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Abstract All problems mentioned in the title seem to have one thing in common.
Whenever a force is applied in one direction, the object moves in that direction. At
least this is what one might expect. The corresponding boundary value problems con-
tain differential equations of second order for line and membrane, while rod, or beam,
and plate are modeled through fourth order differential equations. How a positive
source will give a positive solution crucially depends on this order and the boundary
conditions. We will present a survey concerning the so-called positivity preserving
property for these various models.

Keywords Positivity · Sign preservation · Second and fourth order elliptic ·
Kirchhoff plate
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1 Introduction

What do a curtain rod and a clothesline have in common? An obvious answer could
be: if you hang something on it, the rod/line will move downwards. Like with soc-
cer, if you kick a ball in a certain direction, you expect it to go in that direction. In
mathematical terms for line and rod: a downwards force should imply a downwards
deviation.

� A Short History of the Models So a differential equation with appropriate
boundary conditions that models such a problem should have this sign preserving
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Fig. 1 Kicking the ball
forwards gives some hope that
the ball moves forwards, but
hope may not be enough

property or should be near sign preserving. Finding an appropriate model is a quest
in itself. Indeed, the search for the model of a beam has a long history. Leonardo
Da Vinci in the 16th and Galileo in the 17th century were interested in the behav-
ior of a beam, see their sketches reproduced in [59], but they lacked the appropriate
mathematical tools. Jacob Bernoulli tried to find an appropriate model but was not
successful. Only when his nephew, Daniel Bernoulli, wrote a letter to his friend Euler
in 1742 suggesting a variational argument, Leonhard Euler [31] came up with the first
sound mathematical formulation, now known as the Euler–Bernoulli model. See the
surveys of Fraser [32] and Marenholtz [59].

In 2 dimensions spanned membranes and thin plates are problems for which one
might expect a similar sign preserving behavior. The model for an elastic thin plate
has a similar exciting story. See [19]. A final model appeared somewhere in the vicin-
ity of Sophie Germain [39], Joseph-Louis Lagrange and Denis Poisson [69] at the
beginning of the 19th century. A variational formulation of the energy for the rod or
plate leads to a differential equation, which nowadays is known as the corresponding
Euler–Lagrange equation. Linearizing the equation for a thin plate one arrives at the
Kirchhoff–Love model. See [57].

Like beam or string also membrane and plate should be fixed somehow at the
boundary in order to have a well-posed problem. The number of physically relevant
conditions for fourth order problems is naturally ‘much larger’ than for second order.

� Maximum Principle or Not? Clothesline, or string, and membrane are modeled
through second order equations, which allow for a maximum principle and a sign
preserving result.

Fig. 2 Not very surprising:
a clothesline goes down when
you hang something on it. Does
the mathematical model confirm
this?
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Indeed u′′(x0) > 0 implies that u will not have a maximum at an interior point x0,
and that would imply that the maximum occurs at the boundary. Hence, if at the
boundary the function u is fixed to be at a zero level, then a fixed sign of −u′′ implies
the same sign for u. In other words, the corresponding boundary value problem has
a sign preserving property.

So, when thinking of sign preservation, we prefer to write equations with −u′′
instead of u′′. By iteration, a plus sign is again natural in fourth order problems.

A maximum principle not only holds in one dimension and one may replace −u′′
by −�u = −∑n

i=1 uxixi
or by Lu, where L is a (purely) second order elliptic oper-

ator:

Lu = −
n∑

i=1

aijuxixi
with aij = aji and ∃c > 0 ∀ξ ∈ R

n:
n∑

i=1

aij ξiξj ≥ c|ξ |2.

For positivity question with second order elliptic equations indeed ‘Maximum Prin-
ciple’ is the keyword and Protter and Weinberger in 1967 wrote the classic [71] on
the subject.

Rods or beams and thin plates are modeled through fourth order elliptic equa-
tions, for which such a pointwise argument as above does not directly apply. See
Fig. 3. Indeed, here one cannot expect a maximum principle to hold. Nevertheless,
from practical experience we still expect that a sign or positivity preserving property
(PPP) will hold true for beams on plates. As Fig. 3 makes clear, the corresponding
result should follow from the interplay between differential equation and boundary
conditions.

Fig. 3 On the left: any function v : R → R satisfying v′′ ≤ 0 has its minimum on the boundary. On the
right: no such result holds for u with ±u′′′′ ≤ 0. The graph belongs to u(x) = x − x3 and obviously
u′′′′(x) = 0

� A Short History on Positivity in Fourth Order Models For the one-dimensi-
onal problem, i.e. u′′′′ = f with several suitable boundary conditions, the solution
can be almost explicitly computed and indeed shows PPP. Around 1900 Boggio and
Hadamard got interested in the corresponding mathematical question for the model
of a clamped plate in two and its generalization in more dimensions. The differential
equation that they considered comes from the Kirchhoff–Love model for pure bend-
ing of an isotropic plate: �2u = f on Ω ⊂ R

2. The equation can also be considered
on domains Ω ⊂ R

n but will need to be supplemented by appropriate boundary con-
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ditions. For the simplified hinged boundary conditions, i.e. u = �u = 0 on ∂Ω and
we will discuss, whether or not these conditions are appropriate, it seems that one
finds an iterated Dirichlet–Laplace problem and hence a positivity preserving prop-
erty. More interesting are the so-called clamped boundary conditions u = ∂

∂ν
u = 0 on

∂Ω . As usual ∂
∂ν

denotes here the outward normal derivative. Although, with u being
only defined in Ω , it would have been better if one had agreed upon inward normal.
Anyway, these boundary conditions do not allow a repeated second order approach
and one has to come up with new techniques. Direct computations for the fourth or-
der model of a clamped plate do not give much in general. Two exceptions are the
disk, for which Boggio [10] obtained some results around 1905, and the Limaçon de
Pascal studied by Hadamard [50] around 1908.

Fig. 4 Between disc and cardioid are the Limaçons de Pascal: defined in polar coordinates by
r = 1 − 2a sinϕ with 0 ≤ a ≤ 1

2 . Above are sketches for a ∈ {0, 1
6 , 1

3 , 1√
6
, 4

5 , 1
2 }. The special role of

the fourth (dark) limaçon is explained in the item near Fig. 26

For disk and limaçon almost explicit formulas for the solution, so-called Green
functions, were found and these explicit functions are or at least seem to be posi-
tive. For other domains such functions are not available in a simple form and results
concerning positivity are much harder to derive. Nevertheless, Hadamard was aware,
see [50], that for a domain with a small hole PPP could not be true. The conjecture
named after Boggio–Hadamard, that the clamped plate equation is positivity preserv-
ing, became restricted to convex domain. It remained open till Duffin’s paper [28]
from 1946. The paragraph on the clamped plate problem, i.e. (42), contains more
details.

Having PPP on balls and limaçons, but not for general domains, it is natural to ask
what happens, when perturbing the domain or the equation starting from a known
case. Coffman and Grover in [17] as well as Kozlov and coauthors in [55] followed
this strategy for a negative result. A positive result for small perturbations from a disk
was found in [44]. Perturbations of the differential operator in arbitrary dimensions
are studied in [45].

The simplest perturbations one obtains by adding λu to the differential equation.
Not only does this have a physical motivation, but one will also see that the sign
preserving question will get more structure. In this paper we will give a survey of
positivity preserving properties focused on λ as a parameter, and try to explain what
will happen when PPP fails to hold. With such an additional term one obviously will
encounter eigenvalue problems.

� Some Remarks Let us explain the notation convention that we will use for eigen-
values, starting from second order problems.
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• Fix Ω ⊂ R
n to be a bounded domain, i.e. open and connected, and let f : Ω →R

be a given force density. The Dirichlet–Laplace problem with the additional feed-
back term λu, with λ ∈R is

{−�u + λu = f in Ω,

u = 0 on ∂Ω.
(1)

Generically a solution u exists, except when λ = λi with λi some eigenvalue. These
eigenvalues will form a countable set {λk}k∈N+ , which is unbounded from below.
In fact, they can be ordered:

−∞ ←− · · · ≤ λk+1 ≤ λk ≤ · · · ≤ λ3 ≤ λ2 < λ1 < 0.

It is well-known that for (1) a positive force f results in a positive solution u if and
only if λ satisfies λ1 < λ.

• Whenever we consider a solution operator GΩ , say u = GΩf solves (1) for λ = 0,
we will use {νk}k∈N for the eigenvalues of GΩ . So, comparing eigenvalues for (1)
and for GΩ , we get GΩϕk = νkϕk with νk ↓ 0 and λk = −(νk)

−1.

We will keep this notation convention for eigenvalues, i.e. λk ↓ −∞ in the dif-
ferential equation and νk ↓ 0 for the solution operator throughout the paper, also for
fourth order models.

Except for curiosity concerning positivity for these models, why study such sign
preserving properties? Hadamard formulated the three properties that a well-posed
problem should have: existence, uniqueness and continuous dependence. If such a
sign preserving property holds, then one finds uniqueness of the solution. Indeed,
if there are two solutions, then, at least for linear equations, the pde for the differ-
ence has a zero right hand side, which transfers then to the result that this differ-
ence should be zero. For nonlinear second order elliptic equations a sign preserving
property allows one to obtain a priori estimates by super- and subsolutions. More-
over, in many cases a subsolution below a supersolution implies the existence of
a solution in between. Qualitative properties such as regularity for elliptic equa-
tions start with estimates and these estimates often start with the maximum princi-
ple.

For more information concerning second order elliptic equations see the seminal
book by Gilbarg and Trudinger [40]. For the relation between ordering and second
order elliptic problems see [2]. Polyharmonic equations and questions concerning
positivity can be found in [37].

One may say that the loss of a sign preserving property in general for fourth or-
der elliptic equations, is the major obstacle when moving from second order elliptic
problems to fourth order. To come back to the first image: it seems like playing soccer
but now without having a clue where the ball might go.

We conclude this introduction with a line-up of the consecutive sections.
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1. Introduction

2. One dimension

3. Positivity & principal eigenvalue

4. Positivity & the order of the pde

5. Two and more dimensions

A. Remaining 1d proofs

B. A sharp Kreı̆n–Rutman version

2.1. 2nd order

2.2. 4th order

string

� hinged beam
� clamped beam
� suspension bridge, railroad
� horizontal flagpole

5.1. 2nd order

5.2. 4th order

membrane

� iterated Dirichlet–Laplace
� corners and paradoxes
� hinged plate
� real supported plate
� clamped plate

��

��

��

��

2 One Dimension

Simple linearized models for the laundry line and the supported curtain rod, respec-
tively, are

{
−u′′ = f in (0,1),

u(0) = u(1) = 0,
and

⎧
⎪⎨

⎪⎩

u′′′′ = f in (0,1),

u(0) = u(1) = 0,

u′′(0) = u′′(1) = 0.

