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Abstract: The general setting that we will discuss, can be written as follows:

Mu = f.

Here M : X → Y is some given operator for ordered spaces X,Y . The question for this generic
equation is:

Can one classify M for which it holds that f ≥ 0 =⇒ u ≥ 0?

In other words, when do we a have a positivity preserving property in the sense that a
positive source gives a positive solution.

• Our main focus is on partial differential operators defined on ordered function spaces but
since the structure also appears for u, f ∈ Rn, we will start with those problems. For
matrices the crucial condition is that M is a so called M-matrix.

• Next we recall some maximum principles for second order elliptic pde, which are the
basic tool for invers-positivity of second order elliptic boundary value problems. In is no
coincidence that most discretisations of second order elliptic differential operators lead to
M-matrices.

• For the problem above we do need a solution operator and we will reflect on the dif-
ferent possibilities. The existence of the principal eigenvalue follows for example from a
Krein-Rutman theorem. We also discuss the almost similar situation for weakly coupled
systems of cooperative type. Assuming that the equation cannot be split in independent
subsystems, one obtains a generic answer. Considering (λI +M)u = f one will that
the positivity preserving property will hold if and only if λ > λ1, with λ1 the principal
eigenvalue.

• In the last part we consider some special cases where positivity is preserved but without
the M-matrix type condition. This is the case for example in some ‘real’ fourth order
problems.
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Session 1

Positivity and matrices

1.1 Positivity preserving for matrix problems

Let M ∈Mn×n (R) and consider for u, f ∈ Rn the system:

Mu = f (1.1)

Specific names for a matrix having the properties mentioned above are as follows:

Definition 1.1.1 Let M ∈Mn×n (R).

• M is called inverse-positive, when for all u ∈ Rn with Mu ≥ 0, it holds that u ≥ 0.

• M is called strongly inverse-positive, when for all u ∈ Rn with Mu 
 0, it holds that
u > 0.

Remark 1.1.2 • u ≥ 0 means ∀i ∈ {1, . . . , n} : ui ≥ 0,

• u 
 0 means ∀i ∈ {1, . . . , n} : ui ≥ 0 and ∃i ∈ {1, . . . , n} : ui > 0,

• u > 0 means ∀i ∈ {1, . . . , n} : ui > 0.

We will see that inverse-positive matrices are related with the following class of matrices.

Definition 1.1.3 M ∈Mn×n (R) is called a nonsingular M-matrix, if M = sI −B with

1. B is nonnegative, i.e. B = (bij) satisfies bij ≥ 0,

2. s > ρ (B), the spectral radius of B.

The spectral radius is defined by

ρ (B) = lim sup
n→∞

n
√
‖Bn‖.

For a diagonal matrix B one finds that ρ (B) = max1≤i≤n |bii| and if B has nonnegative coeffi-
cients ρ (B) is an eigenvalue. We will see that ρ (B) is an eigenvalue for arbitrary nonnegative
matrices, that is, the spectral radius is an eigenvalue with a nonnegative eigenvector ϕ1, i.e.
Bϕ1 = ρ (B)ϕ1. This eigenvector might not be unique as we can see by taking for example
the identity matrix. To have uniqueness, meaning a one-dimensional eigenspace, one needs an
additional condition.
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6 SESSION 1. POSITIVITY AND MATRICES

Definition 1.1.4 A nonnegative matrix B = (bij) is called

3. irreducible, if (sign (bij)) is the adjacency matrix of a strongly connected directed graph.

Remark 1.1.5 An equivalent condition is: there exists k ∈ N such that (I +B)k has only
strictly positive entries.

Remark 1.1.6 An M -matrix is called irreducible, whenever B is irreducible.

Example 1.1.7 Here is a example of a nonnegative matrix and the corresponding adjacency
matrix.

B =




1 1 0 0
0 2 3 1
0 0 0 2
2 0 0 0




2

1

4

3

With these three conditions in Definitions 1.1.3 and 1.1.4 satisfied, the following result holds
true for the eigenvalue problem

Bu = µu (1.2)

with (µ, u) ∈ C× Cn.

Theorem 1.1.8 (Part of Perron-Frobenius) Suppose B ∈Mn×n (R) is nonnegative and ir-
reducible. Then the following holds:

i) The in absolute sense largest eigenvalue µ1 is unique and satisfies µ1 = ρ (B).

ii) The algebraic multiplicity of µ1 is one and the corresponding eigenspace is spanned by a
strictly positive eigenvector ϕ1.

iii) Except for positive multiples of ϕ1 there are no other nonnegative eigenvectors.

For a proof see for example [3].

Remark 1.1.9 When B is symmetric, things become much easier and one shows almost directly
that

ρ (B) = µ1 = max
v∈Rn\{0}

v ·Bv
v · v .

Theorem 1.1.10 (M-matrix and invers-positivity) Let M ∈ Mn×n (R). Then the follow-
ing are equivalent.

• M = sI −B satisfies 1., 2. and 3. of Definitions 1.1.3 and 1.1.4.

• λI +M is strongly inverse-positive for all λ ≥ 0.

Proof. (⇒) Since s > ρ (B) the inverse of λI + M exists and can be written by a convergent
Neumann series

(λI +M)−1 = ((s+ λ) I −B)−1 = (s+ λ)−1
(
I − (s+ λ)−1B

)−1

= (s+ λ)−1
∞∑

k=0

(
(s+ λ)−1B

)k
. (1.3)
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Since B has only nonnegative entries, irreducibility implies that

n∑

k=0

(
(s+ λ)−1B

)k

has only positive entries.
(⇐) If λI+M for some λ ≥ 0 has a zero eigenvalue with eigenvector ϕ0, then (λI +M)ϕ0 =

0. But ϕ0 or −ϕ0 is nonpositive and that is a contradiction. So λI +M is invertible.
The matrices (λI +M)−1 have only strictly positive entries. If not, say a coefficient aij

satisfies aij ≤ 0, then (λI +M)−1 ~ej has a nonpositive entry and (λI +M)−1 is not strictly
positive, a contradiction.

Set σ = max (mii) and write B = σI −M . So the diagonal entries of B are nonnegative.
For all λ large enough, that is for all λ such that σ + λ > ρ (B), we have from (1.3) that

(λI +M)−1 = ((σ + λ) I −B)−1 = ((σ + λ) I −B)−1

= (σ + λ)−1
(
I + (σ + λ)−1B +O

(
(σ + λ)−2

))
.

Since (λI +M)−1 has only strictly positive entries for all λ ≥ 0 the signs of the off-diagonal
terms for large λ are determined by B. Hence all off-diagonal entries of B are also nonnegative.

So M = σI − B with σ > ρ (B). Indeed, since B is nonnegative the spectral radius is an
eigenvalue and hence σ + λ 6= ρ (B) for all λ ≥ 0, implying that σ > ρ (B).

For λ large the formula in (1.3) holds. With B being nonnegative, the formula shows that
strong positivity implies irreducibility of B.

Example 1.1.11 Consider

M =




3 −1 1
5 −1

−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 3


 . (1.4)

Due to the entry m1,3 = 1
5 > 0 this is not an M-matrix. The change is however

small enough to keep a positive first eigenfunction and even such that the inverse
of M + tI is still positive for small t. However, for t > t0 ≈ 7.5 entry a1,3 in
(M + tI)−1 becomes and remains negative. See Figure 1.1, where scaled values
of the individual off-diagonal entries aij(t) of (M + tI)−1 are plotted.

10 20 30 40 50

0.1

0.2

0.3

0.4

Figure 1.1: A graph of the off-diagonal entries t 7→ (1 + t) aij (t) with M from (1.4).

Let us formulate the result concerning the positivity preserving property for M-matrices, in
short PPP.

Theorem 1.1.12 (PPP for M-matrices) Let M be an irreducible nonsingular M-matrix. Then
the following holds.

1. M−1 has a positive eigenvector ϕ1 with eigenvalue µ1 > 0. Set λ1 = −µ−1
1 .

2. (a) if λ > λ1 then λI +M is strongly inverse positive.

(b) if λ = λ1 and f 
 0, then there is no solution u for (λI +M)u = f .
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no positivity no
so

lu
ti

on

positivity preserved

λ1 0 λ→

(c) if λ < λ1 and f 
 0, then there is no positive solution u for (λI +M)u = f .

Remark 1.1.13 Since M = sI − B, the equation M−1ϕ1 = µ1ϕ1 is equivalent to Bϕ1 =
(s+ λ1)ϕ1. Since B is also positive, one finds that λ1 = ρ (B)− s < 0.

Remark 1.1.14 If M is symmetric, then

λ1 = − min
v∈Rn\{0}

v ·Mv

v · v .

Proof. Since M is inverse positive, the first item follows from the Perron-Frobenius Theorem
for M−1.

Suppose that M = sI − B. For λ > λ1 = ρ (B) − s the matrix (λ+ s) I − B satisfies the
conditions 1., 2. and 3. of Definitions 1.1.3 and 1.1.4. Hence Theorem 1.1.10 implies that
λI +M is inverse-positive. By the series 1.3 and the assumption of irreducibility one finds even
strongly inverse-positivity.

