bounded polygonal domain, with at least one corner

with angle larger than π, then (14) h as a unique system solution u1 such that (u1,∆u1) ∈
(
W 1,2

0 (Ω)
)2

,

as well as a unique weak solution u2 with (u2,∆u2) ∈
(
W × L2(Ω)

)
. Generically u1 6= u2.

When approximating solutions by numerical methods such as finite elements, second order prob-
lems can be dealt with by piecewise linear test-functions. Fourth order problems need quadratic
test-functions which result in much more complicated computations. So the system solution is much
easier to implement than directly trying to approximate the fourth order solution. There are some
pitfalls, see [6, 23]. Indeed, the above tells one that whenever nonconvex corners are present, one has
to deal with those corners in a special way if one wants to approximate u2 by second order methods.
See [13].

Even for the clamped plate, where the boundary conditions do not decouple nicely with the differ-
ential equations, one may use a second order system approach. See [9]. Also here nonconvex corners
need a special treatment as has been shown in [12].
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5 The paradox of Babushka

The linear 2d Kirchhoff-Love model for a thin plate is derived from a 3d elasticity model with the
thickness going to 0 assuming that the deviation and its first and second derivatives are small. For
smooth domains that could be fine but corners, as we have seen, might violate the smallness assumption
of first or second derivatives.

For a heuristic derivation of the energy model one may also consider the following approach. Let
Ω ⊂ R2 be the shape of the plate and let u : Ω→ R be the deviation from 0 under a force with density
f : Ω→ R. Using the following approximations of the principal curvatures

κ1 (x) = max
|v|=1

∂2

∂v2
u (x) and κ2 (x) = min

|v|=1

∂2

∂v2
u (x)

and with σ the Poisson ratio between the effect of bending and torsion, a simple formula for the elastic
energy is

J (u) =

∫
Ω

(
1
2

(
κ2

1 + κ2
2

)
+ σκ1κ2 − f u

)
dx. (24)

The Poisson ratio is a material depending constant σ ∈
(
−1, 1

2

)
. For most metals one measures

σ ≈ 0.3. Since (κ1 + κ2)2 = ∆u and κ1κ2 = u2
xy − uxxuyy one may simplify this expression to

J (u) =

∫
Ω

(
1
2 (∆u)2 + (1− σ)

(
uxxuyy − u2

xy

)
− f u

)
dx. (25)

The appropriate space for the functions u is W = W 2,2 (Ω) ∩W 1,2
0 (Ω) with the 0 taking care of the

boundary condition. Through (24) one finds that |σ| < 1 is sufficitnt for J to be coercive. For a
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minimizer u ∈ W one has
∂J (u; v) = 0 for all v ∈ W.

The middle term in (25) is a so-called nulllagrangian. It doesn’t show up in the Euler-Lagrange
differential equation but does have its effect on the boundary conditions. We find

∆2u = f in Ω,
u = 0 on ∂Ω,

∆u− (1− σ)κuν = 0 on ∂Ω.
(26)

Here κ is the signed curvature of the boundary and taken positive on convex parts and uν is the
outside normal derivative. More details can be found in [22].

On polygonal domains (26) seems to turn into{
∆2u = f in Ω,

∆u = u = 0 on ∂Ω.
(27)

Problem 27 (Babuška) Set f = 1 and σ = .3. Let un be the solution of (27) for Ω = Ωn, the
regular n-gon with corners on ∂D and let uσ=.3 be the solution of (26) for Ω = D. Then

lim
n→∞

un = uσ=1 6= uσ=.3.

One should notice that at a corner the term κuν in (26) is somewhat like ±∞ · 0. On a convex
domain, the solution of the Poisson problem with f ∈ L2(Ω) satisfies u ∈ W 2,2(Ω) which means
∇u ∈ Lq(Ω) but not yet L∞(Ω).

Maz’ya and Nazarov [32, 33] and Davini [15] looked into ways to approximate the Jσ-minimizer
on a smooth Ω by polygons.
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Out[ ]=

Figure 19: Approximation by n-gons

-1 1

0.03

0.06 uσ=.3

uσ=1

Figure 20: Top: uσ=.3 and bottom: uσ=1 = uD

Remark 28 When there are boundary conditions we are used to think first of Dirichlet and Dirichlet
conditions are quite robust. Indeed, for {

−∆u = f in Ω,
u = 0 on ∂Ω,

(28)

with f ∈ L2(Ω) there is a unique weak solution u ∈ W 1,2
0 (Ω). If we would consider the Babuška-type

problem for (28), then, since W 1,2
0 (Ω) is the closure in ‖·‖W 1,2(Ω) of C∞(Ω)-functions with compact

support, each function in W 1,2
0 (Ω) can be approximated by functions in W 1,2

0 (Ωn) extended by 0 on
Ω \ Ωn. And for the actual case f = 1 the pointwise convergence follows directly from Ωn ⊂ D ⊂
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(
1 +

(
π
n

)2)
Ωn, by taking the solutions un on Ωn and ũn on

(
1 +

(
π
n

)2)
Ωn as a direct consequence of

the maximum principle. One finds

un(x) ≤ u(x) for x ∈ Ωn and u (x) ≤ ũn(x) for x ∈ D.