(2)

Here f is the source term, pulling downwards when f ≥ 0, and u is the resulting
deviation from the horizontal equilibrium, again downwards when u ≥ 0.

Both problems have an explicit Green function, which is positive also in both
cases. In fact the Green function for the problem on the right is just an iteration
of the one for the left problem. But even if we would have a clamped rod at both
its ends, i.e. u′′ = 0 is replaced by u′ = 0 on the boundary, then one would have
found a positive Green function. Let us recall that a Green function here is a function
g : [0,1] × [0,1] →R, such that

u(x) =
∫ 1

−1
g(x, y)f (y)dy

solves the corresponding problem in (2). So the question ‘when is the problem posi-
tivity preserving’ can be rephrased as:

• When do we have: f ≥ 0 ⇒ u ≥ 0?

Or in terms of a Green function, which exists also in the higher dimensional case,
that we consider later on:

• When is the Green function g(x, y) nonnegative?

In order to find a structural answer we will introduce a parameter λ in problems
like (2). For λ > 0 it can be seen as adding elastic springs between the line or rod and
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a ceiling. For u = 0 these springs neither push nor pull. They help the line or rod to
stay closer to its equilibrium. Since we move away from the household description,
the common terms string and beam are used from now on.

2.1 Second Order: A String with Elastic Feedback

Problem 1 The linearized second order boundary value problem for a string under
tension with elastic feedback:

{−u′′ + λu = f in (0,1),

u(0) = u(1) = 0.

For λ > 0 one models the elastic feedback mentioned above. Mathematically also
λ < 0 is interesting. In Fig. 2 and Fig. 5 solutions of Problem 1 with λ = 0 and
λ = 20 are sketched for a right hand side f , which is piecewise constant except for
a δ-function at the position of the teddy bear. The length of the cloth represents the
local value of f .

Fig. 5 A clothesline with
elastic feedback. Here a sketch
of the solution of problem (1)
for λ = 20. For all pictures a
scaling of the actual Green
function has been used

The following result is standard but we nevertheless write it for comparison with
the other problems.

Lemma 2.1 Problem 1 is positivity preserving if and only if λ > −π2.

Fig. 6 Suppose that f � 0, meaning 0 �= f ≥ 0. Above is a graphical answer for the dependence from λ

of (the sign of) the solution u in Problem 1, the second order model for the clothesline. Note that there is
no bound from above for the ‘good’ λ
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The first eigenfunction for Problem 1 is ϕ1(x) = sin(πx) with λ1 = −π2.
For a proof see Sect. 3.2 for λ ≤ 0 and Appendix A for λ > 0.

2.2 Fourth Order: Beams with Elastic Feedback

Three physical relevant boundary conditions, here written for 0 as boundary point,
are the following:

• hinged (also called supported): u(0) = u′′(0) = 0,
• clamped: u(0) = u′(0) = 0, and
• free: u′′(0) = u′′′(0) = 0.

Fig. 7 A hinged (supported) and a clamped beam

In the case that the beam is supported (from below) and the force is downwards,
one obtains the hinged boundary condition. For a sketch see Fig. 7. For proofs of the
next three lemmas see Sect. 3.2 and Appendix A.

� The Hinged or Supported Beam is modeled as follows.

Problem 2 The linearized fourth order boundary value problem for the supported
beam with elastic feedback:

⎧
⎪⎨

⎪⎩

u′′′′ + λu = f in (0,1),

u(0) = u′′(0) = 0,

u(1) = u′′(1) = 0.

Lemma 2.2 Problem 2 is positivity preserving if and only if λ ∈ (−π4, λc), with
λc = 4μ4

c and μc the first positive solution of tanμ = tanhμ.

Fig. 8 Suppose that f � 0 in Problem 2, the supported beam. What can one say concerning the sign of u?
The bound from above is the typical distinction of fourth order problems from second order
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The first eigenfunction for Problem 2 is ϕ1(x) = sin(πx) and the corresponding
eigenvalue is λ1 = −π4. One finds, see Fig. 8,

−π4 ≈ −97.409 and λc ≈ 950.844.

� The Clamped Beam has only two different boundary conditions compared with
the hinged beam.

Problem 3 The linearized fourth order boundary value problem for the clamped
beam with elastic feedback:

⎧
⎪⎨

⎪⎩

u′′′′ + λu = f in (0,1),

u(0) = u′(0) = 0,

u(1) = u′(1) = 0.

Lemma 2.3 Problem 3 is positivity preserving if and only if λ ∈ (−ρ1, λc), where

1. ρ1 = (2μ1)
4 with μ1 the first positive solution of tanμ + tanhμ = 0, and

2. λc = 4μ4
c with μc the first positive solution of tanμ = tanhμ.

Fig. 9 Suppose f � 0 in Problem 3, the clamped beam. What can one say concerning the sign of u? The
λc-s for the supported and for the clamped boundary conditions are identical

The first eigenfunction for Problem 3 is

ϕ1(x) = cos

(

2μ1

(

x − 1

2

))

− cosμ1

coshμ1
cosh

(

2μ1

(

x − 1

2

))

with μ1 given by the lemma and λ1 = −ρ1. One has, see Fig. 9,

ρ1 ≈ 500.564 and λc ≈ 950.844.

A sketch for λ > λc is found in Fig. 10.
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Fig. 10 For λ > λc , here λ = 2500, part of the rod moves upwards under the downwards pulling even
with the springs pushing downwards when the rod moves above the neutral horizontal line. On the right is
a vertically scaled version

� Suspension Bridges and Railroad Tracks are two examples of a ‘beam’, where
the elastic feedback is modeled as if many springs push the beam back to the horizon-
tal equilibrium. For a suspension bridge the cables, from which the deck of bridge is
hanging, take the place of the springs. For a railroad track the rails are the beam and
the soil is the elastic medium. See the paper by Marenholtz [59]. Winkler’s model for
a railroad with welded rails, meaning of infinite length, would be, with λ some large
positive number:

{
u′′′′ + λu = f in R,

lim|x|→∞ u(x) = 0.
(3)

Note that for f with compact support lim|x|→∞ u(x) = 0 implies that all derivatives
of u go to 0 at ±∞.

Fig. 11 A computed solution
with a point weight for problem
(3). It resembles the measured
track displacement of a train as
in [5, Fig. 1]

The solution as sketched in Fig. 11 displays a sign change. If this upwards dis-
placement is large enough, it would mean that the rails with its ties/sleepers would
come free from the ballast bed. When these come free, smaller stones in the ballast
may also come free to resettle, maybe even preventing the sleeper to return to its old
position. Such a process will eventually cause track settlement problems. See [58]
or [5]. If the ballast particles rearrange itself enough, even a hanging sleeper might
develop, which lead to a rapid degradation of the track. By the way, the upwards
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movement just in front of the train one can notice when standing close to the rails,
with the rails on a ballast bed below and not bedded on concrete. Indeed you should
have a look at the rails the next time you are waiting at a countryside railway station
and a freight train slowly passes. Or one may have a careful look at

http://www.shutterstock.com/de/video/clip-3342815

and notice, that the track moves slightly upwards shortly before the train passes.

� Unilateral Feedback occurs in a more appropriate model when one replaces
the springs by elastic cables, or when the track of the railroad looses its touch with
the ballast bed. Indeed, one can pull but not push through a cable and obviously, for
a functioning railway the ballast bed should be below the tracks. This leads to the
following nonlinear system:

Problem 4 The fourth order boundary value problem for a clamped beam with a
one-sided elastic feedback:

⎧
⎪⎨

⎪⎩

u′′′′ + λmax(u,0) = f in (0,1),

u(0) = u′(0) = 0,

u(1) = u′(1) = 0.

For λ ∈ (−ρ1, λc) and f nonnegative the solutions of Problem 3 and 4 coincide.
This observation directly implies that the result of Lemma 2.3 for these λ also holds
for Problem 4.

As part of a model for a suspension bridge, this fourth order boundary value prob-
lem appears in a paper of McKenna and Walter [62]. Not only triggered their pa-
per a lot of consecutive papers, it also triggered some controversy among engineers,
whether the investigations after the collapse of the first Tacoma Narrows Bridge led
to the correct conclusions. A movie of the actual collapse of this bridge can be seen
on:

https://www.youtube.com/watch?v=j-zczJXSxnw

When designing the bridge the dynamic behavior was neglected. Soon after finishing
the construction an unforeseen interplay between longitudinal and torsional eigen-
functions ruined the bridge. Even today there are new developments concerning the
mathematical modeling of suspension bridges. See [36].

� The Horizontal Flagpole or the diving board can be seen as a beam clamped
on one end and free on the other. The corresponding linear problem with the elastic
feedback becomes:

http://www.shutterstock.com/de/video/clip-3342815
https://www.youtube.com/watch?v=j-zczJXSxnw
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Problem 5 The fourth order
boundary value problem for
the beam clamped on one
side, free on the other and
with elastic feedback:

⎧
⎪⎨

⎪⎩

u′′′′ + λu = f in (0,1),

u(0) = u′(0) = 0,

u′′(1) = u′′′(1) = 0.

Lemma 2.4 Problem 5 is positivity preserving if and only if λ ∈ (−d1, dc), where

1. d1 = τ 4
1 with τ1 the first positive solution of cos τ cosh τ + 1 = 0, and

2. dc = 4μ4
1 with μ1 the first positive solution of tanμ + tanhμ = 0.

Fig. 12 Suppose that f � 0 in the model for the flagpole Problem 5. What can one say concerning the
sign of the solution?

The first eigenfunction for Problem 5 is

ϕ1(x) = sinh(τ1x) − sin(τ1x) − sinh τ1 + sin τ1

cosh τ1 + cos τ1

(
cosh(τ1x) − cos(τ1x)

)

with τ1 given by the lemma and the corresponding eigenvalue λ1 = −d1. One finds

d1 ≈ 12.3624 and dc ≈ 125.141.