Since also BT has the same eigenvalues and similar properties, let ϕ̃1 be the corresponding
positive eigenfunction for BT ϕ̃1 = ρ (B) ϕ̃1. Let f 
 0 and let u be the solution of (λI −B)u =
f . Then

0 < ϕ̃1 · f = ϕ̃1 · (λI −B)u =
(
λI −BT

)
ϕ̃1 · u = (λ− ρ (B)) ϕ̃1 · u (1.5)

and a contradiction follows if λ = ρ (B) or when u 
 0, since then ϕ̃1 · u > 0.

One might wonder what goes wrong when the matrix is perturbed such that it is no longer
an M-matrix but still close enough to one in the sense that the first eigenfunction is still positive.
The generic picture is as in Figure 1.2.

no positivity no
so

lu
ti

on

positivity preserved ? no positivity claim

λ1 0 λ→

Figure 1.2: the generic case for an M , which is almost an M-matrix, but misses the definition
by some small positive off-diagonal term(s), nevertheless such that the first eigenfunction is still
positive. As in Example 1.1.11

Example 1.1.15 Note that for C2 (R)-functions it holds that

lim
h↓0

u (x+ h)− 2u (x) + u (x− h)

h2
= u′′ (x) .
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So one may discretize {
−u′′ (x) = f (x) for x ∈ (0, 1) ,
u (0) = u (1) = 0,

with n ∈ N+ through xk = k
n , by





−u (xk+1) + 2u (xk)− u (xk−1)

1/n2
= f (xk) for k ∈ {1, . . . , n− 1} ,

u (x0) = u (xn) = 0.

In matrix form with uk = u
(
k
n

)
this equals u0 = un = 0 and

n




2 −1 0 · · · · · · 0

−1 2 −1
. . .

...

0 −1 2
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . −1 2 −1
0 · · · · · · 0 −1 2







u1

u2

u3
...

un−2

un−1




=
1

n




f1

f2

f3
...

fn−2

fn−1



.

The matrix on the left is an irreducible nonsingular M-matrix. The inverse of this matrix can
be explicitly computed: writing M−1 = (aij)i,j=1...n−1, one finds

aij =

{ j
n

(
1− i

n

)
for 1 ≤ i ≤ j ≤ n− 1,

i
n

(
1− j

n

)
for 1 ≤ j < i ≤ n− 1.

A graph one finds below in Figure 1.3.

Figure 1.3: A graph of the matrix for n = 25 with the boundary points i ∈ {0, 25} added, i.e.
(aij)i,j=0...25

So for the discretized boundary value problem we find

f 
 0 =⇒ u > 0.

Example 1.1.16 Discretizing the Laplacian −∆ in two dimensions by finite differences one
uses

−∆u(x, y) = lim
h→0

4u(x, y)− u(x− h, y)− u(x+ h, y)− u(x, y − h)− u(x, y + h)

h2
.

Inside the domain the corresponding matrix, skipping the h2, has 4 on the diagonal and on each
row (at most) four times −1. Precisely four times when no boundary conditions are involved.
Also this is an M-matrix.
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Example 1.1.17 A more common numerical approximation uses finite elements. For the
Laplacian, when using piecewise linear finite elements on a triangular mesh with only acute
angles, the corresponding matrix turns out to be an M-matrix. See [5]. Also in three dimensions
this holds true. Surprisingly, in higher dimensions (n ≥ 7?) one may show that in general no
acute triangularisation exists. See [18] and [17].

1.2 The time dependent problem

Let us consider for u : [0,∞)→ Rn the intial value problem:

{ (
∂
∂t +M

)
u (t) = 0 for t > 0,
u (0) = u0.

(1.6)

The solution for this problem is
u (t) = exp (−Mt)u0,

which is given by Euler-backwards approximation as

u (t) = lim
n→∞

(
I +

t

n
M

)−n
u0.

From the second part of Theorem 1.1.10 it follows for t > 0 and n large enough, indeed then

(
I +

t

n
M

)−1

=
n

t

(
M +

n

t
I
)−1

> 0,

that
(
I + t

nM
)−n

is strongly positive. Hence we conclude:

Corollary 1.2.1 Let M be an irreducible M-matrix and let u0 
 0. Then the solution u :
[0,∞)→ Rn of (1.6) satisfies:

u0 
 0 =⇒ u (t) > 0 for all t > 0.

Remark 1.2.2 For { (
∂
∂t +M

)
u (t) = f (t) for t > 0,
u (0) = u0.

(1.7)

one uses

u (t) = exp (−Mt)u0 +

ˆ t

0
exp (−M (t− s)) f (s) ds

and finds from the positivity of exp (−Mt) that

f (t) ≥ 0, u0 
 0 =⇒ u (t) > 0 for all t > 0.
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Maximum Principles

2.1 Positivity preserving and the Laplace operator

The Laplace operator is defined for functions u : Ω ⊂ Rn → R by

∆u =
n∑

i=1

(
∂

∂xi

)2

u.

The natural assumption, used throughout the literature, is that Ω is a domain, which means
an open and connected set. In the present setting we will even restrict ourselves to bounded
domains.

2.2 Classical maximum principles

2.2.1 Results that hold for general second order elliptic operators

In this section we state the result for the Laplace operator. The first three versions of the maxi-
mum principle also hold for general second order elliptic operators with nice enough coefficients:

L =

n∑

i,j=1

∂

∂xi
aij (x)

∂

∂xj
+

n∑

i=1

bi (x)
∂

∂xi
.

One assumes without loss of generality that aij (x) = aji (x) and the ellipticity condition,

n∑

i,j=1

aij (x) ξiξj ≥ c |ξ|2 for all x ∈ Ω and ξ ∈ Rn,

is satisfied. The optimal conditions that the coefficients in L may satisfy we will not state, but
can be found following the corresponding references in [12]. We just assume aij , b ∈ C∞(Ω).

For maximum principles in all its variations one should have a look at the following books:
[25], [10] and [26]. Most arguments in this section are borrowed from the first book.

Lemma 2.2.1 (Maximum Principle I) Suppose that u ∈ C2 (Ω). If ∆u (x) > 0 for x ∈ Ω,
then u has no interior maximum.

Proof. If u has an interior maximum in x0, then
(

∂
∂xi

)2
u (x0) ≤ 0 for each i ∈ {1, . . . , n}.

11



12 SESSION 2. MAXIMUM PRINCIPLES

Lemma 2.2.2 (Maximum Principle II) Suppose that u ∈ C2 (Ω). If ∆u (x) ≥ 0 for x ∈ Ω,
then for any ball Bε (x0) ⊂ Ω one finds u (x0) ≤ max {u (x) ;x ∈ ∂Bε (x0)}. Hence u cannot
have a strict interior maximum.

Proof. Suppose that for some ε > 0 and Bε (x0) ⊂ Ω one finds

u (x0) > max {u (x) ;x ∈ ∂Bε (x0)} .

Set m = max {u (x) ;x ∈ ∂Bε (x0)} and we consider the auxiliary function

ũ (x) = u (x) + 1
2ε
−2 (u (x0)−m) |x− x0|2 .

One finds ũ (x0) = u (x0) and for |x− x0| = ε it holds that

ũ (x) ≤ m+ 1
2 (u (x0)−m) < u (x0) .

Hence ũ has a maximum in some x̃ ∈ Bε (x0) and

∆ũ (x̃) = ∆u (x̃) + nε−2 (u (x0)−m) > 0,

which contradicts Lemma 2.2.1.

Theorem 2.2.3 (The Strong Maximum Principle) Suppose that u ∈ C2 (Ω). If ∆u (x) ≥
0 for x ∈ Ω and u has a maximum in x0 ∈ Ω, then u (x) = u (x0) for all x ∈ Ω.

3 45

 <   = 

Figure 2.1: A sketch for the construction in the proof of Lemma 2.2.3.

Proof. If u (x1) < u (x0) = M := max {u (x) ;x ∈ Ω}, then there is a curve inside Ω connecting
x1 with x0. Let x2 be the first point on this curve such that u (x2) = M . Now let r2 > 0 be such
that Br2 (x2) ⊂ Ω. Then there is x3 ∈ ∂Br2 (x2) with u (x3) < M . Let r3 ∈ (0, r2] be the largest
number such that u (x) < M for x ∈ Br3 (x3) and let x4 ∈ ∂Br3 (x3) satisfy u (x4) = M . Set
x5 = 1

2 (x3 + x4) and r5 = 1
2r3. Next consider on Br4 (x4) with r4 = 1

4r3 the auxiliary function

ũ (x) = u (x) + ε
(
|x− x5|2−n − r2−n

5

)
for n ≥ 3,

ũ (x) = u (x) + ε
(

log
(

1
|x−x5|

)
− log

(
1
r5

))
for n = 2.

Set m = max {u (x) ;x ∈ ∂Br4 (x4) ∩Br5 (x5)} < M and take ε > 0 such that

ũ (x) < M for x ∈ ∂Br4 (x4) ∩Br5 (x5) .
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Since |x− x5|2−n − r2−n
5 ≤ 0 for x ∈ ∂Br4 (x4) \Br5 (x5) we find with such an ε that

ũ (x) < M for x ∈ ∂Br4 (x4) .

Since ũ (x4) = M and since
∆ũ = ∆u ≥ 0 on Br4 (x4)

we find a contradiction by Lemma 2.2.2.

Finally let us state a maximum principle at boundary points.