Here we may even use ũn(x) =
(

1 +
(
π
n

)2)2
un

((
1 +

(
π
n

)2)−1
x

)
. Hence

lim
n→∞

‖un − u‖L∞(Ωn) = 0. (29)

For nonconstant f (first of fixed sign) one does not find the explicit scaling between un and ũn but
nevertheless, since

lim
n→∞

∥∥∥∥f ((1 +
(
π
n

)2)−1
·
)
− f

∥∥∥∥
L2(Ωn)

= 0

one may derive that (29) still holds.

Iterating the result of the last remark one finds that the system solutions on Ω = Ωn as in (15)
converge to the solution of (14). So indeed, uD = uσ=1.
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Kondrat’ev e.a. on corners

6 Existence, uniqueness and regularity in the classical situation

Suppose that Ω ⊂ Rn is bounded and that ∂Ω is smooth, say ∂Ω ∈ C∞. Let us consider a 2mth-order
elliptic boundary value problem with m boundary conditions of order mj for j = 1, . . . ,m{

(−∆)m u = f in Ω,
Bju = 0 on ∂Ω for 1 ≤ j ≤ m.

• One assumes that the Bj are independent boundary operators. It can be formulated as an
algebraic condition in each boundary point and involves the elliptic operator. It is usually called
complementing condition or named after Shapiro-Lopatinski. Both Dirichlet, i.e.

Bju =

(
∂

∂ν

)j−1

u

and Navier, i.e.
Bju = ∆j−1u

satisfy the complementing condition. See [11].
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If Bj is of order mj with m1 < m2 < · · · < mj < 2m and

Bju =

(
∂

∂ν

)mj
+
∑
i<mj

∑
|β|≤mj−i

ai,β

(
∂

∂ν

)i( ∂

∂τ

)β
,

then the complementing condition is satisfied.

• The value 0 should not be in the spectrum. For the Neumann problem{
−∆u = f in Ω,
∂
∂νu = 0 on ∂Ω

the value 0 is an eigenvalue.

For the existence of a solution there are several approaches:

1. Using a singular integral approach by Calderon-Zygmund [8] one derives the existence of a strong
solution in W 2m,p (Ω). One needs a sufficiently smooth boundary.

2. For the Dirichlet problem and using the self-adjointness one may obtain a weak solution by Riesz
Representation Theorem. Extending Riesz by Lax-Milgram one can allow some perturbations.

3. Again in a self-adjoint setting one may consider a variational formulation and its minimizer will
be the weak solution. In this case higher order boundary conditions may follow as a natural
condition for the minimizer.
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Uniqueness is a very problem-depending question. For second order problems the maximum prin-
ciple is very helpful. For higher order one may add a term λu to the equation and show coercivity for
that λ. Using regularity result from Agmon, Douglis and Nirenberg [1, 2] the solution operator for
that λ will be compact, implying that that there is a solution for all λ except for a most countably
may exceptions.

Example 29 Consider the Navier bilaplace problem{
∆2u = f in Ω,

u = ∆u = 0 on ∂Ω.
(30)

1. Let f ∈ Lp (Ω) for p ∈ (1,∞). Then there is a solution u ∈W 4,p (Ω) and moreover the regularity
results from [1] state that for f ∈W k,p (Ω) with k ∈ N one obtains that u ∈W 4+k,p (Ω).

2. Let f ∈ W−1,2 (Ω) be the dual of W 1,2
0 (Ω). As explained before around (15) there is a unique

(weak-weak) solution of (30), meaning (u,∆u) ∈ W 1,2
0 (Ω) × W 1,2

0 (Ω). For this approach no
regularity condition for the boundary is needed.

3. The variational approach for (30) uses the functional

J (u) :=

∫
Ω

(
1
2 (∆u)2 + f u

)
dx

for u ∈ W 2,2 (Ω) ∩W 1,2
0 (Ω) and the minimizer for J will be a W 2-weak solution. The only a

priori boundary condition is u = 0 following from u ∈W 1,2
0 (Ω). For the minimizer we find

0 = ∂J (u, ϕ) =

∫
Ω

(∆u ∆ϕ+ f ϕ) dx
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and when satisfies ∆u = 0 as a natural condition, meaning that if ∂Ω ∈ C3, one may prove
u ∈ W 3,2 (Ω) implying that the trace ∆u|∂Ω

is defined and one obtains ∆u = 0 on ∂Ω as trace.
See [20] for a definition of trace. A condition that one needs is that the functional is coercive on
W 2,2 (Ω) ∩W 1,2

0 (Ω). By Poincaré-Friedrichs one finds that C1 ∈ R exists such that

‖u‖W 1,2(Ω) =

(∫
Ω

∑
|α|≤1

(∂αu)2 dx

)1/2

≤ C1 ‖|∇u|‖L2(Ω) .