3 Positivity and the Principal Eigenvalue

As mentioned before, for both problems in (2) one may compute an explicit Green
function g(x, y). Defining the Green operator G (on an appropriate function space)
by

(Gf )(x) :=
∫

Ω

g(x, y)f (y)dy. (4)

The solution of (2) is given by u(x) = (Gf )(x). Here Ω = (0,1). We recall from [53]
for the second order problem on the left in (2) that

g1(x, y) =
{

x(1 − y) for x ≤ y,

y(1 − x) for x > y,
(5)
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while for the one on the right

g2(x, y) =
{ 1

6x(1 − y)(2y − x2 − y2) for x ≤ y,

1
6y(1 − x)(2x − x2 − y2) for x > y.

(6)

Fig. 13 Graphs of g1 and g2

Both Green functions are strictly positive in Ω ×Ω , which implies that for a nontriv-
ial f ≥ 0, i.e. f � 0, the solution u is strictly positive inside Ω .

In order to show some of the mathematics involved it is convenient to recall some
function spaces.

Definition 3.1 The Banach spaces Ck(Ω) for bounded Ω ⊂ R
n are defined by

Ck(Ω) := {
u : Ω →R; u is k times continuously differentiable

}
,

‖u‖Ck(Ω) := sup
{∣
∣Dαu(x)

∣
∣; |α| ≤ k and x ∈ Ω

}
.

Here Dαu = ( ∂
∂x1

)α1 . . . ( ∂
∂xn

)αnu with α ∈ N
n and |α| = α1 + · · · + αn.

• One writes u ∈ Ck
0 (Ω) if u ∈ Ck(Ω) and all derivatives of u up to order k are zero

at the boundary.

Remark 3.2 Differential equations make most sense, when defined on a domain Ω ,
meaning an open and connected set, here in R

n. Continuously differentiable on Ω

means differentiable in Ω with continuous derivatives and each of these derivatives
can be extended to a continuous function on Ω .

The vector space Ck(Ω), being the collection of all k-times continuously differ-
entiable functions on Ω , does not have an obvious norm, since such a function and
its derivatives may blow up near ∂Ω .

The operator G : C(Ω) → C(Ω) in (4), both for g1 and g2, is such that for
any nontrivial and nonnegative f ∈ C(Ω) there is cf > 0, such that (Gf )(x) ≥
cf d(x, ∂Ω). Here d(x, ∂Ω) is the distance function to the boundary. For Problems 1
and 2 such G is called strongly positive. For general problems one may define this
property as follows.

Definition 3.3 The positive operator G : C(Ω) → C(Ω) is called strongly positive,
if for every 0 � f ∈ C(Ω) there exists cf > 0 such that (Gf )(x) ≥ cf (G1)(x).
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A second property in the above one-dimensional cases in (2) is that f ∈ C(Ω) im-
plies u ∈ C2(Ω) and u ∈ C4(Ω), respectively. Since Ck(Ω) with k ≥ 1 is compactly
imbedded in C(Ω), the operator G is also compact.

3.1 Kreı̆n–Rutman Theorem and Consequences

Positivity and compactness are the main ingredients for the so-called Kreı̆n–Rutman
Theorem. It generalizes earlier results for positive matrices by Perron–Frobenius [34,
68] and for positive integral kernels by Jentzsch in [51]. Of the Kreı̆n–Rutman Theo-
rem one finds many versions in the literature and a common version follows. Strongly
positive is easy to state but quite restrictive. A stronger version, which can be applied
more easily, is found in Appendix B.

Theorem 3.4 (Kreı̆n–Rutman [56]) If G ∈ L(C(Ω)) is strongly positive and compact,
then the spectral radius satisfies ν(G) > 0 and is an eigenvalue of G with a positive
eigenfunction. Its algebraic multiplicity is 1 and for all other eigenvalues νi of G it
holds that |νi | < ν(G).

Remark 3.5 The spectral radius of G ∈ L(C(Ω)) is defined by ν(G) =
limn→∞ n

√‖Gn‖, where ‖ · ‖ is the operator norm for L(C(Ω)), the bounded linear
mappings from C(Ω) to C(Ω).

The condition that G is strongly positive is easy to explain but needs in gen-
eral of lot of technical effort to prove it. The version in the appendix replaces
‘strongly positive’ by irreducibility. This condition needs some explanation but is
satisfied in much more general settings and avoids arguments at the boundary like
Hopf’s boundary point Lemma. Hopf’s lemma needs some regularity of the domain.
See [7].

We may apply the Kreı̆n–Rutman result to

{
Lu + λu = f in Ω,

Bu = 0 on ∂Ω,
(7)

with L the differential operator and B denoting some homogeneous boundary condi-
tions as in (2).

Corollary 3.6 Suppose that for λ = 0 the solution of (7) is given by Gf with G ∈
L(C(Ω)) strongly positive and compact. Set λ1 := −ν(G)−1. Then for λ ∈ (λ1,0]
and 0 � f ∈ C(Ω) one finds that the solution of (7) satisfies u > 0 in Ω .

Proof So λ1 := −ν(G)−1 is the first eigenvalue for L with homogeneous boundary
conditions Bu = 0. Moreover, (7) is equivalent to

(I + λG)u = Gf.
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For λ with |λν(G)| < 1, that is |λ| < |λ1|, we find an expression for the solution u of
(7) by a Neumann series:

u =
∞∑

k=0

(−λG)kGf. (8)

For λ ∈ (λ1,0] this series not only converges, but the expression even shows that also
here the solution operator is strongly positive. �

One may even show that λ1 is optimal. If λ < λ1, then one may use the first
eigenfunction as the right hand side, f = ϕ1 > 0 and find that

u = 1

λ − λ1
ϕ1 < 0.

So no sign preservation for λ < λ1. In fact one finds not only that for some f � 0 the
solution will not be positive but even that no positive solution u exists for all f � 0
when λ ≤ λ1. If (7) has a selfadjoint setting with respect to the L2(Ω) inner product,
then one obtains a contradiction for λ ≤ λ1 assuming f � 0 and u� 0 through

0 <

∫

Ω

f ϕ1dx =
∫

Ω

(λu + Lu)ϕ1dx

=
∫

Ω

u(λϕ1 + Lϕ1)dx = (λ − λ1)

∫

Ω

uϕ1dx ≤ 0. (9)

Without selfadjointness one may argue by using the adjoint eigenfunction.

3.2 Proofs for the 1d Case with λ ≤ 0

Proof of Lemma 2.1–2.4 for λ ≤ 0 With the Kreı̆n–Rutman result and the argument
just explained, it is merely an exercise to prove the claims in these lemmas for λ < 0.
For second order problems, such as in Lemma 2.1, G is strongly positive by the
strong maximum principle. Also Lemma 2.2, as an iterated second order problem,
can be dealt with this way. For most fourth order problems such a result is in gen-
eral not available. For the one-dimensional cases in Lemma 2.3–2.4 the most direct
way seems to be the explicit Green function. Indeed, the Green functions both for
Problems 3 and 5 are positive:

g3(x, y) =
{ 1

6x2(1 − y)2(3y − x − 2xy) for x ≤ y,

1
6y2(1 − x)2(3x − y − 2xy) for x > y,

(10)

and

g5(x, y) =
{ 1

6x2(3y − x) for x ≤ y,

1
6y2(3x − y) for x > y.

(11)

See Fig. 14. Indeed, 3y − x − 2xy = (y − x) + 2y(1 − x) > 0 for 0 < x ≤ y < 1. �
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Fig. 14 Graphs of g3 and g5

Note that, except for the positivity of G, i.e. λ = 0, the proof above does not use a
maximum principle and purely depends on Kreı̆n–Rutman and some operator calcu-
lus.

4 Positivity Preserving and the Order of the Differential Equation

As mentioned in the introduction second order elliptic equations have a maximum
principle. One may use it to get the positivity preserving property for λ large enough.
Suppose that

L = −
n∑

i,j=1

aij (x)
∂

∂xi

∂

∂xj

+
n∑

i=1

bi(x)
∂

∂xi

+ c(x) (12)

is elliptic at x ∈ Ω , meaning for some Cx > 0,

n∑

i,j=1

aij (x)ξiξj ≥ Cx |ξ |2. (13)

Generically we assume that aij , bi, c : Ω →R are smooth enough.

Proposition 4.1 (A rudimentary maximum principle) Let Ω ⊂ R
n be a domain and

let L be as in (12) with aij , bi, c ∈ C2(Ω). Suppose that λ > −c(x) in Ω and that
the C2-function u satisfies (L + λ)u(x) ≥ 0 in Ω . Then u cannot have a negative
minimum inside Ω .

Proof The proof is standard [71], but also short and simple enough to recall. Suppose
that u has a negative minimum in x ∈ Ω . The ellipticity condition in (13) implies that
the symmetric matrix (aij (x)) is positive definite, which allows a diagonalization
T t (aij (x))T = D in the point x with D a diagonal matrix with positive entries dii on
the diagonal. Using this T for a coordinate transformation v(y) = u(Ty) one finds
that, at the point x only,

(
(L + λ)u

)
(x) =

(

−
n∑

i=1

dii

(
∂

∂yi

)2

+
n∑

i=1

b̃i

∂

∂yi

+ λ + c(x)

)

v(y).

In a minimal point one finds dii(
∂

∂yi
)2v(y) ≥ 0 and b̃i

∂
∂yi

v(y) = 0. If u(x) < 0 then
v(y) < 0 and the contradiction follows through (λ + c(x))v(y) < 0. �
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There are many sharper and more general versions of the maximum principle. See
[71] or [40].

The result can be used as follows. If the boundary conditions are such that also
there no negative minimum can occur, for example when u = 0 on ∂Ω , then the
solution has to be nonnegative. With the strong maximum principle one even finds
u ≡ 0 or u > 0 in Ω . So if the proposition applies to (7) and if the right hand side,
that is the force, has a sign, then the solution will inherit this sign.

What changes for higher order differential equations? Coffman and Grover in [17,
Theorem 7.1] proved, for a variational formulation, that if the solution operator is
positive for all λ ≥ 0, then the equation is of second order. They mention that for
smooth coefficients this result was already proven by Calvert in [11, Proposition 1],
who on page 293 again refers to several other authors. So it is not clear, who was
the first to prove such a result. In any case, for boundary value problems with higher
order equations PPP does not hold for λ large. More precisely:

Proposition 4.2 If L in (7) is a fourth order elliptic differential operator, then the
set of λ ∈R for which the boundary value problem in (7) is positivity preserving, is a
nontrivial bounded interval or the empty set.