Theorem 2.2.4 (Hopf’s boundary point Lemma) Suppose that u ∈ C0(Ω) ∩ C2 (Ω) is a
solution of {

−∆u (x) = f (x) for x ∈ Ω,
u (x) = u0 (x) for x ∈ ∂Ω,

(2.1)

with f ≥ 0, u0 ≥ 0 and (f, u0) 6= (0, 0). Then at each point x∗ ∈ ∂Ω with u0 (x∗) = 0 and where
Ω satisfies an interior sphere condition, we find for any outward pointing unit vector ~ν, that

lim inf
t↓0

u (x∗ − t ~ν)− u (x∗)
t

∈ (0,∞] .

If u is differentiable at x∗ then

−∂u
∂~ν

(x∗) > 0.

Remark 2.2.5 It is sufficient, instead of the interior sphere condition at x∗, that a Dini-
smooth subdomain Ω̃ ⊂ Ω exists with x∗ ∈ ∂Ω̃. See [20]. Dini-smooth means that |∇p| is
Dini-continuous, where Rn−1 3 x′ 7→ (x′, p (x′)) ∈ Rn parametrizes the boundary near x∗. In
other words, for some ε > 0 it holds that

ˆ ε

0

ω (t)

t
dt <∞,

where ω is the modulus of continuity of |∇p|.

Proof. Let Br (x0) be the ball such that x∗ ∈ ∂Br (x0) and Br (x0) ⊂ Ω. By the strong
maximum principle, Theorem 2.2.3, one finds that u (x) > 0 on Br (x0). As in the proof of that
theorem one takes r4 = 1

4r, x4 = x∗ and r5 = 1
2r, x5 = 1

2 (x0 + x∗). Next define similarly

ũ (x) = ε
(
|x− x5|2−n − r2−n

5

)
for n ≥ 3,

ũ (x) = ε
(

log
(

1
|x−x5|

)
− log

(
1
r5

))
for n = 2,

and note that u (x) ≥ ũ (x) on Br5 (x5) ∩Br4 (x4), which implies our estimates.

The three proofs above can be generalised to more general second order elliptic problems.

2.2.2 Special proofs for the laplacian

For the Laplace operator, and mostly for the Laplace operator only, one may proceed in a more
straightforward way. For the Laplacian the following holds:

Proposition 2.2.6 Suppose that u ∈ C2 (Ω), Br (x0) ⊂ Ω. If −∆u ≥ 0 on Br (x0), then

u (x0) ≥
 
∂Br(x0)

u (x) dσx. (2.2)
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Remark 2.2.7 Here we used a notation for the integral average:

 
S
v (t) dt =

ˆ
S
v (t) dt

/ˆ
S

1dt .

Remark 2.2.8 A function u that satisfies (2.2) for every closed ball Br (x0) ⊂ Ω, is called
superharmonic on Ω. A function that satisfies the inverse inequality is called subharmonic on
Ω.

Corollary 2.2.9 Suppose that u ∈ C2 (Ω) and ∆u ≥ 0 on Ω. If u has a maximum in x0 ∈ Ω,
then u (x) = u (x0) for all x ∈ Ω.

Proof. Apply Proposition 2.2.6 to −u on Br (x0) and connect x0 with any x ∈ Ω through a
sequence of balls. See Figure 2.2.

x1

x2

Figure 2.2: Connecting x1 to x2 through several balls inside Ω

Proof of Proposition 2.2.6. We write Fn for the fundamental solution of the Laplace
operator in Rn, that is

Fn (x) =

{ 1
ωn(n−2) |x|

2−n for n ≥ 3,

1
ω2

log
(

1
|x|

)
for n = 2,

with ωn the (hyper)surface area of the unit n-sphere.

One obtains with Gauß’ formula and the normal n (x) = x−x0
|x−x0| that

0 ≤
ˆ
Br(x0)

(−∆u (x)) (Fn (x− x0)− Fn (rê1)) dx

= lim
ε↓0

ˆ
ε<|x−x0|<r

(−∆u (x)) (Fn (x− x0)− Fn (rê1)) dx

= lim
ε↓0

(
−
ˆ
|x−x0|=ε

∂u (x)

∂n
(Fn (x− x0)− Fn (rê1)) dσx +

ˆ
|x−x0|=r

u (x)
∂Fn (x− x0)

∂n
dσx

−
ˆ
|x−x0|=ε

u (x)
∂Fn (x− x0)

∂n
dσx +

ˆ
ε<|x−x0|<r

u (x) (−∆Fn (x− x0)) dx

)

= 0−
 
∂Br(x0)

u (x) dσx + u (x0) + 0.

Indeed
∂Fn (x− x0)

∂n
=
−1

ωn
|x− x0|1−n
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and ˆ
|x−x0|=ε

∂u (x)

∂n
(Fn (x− x0)− Fn (rê1)) dσx = O (ε log ε) .

The next result is not a result that only works for the laplacian but it does need symmetry.
We will state is for the laplacian but before being able to do so, we need some tools.

First recall that W 1,2
0 (Ω) is a Hilbert space with norm

‖u‖
W 1,2

0 (Ω)
=

(ˆ
Ω
|∇u (x)|2 dx

)1/2

.

Lemma 2.2.10 If u ∈W 1,2
0 (Ω), then also |u| ∈W 1,2

0 (Ω).

Remark 2.2.11 It follows that u+ = max (0, u) = 1
2 (u+ |u|) and u− = max (0,−u) lie in

W 1,2
0 (Ω).

Proof. The difficult part is to prove that the weak derivative of |u| is appropriate.
1) For u ∈ C1 (Ω) one has for ϕ ∈ C∞0 (Ω) that

ˆ
Ω
∇ |u| ϕdx =

Def.
−
ˆ

Ω
|u| ∇ϕdx = −

ˆ
[u>0]

u ∇ϕdx+

ˆ
[u<0]

u ∇ϕdx

=
i.b.p.

ˆ
[u>0]

∇u ϕdx−
ˆ

[u<0]
∇u ϕdx =

ˆ
Ω

sign (u)∇u ϕdx.

So let us set for u ∈W 1,1 (Ω):
∇ |u| = sign (u)∇u, (2.3)

which is formally well-defined since sign (u) ∈ L∞ (Ω). If C1 (Ω) 3 um → u in W 1,1 (Ω) one finds
∣∣∣∣
ˆ

Ω
sign (u)∇u ϕdx−

ˆ
Ω

sign (um)∇um ϕdx

∣∣∣∣ ≤
∣∣∣∣
ˆ

Ω
(sign (u)− sign (um))∇u ϕdx

∣∣∣∣+

∣∣∣∣
ˆ

Ω
sign (um) (∇u−∇um) ϕdx

∣∣∣∣ ≤ˆ
Ω
|sign (u)− sign (um)| |∇u| |ϕ| dx+

ˆ
Ω
|∇u−∇um| |ϕ| dx (2.4)

and
´

Ω |∇u−∇um| |ϕ| dx → 0 for m → ∞. The other term does not converge in general, but
since um → u in L1 (Ω) there exists a subsequence that converges almost everywhere. Taking
the subsequence that converges a.e. and the dominated convergence theorem implies

lim
m→∞

ˆ
Ω
|sign (u)− sign (um)| |∇u| |ϕ| dx = 0,

concludes that (2.4) goes to 0 for a subsequence and hence confirms (2.3).
2) In order to show that u ∈W 1,2

0 (Ω) implies |u| ∈W 1,2
0 (Ω) one defines for ε > 0

fε (u) =
√
ε2 + u2 − ε.

Note that for nice(?) u one finds ∇fε (u) = u√
ε2+u2

∇u ”→” ∇ |u| for ε ↓ 0.

More precisely, one finds fε (u) ∈W 1,2
0 (Ω) and it follows that

ˆ
Ω
|∇fε (u)|2 dx ≤

ˆ
Ω
|∇u|2 dx.
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The dominated convergence theorem gives us for some sequence {nk} ⊂ N that

ˆ
Ω
|∇ |u||2 dx =

ˆ
Ω

lim
k→∞

∣∣∇f1/nk (u)
∣∣2 dx = lim

k→∞

ˆ
Ω

∣∣∇f1/nk (u)
∣∣2 dx ≤

ˆ
Ω
|∇u|2 dx.

Theorem 2.2.12 Let λ ≥ 0 and suppose that f ∈ L2 (Ω). Let u ∈ W 1,2
0 (Ω) be a weak solution

of (3.12), i.e. u satisfies (3.13). Then the following holds

f 
 0 =⇒ u 
 0.

Proof. For f ≥ 0 and taking ϕ = u−, which lies in W 1,2
0 (Ω) by Lemma 2.2.10, one finds that

(λu− f)u− = −λ
(
u−
)2 − fu− ≤ 0

and

0 =

ˆ
Ω

(
∇u · ∇u− + (λu− f)u−

)
dx ≤ −

ˆ
Ω

∣∣∇u−
∣∣2 dx ≤ 0.

So ∇u− = 0 holds and since u− = 0 on ∂Ω this implies u− = 0 on Ω. The fact, that u = 0 is
contradicted by f 
 0, is direct.



Session 3

Positivity and elliptic bvp

To consider inverse-positivity for the problem

Mu = f

in the setting of partial differential equations, one has to include boundary conditions. For the
Laplace operator under homogeneous Dirichlet boundary conditions, i.e.

{
−∆u = f in Ω,
u = 0 on ∂Ω,

(3.1)

the maximum principle guarantees uniqueness of a solution but not yet existence. So we may
a priori only say, that if the solution operator (−∆)−1

0 for (3.1) exists, then it will be strongly
positive:

f 
 0 =⇒ u > 0.