On smooth domains one even finds that C2 ∈ R exists such that

‖u‖W 2,2(Ω) =

(∫
Ω

∑
|α|≤2

(∂αu)2 dx

)1/2

≤ C2 ‖∆u‖L2(Ω) . (31)

Whenever Ω has a reentrant corner, the estimate in (31) is not so clear. A reentrant corner has
angle in (π, 2π) as on the upper side of the next domain.

Remark 30 Take Ω = Cα ∩B1 (0) for α ∈ (π, 2π) and the function

v (r, θ) =
(
rπ/α − r2

)
cos
(π
α
θ
)
.

One finds that v is the unique weak solution of{
−∆v =

(
4− (π/α)2

)
cos
(
π
αθ
)

in Ω,

v = 0 on ∂Ω,

with ∆v ∈ L2(Ω) but ‖v‖W 2,2(Ω) =∞.
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7 Elliptic problems on domains with cones

The first remark that one should make, is that regularity is ‘local’. If the coefficients of the operator
are sufficiently smooth and the operator is uniformly elliptic of order 2m, then, away from singular
points of the boundary, the regularity of a solution u near a point x depends on the regularity of f near
that point and, when x is a boundary point, the regularity of the boundary near x. So for deriving
regularity results near a singular point of the boundary, we may zoom it at that singular point and
proceed ‘locally’. Kondrat’ev [29] focuses on the highest order derivatives and freezes the coefficients
to the values at the singular point.

⟶
t=log(r)

Figure 21: The transformation. We may assume that f = 0 on the right of the dashed line.

We assume that the singularity lies in 0 and that Ω nearby is cone shaped: there is ω ⊂ ∂B1 (0),
a domain on the sphere in Rn such that

Ω ∩Bε (0) = Cω,ε := {x = rω; 0 < r < ε and ω ∈ω} . (32)

As a first step one proceeds by spherical coordinates x = rω with ω ∈ ω and a second transfor-
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mation r = et. One obtains

∆ =
∂2

∂r2
+
n− 1

r

∂

∂r
+ r−2∆ω = e−2t

(
∂2

∂t2
+ (n− 2)

∂

∂t
+ ∆ω

)
.

Here ∆ω denotes the Laplace-Beltrami operator on ω ⊂ ∂B1 (0). So

−∆u = f becomes

(
− ∂2

∂t2
− (n− 2)

∂

∂t
−∆ω

)
ũ = e2t f̃ , (33)

now defined on the cylinder R×ω. Note that e2t f̃ (t, ω) = r2f (r, ω).
For the second step one uses that in L2-type spaces the Fourier transform and its inverse

(Fu) (ξ) :=
1√
2π

∫
R
e−itξu (t) dt and

(
F−1v

)
(t) :=

1√
2π

∫
R
eitξv (ξ) dξ

is most helpful through the following properties:

1. F : L2 (R;C)→ L2 (R;C) is an isomorphism (Plancherel Theorem):

‖Fu‖L2(R) = ‖u‖L2(R) for all u ∈ L2 (R) .

2. Differentiation is replaced by multiplication:(
Fu′

)
(ξ) = iξ (Fu) (ξ) .
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Using the Fourier transform with respect to t in the differential equation on the right in (33) one
obtains (

ξ2 − i (n− 2) ξ −∆ω

)
(Ft→ξũ (t, ω)) = Ft→ξ

(
e2t f̃ (t, ω)

)
, (34)

and one finds for {
−∆u = f in Cω,∞,
u = 0 on ∂Cω,∞.

(35)

a parameter dependent boundary value problem:{ (
ξ2 − i (n− 2) ξ −∆ω

)
v = g in ω,

v = 0 on ∂ω. (36)

Assuming ∂ω to be smooth the usual elliptic regularity applies for (36) although we need to find
estimates with an optimal dependence on ξ.

For a general 2m-th order elliptic boundary value problem and Ω satisfying (32) one goes through
polar coordinates from A

(
∂
∂x1

, . . . , ∂
∂xn

)
u = f in Ω,

B
(

∂
∂x1

, . . . , ∂
∂xn

)
u = ~g on ∂Ω,

to

 Ã
(
∂
∂r ,

∂
r∂ω1

. . . , ∂
r∂ωn−1

)
u = f in Ω,

B̃
(

∂
r∂ω1

. . . , ∂
r∂ωn−1

)
u = ~g on ∂Ω.