Proof If (7) is positivity preserving for some λ0, then λ0 is not an eigenvalue and one
may solve (7) for λ ∈ (λ0 − ε,λ0). Moreover, for such λ one finds

{
λ0u + Lu = f + (λ0 − λ)u in Ω,

Bu = 0 on ∂Ω,
(14)

and a positive solution through a series as in (8). Comparing the solution u0 for λ0
and the solution u for λ one finds

(λ0 + L)(u − u0) = (λ0 − λ)u

and not only u ≥ u0 ≥ 0 but by the unique continuation principle from [70] that
u > 0. Hence the conditions of the Krein–Rutman version in the appendix are sat-
isfied. The solution operator for such λ is compact, positive and irreducible and the
Krein–Rutman Theorem implies that there is λ1 < λ0 such that PPP holds for all
λ ∈ (λ1, λ0] and PPP does not hold for λ ≤ λ1.

For the fact that the interval is bounded from above we refer to the result in [17,
Theorem 7.1]. �

For the biharmonic operator under homogeneous Dirichlet boundary conditions
and with λ large one finds a counterexample for PPP in [46].

Remark 4.3 Some evidence that at most second order differential equations are al-
lowed in order to have PPP for all λ > λ0 comes by discretization. Approximation of
an m-th order derivative needs at least m + 1 consecutive points, for example

u′′′(x) = lim
h↓0

u(x + 2h) − 3u(x + h) + 3u(x) − u(x − h)

h3
,
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and the discretization coefficients have at least m + 1 alternating signs. Replacing
the differential equation by a corresponding difference equation leads to a matrix
equation (λI − A)û = f̂ with, in the case that the order satisfies m > 2, (λI − A)

having positive off-diagonal terms. It is known, that the matrices (λI −A) are inverse
positive for all λ ≥ λ̃, if and only if (λ̃I − A) is a so-called non-singular M-matrix.
All off-diagonal terms of an M-matrix are nonpositive. See [6]. So the discretization
of a boundary value problem with a pde of order m > 2 will not be inverse-positive
for all large λ.

5 Two and More Dimensions

5.1 Second Order: Membrane with Feedback

The linearized differential equation for a membrane or soap film is −�u = f . Fixing
u at the boundary gives a Dirichlet condition such as u = 0. A soap film might be
allowed to slide along a glass wall for some part of the boundary as well. This would
imply a Neumann boundary condition ∂

∂ν
u = 0. A sketch of such a problem is found

in Fig. 15.

Fig. 15 A soap film spanned on
a glass plane and half a ring
under a downwards directed
force

The linearized problem is as follows:
⎧
⎪⎨

⎪⎩

−�u = f in Ω,

u = 0 on Γ,

∂
∂ν

u = 0 on ∂Ω \ Γ,

(15)

where Γ ⊂ ∂Ω . As long as Γ has a positive (n − 1)-dimensional measure, the prob-
lem in (15) is uniquely solvable in W 1,2(Ω) and the corresponding first eigenvalue λ1
is strictly negative. That is, there is a nontrivial ϕ1 ∈ W 1,2(Ω) satisfying the bound-
ary conditions and (λ1 −�)ϕ1 = 0. Let us assume that ∂Ω is sufficiently regular, and
that the connection between Γ and ∂Ω \ Γ is sufficiently nice. Using regularity re-
sults and imbedding results between W and C-spaces, one will find that the solution
operator for (15) is compact as an operator from C(Ω) to C(Ω). A general reference
for such arguments is [40]. The W -spaces that one meets here are defined for k ∈ N0
as follows:
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Definition 5.1 Let p ∈ (1,∞). The Sobolev spaces Wk,p(Ω) consist of (equivalence
classes of) functions:

Wk,p(Ω) := {
u : Ω → R; ‖u‖Wk,p(Ω) < ∞}

,

‖u‖Wk,p(Ω) :=
(

∑

|α|≤k

∫

Ω

∣
∣Dαu(x)

∣
∣pdx

)1/p

,
(16)

with the multiindex α ∈ N
n as in Definition 3.1.

These Banach spaces include the square integrable functions L2(Ω) = W 0,2(Ω).

• One writes u ∈ W
k,p

0 (Ω) if u ∈ Wk,p(Ω) and all derivatives of u up to order k − 1
are zero at the boundary (in the sense of traces). One may use the norm of Wk,p(Ω)

and even skip all derivatives |α| < k.
• One writes u ∈ W

k,p

loc (Ω) if u|A ∈ Wk,p(A) for every open set A with A ⊂ Ω

compact. This space has no decent norm.

Remark 5.2 The derivatives that appear in (16) are defined in a weak sense, that is,
v = ∂

∂xi
u (almost everywhere) if

∫

Ω

vϕdx = −
∫

Ω

u
∂ϕ

∂xi

dx for all ϕ ∈ C∞
0 (Ω).

For more details concerning Sobolev spaces, traces or weak derivatives see [1, 40].

Instead of a homogeneous Dirichlet, which means for a second order elliptic pde
that u = 0, and Neumann, here ∂

∂ν
u = 0, let us consider more general boundary con-

ditions.

Problem 6 The second order boundary value problem with homogeneous bound-
ary conditions:

{
(−� + λ)u = f in Ω,

θu + (1 − θ) ∂
∂ν

u = 0 on ∂Ω,
(17)

with θ : ∂Ω → [0,1]. Here ν denotes the outward normal ∂Ω .

As it is, the formulation of Problem 6 is not precise enough to obtain solutions
for which a normal derivative is defined at the boundary even in some weak sense.
A sufficient condition for a solution in C1(Ω) ∩ C2(Ω) would be ∂Ω ∈ C2, θ ∈
C2(∂Ω) and f ∈ C0,γ (Ω) with γ > 0, but this would rule out the following example
depicted in Fig. 15.
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Example 5.3 For the problem in Fig. 15 let D = {(x1, x2); x1 > 0 and x2
1 + x2

2 < 1}
and Γ1 = {(0, x2); |x2| < 1}. We consider

⎧
⎪⎨

⎪⎩

−�u = f in D,

∂
∂ν

u = 0 on Γ1,

u = 0 on Γ2 = ∂D \ Γ1.

(18)

Although ∂Ω /∈ C1 and θ /∈ C(∂Ω) one may solve this problem in C1(D)∩W 2,p(D)

for f ∈ C(D). Indeed, one defines f̃ on B1(0) by f̃ (x1, x2) = f (|x1|, x2), which is
continuous if f is, and next one considers the following boundary value problem

{
−�ũ = f̃ in B1(0),

ũ = 0 on ∂B1(0).
(19)

For f̃ ∈ C(B1(0)) problem (19) has a solution in C1(B1(0)) ∩ W 2,p(B1(0)) for any
p ∈ (1,∞), see [40]. Since the solution is unique, it is symmetric with respect to
x1 = 0. Hence ũx1(0, x2) = 0 and one finds u = ũ|D as a solution of (18) in C1(D) ∩
W 2,p(D).

Instead of finding precise conditions concerning θ and the smoothness of the
boundary, we will just assume that the boundary and the function θ are such that
there exists a solution operator from C(Ω) into C1(Ω). In order that �u is defined,
we will need that u ∈ C2(Ω) or at least u ∈ W

2,p

loc (Ω).
The problem behind this is the following. In one dimension f ∈ C(Ω) implies

u ∈ C2(Ω), but this is not true in higher dimensions. We only find the following
interior regularity for second elliptic operators with nice coefficients: If u is a weak
solution of (15) and:

• f ∈ C0,γ (Ω) for γ ∈ (0,1), then u ∈ C2,γ (Ω) (see [40, Theorem 6.2]);
• f ∈ Lp(Ω) for p ∈ (1,∞), then u ∈ W

2,p

loc (Ω) (see [40, Theorem 9.13]).

In general no such result holds for γ ∈ {0,1} or p ∈ {1,∞}.
So the interior regularity allows us to take second derivatives of u in L

p

loc(Ω)-
sense. Concerning C1(Ω)-regularity one finds some results in [40, Sect. 6.7] for
smooth boundaries. When the domain has corners as in Example 5.3, see [41]. But,
as just mentioned, the C1(Ω)-regularity of the solution we assume.

Theorem 5.4 (PPP for the second order Problem 6) Let Ω ⊂ R
n be a bounded do-

main and let θ : ∂Ω → R be such that for some λ0 ∈ R there exists a solution opera-
tor Gλ0 ∈ L(C(Ω);C1(Ω)) of (17) with Gλ0f ∈ W

2,p

loc (Ω) for f ∈ C(Ω).
Then there is an eigenvalue λ1 ≤ 0 with a positive eigenfunction ϕ1 and moreover

the following holds:

• if λ > λ1, then for C(Ω) � f � 0 problem (17) has a solution uλ ∈ C1(Ω) ∩
W

2,p

loc (Ω) and uλ > 0;
• if λ = λ1, then for C(Ω) � f � 0 problem (17) has no solution uλ ∈ C1(Ω) ∩

W
2,p

loc (Ω);
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• if λ < λ1, then for C(Ω) � f � 0 problem (17) has no solution uλ ∈ C1(Ω) ∩
W

2,p

loc (Ω) with uλ ≥ 0.

We recall that f � 0 means f ≥ 0 but not identical 0.

Fig. 16 Suppose that f � 0 in Problem 6. What can one say concerning the sign of u?

Proof The result should not be very surprising, but one should notice that the proof
has two sides. For λ > 0 one uses the maximum principle while for λ < 0 the argu-
ment should be called functional analytic.

Step 1. With the natural imbedding I : C1(Ω) → C(Ω), which is compact, the op-
erator Gλ0 ◦ I is compact. For general λ the solution uλ of (17) would satisfy

(
I + (λ − λ0)Gλ0 ◦ I)

uλ = Gλ0f. (20)

Since the operator on the left hand side is Fredholm of index 0, (17) is uniquely
solvable for all λ with the exception of countably many eigenvalues.

Step 2. Let λ > 0 and let u be the solution of (17) for this λ and with f ≥ 0. Then

−�u = f − λu

which implies that u cannot have a negative interior minimum. At the boundary part
where θ = 1 obviously u = 0 holds. At the boundary part where θ ∈ [0,1), one finds
if u is negative, that

0 > u = −1 − θ

θ

∂u

∂ν

and ∂u
∂ν

> 0 implies that also there u cannot have a negative minimum. So u ≥ 0 in Ω .
The strong maximum principle even implies that u > 0 in Ω .