In any case we still have to specify what these inequalities will mean.

For a sharp statement concerning inverse-positivity we have to have the existence of such a
solution operator (−∆)−1

0 . We will address this question in the next sections.

3.1 Second order elliptic

3.1.1 Introduction

We will focus on the homogeneous Dirichlet boundary value problem on Ω ⊂ Rn, namely

{
(λ− L)u = f in Ω,

u = 0 on ∂Ω,
(3.2)

and obtain a result as in Theorem 1.1.12. As before

L =
n∑

i,j=1

∂

∂xi
aij (x)

∂

∂xj
+

n∑

i=1

bi (x)
∂

∂xi
.

The same results concerning the positivity preserving property can be derived for the Neumann,
intermediate or mixed boundary conditions except for a shift of λ1.

But let us first fix the following positivity notations for functions u : Ω→ R:

• u ≥ 0 means u (x) ≥ 0 for all x ∈ Ω,

• u 
 0 means u (x) ≥ 0 for all x ∈ Ω and u 6≡ 0,

17
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• u > 0 means u (x) > 0 for all x ∈ Ω.

The simplest case is one-dimensional. The next example will deal with the corresponding
homogeneous Dirichlet problem.

Example 3.1.1 Consider
{
−u′′ (x) = f (x) for x ∈ (0, 1) ,
u (0) = u (1) = 0.

(3.3)

This boundary value problem models laundry and
other things hanging from a line under tension.

We may find an explicit solution by straightforward
integration. Starting with

u (x) = −
ˆ x

0

ˆ y

0
f (s) dsdy + c1 + c2x,

0.2 0.4 0.6 0.8 1.0
x →

f ↓

using that u (0) = 0 implies c1 = 0, and with an integration by parts it follows that

u (x) = −
[
y

ˆ y

0
f (s) ds

]x

0

+

ˆ x

0
yf (y) dy + c2x

= −x
ˆ x

0
f (s) ds+

ˆ x

0
yf (y) dy + c2x

=

ˆ x

0
(y − x) f (y) dy + c2x.

From u (1) = 0 we find c2 = −
´ 1

0 (y − 1) f (y) dy and hence

u (x) =

ˆ x

0
(y − x) f (y) dy − x

ˆ 1

0
(y − 1) f (y) dy

=

ˆ x

0
(y − xy) f (y) dy − x

ˆ 1

x
(y − 1) f (y) dy

=

ˆ x

0
(1− x) y f (y) dy +

ˆ 1

x
x (1− y) f (y) dy.

So one may write

u (x) =

ˆ 1

0
g (x, y) f (y) dy with g (x, y) =

{
(1− x) y for 0 ≤ y ≤ x ≤ 1,
(1− y)x for 0 ≤ x < y ≤ 1.

(3.4)

The function g is called a Green function for (3.5). Since

g (x, y) > 0 for x, y ∈ (0, 1) ,

the expression shows that

f 
 0 =⇒ u > 0.

A graph of this function one finds in Figure 3.1.

One may compare with the discretised version in Figure 1.3.



3.1. SECOND ORDER ELLIPTIC 19

Figure 3.1: Sketch of the Green function

Example 3.1.2 For λ > 0 one may imagine a model where the line, from which the laundry
hangs, is connected to a ceiling by a lot of uniformly distributed elastic ropes. That would lead
to {

λu (x)− u′′ (x) = f (x) for x ∈ (0, 1) ,
u (0) = u (1) = 0.

(3.5)

Mathematically one might even consider λ < 0 but it will be hard to conceive a model for that
case. Formally one may solve this problem through a Green function:

gλ (x, y) =





sin
(√
−λ (1−max (x, y))

)
sin
(√
−λmin (x, y)

)
√
−λ sin

(√
−λ
) for λ < 0,

(1−max (x, y)) min (x, y) for λ = 0,

sinh
(√

λ (1−max (x, y))
)

sinh
(√

λmin (x, y)
)

√
λ sinh

(√
λ
) for λ > 0.

One directly checks that for λ > −π2, which corresponds to the first eigenvalue, one finds that

gλ (x, y) > 0 for all x, y ∈ (0, 1) .

With a more careful check one notices that gλ (x, y) is not defined for λ = −k2π2 with any
k ∈ N+ and even that for all other λ < −π2 the function gλ (x, y) will be sign changing. In
Figure 3.2 are some sketches of two gλ.

Out[60]=

Figure 3.2: Sketch of gλ for λ = −5 > −π2 and for λ = −18 < −π2.
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3.1.2 Solutions

In one dimension the regularity of the solution directly follows from the expression in (3.4)
involving f only. It does not depend on the boundary.

In higher dimensions the boundary plays a crucial role which regularity the solution can
obtain. Indeed the regularity of the boundary determines the maximal global regularity that a
solution may obtain and one has to choose the space accordingly. Assuming more for the bound-
ary one increases the settings possible. The different settings will have their own advantages
and disadvantages. So let us first address the main notions of solution.

Definition 3.1.3 A function u : Ω̄→ R is called

• a classical solution of (3.2), when u ∈ C2 (Ω) ∩ C(Ω) satisfies (3.2);

• a weak solution of (3.2), when u ∈W 1,2
0 (Ω) satisfies

ˆ
Ω


λuϕ+

n∑

i,j=1

aij (∂ju) (∂iϕ)−
n∑

i=1

bi (∂iu)ϕ− fϕ


 dx = 0 for all ϕ ∈W 1,2

0 (Ω) .

(3.6)

• a strong solution of (3.2) in Lp-sense, when u ∈ W 2,p (Ω) ∩ W 1,p
0 (Ω) for some p > 1

satisfies the differential equation in (3.2) a.e.

Remark 3.1.4 A strong solution in L2-sense is a weak solution and this follows through an
integration by parts. A weak solution is in general not a classical solution and vice versa.

Remark 3.1.5 Note that C2 (Ω) ∩ C(Ω) does not have a norm for which it becomes a Banach
space. A space like C2,γ(Ω) does, but also needs quite a regular boundary such that solutions,
even for f ∈ C∞0 (Ω) will lie in that space. On the other hand, the space W 1,2

0 (Ω) does not need
any regularity of the boundary. For any f ∈ L2 (Ω) Riesz’ Representation Theorem gives the
existence of a weak solution. But since no second derivatives are defined, arguments that use
these will fail.

3.1.2.1 The classical and the strong setting

As just mentioned, C2 (Ω) ∩ C(Ω) does not have a norm for which it becomes a Banach space.
A space like C2,γ(Ω) does, but also needs quite a regular boundary in order that solutions, even
for f ∈ C∞0 (Ω) will lie in that space.

How to obtain a solution of (3.1) for example for f ∈ C(Ω)? If we extend f by 0 outside of
Ω to f̄ we get at most f̄ ∈ L∞ (Rn). Taking the convolution with the fundamental solution Fn
one obtains by Fn ∗ f̄ ∈W 2,p

loc (Rn) for all p ∈ (1,∞). The weak second derivatives exist and one
may show that

−∆
(
Fn ∗ f̄

)
= f̄ in Lp (Rn) -sense.

By Sobolev imbedding it holds that Fn ∗ f̄ ∈ C1,α(Ω) for all α ∈ [0, 1). But in general one does
not obtain C2(Ω). Also for f ∈ Cγ(Ω) one does not find a better regularity on Ω. The interior
regularity however improves for such f , that is

(
Fn ∗ f̄

)
|Ω ∈ C2,γ(Ω). For this interior regularity

see [12].

So u1 = Fn ∗ f̄ solves the differential equation but what about the boundary condi-
tions?
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It remains to find a solution u2 of

{
−∆u2 (x) = 0 for x ∈ Ω,
u2 (x) = u1 (x) for x ∈ ∂Ω.

(3.7)

hen u = u1 − u2 will solve (3.1). Here is where Perron’s method sets in. First we need a
definition.

Definition 3.1.6 The function w ∈ C(Ω) is a barrier function at x∗ ∈ ∂Ω, whenever

1. w is superharmonic in Ω;

2. w > 0 on Ω \ {x∗} and w (x∗) = 0.

If Ω satisfies a uniform exterior cone condition, then there exists a barrier function at each
boundary point.

Theorem 3.1.7 (Perron) The function

u (x) = sup {v (x) ; v is subharmonic and v (x) ≤ ϕ (x) on ∂Ω}

is harmonic in Ω. Moreover, if each boundary point has a barrier function and ϕ ∈ C (∂Ω),
then u ∈ C(Ω) and u = ϕ on ∂Ω.

For a complete proof see [12, Section 2.8]. A crucial step is the so-called harmonic lifting of
a subharmonic function u on a ball Br (x0) with Br (x0) ⊂ Ω:

ū (x) =





u (x) for x ∈ Ω \Br (x0) ,ˆ
∂Br(x0)

KBr(x0) (x, y)u (y) dσy for x ∈ Br (x0) .

with KBr(x0) : Br (x0)× ∂Br (x0)→ R+ the Poisson kernel for Br (x0) defined by

KBr(x0) (x, y) =
r2 − |x− x0|2
nωnr |x− y|n

.

One may check that ū solves

{
−∆ū (x) = 0 for x ∈ Br (x0) ,
ū (x) = u (x) for x ∈ ∂Br (x0) .