To study the local behaviour near the vertex of the cone one freezes the coefficients at 0 and consider
the highest order derivatives only. Next one replaces Ω by Cω,∞ and transform that problem through
r = et to a boundary value problem on the cylinder Ã

(
∂
∂t ,

∂
∂ω1

. . . , ∂
∂ωn−1

)
u = e2mtf in Ω,

B̃
(

∂
∂ω1

. . . , ∂
∂ωn−1

)
u =

{
e2mktgk

}
on ∂Ω.
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Then by a Fourier transform with respect to t one becomes Ã
(
ξ, ∂

∂ω1
. . . , ∂

∂ωn−1

)
u = f (· − 2mi) in ω,

B̃
(

∂
∂ω1

. . . , ∂
∂ωn−1

)
u = {gi (· − 2mki)} on ∂ω.

Definition 31 One calls

U (ξ) =

 Ã
(
ξ, ∂

∂ω1
. . . , ∂

∂ωn−1

)
B̃
(

∂
∂ω1

. . . , ∂
∂ωn−1

) 
an operator pencil. The formal adjoint is

U∗ (ξ) =

 Ã∗
(
ξ, ∂

∂ω1
. . . , ∂

∂ωn−1

)
B̃∗
(

∂
∂ω1

. . . , ∂
∂ωn−1

)  .

For the Dirichlet-Laplace problem we have

U (ξ) v =

( (
ξ2 − i (n− 2) ξ −∆ω

)
v

v|∂ω

)
and U∗ (ξ) v =

( (
ξ

2
+ i (n− 2) ξ −∆ω

)
v

v|∂ω

)
.

Here the problem

U (ξ) v =

(
g
0

)
(37)
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for g ∈ L2(ω) can be solved in W 2,2(ω)∩W 1,2
0 (ω), whenever ξ2 − i (n− 2) ξ is not an eigenvalue of{

−∆ωϕ = µ ϕ in ω,
ϕ = 0 on ∂ω. (38)

Moreover, if {µk}
∞
k=1 are the eigenvalues for (38) with eigenfunctions {φk}

∞
k=1, then these eigenfunc-

tions form a complete orthonormal system and can also be used to solve (37), since

U (ξ)φk =

(
ξ2 − i (n− 2) ξ + µk

0

)
φk,

results in

U (ξ) v =

(
g
0

)
⇔ v =

∞∑
k=1

1

ξ2 − i (n− 2) ξ + µk
〈φk, g〉L2(ω) φk.

For the Dirichlet-Laplace we not only have a complete orthonormal system but moreover, although
U (ξ) 6= U∗ (ξ), we may use the same eigenfunctions.

It is not sufficient to just solve (38) but one will also need an optimal ξ-depending estimate

‖v‖W 1,2(ω) ≤ C(ξ) ‖g‖W−1,2(ω) or ‖v‖W 2,2(ω) ≤ C(ξ) ‖g‖L2(ω) .

Such an estimate one may get by constructing an approximating Green operator. Or maybe one can
proceed by Weil’s asymptotics for the distribution of eigenvalues.
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Going back from (t, ω) to (r, ω) one arrives in a weighted space, where each radial derivative has
an additional factor r:

∂

∂t
u
(
et, ω

)
= r

∂

∂r
u (r, ω) and

∂2

∂t2
u
(
et, ω

)
= r2 ∂

2

∂r2
u (r, ω) + r

∂

∂r
u (r, ω) .

Instead of the usual Sobolev spaces the space W 2,2(ω)∩W 1,2
0 (ω) would lead us to a space with r2urr,

r∇ωur, ∆ωu, rur, ∇ωu and u all in a L2(Ω)-type space. All these functions in L2(Ω) is essentially
more than u ∈W 2,2 (Ω).

With the extra factor e2t = r2 in (34) appearing, it seems that one obtains something as follows:

x 7→ |x|2 f (x) ∈ L2 (Ω) =⇒ x 7→
(
|x|2∇2u (x) , |x| ∇u (x) , u (x)

)
∈ L2 (Ω) .

For f ∈ L2(R) satisfying f (t) = 0 for t > t0 the function ξ 7→ Ff(ξ) is well defined for ξ ∈ C with
Im ξ ≤ 0. Moreover, setting ua (t) = eatu (t) one finds for a > 0, that

(Fua) (ξ) = (Fu) (ξ − ai) .

For appropriate f this formula may also hold for a < 0. So we may play with the weight a. Let’s
make a more precise line-up:

• From x 7→ |x|2+a f (x) ∈ L2 (Ω) one finds (t, ω)→ e(2+a)t f̃ (t, ω) ∈ L2 (R×ω).

• With the Fourier transform F from t to ξ one finds fa (·, ω) :=
(
Ft→ξe(2+a)t f̃ (t, ω)

)
∈ L2 (R×ω).

Or combine both steps by a Mellin transform.
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• Next
{
〈φk, fa (ξ, ·)〉L2(ω)

}
k∈N+

∈ `2 with its t-dependent `2-norm as a function of ξ in L2 (R).