Step 3. Take λ̃ > 0 such that

Gλ̃ = (
I + (λ̃ − λ0)Gλ0 ◦ I)−1Gλ0

is well-defined through (20). For any λ̃ > 0 one finds that I ◦ Gλ̃ ∈ L(C(Ω)) is com-
pact, positive and irreducible. Due to Theorem B.5 the spectral radius ν(I ◦ Gλ̃) is
strictly positive and supplies us with the principal eigenfunction:

(I ◦ Gλ̃)ϕ1 = ν1ϕ1 with ν1 = ν(I ◦ Gλ̃).
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One finds that the first eigenvalue for (17) is λ1 = λ0 − ν−1
1 and that

Gλ = Gλ̃

∞∑

k=0

(λ̃ − λ)k(I ◦ Gλ̃)
k

is convergent for λ ∈ (λ̃ − ν−1
1 , λ̃ + ν−1

1 ) and positive for λ ∈ (λ̃ − ν−1
1 , λ̃]. Since λ̃

is an arbitrary positive number one finds that Gλ is positive for all λ > λ1. Note that
uλ = Gλf solves (17).

Step 4. As in (9) one finds by a duality argument that for λ ≤ λ1 and f � 0 no positive
solution of (17) exists. �

5.2 Fourth Order: Kirchhoff’s thin Plate with Feedback

The most natural way to introduce the boundary value problems for thin plates starts
from the energy formulation. Combining the energy due to compression and torsion
of the plate together with a perpendicular external force one arrives at the functional

J (u) =
∫∫

Ω

(
1

2
(�u)2 + (1 − σ)

(
u2

xy − uxxuyy

) − f u

)

dxdy. (21)

Notice that we used (x, y) here instead of (x1, x2). The domain Ω ⊂ R
2 represents

the plate in rest, f is the exterior force and σ ∈ (−1,1) is the Poisson ratio, which is
a physical constant dependent on the material and usually lies around 3/10.

The hinged case minimizes J over u ∈ W1 := W 2,2(Ω) ∩ W
1,2
0 (Ω) and for the

clamped case one considers u ∈W2 := W
2,2
0 (Ω). For the hinged problem the bound-

ary condition u = 0 on ∂Ω is not enough for a well-posed boundary value problem
and the remaining second boundary condition appears as a natural condition. More
precisely, when the solution of the weak formulation of the Euler–Lagrange equations

∂J (u;ϕ) =
∫∫

Ω

(
�u�ϕ + (1 − σ)(2uxyϕxy − uxxϕyy − uyyϕxx) − f ϕ

)
dxdy

= 0 for all ϕ ∈ Wi , (22)

has some additional regularity and one may integrate by parts, the boundary term,
which appears and does not cancel by the assumptions on ϕ, gives the second natural
boundary condition. Of course one might even refrain from any boundary condition at
some part of the boundary and by integrating by parts and would obtain the two natu-
ral boundary conditions for the free boundary part. The classical paper by Friedrichs
[33] gives the full description on smooth domains. See also [37].

Let us focus on the two classical boundary value problems for the Kirchhoff plate,
which are called hinged and clamped, and again introduce a feedback force through
an ambient elastic medium with parameter λ. Physically λ ≥ 0 makes sense but the
mathematician may take λ ∈ R. The corresponding boundary value problems appear,
when we add a term 1

2λu2 inside (21), derive the weak Euler–Lagrange equation as
for (22), assume that the solution u is four times differentiable, integrate by parts such
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that all derivatives of ϕ are moved to u, and apply the main theorem of ‘Calculus of
Variations’ to go from integral equations to pointwise equations.

For the hinged case one has u,ϕ ∈ W 2,2(Ω) ∩ W
1,2
0 (Ω), meaning that u = 0 on

∂Ω is an a priori boundary condition, while

−�u = −(1 − σ)κ ∂
∂ν

u on ∂Ω

comes out of the weak Euler–Lagrange equation as a natural boundary condition.
Here κ is the signed curvature of the boundary ∂Ω , positive on convex boundary sec-
tions and negative on concave parts and ν the outside normal on ∂Ω . The boundary
value problem that we obtain, is as follows:

Problem 7 The fourth order problem with hinged boundary conditions:
⎧
⎪⎨

⎪⎩

�2u + λu = f in Ω,

u = 0 on ∂Ω,

−�u = −(1 − σ)κ ∂
∂ν

u on ∂Ω.

(23)

For the clamped case one has u,ϕ ∈ W
2,2
0 (Ω), meaning that u = 0 and ∂

∂ν
u = 0

on ∂Ω are a priori boundary giving boundary conditions. Since ϕ satisfies similar
boundary conditions in fact all boundary terms disappear for the integration by parts.
We find:

Problem 8 The fourth order problem with clamped boundary conditions:
⎧
⎪⎨

⎪⎩

�2u + λu = f in Ω,

u = 0 on ∂Ω,

∂
∂ν

u = 0 on ∂Ω.

(24)

Clamped boundary conditions for the fourth order problem are also called Dirich-
let boundary conditions.

� The Iterated Dirichlet–Laplacian appears when the boundary is a straight line.
Indeed, the curvature satisfies κ = 0 and the second boundary condition in Prob-
lem 7 becomes �u = 0. Being naive and forgetting that bounded polygonal domains
necessarily have corners one may consider the following problem, which is math-
ematically interesting even for curvilinear domains. See the next section for a less
naive approach.

Problem 9 The fourth order problem with zero Navier boundary conditions:
⎧
⎪⎨

⎪⎩

�2u + λu = f in Ω,

u = 0 on ∂Ω,

�u = 0 on ∂Ω.

(25)
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The boundary conditions in Problem 9 allow for a kind of iteration, that is, by
setting v = (−� − √−λ)u the boundary conditions split nicely and one obtains:

{
(−� + √−λ)v = f in Ω,

v = 0 on ∂Ω,
and

{
(−� − √−λ)u = v in Ω,

u = 0 on ∂Ω.

To conclude anything concerning sign preservation at first glance it seems necessary
that λ ≤ 0. Then f ≥ 0 implies v ≥ 0 since

√−λ ≥ 0. Next v ≥ 0 implies u ≥ 0
whenever

√−λ < ν−1
1 with ν1 the spectral radius of the Green operator GΩ for the

Dirichlet Laplacian on Ω .
A somewhat different approach is found in [79]. Using the heat kernel

pΩ :R+ × Ω × Ω → [0,∞),

which is such that U(t, x) = ∫
Ω

pΩ(t, x, y)U0(y)dy for U0 nice enough solves
⎧
⎪⎨

⎪⎩

∂tU − �U = 0 in R
+ × Ω,

U = 0 on R
+ × ∂Ω,

limt↓0 U(t, x) = U0(x) on ∂Ω,

one may write the solution u of Problem 9 as follows:

u(x) =
∫

Ω

(∫ ∞

0
h(t, λ)pΩ(t, x, y)dt

)

f (y)dy. (26)

The function h is defined by:

h(t, λ) =

⎧
⎪⎨

⎪⎩

sinh(
√−λt)/

√−λ for λ ∈ (−ν−2
1 ,0),

t for λ = 0,

sin(
√

λt)/
√

λ for λ > 0.

Here the bound from below for λ appears since for t → ∞

pΩ(t, x, y) ∼ e−ν−1
1 t ϕ1(x)ϕ1(y) and sinh(

√−λt) ∼ e
√−λt .

Its product leads to a convergent integral in (26) if and only if −ν−1
1 +√−λ < 0, that

is, λ > −ν−2
1 .

So, since h and pΩ are positive, the kernel in (26) is positive for λ ∈ (−ν−2
1 ,0].

One may guess that also for λ > 0 but small the kernel remains positive by continuity
arguments. This indeed holds true. A first hands-on proof for a ball can be found
in [76]. A precise argument depends strongly on Ω and uses so called 3G-estimates.
Indeed, by using the results of [18], one can show that λc > 0 for bounded Lipschitz
domains. We refer to [46] or [79] for further details.

Theorem 5.5 (PPP for Problem 9) Let Ω ⊂ R
n be a bounded domain with ∂Ω ∈ C1.

Let ν1 be the spectral radius of GΩ = (−�)−1
0 . Then λ1 = −ν2

1 is the principal eigen-
value for Problem 9 and there exists λc ∈R

+, such that for (25):
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1. if λ ≤ λ1, then for f � 0 there exists no positive solution u;
2. if λ ∈ (λ1, λc), the f � 0 implies u > 0.

Fig. 17 Suppose that f � 0 in Problem 9. What can one say concerning the sign of u?

Remark 5.6 One might expect that it should be sufficient that the boundary is reg-
ular in the sense of Perron, see [40], instead of assuming C1-regularity. There are
two obstructions for such a generalization. First of all, in order to apply the 3G-
Theorem and hence to satisfy the conditions for that theorem one needs a Lipschitz
boundary, see [18]. Secondly, if the domain has nonconvex corners, then one has to
specify which type of solutions is considered. We will shortly discuss this in the next
section.

� Corners, Paradoxes and Unexpected Problems Without the assumption that
∂Ω ∈ C4,γ one cannot expect that Problem 7, 8 or 9 will have a solution u ∈ C4(Ω).
For well-defined pointwise boundary conditions ∂Ω ∈ C2 seems to be necessary.
Such a restriction would however leave out natural domains such as polygons, al-
though [52] allows convex corners in some cases.

The two main questions that appear are as follows:

• Can we deal with corners directly?
• Can we approximate by smooth domains?

Fig. 18 On straight lines the boundary conditions of hinged and of Navier type are identical. For the
polygonal plate under Navier conditions, i.e. Problem 9 one obtains, when all corners are convex as we will
see later, an iterated Dirichlet–Laplace problem, which guarantees the sign-preserving property. Indeed
pushing downwards will move the plate downwards everywhere in the interior. Here Ω = (0,2) × (0,1)

and f is a point force in ( 1
4 , 1

2 ), that is, located on the longer central axis left from the minimum of the
solution

� Sapondzhyan [72] noticed that for the hinged problem as a system of second
order problems a singularity appears at reentrant corners in the second order deriva-
tives which is not present in the solution of the original problem. Let us first discuss
the change from fourth order to second order system by setting v = −�u for (9). We
take λ = 0.
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Problem 10 Comparison of the biharmonic under Navier conditions and the iter-
ated Laplace under Dirichlet conditions:

I :

⎧
⎪⎨

⎪⎩

�2u = f in Ω,

u = 0 on ∂Ω,

�u = 0 on ∂Ω,

and II :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�v = f in Ω,

v = 0 on ∂Ω,

−�u = v in Ω,

u = 0 on ∂Ω.