3.1.2.2 Solution operators in a C-setting

Coming back to (3.2) with λ = 0, that is

{
−Lu (x) = f (x) for x ∈ Ω,

u (x) = 0 for x ∈ ∂Ω,
(3.8)

one may prove the following result.

Theorem 3.1.8 Let Ω be a bounded domain in Rn.

1. If Ω satisfies a uniform exterior cone condition, then for each f ∈ C(Ω) there exists a
unique strong solution u ∈ C(Ω) ∩W 2,p

loc (Ω) of (3.8) with p ∈ [n,∞).
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2. If ∂Ω ∈ C1,1, then for each f ∈ C(Ω) there exists a unique strong solution u ∈ C1(Ω) ∩
W 2,p (Ω) of (3.8) with p ∈ (1,∞).

Proof. A real proof is outside the scope of these lecture notes and we will just give references.

With p ≥ n the existence and uniqueness of a solution u ∈ C(Ω)∩W 2,p
loc (Ω) can be found in

[12, Theorem 9.30], which confirms the first claim.

The second result can be found in [12, Theorem 9.15], that is, the existence of a unique strong
solution in W 1,p

0 (Ω) ∩W 2,p (Ω) for any p ∈ (1,∞). We may use any p since C1(Ω) ⊂ Lp (Ω).
For domains satisfying a uniform interior cone condition, which holds for ∂Ω ∈ C1,1, W 2,p (Ω)
imbeds in C1(Ω) for p > n.

We have for a bounded domain Ω ⊂ Rn the following hierarchy:

∂Ω ∈ C1,1

⇓
Ω satisfies uniform exterior sphere condition

⇓
Ω satisfies uniform exterior cone condition

• ∂Ω ∈ C1,1 means that the boundary can be covered by finitely many open blocks on each
of which ∂Ω can be written as the graph of a C1,1-function ψ : Rn−1 → R.

• A uniform exterior sphere condition means that r > 0 exists, such that for each x∗ ∈ ∂Ω
there is Br (y) ⊂ Ωc with x∗ ∈ ∂Br (y).

• A uniform cone condition means that for some c > 0 and ε > 0 there is a finite cone
C = {(x′, xn) ; c |x′| < xn < ε} which can be rotated by R such that for each x∗ ∈ ∂Ω one
finds x∗ +RC ⊂ Ωc.

3.1.3 Finding the first eigenfunction

Considering again {
(λ−∆)u (x) = f (x) for x ∈ Ω,

u (x) = 0 for x ∈ ∂Ω,
(3.9)

the weak setting is very convenient to find the first eigenvalue. Indeed, the first eigenvalue, with
our sign convention, is defined by the Rayleigh quotient:

λ1 = − inf
u∈W 1,2

0 (Ω)

´
Ω |∇u|

2 dx´
Ω u

2dx
< 0

and the corresponding eigenfunction ϕ1 ∈W 1,2
0 (Ω) is such that

ˆ
Ω

(λ1ϕ1ϕ+∇ϕ1∇ϕ) dx = 0 for all ϕ ∈W 1,2
0 (Ω) .

All other eigenvalues λi are real and satisfy λi < λ1.

If one replaces ∆ in (3.9) by the general L these arguments are no longer valid. For a sharp
result of the positivity preserving property the existence of a first eigenvalue is necessary and
the usual argument that replaces Perron-Frobenius for the matrix case is a result by Krein and
Rutman.
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3.1.3.1 Versions of Krein-Rutman

Before stating the result we need to fix a few notions which are used. Necessary is that the
space of functions is an ordered Banach space. Both C(Ω) and Lp (Ω) are a priori suitable.

Definition 3.1.9 The cone of positive elements P in the Banach space X is total, whenever

P − P = X.

A version that can be found in [1] is as follows.

Theorem 3.1.10 (Krein-Rutman I) Let X be an ordered Banach space with total positive
cone P . Suppose that T ∈ L (X) is compact, satisfies T (P \ {0}) ⊂ P ◦ and has a positive spectral
radius ρ (T ). Then ρ (T ) is an eigenvalue of T and of the dual operator T ∗ with eigenvectors in
P and in P ∗, respectively.

Remark 3.1.11 One may show that all other eigenvalues µi satisfy |µi| < µ1 and that there is
no other positive eigenfunction.

A problem in the assumptions of this last version is P ◦. In Lp (Ω) the open cone is empty.
In C(Ω) the Dirichlet boundary conditions prevent that T (P \ {0}) ⊂ P ◦, since

P ◦ =

{
u ∈ C(Ω); min

x∈Ω
u (x) > 0

}
.

A way out is to define

Ce(Ω) =
{
u ∈ C0(Ω);∃c > 0 such that |u (x)| ≤ cd (x, ∂Ω)

}

with ‖u‖e = sup |u(x)|
d(x,∂Ω) and d (x, ∂Ω) = infx∗∈∂Ω |x− x∗|

with d (·, ∂Ω) the distance to boundary. In order that this approach works, we need Hopf’s
boundary point Lemma.

From [19] one may find a more convenient version.

Theorem 3.1.12 (Krein-Rutman II) Let X be an ordered Banach space with a total positive
cone. Suppose that T ∈ L (X) is compact, positive and such that for some u0 ∈ X with u0 
 0
and r > 0 it holds that Tu0 ≥ ru0.

Then µ1 := ρ (T ) ≥ r is an eigenvalue with a positive eigenfunction ϕ1.

Remark 3.1.13 In the case that T = (−∆)−1
0 one may take for u0 a nontrivial nonnegative

function with compact support.

Remark 3.1.14 This theorem still needs something like irreducibility to conclude that the pos-
itive eigenfunction is ‘unique’ and that all other eigenvalues µi satisfy |µi| < µ1. A sufficient
condition that is used, is the following:

• for every f ∈ X with f 
 0 there exists cf > 0 such that Tf ≥ cfu0.

which can be weakened to:

• there exists k ∈ N+ such that for every f ∈ X with f 
 0 there exists cf > 0 such that
T kf ≥ cfu0.
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For functions f, g in Lp (Ω) or C(Ω) the infimum and supremum

(f ∨ g) (x) = max (f (x) , g (x)) and (f ∧ g) (x) = min (f (x) , g (x))

are well-defined in Lp (Ω) or C(Ω). Such ordered spaces are called lattices. One defines

|f | = (f ∨ 0) + (−f ∨ 0) .

If |f | ≤ |g| implies ‖f‖ ≤ ‖g‖, then the space is called a normed lattice. If a Banach space is
also a normed lattice, then it is called a Banach lattice. Notice that W 1,2 (Ω) is not a Banach
lattice, since |f | ≤ |g| does not imply ‖f‖W 1,2(Ω) ≤ ‖g‖W 1,2(Ω).

Combining with a result in [24] one finds the following version in [27].

Theorem 3.1.15 (Krein-Rutman-de Pagter) Let X be a Banach lattice with dim (X) > 1.
If T ∈ L (X) is compact, positive and irreducible, then µ1 := ρ (T ) > 0 is an eigenvalue with a
positive eigenfunction ϕ1. Moreover, every nonnegative eigenfunction is a multiple of ϕ1. Every
other eigenvalue µi of T satisfies |µi| < µ1.

Remark 3.1.16 T is irreducible, if X and {0} are the only T -invariant lattice ideals. The
subspace D ⊂ X is a lattice ideal, if |f | ≤ |d| and d ∈ D implies that f ∈ D.

This version does not need Hopf’s boundary point Lemma, and hence can deal with less
regular boundaries, and can be directly applied to so-called fully coupled cooperative systems.

3.1.4 PPP for the Dirichlet problem

Although we state the result for

{
(λ−∆)u (x) = f (x) for x ∈ Ω,

u (x) = 0 for x ∈ ∂Ω,
(3.10)

the next theorem also holds for more general second order elliptic operators and for more general
homogeneous boundary conditions.

Theorem 3.1.17 (PPP for the Dirichlet problem) Let Ω be a bounded domain in Rn with
∂Ω ∈ C1,1.

1. Then there is a first eigenfunction ϕ1 ∈ C1(Ω) ∩ C2 (Ω), i.e.

{
(λ1 −∆)ϕ1 (x) = 0 for x ∈ Ω,

ϕ1 (x) = 0 for x ∈ ∂Ω,
(3.11)

and there are no eigenvalues λ with λ > λ1. It holds that λ1 ∈ R− and assuming ϕ1 is
normalised by maxx∈Ω ϕ1 = 1 one finds ϕ1 > 0.

2. (a) If λ > λ1 then for every 0 � f ∈ C(Ω) problem (3.10) has a solution u > 0.

(b) If λ = λ1 then for every 0 � f ∈ C(Ω) problem (3.10) has no solution.

(c) If λ < λ1 then for every 0 � f ∈ C(Ω) problem (3.10) has no nonnegative solution u
(either u changes sign or doesn’t exist).

Remark 3.1.18 For this theorem it is sufficient that T = (∆)−1
0 : C(Ω)→ C(Ω) is positive and

compact. So one may weaken the boundary smoothness. The irreducibility still follows from the
strong maximumm principle.
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no positivity no
so

lu
ti

on

positivity preserved

λ1 0 λ→

Proof. We assume that there is a solution operator (−∆)−1
0 from C(Ω) to C1(Ω) ∩W 2,p

loc (Ω)

which is continuous as (−∆)−1
0 : C(Ω) → C1(Ω). Consider A := I ◦ (−∆)−1

0 : C(Ω) → C(Ω)
with I : C1(Ω) ↪→ C(Ω) the imbedding. Since the imbedding is compact, so is A. The maximum
principle shows that A is positive and even strongly positive. Hence, if u0 is a function with
compact support, then Au0 ≥ ru0 for some r > 0. The above version of the Krein-Rutman
theorem then gives the existence of a first eigenvalue µ1 > 0 and eigenfunction ϕ1 ∈ C(Ω) for
A, i.e.