• Then a bound for
{
〈φk, ua (ξ, ·)〉L2(ω)

}
k∈N+

with

〈φk, ua (ξ, ·)〉L2(ω) = 1
(ξ−ai)2−i(n−2)(ξ−ai)+µk

〈φk, fa (ξ, ·)〉L2(ω) ,

whenever
(ξ − ai)2 − i (n− 2) (ξ − ai) + µk 6= 0, (39)

in a weighted `2-space with a corresponding ξ-dependent bound. The condition in (39) is satisfied
for all ξ ∈ R precisely when it is nonzero for ξ = 0, that is, when

−a2 − (n− 2) a+ µk 6= 0,

and this expression can be rewritten as

a 6= −n− 2

2
±

√
µk +

(
n− 2

2

)2

. (40)

• ‖ua (ξ, ·)‖L2(ω) ≤
ca(ξ)

ξ2+1
‖fa (ξ, ·)‖L2(ω) and

∥∥∇2
ωua (ξ, ·)

∥∥
L2(ω)

≤ ca (ξ) ‖fa (ξ, ·)‖L2(ω)?

• With the inverse Fourier transform, which is well defined if (39) holds for all ξ ∈ R, one obtains

eat (ũtt, ũtω, ũωω, ũt, ũω, ũ) ∈ L2 (R×ω) .
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• Returning from (t, ω) to (r, ω) and x one obtains

x 7→
(
|x|2+a∇2u (x) , |x|1+a∇u (x) , |x|a u (x)

)
∈ L2 (Ω) .

Also for an Lp-type setting one may proceed through these kind of arguments using Mikhlins
Multiplier Theorem. One still finds extra weigths |x|2m, where 2m is the order of the elliptic operator
and an extra power of |x| compensating each derivative. So one needs weighted spaces of the following
type:

Definition 32 Let p ∈ (1,∞), ` ∈ N and β ∈ R and set

V `,p
β (Ω) = C∞c (Ω \O)

‖·‖
with

‖u‖ = ‖u‖
V `,pβ (Ω)

:=

(∑`

j=0

∥∥∥|x|β−`+j ∣∣∇jxu∣∣∥∥∥p
Lp(Ω)

)1/p

.

In order to define suitable boundary conditions one also needs:

V `,p
β,0 (Ω) = C∞c (Ω)

‖·‖
.

Here C∞c (Ω \ O) is the set of all C∞(Ω)-functions which have compact support that does not
contain O = {0}.

Remark 33 Notice the similarity to the definition of W `,p
0 (Ω).
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Let us go back to the Dirichlet-Laplace case and (40). Writing

Λ±k = −n− 2

2
±

√
µk +

(
n− 2

2

)2

one finds power type functions

U±k (x) = |x|Λ±k φk

(
x

|x|

)
,

which satisfy {
−∆U±k (x) = 0 in Cω,∞,
U±k (x) = 0 on ∂Cω,∞.

and

U±k ∈ V `,2
β (Cω,1)⇔ 2 (β − `+ Λ±k) + n− 1 > −1

⇔ Λ±k > `− β − 1
2n.

Let us fix the range
Λ−1 < `+ 1− β − 1

2n < Λ1.

Writing ∆`,p
β withD

(
∆`,p
β

)
= V `+1,p

β (Ω)∩V β−`,p
1,0 (Ω) for the corresponding operator to the Laplace-

Poisson boundary value problem {
−∆u = f in Ω,
u = 0 on ∂Ω,

one obtains the following result:
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Proposition 34 Let Ω ⊂ Rn be as in (32) and set

Λ±1 = −n− 2

2
±

√
µ1 +

(
n− 2

2

)2

where µ1 is the first eigenvalue of (38). Then

∆`,p
β : V `+1,p

β (Ω) ∩ V 1,p
β−`,0 (Ω)→ V `−1,p

β (Ω)

is an isomorphism if and only if

Λ−1 < `+ 1− β − 1
pn < Λ1.

Remark 35 If Λ1 < ` + 1 − β − 1
pn then there are f ∈ V `−1,p

β (Ω) without a solution. For example

when f > 0 the solution contains a part that behaves near 0 like c |x|Λ1 φ1

(
x
|x|

)
with c > 0.

If Λ−1 > ` + 1 − β − 1
pn then solutions are not unique since V `+1,p

β (Ω) is not restrictive enough and

allows harmonic functions that behave like |x|Λ−1 φ1

(
x
|x|

)
.