(27)

Looking pointwise at both boundary value problems there is no difference. How-
ever, for domains with corners there is in general no classical solution and a pointwise
setting is in general not appropriate. For a weak setting however much more general
domains can be considered, that is, for such domains a weak solution may still exist.
The weak setting is usually determined as the first variation of a variational problem.
The variational setting for the two boundary value problems in Problem 10 is differ-
ent:

I. For the left hand side one finds a
weak solution by minimizing

J (u) =
∫∫

Ω

( 1
2 (�u)2 − f u

)
dxdy

(28)
for functions u ∈ W 2,2(Ω) ∩ W

1,2
0 (Ω).

The condition �u = 0 appears as a
natural boundary condition on smooth
boundary parts. For bounded domains,
that have a smooth boundary with
the exception of finitely many corners,
such a minimizer exists. See [64]. We
will write uI for this minimizer of the
functional J .

II. For the right hand side one finds a
weak system solution by first minimizing

J1(u) =
∫∫

Ω

( 1
2 |∇v|2 − f v

)
dxdy (29)

for functions v ∈ W
1,2
0 (Ω) and use the

minimizer v0 of (29) to find a minimizer
uII of

J2(u) =
∫∫

Ω

( 1
2 |∇u|2 − v0 u

)
dxdy

(30)
again for functions u ∈ W

1,2
0 (Ω). Both

minimizers exist for bounded Ω without
further restrictions on the boundary.

Remark 5.7 For a numerical approximation both settings can be directly used for an
approximation through finite elements. The weak formulation of the Euler–Lagrange
equation for (28), that is

∫∫

Ω

(�u�ϕ − f ϕ)dxdy = 0 for all ϕ ∈ W 2,2(Ω) ∩ W
1,2
0 (Ω),

or also (22), lends itself indeed for a direct numerical approximation by finite el-
ements. Since these formulations involve second order derivatives, those finite ele-
ments need to be C1,1(Ω), which not only increases the complexity of the approxi-
mation but also forces one to deal carefully with a curvilinear boundary sections and
corners. Or like Ciarlet and Glowinski in [12] call it: variational crimes are easily
made with the biharmonic. From a practical point of view one should mention that
the toolboxes and libraries for the use of C1,1-finite elements are less well devel-
oped.
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In contrast, the system approach on the right hand side can be dealt with by stan-
dard piecewise affine finite elements. Moreover, for the Dirichlet–Laplace problem
the approximation of curvilinear boundaries through polygons hardly needs any spe-
cial care. So, from a numerical point of view the system setting in II has its advan-
tages.

So the big question is whether or not these two different settings, that is,

I: u ∈ W 2,2(Ω) and II: u,�u ∈ W 1,2(Ω),

will always give the same solution. In [64] these two settings have been com-
pared.

As one may guess from the lenghty introduction, the answer whether both settings
give the same solution, is no, at least generically when the domain has reentrant
corners. Indeed, for every reentrant corner there exists a special biharmonic function
us , which satisfies us = �us = 0 a.e. on the boundary. For a domain with one such
corner one finds that

uI(x) = uII(x) + cf us(x)

and cf ∈R nonzero for most f . By the way, reentrant corner means here that the an-
gle of both tangential directions at the corner point, measured from inside the domain,
is larger than π .

Theorem 5.8 (See [64]) Let Ω be a bounded polygonal domain in R
2. Then for each

f ∈ L2(Ω) there exists:

• a unique minimizer uI ∈ W 2,2(Ω) ∩ W
1,2
0 (Ω) of (28), which is a weak solution of

Problem 10-I, and
• a unique pair (uII, v) ∈ W

1,2
0 (Ω) × W

1,2
0 (Ω), with v minimizing (29) and uII con-

secutively minimizing (30), which are weak solutions of Problem 10-II.

Moreover,

1. if Ω has k reentrant corners, then there exist k independent functions ζi ∈ L2(Ω)

such that

uI = uII ⇐⇒
∫

Ω

ζi f dx = 0 for all i ∈ {1, . . . , k}.

2. If uI �= uII, then �uI /∈ W 1,2(Ω) and uII /∈ W 2,2(Ω).
3. If Ω has precisely one reentrant corner, then f � 0 implies uI �= uII.
4. If Ω has a reentrant corner with angle α > 3

2π , then there are f � 0 for which uI
is sign changing. Recall that f � 0 implies uII > 0.

Remark 5.9 For α > 3
2π for some corner, then one finds that uI generically displays a

sign change at that corner. Numerical evidence from [64] shows that for α ∈ (π, 3
2π)

the solution uI may have a nodal line, which doesn’t start in that corner. In fact, for α

just slightly larger than π , indeed for α ≤ 1.2π in [64, Fig. 6], numerics failed to find
a sign changing solution. Up to now there is no analytical explanation. See Fig. 19.
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Fig. 19 For Problem 10-I the sign preservation for uI is not clear for reentrant corners between π and
3
2 π . The middle one is such a domain

The same results will hold on domains with smooth curvilinear boundary sections
connected through corners, but there the technicalities will blur the arguments.

One might wonder that uI ∈ W 2,2(Ω) ∩ W
1,2
0 (Ω) seems to satisfy one boundary

condition only, namely u = 0 while uII through uII,�uII ∈ W
1,2
0 (Ω) satisfies two.

In fact uI satisfies a natural boundary condition inside the straight boundary parts,
namely �uI = 0. Indeed, away from the corners uI has some extra smoothness and
by integrating by parts the weak Euler–Lagrange equation, meaning the one in inte-
gral form, and using appropriate testfunctions, this second boundary condition shows
up.

One may also ask, which of these two functions uI and uII is the physically appro-
priate solution. The energy stored in the plate is related with the integral of the second
derivatives squared, as this quantity is locally unbounded for uII near corners. That
would probably mean that the material would crack. For uI the similar energy integral
does not contain such singular terms, but somehow a reentrant corner without ‘stress’
is not natural either. On the other hand, approximating the domain by a sequence of
smooth domains and then using the solutions of (23) does neither approximate uI

nor uII. See [60, 61, 78] and the next paragraphs.
This phenomenon of two different solutions, unique in the corresponding settings,

shows that pointwise defined boundary conditions is not precise enough in the pres-
ence of corners. As we just saw, uI does not satisfy the boundary conditions at each
point of a nonconvex polygon; uII might not be the right solution. Indeed, a solution
satisfying the boundary conditions pointwise on ∂Ω will not exist in general. Allow-
ing some freedom at individual boundary points may introduce singular solutions. In
other words, it will be hard to fulfill the conditions of Hadamard for a well-posed
problem in a C-setting. Both settings that consider weak solutions in Sobolev spaces
have a unique solution, but non-mathematical arguments are needed to identify the
physically relevant solution.

The example that we show next is not a polygonal domain but the same results as
in Theorem 5.8 apply and it allows an explicit formula for us :

Example 5.10 For the domain Ω = {(r cosϕ, r sinϕ);0 < r < 1 and 0 < ϕ < 3
2π}

the function us is as follows:

us(x) = ( 3
5 r2/3 + 3

20 r8/3 − 3
4 r4/3) sin

( 2
3ϕ

)
,
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Fig. 20 Sketch of the special biharmonic function us and of −�us for Ω a three quarter disk

where x = (r cosϕ, r sinϕ). One finds

−�us = (
r−2/3 − r2/3) sin

( 2
3ϕ

)

and that us ∈ C∞(Ω \ {0}) is a nontrivial solution of
⎧
⎪⎨

⎪⎩

�2u = 0 in Ω,

u = 0 on ∂Ω,

�u = 0 on ∂Ω \ {0}.
(31)

Necessary and sufficient for rα sin( 2
3ϕ) ∈ L2(Ω) is α > −1. One may check directly

that

us ∈ W 1,2(Ω) \ W 2,2(Ω) and − �us ∈ L2(Ω) \ W 1,2(Ω).

A sketch of us and of −�us can be found in Fig. 20.

� Babuška Ref. [3] remarked that the explicitly known solution of (27) with f = 1
on a disk is not equal to the approximation by uI-solutions on regular n-gons for
n → ∞. This so-called Babuška-paradox is due to a somewhat other effect as the one
by Saponzhyan. The approximation by regular n-gons of the circle is not stable with
respect to the second boundary condition in Problem 7 or Problem 10-I. At a convex
corner the solution of the Dirichlet–Laplace problem (30) is differentiable and hence
u = 0 on ∂Ω implies ∇u = 0 at that corner. As a consequence the limit problem is
not hinged but something between hinged and clamped.

For more information we refer to [4, 23, 60, 61, 78] and further references in there.

� An Engineering Fault for thin plates with reentrant corners resulted in two
crashes of the first type of passenger jet airliner, the de Havilland DH.106 Comet 1. It
had a pressurized cabin and square windows. On January 10, 1954 flight BOAC 781
took off from Rome and exploded above the Mediterranean Sea near Elba. On April
8 of the same year flight SAA 201, again leaving from Rome, crashed soon after take-
off into the Mediterranean near Stromboli. Both airplanes were a DH.106 Comet 1.
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Wreckage recovered gave evidence that the accidents could be due to a failing of the
fuselage due to cracks from metal fatigue. To test this presumption they put the hull
of a Comet airplane in a water tank and submitted it to a sequence of pressurizing and
depressurizing until it cracked. In the official report of the accidents investigation the
result is described as follows:

. . . the cabin structure failed, the starting point of the failure being the corner
of one of the cabin windows. . .

See also Figs. 7 and 8 on page 32 and 33 and Fig. 12 on page 37 of that report.
The report can be found on

http://lessonslearned.faa.gov/Comet1/G-ALYP_Report.pdf

Consecutive airliners with pressure cabins had round windows.

� The Hinged Problem described in Problem 7 we will here give a closer look:

⎧
⎪⎨

⎪⎩

�2u + λu = f in Ω,

u = 0 on ∂Ω,

−�u = −(1 − σ)κ ∂
∂ν

u on ∂Ω.