Aϕ1 = µ1ϕ1

with µ1 = ρ (A). The eigenspace is spanned by a strictly positive eigenfunction ϕ1 and all other
eigenvalues µi satisfy |µi| < µ1. Moreover, any positive eigenfunction is a multiple of ϕ1.

We have λ1 = −µ−1
1 and ϕ1 = −λ1 (−∆)−1

0 ϕ1 ∈ C1(Ω) ∩W 2,p
loc (Ω). Since eigenvalues λi for

(3.11) give eigenvalues for A with eigenvalue µi = −λ−1
i the first item is proven.

For the second item notice that for λ ∈ (λ1, 0) we have

λAu+ u = Af

and

u = (I − (−λ)A)−1Af.

Since ρ (−λA) = |λ/λ1| < 1 we find that

u =

∞∑

k=0

(−λA)k Af

converges and since A and hence −λA are strongly positive operators, that f 
 0 implies u > 0.
The last two remaining items use the argument in (1.5).

3.1.4.1 The weak setting

The space W 1,2
0 (Ω) does not need any regularity of the boundary. Indeed, for every f ∈ L2 (Ω)

there is a weak solution u. Existence follows by Riesz’ representation theorem for −∆ and by
Lax-Milgram for more general L. Indeed W 1,2

0 (Ω) is a Hilbert space with inner product

〈u, v〉
W 1,2

0 (Ω)
=

ˆ
Ω
∇u (x) · ∇v (x) dx.

Example 3.1.19 Consider Ω = B1 (0) ⊂ Rn and u (x) = 3

√
1− |x|2. Obviously u ∈ C2 (Ω) ∩

C(Ω). Since

∇u (x) = (1− |x|)− 2
3

(
−2

3 (1 + |x|)− 2
3 x
)

and since 2× −2
3 < −1, the function u does not belong to W 1,2

0 (Ω). The function u is a classical
solution of (3.1) with some ugly right hand side.
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Example 3.1.20 Consider Ω = B1 (0) \ {0} ⊂ Rn with n ≥ 3 and u (x) = 1 − |x|2. One may
show that uε defined by

uε (x) =
|x|√

ε2 + |x|2
u (x)

lies in C2 (Ω)∩C0,1(Ω)∩W 1,2
0 (Ω) and moreover uε → u in W 1,2

0 (Ω). Note that u does not satisfy
the boundary condition in 0 pointwisely, but is a weak solution of (3.1) on Ω for f (x) = 2n.

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Weak solutions of {
(−∆ + λ)u (x) = f (x) for x ∈ Ω,

u (x) = 0 for x ∈ ∂Ω,
(3.12)

are functions u ∈W 1,2
0 (Ω), which satisfy
ˆ

Ω
(∇u · ∇ϕ+ (λu− f)ϕ) dx = 0 for all ϕ ∈W 1,2

0 (Ω) . (3.13)

3.1.4.2 A symmetric setting

When the problem is symmetric, or more precisely self-adjoint, the weak setting is very conve-
nient to find a start with existence and positivity. The first eigenvalue, with our sign convention,
is defined by by the Rayleigh quotient:

λ1 = − inf
u∈W 1,2

0 (Ω)\{0}

´
Ω |∇u|

2 dx´
Ω u

2dx
< 0. (3.14)

One show that the infimum is in fact a minimum and a function ϕ1 ∈ W 1,2
0 (Ω) for which the

minimum is assumed is an eigenfunction. Next one find that ϕ1 is such thatˆ
Ω

(λ1ϕ1ϕ+∇ϕ1∇ϕ) dx = 0 for all ϕ ∈W 1,2
0 (Ω) .

Using regularity estimates and bootstrapping results in ϕ1 ∈ C∞ (Ω). In order to show that ϕ1

has a fixed sign, one assumes that ϕ1 changes sign and defines

Ω+ = {x ∈ Ω;ϕ1 (x) > 0} and Ω− = {x ∈ Ω;ϕ1 (x) < 0} .

Since

−λ1 =

´
Ω+ |∇ϕ1|2 dx+

´
Ω− |∇ϕ1|2 dx´

Ω+ ϕ2
1dx+

´
Ω− ϕ2

1dx

= θ

´
Ω+ |∇ϕ1|2 dx´

Ω+ ϕ2
1dx

+ (1− θ)
´

Ω− |∇ϕ1|2 dx´
Ω− ϕ2

1dx

with

θ =

´
Ω+ ϕ

2
1dx´

Ω+ ϕ2
1dx+

´
Ω− ϕ2

1dx
∈ (0, 1) ,
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it follows from (3.14) that

−λ1 =

´
Ω+ |∇ϕ1|2 dx´

Ω+ ϕ2
1dx

=

´
Ω− |∇ϕ1|2 dx´

Ω− ϕ2
1dx

.

Hence also max (ϕ1, 0) and −min (ϕ1, 0) are eigenfunctions. Such eigenfunctions however con-
tradict Corollary 2.2.9.

3.1.4.3 An exceptional solution

Consider the function u, defined in radial coordinates on a pacman-
shaped domain

Ω =
{

(r, ϕ); 0 < r < 1, |ϕ| < 1
2α
}

with α ∈ (π, 2π) as follows:

u(r, ϕ) =
(
r−

π
α − r πα

)
cos
(
π
αϕ
)
. (3.15)

One finds that

• ∆u = 0,

• u = 0 a.e. on ∂Ω,

• u > 0 in Ω,

• u ∈ Lp(Ω) for p < 2α
π , which includes p = 2 for the pacman domain.

• u ∈W 1,p
0 (Ω) for p < 2α

π+α , which ranges from p = 1 till p = 4
3 for α above.

Doesn’t the maximum principle forbid the existence of such a solution?

One may convince oneself that this function is not in C(Ω) ∩ C(Ω), nor in W 1,2(Ω). Never-
theless such a function plays a crucial role in the case of a hinged plate. See (4.5).

3.2 Cooperative Second Order Systems

Cooperative second order elliptic systems are of the following type




−∆ 0 · · · 0

0 −∆
.. .

...
...

. . .
. . . 0

0 · · · 0 −∆







u1

u2
...
um


+




h11 h12 · · · h1m

h21 h22 · · · ...
...

...
. . .

...
hm1 · · · · · · hmm







u1

u2
...
uN


 =




f1

f2
...
fN


 ,

more general written as

Lu+Hu = f,

where

• L is a diagonal matrix of uniformly second order elliptic operators with suufficiently smooth
coefficients;

• H is a matrix with nonpositive off-diagonal terms.
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Concerning inequalities for a vectorvalued function u : Ω→ Rm we will use:

• u ≥ 0 when ∀i ∈ {1, . . . ,m} ∀x ∈ Ω : ui (x) ≥ 0,

• u 
 0 when u ≥ 0 and ∃i ∈ {1, . . . ,m} ∃x ∈ Ω : ui (x) > 0,

• u > 0 means ∀i ∈ {1, . . . ,m} ∀x ∈ Ω : ui (x) > 0.

As in [27] let us consider the boundary value problem for u, f : Ω→ Rm defined by

{
λu+ Lu+Hu = f in Ω,

u = 0 on ∂Ω.
(3.16)

Theorem 3.2.1 (PPP for cooperative second order elliptic systems) Let Ω ⊂ Rn be a
bounded domain with a C1,1-boundary and let L be a diagonal matrix of uniformly elliptic second
order operators, i.e.

Lk = −
n∑

ij=1

∂

∂xi
aijk (x)

∂

∂xj
+

n∑

j=1

bjk (x)
∂

∂xj
+ ck (x)

with aijk, bjk ∈ C1(Ω) and for some c > 0:

n∑

ij=1

aijk (x) ξiξj ≥ c |ξ|2 for all x ∈ Ω, ξ ∈ Rm.

Let H ∈Mm×m (C(Ω)
)

be such that

• all off-diagonal terms are nonpositive (i.e. −H is cooperative);

• H̃ =
(
‖hij (x)‖∞

)n
i,j=1

is irreducible.

Then the following holds:

1. there is a first eigenfunction ϕ1 ∈ C1(Ω;Rm) ∩ C2 (Ω;Rm), i.e.

{
(λ1I + L+H)ϕ1 = 0 in Ω,

ϕ1 = 0 on ∂Ω,
(3.17)

and there are no eigenvalues λ with λ > λ1. Assuming ϕ1 is normalised by

max
x∈Ω

1≤k≤m
ϕ1,k = 1

one finds ϕ1 > 0. Any nonnegative eigenfunction is a multiple of ϕ1.

2. (a) If λ > λ1 then for every 0 � f ∈ C(Ω;Rn) problem (3.16) has a solution u > 0.

(b) If λ = λ1 then for every 0 � f ∈ C(Ω;Rn) problem (3.16) has no solution.