So, in general no more regularity for a solution u, even for f ∈ C∞c (Ω), as what the cone allows.
The result of Kondrat’ev tells us, that when we want more regularity, one has to single out individual
singular components. From [29] one finds an almost explicit formula:

u (x) =
∑

h1<Imλj<h

kj∑
s=0

cjs |x|λj (ln |x|)s φjs
(
x

|x|

)
+ w (x) .
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Kondrat’ev seminal paper [29] treated the general 2m-th elliptic boundary value problems although
in a Hilbert space setting. He already refers to earlier results by Èskin for a general setting and others
for special cases. Maz’ya and and collaborators [30, 34], Nazarov, Plamenevskij [38], the french school,
Grisvard [25, 26], Dauge [14], Nicaise [42] have considered special cases and extended settings. Most
of their articles balance between the awfull technicalities of the general case and explicit results for
special cases motivated by applications. The role of the special functions was also noted by Williams
in [57]. In 2d-settings one may proceed through conformal mappings [56, 18], which is useful for
numerics.

For the Dirichlet laplacian or Navier bilaplacian self-adjointness implies that no logarithmic terms
appear:

u (x) =
∑

h1<Imλj<h

cj |x|λj φj
(
x

|x|

)
+ wh,h1 (x) , (41)

with h and h1 some bounds as before implied by values Λ±k. Noite that the formula of Kondrat’ev is
not asymptotic expansion. Even ny making the interval (h,h1) larger the corresponding wh,h1 is not
necessarily going to zero. The formula identifies the singular terms that might appear in the stated
range for any finite range.
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Returning to the semilinear problem{
−∆u = f(u) in Ω

u = 0 in ∂Ω
(42)

of Section 3. With f(u) = f(0) + cu + h.o.t we obtain approximately in the 2d case near the corner
now located in 0 for α 6= 1

2π that

u(x1, x2) = −1
2f(0)

x2
2 −

(
tan(1

2α)
)2
x2

1

1−
(
tan(1

2α)
)2 + cφ1 + ...

The first term is regular and corresponds to w in (41) while the second term resembles the singular
part. Notice that the sign near the corner is determined by:

1. The sign of the first term depends on f(0) and whether α larger or less than 1
2π is. That first

term is always quadratic.

2. The second term c̃φ1, that looks like rα/π cos(απ θ), is less than quadratic if and only if α > 1
2π.
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8 Two examples and their power type functions

Let us look in more detail to the singular functions that appear for the Dirichlet laplacian and Navier
bilaplacian. In this section we recall two graphs relating in two dimensions the opening angle α with
the corresponding power type functions rλkφk (θ) in the case of{

−∆u = f in Cα,
u = 0 on ∂Cα,

and

{
∆2u = f in Cα,

u = ∆u = 0 on ∂Cα.

Here as before Cα =
{

(r, θ) ; r > 0 and |θ| < 1
2α
}

.
In the horizontal direction one finds α and in the vertical direction the corresponding λk. Recall

that for nice φ the function uλ, defined by

uλ (x) = rλφ (θ)

satisfies uλ ∈W k,p (Cα,1)⇔ λ > k− 2
p . So the vertical direction not just displays the possible λ related

to the angle α but also corresponds to order of regularity.
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Figure 22: The Dirirchlet Laplace case
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Figure 23: The Navier bilaplace case
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A unilateral constraint and corners

9 The Kirchhoff-Love model for a supported plate

The following model was made plausible in Section 5 for a hinged plate
∆2u = f in Ω,
u = 0 on ∂Ω,

∆u− (1− σ)κun = 0 on ∂Ω,
(43)

or in the case of a polygonal domains where κ = 0 except at corners and we seem to arrive at (27), (30),
which is (43) with σ = 0. Whenever one finds in the literature ‘Kirchhoff-Love model for a supported
plate’ one usually finds either one of these boundary value problems. Is the name appropriate? A
discrete model in [6] should be a warning. One might guess that by pushing the plate downwards,
the plate should go downwards. On the other hand, this guess could also apply to the clamped plate
model: {

∆2u = f in Ω,
u = un = 0 on ∂Ω,

(44)

for which it is known since Duffin [19] that no such result holds. See also [54]. On the other hand, for
problem (30), i.e. {

∆2u = f in Ω,
u = ∆u = 0 on ∂Ω,

(45)
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on smooth domains, and even on domains with only convex corners one may split it in a system and
still find a solution u with u,∆u ∈W 2,2 (Ω) ∩W 1,2

0 (Ω) and hence f ≥ 0 implies u ≥ 0. This however
is a circular reasoning. One should go back to the energy functional and allow functions u ∈W 2,2 (Ω)
with

u− = −min (0, u) ∈W 1,2
0 (Ω) .

and minimize over all those admissable functions.
For an overview of sign preservation for simple membrane and plate models see [54]. The real

supported plate problem, namely to find the minimize of the functional in (25), that is

Jσ (u) =

∫
Ω

(
1
2 (∆u)2 + (1− σ)

(
uxxuyy − u2

xy

)
− f u

)
dx (46)

on the space

W+ (Ω) :=
{
u ∈W 2,2 (Ω) ; u− ∈W 1,2

0 (Ω)
}
,

has been considered in [49, 41]. We recall some results from those papers:

Theorem 36 ([41]) Let Ω ⊂ R2 be a bounded domain with ∂Ω Lipschitz and let σ ∈ (−1, 1). For
f ∈ L2 (Ω) satisfying∫

Ω
f ζ dx < 0 for all nontrivial affine functions ζ > 0 in Ω

there is a unique minimizer us ∈ W+ (Ω).
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Let uh be the solution of the hinged problem, that is, a minimizer of J from (46) in

W0 (Ω) :=
{
u ∈W 2,2 (Ω) ; u ∈W 1,2

0 (Ω)
}
.