(32)

If we assume λ ≤ 0 we may split by setting v = (−� − √−λ)u similar as in Prob-
lem 9, and obtain

{
(−� + √−λ)v = f in Ω,

v = −(1 − σ)κ ∂
∂ν

u on ∂Ω,
and

{
(−� − √−λ)u = v in Ω,

u = 0 on ∂Ω.
(33)

Obviously this system is not decoupled. However, if the domain is convex, then κ ≥ 0
holds and the system has a cooperative behavior, meaning

v ≥ 0 in Ω ⇒ u ≥ 0 in Ω ⇒ −(1 − σ)κ ∂
∂ν

u ≥ 0 on ∂Ω,

and

f ≥ 0 in Ω

−(1 − σ)κ ∂
∂ν

u ≥ 0 on ∂Ω

}

⇒ v ≥ 0 in Ω.

If the corresponding principal eigenvalue lies on the appropriate side of 0, then one
might prove a similar result as before. In [38] it was proven that there exist δc ∈
R

− and δ1 ∈ R
+ such that for α ∈ C(∂Ω) with δc � α � δ1 the boundary value

problem
⎧
⎪⎨

⎪⎩

�2u = f in Ω,

u = 0 on ∂Ω,

−�u = −α ∂
∂ν

u on ∂Ω,

(34)

http://lessonslearned.faa.gov/Comet1/G-ALYP_Report.pdf
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is positivity preserving: f ≥ 0 ⇒ u ≥ 0. Parini and Stylianou in [67] were able to
show for convex C2,1-domains and σ ∈ (1,1) that (1 − σ)κ < δ1 holds. This implies
that (32) for λ = 0 is positivity preserving. By using the Krein–Rutman Theorem it
follows that the eigenvalue problem corresponding to Problem 7, i.e.

⎧
⎪⎨

⎪⎩

�2ϕ + λϕ = 0 in Ω,

ϕ = 0 on ∂Ω,

−�ϕ = −(1 − σ)κ ∂
∂ν

ϕ on ∂Ω,

(35)

has a first eigenvalue λ1,σ < 0. With the argument for (7) one finds that (32) is pos-
itivity preserving for all λ ∈ (λ1,σ ,0]. So by combining the result from Parini and
Stylianou in [67] with the argument above one finds:

Theorem 5.11 Consider Problem 7, i.e. (32), with Ω convex and ∂Ω ∈ C2,1. Sup-
pose that σ ∈ (−1,1). Then there exist λ1,σ < 0 and λc,σ > 0 such that the following
holds:

1. for all λ < λ1,σ and 0 � f ∈ C(Ω) there exists no nonnegative solution u;
2. for all λ ∈ (λ1,σ , λc,σ ) and 0 � f ∈ C(Ω) the solution satisfies u > 0 in Ω .

Fig. 21 Suppose that f � 0 in Problem 7, which is (32), and that Ω is a convex domains. What can one
say for the sign of u?

Proof For λ ≤ 0 the result follows from the arguments above. For λ ≥ 0 we first fix
some notations. Let us write v = Gf +Kσ w for the solution of

{−�v = f in Ω,

v = (1 − σ)κw on ∂Ω,
(36)

with G and Kσ the related positive solution operators:

G : C(Ω) → C0(Ω) ∩ W 2,p(Ω),

Kσ : C(∂Ω) → C(Ω).

For p large enough C0(Ω) ∩ W 2,p(Ω) ⊂ C0(Ω) ∩ C1(Ω) and

D : C0(Ω) ∩ C1(Ω) → C(∂Ω)
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is well defined by Dv = −(ν ·∇v)|∂Ω , or more shortly Dv = −∂νv. In fact, by Hopf’s
boundary point Lemma, see [71], DG is positive. With these operators and for λ = 0
the problem in (32) can be written as

u = G2f + GKσDu.

Similarly as (8) problem (32) with λ = 0 is then solved by

u = Aσ f, where Aσ = G
∞∑

k=0

(KσDG)kG, (37)

whenever the series converges. For convex domains indeed Parini and Stylianou
showed convergence of (37). The operator Aσ is positive, since KσDG and G are.

For |λ| small we use a perturbation argument as before to find

uλ =
∞∑

k=0

(−λAσ )kAσ f =
∞∑

k=0

(λAσ )2k(I − λAσ )Aσ f.

This series converges for |λ| < ν−1
1,Aσ

, the spectral radius of Aσ , which supplies with
a first eigenvalue λ1,σ < 0 for (35) With the 3G-Theorem, see [18] or [79], which
shows that G − εG2 is a positive operator for ε > 0 and small, one may show that
also Aσ − λA2

σ is a positive operator for λ > 0 and small. For comparing terms with
KσDG see [38]. �

For the unit disk one may almost explicitly compute the relation σ �→ λ1,σ .

Example 5.12 For the unit disk B ⊂ R
2 the second boundary condition reads as

0 = −�ϕ + (1 − σ)κ
∂

∂ν
ϕ = − ∂2

∂ν2
ϕ − σ

∂

∂ν
ϕ on ∂B.

Of the four independent radially symmetric solutions of the differential equation in
(35) only two do not have a singularity in 0, namely x �→ J0(

4
√−λ|x|) and x �→

I0(
4
√−λ|x|). Here J0 and I0 are the standard and modified, Bessel functions of the

first kind, respectively. The principal eigenfunction is

ϕ1,σ (x) = J0
(
ρσ |x|)I0(ρσ ) − J0(ρσ )I0

(
ρσ |x|),

with the corresponding first eigenvalue λ1,σ = −ρ4
σ , and where ρσ is the first positive

zero of

r �→ r2(J ′′
0 (r)I0(r) − J0(r)I

′′
0 (r)

) + σr
(
J ′

0(r)I0(r) − J0(r)I
′
0(r)

)
. (38)

In Fig. 22 one finds the relation between σ and −λ1. Note that σ = −1 is indeed
critical and one finds λ1,σ=−1 = 0 and ϕ1,σ=−1(x) = 1 − |x|2.
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Fig. 22 The relation between σ

and λ1 in Example 5.12. For
most materials σ ∈ [0, .5] and
the corresponding range
of −λ ∈ [0,−λ1) is darkened

� The Real Supported Plate hints at a construction such as a flat roof lying on
supporting walls at its sides. Nailing that roof to the walls the clamped case seems
to be most appropriate. Without nails one expects the weight of the roof keeps the
roof on its supporting walls. Indeed, where the roof touches the walls the hinged
boundary conditions are appropriate. Although at a larger section the roof will indeed
touch its supporting structure, a more careful observation shows that this is not true
everywhere. Civil engineers are trained to ‘nail down a flat roof at corners’ in order
to prevent it from going up. See [8].

An appropriate mathematical formulation for a supported plate is as follows.

Problem 11 Find the minimum of

J (u) =
∫∫

Ω

(
1

2
(�u)2 + (1 − σ)

(
u2

xy − uxxuyy

) − f u

)

dxdy (39)

for u ∈ W+ = {u ∈ W 2,2(Ω);min(u,0) ∈ W
1,2
0 (Ω)}.

The condition u ∈ W+ implies the unilateral condition u ≥ 0 on the boundary. In
[65, Theorem 2.4 and Proposition 2.6] one finds the following results for the case
λ = 0. Before stating the result, let us recall that the affine functions ξ : R2 → R are
ζ(x, y) = ax + by + c with a, b, c ∈ R.

Theorem 5.13 (See [65]) Let Ω ⊂ R
2 have a Lipschitz boundary and suppose that

|σ | < 1. Assume that f ∈ L2(Ω) is such that
∫∫

Ω

f ζdxdy < 0 for all affine functions ζ with ζ > 0 in Ω.

Then Problem 11 has a unique solution uσ ∈ W+.

Remark 5.14 In his lectures on mechanics, Blaauwendraad [8] presented a discrete
model for a supported plate, and the corners of the discrete model move upwards
under a downwards force. Cesaro Davini [24] was the first to give mathematical evi-
dence that solutions for continuous Problem 11 with a downward directed force will
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move upwards near corners. The analysis of corner behavior, which originates from
Kondratiev [54] and Wigley [82], was needed to arrive at the statement above in [65].
A simpler argument but only for rectangular corners was given in [75].

The setting in Problem 11, and the assumption that the solution is sufficiently
regular, leads to a boundary value problem with two different boundary conditions
on the two corresponding subsets of ∂Ω :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λu + �2u = f in Ω,

u ≥ 0 on ∂Ω,

σ�u + (1 − σ)∂2
nu = 0 on ∂Ω,

u = 0 on Γ ⊂ ∂Ω,

∂n(�u) + (1 − σ)∂τ (ν · (D2u)τ) = 0 on ∂Ω \ Γ.

(40)

Note that (40) in itself is not well-posed, since it does not tell us where to switch from
u = 0 to the other boundary condition. In other words, a solution is a pair of a priori
unknown (u,Γ ). If one assumes that the solution is C3(Ω), then the ‘free’ boundary
points x ∈ ∂Ω (should we call them ∂Γ ?) are fixed through

u(x) = (
σκ∂n + ∂2

n

)
u(x) = (

∂n(�u) + (1 − σ)∂τ

(
ν · (D2u

)
τ
))

(x) = 0. (41)

This formulation gives no obvious clue that (40) with (41) has a solution or if such a
solution is unique.

Fig. 23 A supported plate with a downwards force generically moves upwards at corners. One might
say ‘the real supported plate is really not so supported at all’. Here the plate, with λ = 0 and sup-
ported by a rectangle, is pushed downwards by a δ-force, located on the longer central axes, as before
Ω = (0,2) × (0,1) and f is located in ( 1

8 , 1
2 ). In blue (light) the plate below 0; in red the part above. The

numerical approximation uses an iterative process with finite differences starting from the hinged plate and
deciding in each step where the boundary is hinged or free

In the literature one often finds the term ‘supported plate’ or ‘simply supported
plate’, when one actually means Problem 7, which we call hinged plate. If this mix-
up is due to the fact that one expected the plate under a downwards force to touch
its supporting boundary frame everywhere, or because of a bad translation between
Russian and English, is not clear. But what is in a name; in engineering they are aware
that one has to nail down a flat roof at its corners (see [8]) and if you don’t, your roof
may look like in Fig. 23.