(c) If λ < λ1 then for every 0 � f ∈ C(Ω;Rn) problem (3.16) has no nonnegative solution
u (either u changes sign or doesn’t exist).
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no positivity no
so

lu
ti

on

positivity preserved

λ1 0 λ→

Proof. For λ sufficiently large,

(λI + L)−1
0 : C(Ω;Rn)→ C0(Ω;Rn) ∩ C1(Ω;Rn) ∩W 2,p(Ω;Rn)

is a well defined nonnegative diagonal operator. The diagonal elements are strongly positive. So
for λ large problem (3.16) can be rewritten to

u = ((λ+ c) I + L)−1
0 ((cI −H)u+ f) ,

where we take c ≥ 0 such that cI −H has only nonnegative entries. Now fix λ̃ > 0 large enough
such that for λ ≥ λ̃

Rλ := I ((λ+ c) I + L)−1
0 (cI −H) : C(Ω;Rn)→ C0(Ω;Rn)

one has
ρ (R) < 1.

Hence

((λ+ c) I + L+H)−1
0 =

∞∑

k=0

(Rλ)k ((λ+ c) I + L)−1

Note that cI −H and ((λ+ c) I + L)−1
0 are both nonnegative. More precisely,

1. If u ≥ 0 and uk 
 0, then ((λ+ c) I + L)−1
0 u 
 0 and

(
((λ+ c) I + L)−1

0 u
)
k
> 0.

2. If u ≥ 0 and uk > 0, then (cI −H)u 
 0, ((cI −H)u)k > 0 and for all ` with h`k 6= 0:

((cI −H)u)` 
 0.

Combining these two results one finds that

3. If u ≥ 0 and uk 
 0, then for all ` with h`k 6= 0 and for ` = k we have

(Rλu)` > 0.

Since we assumed that H̃ is irredudible, it follows that

4. If u 
 0, then
Rmλ u > 0.

So for λ̃ large enough

((
λ̃+ c

)
I + L+H

)−1

0
=

∞∑

k=0

(Rλ)k
((
λ̃+ c

)
I + L

)−1

0
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is a strongly positive operator. Strongly positive implies irreducibility. One may see that

((
λ̃+ c

)
I + L

)−1

0
: C(Ω;Rn)→ C0(Ω;Rn)

is compact and hence also
((
λ̃+ c

)
I + L+H

)−1

0
. By the Krein-Rutman Theorem it follows

that there exists µ1 > 0 and a corresponding eigenfunction ϕ1 > 0, such that

((
λ̃+ c

)
I + L+H

)−1

0
ϕ1 = µ1ϕ1. (3.18)

All other eigenvalues µi of
((
λ̃+ c

)
I + L+H

)−1

0
satisfy |µi| < µ1. Setting

λ1 = λ̃+ c− 1

µ1

one finds that (λ1, ϕ1) satisfies (3.17). Since this holds for all λ̃ large enough, we find from
|µi| < µ1 that all other eigenvalues satisfy

Reλi < Reλ1.

This completes the first part.
For the second part we may conclude from the above that (λI + L+H)−1

0 exists for all

λ > λ1 and that this operator is strongly positive for λ ≥ λ̂ with λ̂ large enough. What about

λ ∈
(
λ1, λ̂

)
? Here we may use a similar series as above:

(λI + L+H)−1
0 =

∞∑

k=0

((
λ̂I + L+H

)−1

0

(
λ̂− λ

))k
(λI + L+H)−1

0 .

Since ρ

((
λ̂I + L+H

)−1

0

)
=
(
λ̂− λ1

)−1
and since λ̂−λ

λ̂−λ1
< 1, the series converges. Since the se-

ries consists of strongly positive operators, also (λI + L+H)−1
0 is positive. This proves the first

claim of item 2. The remaining claims use ϕ∗1 for the formally adjoint operator
(
λI + L∗ +HT

)−1

0
similar as in the proof of
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Positivity and real higher order

4.1 Noncooperative Second Order Systems

4.1.1 Similar to cooperative

In the case that the diagonal operator L has identical second order elliptic operators on the
diagonal, one may look for other cones than just the positive cone, say that we replace u ≥ 0 by
Su ≥ 0, where S is some constant transformation matrix. Then

(λI + L+H)u = f

is replaced by (
λI + L+ SHS−1

)
Su = Sf.

Indeed, for example if Li = −∆, then SLS−1 = L.

Is there a simple condition on H such that a transformation S exists, that turns
SHS−1 into an M-matrix?

Weinberger in [29] studied this question. For 2 dimensions and

H =

(
a b
c d

)

with c > 0 the condition is 1
4 (a− d)2 + bc, which is nothing but the condition for H having real

eigenvalues. For larger dimensions the condition becomes a mess.

4.1.2 Strictly noncooperative

For a system like 


−∆u− εv = f in Ω,
−∆v + εu = g in Ω,
u = v = 0 on ∂Ω,

the eigenvalues, expressed in νk those of the Dirichlet Laplace, are

λik,± = νk ± εi

and there is no hope for a preserved cone. Nevertheless, setting

G = (−∆)−1
0

31
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Figure 4.1: For Ω = (0, 1) ∈ R a sketch of a function f , Gf and f − Gf .
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Figure 4.2: For Ω = (0, 1) ∈ R a sketch for the f in Figure 4.1 of Gf − G2f .

one finds that
u = εGv + Gf and v = −εGu+ Gg.

Hence
u = −ε2G2u+ εG2g + Gf

and since ρ (G) = ν−1
1 it follows for ε ∈ (0, ν1) that

u =
(
I + ε2G2

)−1 (
εG2g + Gf

)
=

∞∑

k=0

(
−ε2G2

)k (
εG2g + Gf

)

=
(
I − ε2G2

)
G
( ∞∑

k=0

(
ε4G4

)k
)

(εGg + f)

= (I − εG)G (I + εG)

( ∞∑

k=0

(
ε4G4

)k
)

(εGg + f) .

Most factors in this operator are positive. The only bad one is

I − εG
and positivity cannot be saved by taking ε small.

However, the combination of I − εG with G might do the trick.

In order to show that (I − εG)G is a positive operator we may the integral expression for the
Green function. Indeed, the operator (−∆)−1

0 can be formally written as an integral operator:

(Gf) (x) :=
(

(−∆)−1
0 f

)
(x) =

ˆ
Ω
GΩ (x, y) f (y) dy.

For some special domains explicit Green functions are known:

GB1(0) (x, y) =





1
4π ln

(
1 +

(1−|x|2)(1−|y|2)
|x−y|2

)
when n = 2,

1
nωn

(
|x− y|2−n −

∣∣∣x |y| − y
|y|

∣∣∣
2−n)

when n ≥ 3.
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The Green function GΩ : Ω× Ω→ [0,∞] satisfies (formally) for each y ∈ Ω





GΩ (x, y) = GΩ (y, x) for x ∈ Ω,
−∆xGΩ (x, y) = δy (x) for x ∈ Ω,

GΩ (x, y) = 0 for x ∈ ∂Ω.

We are interested in

(I − εG)Gf (x) =

ˆ
Ω
GΩ (x, y) f (y) dy − ε

ˆ
Ω

ˆ
Ω
GΩ (x, z)GΩ (z, y) f (y) dydz

=

ˆ
Ω
GΩ (x, y)

(
1− ε

´
ΩGΩ (x, z)GΩ (z, y) dz

GΩ (x, y)

)
f (y) dy.

Theorem 4.1.1 (Cranston-Fabes-Zhao [6]) Suppose that Ω is a bounded Lipschitz domain.
Then there is MΩ ∈ R+ such that

sup
x,y∈Ω

´
ΩGΩ (x, z)GΩ (z, y) dz

GΩ (x, y)
≤MΩ.

Corollary 4.1.2 If ε < M−1
Ω , then (I − εG)G : C(Ω)→ C(Ω) is strongly positive.

Remark 4.1.3 The expectation of the lifetime of a conditioned Brownian motion, namely Brow-
nian motion starting at x, killed at the boundary ∂Ω and conditioned to converge to y, is given
by

Eyx (τΩ) =

´
ΩGΩ (x, z)GΩ (z, y) dz

GΩ (x, y)
.

4.2 Fourth order models, a hinged plate

In one dimension −u′′ = f is a simple differential equation for hanging weight on a line. Going
to two dimensions the differential equation −∆u = f is used for the vertical deviation of a mem-
brane under a weight distribution f . When fixing the line and the membrane at the boundary,
that is, setting for example u = 0 t the boundary, the positivity preserving property translates
into: the line/membrane moves in the direction that it is pushed:

f ≥ 0 =⇒ u ≥ 0.

One may think of other models, where one may expect such behaviour.

Example 4.2.1 When we hang our laundry on a
tube instead on a line, one obtains the following
problem

{
u′′′′ (x) = f (x) for x ∈ (0, 1) ,
u (0) = u′′(0) = u (1) = u′′(1) = 0.

(4.1)

This models laundry and other things hanging
from a beam, which position is fixed at both ends.

We may find an explicit solution by straightfor-
ward integration. The formula is a rather ugly 0.2 0.4 0.6 0.8 1.0

x →

f ↓

one, but one can see that also this Green function is positive.
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This result should not be surprising, since one may recognise an iterated Dirichlet Laplace.

Also the two dimensional problem makes sense. A thin polygonal shaped plate for which
one fixes the position at the boundary, but not the angle, results in the following problem.