For the hinged problem on polygonal domains see [39]. The hinged problem on curvilinear domains
has been considered in [13]. Analytic results for a correct numerical approach are obtained by Davini
[16], [17].

Only if us and uh are equal one can mix the names hinged and supported. But unfortunately for
the literature one finds:

Theorem 37 ([41]) If Ω ⊂ R2 is a bounded polygon and 0 
 f ∈ L2 (Ω), then us 6= uh.

We will first recall the proof from [49] in the case of a rectangle and f ∈ C∞0 (Ω).

Figure 24: A rectangular supported plate pushed down on the left side. Picture taken from [54].

Proof. For u ∈ Wh in the case of a rectangle Ω = R, say R = (0, a)× (0, b) we can use some reflection
arguments. Define the extension operator for functions on R = (0, a)× (0, b) to functions on

R2 = (−a, a)× (−b, b) ,
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neglecting the axes, by
E (u) (x, y) = sign (xy)u (|x| , |y|) .

Figure 25: Extending by reflecting

If u ∈ W0(R), then the Dirichlet condition implies that E (u) ∈ W0 (R2). Moreover, if u is a
(weak) solution of (45) for Ω = R, then E (u) is a (weak) solution of (45) for Ω = R2 with E (f) on
the right hand side. And last but not least, E (u) = u on R which implies that the regularity of the
interior is transferred to the boundary. So f ∈ L2 (R) results in u ∈ W 4,2 (R) and we may do some
partial integration such as

K (u) :=

∫
R

(
uxxuyy − u2

xy

)
dxdy =

∫
∂R

(uxxuyn2 − uxyuyn1) dτ = 0.

So uh is a minimizer of Jσ independent of σ. But then

∂K (uh; v) = 0 for all v ∈ W0(R).
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When is us a minimizer of Jσ for functions inW+(R)? From [28] one finds that, assuming Jσ is convex
as a functional and W+(R) is convex and closed as a set, the equivalent condition is

∂J (us; v − us) ≥ 0 for all v ∈ W+(R). (47)

If us = uh, then for v ∈ W+(R)

∂Jσ (uh; v − uh) = ∂Jσ (uh; v)− ∂Jσ (uh;uh) = ∂Jσ (uh; v)

=

∫
R

(∆uh∆v − fv) dxdy − (1− σ) ∂K (uh; v) . (48)

Integrating by parts gives, since ∆uh = 0 on ∂R:∫
R

(∆uh∆v − fv) dxdy =

∫
∂R

(∆uh ∂nv − ∂n∆uh v) dτ +

∫
R

(
∆2uh − f

)
vdxdy

= −
∫
∂R
∂n∆uh v dτ (49)

and also

∂K (uh; v) =

∫
R

(uh,xxvyy + uh,yyvxx − 2uh,xyvxy) dxdy

= −
∫
∂R
uh,τnvτdτ = 2 [uh,xyv]

(a,0) and (0,b)
(0,0) and (a,b) +

∫
∂R
uh,ττnvdτ . (50)

Combining (47), (48), (49) and (50) we obtain that∫
∂R

(∂n∆uh + (1− σ)uh,ττn) v dτ + 2 (1− σ) [uh,xyv]
(a,0) and (0,b)
(0,0) and (a,b) ≤ 0. (51)
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For the rectangle we can skip the Kondrat’ev functions and use Serrin’s corner point lemma, which
tells us that for g 
 0 and u the solution of{

−∆u = g in R,
u = 0 on ∂R,

a type of Hopf’ boundary point lemma holds, namely

uxy > 0 in {(0, 0) , (a, b)} and uxy < 0 in {(a, 0) , (0, b)} .