{
∆2u (x) = f (x) for x ∈ Ω,
u (x) = ∆u(x) = 0 for x ∈ ∂Ω.

(4.2)

Guessing that we may use the positivity of the iterated Laplacian is ok on convex polygons.
Indeed, setting v = −∆u one obtains




−∆v (x) = f (x) for x ∈ Ω,
−∆u (x) = v (x) for x ∈ Ω,
u (x) = v(x) = 0 for x ∈ ∂Ω,

(4.3)

and the problem splits nicely. So, if

u =
(
(−∆)−1

0

)2
f, (4.4)

then one finds for (4.2) that
f 
 0 =⇒ u > 0.

However, when the domain has a nonconvex corner, the result is no longer that obvious. The
problem in 4.2 has a well-defined solution u1 ∈ W 2,2(Ω) ∩W 1,2

0 (Ω) and also a solution u2 with

u2,∆u2 ∈W 1,2
0 (Ω). These two solutions are not the same. It seems that the first one is physically

more relevant. Only the second one, that is u as in (4.4), has the sign preserving property. In
case of a pacman domain the difference between these two solutions is precisely a multiple of
(−∆)−1

0 u with u as in (3.15). See [22]. It is shown that

u1 − u2 = c(−∆)−1
0 u. (4.5)

One should mention that Davini was the first to consider the supported plate with corners
from a thorough analytical point of view. See [8].

One may consider the problem above with a feedback through an elastic medium and one
obtains the additional λ at the positiin as before:

{
λu(x) + ∆2u (x) = f (x) for x ∈ Ω,
u (x) = ∆u(x) = 0 for x ∈ ∂Ω.

(4.6)

Even on smooth domains the splitting is not so nice, since one becomes





(−∆ + i
√
λ)v = f in Ω,

(−∆− i
√
λ)u = v in Ω,

u = v = 0 on ∂Ω,

(4.7)

which becomes complex unless λ ≤ 0.
Help comes from the from the following observation. Let

(t, x, y) 7→ p(t, x, y) : R+ × Ω× Ω→ [0,∞)

be the heat kernel for the heat equation on Ω and set

H(λ, t) :=





for λ > 0
sin(
√
λt)√
λ

,

for λ = 0 t,

for λ < 0
sinh(

√
−λt)√
−λ .
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One may show that the solution of 4.6 can formally be written as

u(x) =

ˆ
Ω

(ˆ ∞
t=0

H(λ, t) p(t, x, y) dt

)
f(y) dy.

Since p(t, x, y) ' exp(µ1t) with µ1 < 0 the first eigenvalue for the Dirichlet Laplacian, one
obtains:

• when λ < −µ2
1 divergence of the integral;

• when −µ2
1 < λ ≤ 0 convergence of the integral and positivity;

• when λ > 0 convergence of the integral but positivity maybe only for small λ.

no positivity no
so

lu
ti

on

positivity preserved ? no positivity claim

λ1 0 λ→

Figure 4.3: Concerning positivity the above picture describes the case for (4.6)

For more information see [28].

4.3 Fourth order models, a clamped plate

In the next example there is no obvious to use iterated second order problems, since the boundary
conditions do not split nicely.

Example 4.3.1 Here we consider the case, where
laundry hangs from a tube or beam, of which we
fix both the position and the angle at the boundary.
This is the so-called clamped boundary condition

{
u′′′′ (x) = f (x) for x ∈ (0, 1) ,
u (0) = u′(0) = u (1) = u′(1) = 0.

(4.8)

This models laundry and other things hanging from
a beam, which is clamped at both ends. That means
that both the position and the first derivative is
fixed. Here we fixed both to be zero.

Also here we may find an explicit solution. 0.2 0.4 0.6 0.8 1.0
x →

f ↓

In one dimension one finds again that f > 0 implies u > 0. When generalizing this to two
or higher dimensions one obtains

{
∆2u (x) = f (x) for x ∈ Ω,

u (x) = ∂
∂nu(x) = 0 for x ∈ ∂Ω.

(4.9)

The positivity preserving property for (4.9) is lost in generically. For a long time the conjecture
named after Boggio-Hadamard that the clamped problem is positivity preserving qt least for
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convex domains was open. Duffin in 1946 gave a counterexample. By now, one believes that,
except on very few domains, such as balls in Rn, PPP remains. Analytical results are however
rare. In two dimensions small perturbations of the disk are allowed without ruining the positivity.

In any case, the part where the solution becomes negative when the force f is positive, seems
to be extremely small. There is evidence from numerics that for f > 0 one generically would
find ∥∥u−

∥∥
∞ ≤ 10−4

∥∥u+
∥∥
∞ .

Also such a result seems quite hard to verify analytically.

The explicit Green function for (4.9) the case the ball is known since Boggio around 1900.
With the function d(·), that measures the distance to the boundary

d(x) := d(x, ∂Ω) = inf {|x− x∗| ;x∗ ∈ ∂Ω} ,

his explicit formula gives the following estimates:

• for n ≥ 5

GB(x, y) ≈ gn(x, y) := |x− y|4−n min

(
1,
d(x)2d(y)2

|x− y|4
)

;

• for n = 4

GB(x, y) ≈ gn(x, y) := log

(
1 +

d(x)2d(y)2

|x− y|4
)

;

• for n ≤ 3

GB(x, y) ≈ gn(x, y) := (d(x)d(y))2−n/2 min

(
1,
d(x)d(y)

|x− y|2
)n/2

.

Here a ≈ b means that there are uniform constants c1, c2 ∈ R+, such that c1 ≤ a
b ≤ b.

Remark 4.3.2 In the estimates one should recognize the contribution of the fundamental solu-
tion, that is |x− y|4−n for n ≥ 5, the quadratic boundary behaviour d(x)2 due to the clamped
boundary conditions as well as the symmetry in x and y for Green functions.

For more arbitrary domains one cannot expect positivity, so the estimate from below cannot
hold true. Nevertheless the Green function is close and the following result has been proven in
[13]:

Theorem 4.3.3 Let Ω ⊂ Rn be bounded and with a smooth domain. Then there exists constants
c1, c2, C ∈ R+ such that

c1gn(x, y) ≤ GΩ(x, y) + Cd(x)2d(y)2 ≤ c2gn(x, y) for all x, y ∈ Ω.

Remark 4.3.4 The addition of a constant times d(x)2d(y)2 is the lowest possible perturbation
that cannot be improved in general. One may try to find the optimal constant C as a function
of the domain but that seems a very tough problem.
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4.4 Other positivity questions

4.4.1 Szegö’s claim

Whenever the solution operator, or say the Green function, is positive, then one may conclude
that the first eigenfunction is positive. Indeed, this is what Szeg{ö) stated assuming that the
Green function is positive. Since we now know that the assumption is false, one may ask:

When is the first eigenfunction for the clamped problem positive?

Also this question is largely open and it is not even clear, which kind of answer one may get.
Coffmann and Duffin could show that on an annulus with a small hole, the first eigenfunction
is sign-changing and has multiplicity 2. Also domains with narrow passages or close to corners
seem to have a sign-changing first eigenfunction.

4.4.2 A question by Filoche and Mayboroda

In [9] some arguments simplify, if the solution of

{
∆2u = 1 in Ω,

u = ∂nu = 0 on ∂Ω,
(4.10)

is positive. Of course a positive Green function GΩ (·, ·) for (4.9) also implies that the solution
for a uniform weight, i.e. f ≡ 1, is positive. For the solution of (4.10) to be positive it would
however be sufficient that ˆ

Ω
GΩ (x, y) dy ≥ 0 for all x ∈ Ω.

So the question would be:

Is the solution of the clamped plate with a constant weight of fixed sign?

Also this question has a negative answer: There are domains for which the solution

u (x) =

ˆ
Ω
GΩ (x, y) dy

of (4.10) changes sign. See [16].

4.4.3 The real supported plate

Maybe due to sloppy translations between Russian and English the hinged plate is often referred
to by supported plate. Indeed, when the hinged plate is positivity preserving, this would not be
a bad guess. The real supported model however has a unilateral boundary condition.





∆2u = f in Ω,
u ≥ 0 on ∂Ω,

σ∆u+ (1− σ)∂2
nu = 0 on ∂Ω,

u(x) = 0 or ∂n
(
∆u(x) + (1− σ)∂2

τu(x)
)

= 0 for x ∈ ∂Ω.

(4.11)

If u = 0 on the boundary and the boundary consists of straight lines, we return to (4.2).
One may show that if f < 0, i.e. the weight pushing down, which seems more natural when

thinking of gravity, that the solution changes sign near every corner. See the excerpt from [23]
in Figure 4.4.
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Fig. 6. An L-shaped plate with a uniform load (f = −1) leads to a solution that moves upwards near all corner points
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Fig. 7. An L-shaped plate with small load (f = −.1) everywhere except for a local heavier load (f = −1.1) on the dark

circular area. On the right this force density
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Fig. 8. An L-shaped plate loaded locally on one side results to a large free boundary on the other side

∂Fj

∂ui
=

∫

Ω

(
ΔeiΔej + (1− σ)(2∂xyei∂xyej − ∂xxei∂yyej − ∂yyei∂xxej)

)
dx

−
∫

∂Ω

β′
(∑N

k=1 ukek

)
eiej ds.

Note also that, since the ei’s have small support, the Jacobian F ′(u) becomes a band matrix.

c©Springer

Figure 4.4: A copy taken from [23]
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