Applying this to −uh, indeed uh solves the system in (15) with f � 0 and hence −∆uh < 0 and
uh < 0. So we find for v > 0 near the corners that

2 (1− σ) [uh,xyv]
(a,0) and (0,b)
(0,0) and (a,b) > 0. (52)

Out[ ]=

Figure 26: A series of v

Since the left hand side of (51) is an integral, we may play with the order of a pointwise contribution
and an L1-contribution to find 0 ≤ v ∈ W+(R) such that the sign of (51) is determined by the corner
contribution in (52), and that gives the contradiction: us 6= uh.
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If the domain has a corner with an angle different from 1
2π, then the solution in general is not in

W 4,2(Ω) and one has to proceed with more care. In [41] it is shown that at each corner the solution
of the supported plate under a downwards force moves upwards at each corner. For convex corners
it moves upwards at the corner and for reentrant corners the deviation at the corner itself maybe 0
but nearby the plate will be ‘loose’. To prove this result one compares with the lowest order singular
function(s) that is (are) still in W 2,2(Ω). And as before rλφ(θ) belongs to this space whenever λ > 1.
See Figure 27.
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Figure 27: The lowest relevant singular functions
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Some fun with corners

10 Two first eigenfunctions

In this section we will recall a result from [55]. Let us first come back to a famous result named after
Krein and Rutman [31]. For integral operators the result was already stated by Jentzsch [27] in 1912.
A more perfect statement needs an additional result of de Pagter [43].

Theorem 38 (Krein-Rutman-De Pagter [22]) A compact, positive and irreducible operator A ∈
L (E;E) for a Banach lattice E with dimension larger 1, has a positive spectral radius, which is the
unique eigenvalue with a positive eigenfunction and it is algebraically simple.

For second order elliptic boundary value problems the maximum principle gives strict positivity,
which includes irreducibility, and when the domain is bounded, the solution operator for regular
problems is compact. So one may apply the theorem.

The simple model for the hinged plate we stated before in (27) and (30), namely{
∆2u = f in Ω,

u = ∆u = 0 on ∂Ω.
(53)

is of fourth order, so a priori no maximum principle applies. Nevertheless, when writing this equation
as a system as in (15), we find strict positivity and the above result should apply.

64



Let us consider the corresponding eigenvalue problem{
∆2φ = λφ in Cα,
φ = ∆φ = 0 on ∂Cα.

(54)

for the non-convex sectors

Cα =
{

(r cosϕ, r sinϕ) ; 0 < r < 1 and |ϕ| < 1
2α
}

(55)

with α ∈ (π, 2π). The specialty of this case is that one may find the solutions of (54) by explicit
formulas using Bessel functions. Doing so, one finds the two eigenfunctions sketched in Figure 28.

Out[429]=

Figure 28: Two positive eigenfunctions for (54) for α = 3
2π. Picture taken from [55].
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If we let φ1 be the first eigenfunction of{
−∆φ = µφ in C3π/2,

φ = 0 on ∂C3π/2,

one may compute
φ1 (r, ϕ) = J2/3

(
ν2/3,1 r

)
cos
(

2
3ϕ
)
, (56)

with ν2/3,1 the first positive root of J2/3. This function is sketched on the left of Figure 28. Here J2/3

is the Bessel function of the first kind. Next we will also need I2/3, the modified Bessel function of
the first kind.

With ν the first positive number satisfying

I−2/3 (ν) J2/3 (ν) = I2/3 (ν) J−2/3 (ν) ,

one finds the second positive eigenfunction φ̃1 defined by

φ̃1 (r, ϕ) =

((
I−2/3 (ν)− J−2/3 (ν)

) (
I2/3 (νr)− J2/3 (νr)

)
(57)

−
(
I2/3 (ν)− J2/3 (ν)

) (
I−2/3 (νr)− J−2/3 (νr)

))
cos
(

2
3ϕ
)
, (58)

which is sketched on the left of Figure 28.
Both functions are in C0

(
C3π/2

)
∩ C∞

(
C3π/2

)
and not in C2

(
C3π/2

)
, so the condition ∆φ(0) = 0

would need some explanation. Both functions satisfy ∆φ(x) = 0 for x ∈ ∂C3π/2 \ {0}. By the way,

there is no positive eigenfunction in C2
(
C3π/2

)
.
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Another paradox?

No, the answer lies in space.

Through direct computations one finds that

(φ1,∆φ1) ∈
(
W 1,2

0 (C3π/2) × W 1,2
0 (C3π/2)

)
=: A1,1,⋃ ⋂

(φ̃1,∆φ̃1) ∈
(
W 2,2(C3π/2) ∩W 1,2

0 (C3π/2) × L2(C3π/2)
)

=: A2,0.

Moreover, neither space Ai,j is contained in the other and even (φ1,∆φ1) 6∈ A2,0 and (φ̃1,∆φ̃1) 6∈ A1,1.

Remark 39 The eigenfunction φ1 is the eigenfunction from the system setting in (15), for which
the solution operator is positive due to the maximum principle applied twice. Hence one may apply
Theorem 38. The eigenfunction φ̃1 is the minimizer for the functional in (17). It is positive, although
that cannot be concluded from Theorem 38, since the solution operator is not known to be positive.

The same result, namely the existence of ‘two’ first eigenfunctions one can show for all cones Cα
with α > π. See [55]. In [39] one finds that the solution operator for the second setting is not positive
for angles larger than 3

2π. For angles in (π, 3
2π) (non)positivity is unknown.
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