� The Clamped Plate that we described in Problem 8, more precisely the question
whether or not it is positivity preserving, received a lot of attention around 1900. We
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recall the problem:
{

�2u + λu = f in Ω,

u = ∂nu = 0 on ∂Ω.
(42)

The Boggio–Hadamard conjecture says, that for λ = 0 PPP holds for (42) on convex
domains Ω ⊂ R

2.
In 1905 Boggio [10] found explicit Green functions for balls in any dimension and

even for every order polyharmonic Dirichlet problems. With Γ B
A denoting the bihar-

monic Green function of (42) for λ = 0, Hadamard writes in conference proceedings
from 1908 [50] that:

M. Boggio, qui a, le premier, noté la signification physique de Γ B
A , en a déduit

l’hypothése que Γ B
A était toujours positif. Malgré l’absence de démonstration

rigoureuse, l’exactitude de cette proposition ne paraît pas douteuse pour les
aires convexes.

Hadamard also announced in [50] that he had an explicit Green function Γ A
B for

(42) for λ = 0, when Ω is the interior of a Limaçon de Pascal. After sketching some
arguments, he boldly states that:

Ainsi Γ A
B est toujours positif dans le cas du limaçon de Pascal.

See Fig. 4 for limaçons. He also mentions in these proceedings that the problem
on an annulus has been studied by Almansi and Boggio, who found that for some
annulus the sign is not preserved. Moreover, it seems that Boggio told him that the
conjecture was never meant for such domains. For more details Hadamard refers to a
future paper of his, which is most likely [49]. Indeed, the actual Green function for
limaçons is computed in the appendix of [49].

It took almost forty years to find out, that the conjecture is not true. Starting in
1946, Duffin ([28]), Garabedian ([35]) and others ([55, 74]) showed that convexity of
the domain is not sufficient for the clamped plate equation to be positivity preserv-
ing. Duffin in [49] considered an infinitely long rectangle. Garabedian could show
sign-change of the Green function for a longer ellipse. Shapiro and Tegmark even
constructed an explicit sign-changing function u satisfying Problem 8 on an ellipse
such that f = �2u > 0. Their result can be even be adjusted to higher orders poly-
harmonic Dirichlet problems [80]. Coming back to a nonconvex domain Engliš and
Peetre showed in [30] that the Green function on any annulus is sign-changing. By the
way, it took until [21] to notice that the Green function for limaçons by Hadamard was
only positive for some limaçons, namely those with a < 1/

√
6. The case a = 1/

√
6

is the dark limaçon in Fig. 4. Note that some nonconvex limaçons are positivity pre-
serving. So, even if Hadamard had worked out details correctly, the result would not
have contradicted his conjecture.

So convexity is neither sufficient nor necessary for PPP of Problem 8, although
larger nonconvex boundary parts seem to have a bad influence on sign preservation.
On the affirmative side is the result in [44] that for small perturbations of a disk PPP
holds true.

Not only ‘larger nonconvex’ boundary sections ruin positivity but also a kind of
opposite domain shape is bad for positivity. Coffman and Duffin showed that near
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rectangular corners the Green function has an oscillatory behavior. In the numerical
approximation on the 2 by 1 rectangle in Fig. 24 both sign-changing effects occur.
Due to the eccentricity and the isolated force on the left hand side a nodal line occurs
somewhat right from the middle. Near the corners the first sign change due to the
oscillatory behavior shows itself. In [55] one finds that sign-change also occurs for
smooth domains which are close to such domains with corners in even dimensions.
Not much is stated for dimensions larger than two, but the tools in [48] can be used
to find a counterexample in higher dimensions starting from a counterexample in two
dimensions.

Fig. 24 The rectangular clamped plate pushed in one direction, nevertheless shows an oscillatory behav-
ior. Near corners and on elongated parts away from the downwards directed localized force the solution
tends to change sign. Also here the force is a downwards directed force on one grid element located on the
longer central axis on 1

8 from the left. The red (darker) part is where the plate moves upwards. Notice the
sign changes at corners

Concerning positivity preserving for (42) there is not much that would hold for
every domain, except the observation, that the negative part is very mildly negative.
Indeed, for sufficiently smooth bounded domains in R

n it has been shown in [43],
following [42] and [20], that the Green function for Problem 8 can be estimated from
below with some c1,Ω ≥ 0 and c2,Ω > 0 by

GΩ(x,y) + c1,Ωd(x)2d(y)2 ≥ c2,ΩFn

(
d(x)d(y), |x − y|) for all x, y ∈ Ω. (43)

Here is d : Ω̄ → R the distance function to the boundary

d(x) = inf
{∣
∣x − x∗∣∣;x∗ ∈ ∂Ω

}

and Fn is the function derived from Boggio [10, 45] for the biharmonic Dirichlet
problem on balls:

Fn

(
d(x)d(y), |x − y|) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(d(x)d(y))2−n/2 min(1,
d(x)2d(y)2

|x−y|4 )n/4 for n < 4,

log(1 + d(x)2d(y)2

|x−y|4 ) for n = 4,

|x − y|4−n min(1,
d(x)2d(y)2

|x−y|4 ) for n > 4.

(44)
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The structure of the estimate in (43) is the optimal one possible. Indeed, one may
show that there are C2,Ω,C3,Ω ∈R

+ such that

GΩ(x,y) ≤ C2,ΩFn

(
d(x)d(y), |x − y|) for all x, y ∈ Ω,

d(x)2d(y)2 ≤ C3,ΩFn

(
d(x)d(y), |x − y|) for all x, y ∈ Ω.

We end this section by sketching the range of λ where PPP holds for Problem 8 in
some special cases. The formulation of the corresponding theorem would be similar
to the one for example of Theorem 5.5 and we skip.

• For the disk the formula of Boggio shows that PPP holds for λ = 0. By Krein–
Rutman one may extend this result to λ ∈ (λ1,0]. Perturbation arguments in [45],
based on sharp two-sided estimates for the Green functions, show PPP for small
positive λ.

Fig. 25 For the clamped disk PPP holds on an interval that contains 0, similar as in the case of the clamped
beam

• Limaçons are defined by Ωa := {(r cosϕ, r sinϕ);0 ≤ r < 1 + 2a cosϕ} with
a ∈ [0, 1

2 ]. Hadamard in [49] gave an explicit formula for the Green function,
which was shown to be positive if and only if a ∈ [0,1/

√
6] in [21]. For a ∈

(1/
√

6,1/
√

6 + ε) one uses arguments as in [47]. There it was proven that under
a continuous perturbation of the domain a sign change in the Green function oc-
curs before the corresponding first eigenfunction changes sign. For a = a0 = 1/

√
6

the Green function is still positive but touches 0 for some pair x �= y ∈ ∂Ωa0 in a
more than quadratic way. The iterated Green function, which appears in the expan-
sion as in (8), is strictly positive and for λ0 ∈ (λ1,a0 ,0) one finds Gλ0,Ωa0

(x, y) �
F2(d(x)d(y), |x − y|) with Fn as in (44). Perturbing the domain further and by us-
ing arguments as in [44] one finds that Gλ,Ωa0+ε is still positive for ε > 0 but small.
So with Krein–Rutman we find a first eigenvalue λ1,a0+ε > λ0 and positivity for
λ ∈ (λ1,a0+ε, λc] ⊂ R

−. See Figs. 26 and 4.

Fig. 26 For a limaçon with a − a0 > 0 but small, PPP holds on an interval in R
−
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• For the annulus {(r cosϕ, r sinϕ); ε < r < 1} with ε > 0 but small Coffman, Duffin
and Shaffer [16, 29] could show that the eigenvalue for the positive eigenfunction
comes after the eigenvalue for the first sign-changing eigenfunctions, which make
a two-dimensional eigenspace. Since λ2 now corresponds with the positive eigen-
function we expect PPP on (λ2, λc) with λc < λ1 < 0. See Fig. 27.

Fig. 27 For an annulus with a small hole the second eigenvalue corresponds with the positive eigenfunc-
tion. PPP in a right neighborhood of the second eigenvalue?

• Coffman proved in [14] that for any rectangle there is no eigenfunction with a fixed
sign. By the converse of Krein–Rutman it follows that there is no sign preservation
for any λ. See also [15].

Remark 5.15 Qualitative results such as PPP may be hard to prove for the clamped
boundary value problem. Concerning existence and uniqueness it is however the sim-
plest in the sense that there exists a unique weak solution for any domain. Indeed

J (u) =
∫∫

Ω

(
1

2
(�u)2 − f u

)

dxdy

has a unique minimum in W
2,2
0 (Ω). This setting can be translated immediately to a

numerical approximation by finite elements. However, the piecewise C1,1-functions
necessary for the direct approach are quite tedious. So one prefers again a system
setting, which indeed is possible. Monk in [63], adjusting an idea of Ciarlet in Raviart
in [13], considered on W

1,2
0 (Ω) × W 1,2(Ω) the functional

Js(u, v) =
∫∫

Ω

(

∇u · ∇v − f u − 1

2
v2

)

dxdy.

One finds as a first variation that for all (ϕ,ψ) ∈ W
1,2
0 (Ω) × W 1,2(Ω)

∫∫

Ω

(∇u · ∇ψ − vψ)dxdy =
∫∫

Ω

(∇ϕ · ∇v − f ϕ)dxdy = 0.

At least on smooth domains it follows through integrating by parts that −�u = v and
−�v = f in Ω and, besides u = 0 on ∂Ω from u ∈ W

1,2
0 (Ω), also through the first

equation that

∂

∂ν
u = 0 on ∂Ω.
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But also here reentrant corners spoil the system approach. See [9, 27]. Another nu-
merical approach is considered by Davini and Pitacco in [25, 26]. See also [22].

Appendix A: 1d Proofs when λ > 0

The result of Lemma 2.1 is standard. Lemma 2.2 and 2.3 can be found in [81] or
[53]. The crucial idea to compute λc as ‘anti-eigenvalue’ or switched eigenvalue goes
back to Schröder in [73]. See also [79]. The direct approach is to compute the Green
function and see for which λ a sign change occurs. We choose this approach for the
first cases, since it will supply us with a formula for the Green function, which has
some independent interest. The calculations are tedious and maybe not so interesting,
but since the existing results in the literature do not always agree, it might be useful
to have them explicitely stated.

Proof of Lemma 2.1 Although we may restrict ourselves to the case λ > 0 one di-
rectly computes the following explicit Green function for (1):

gλ(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

sinh(
√

λmin(x,y)) sinh(
√

λ(1−max(x,y)))√
λ sinh(

√
λ)

for λ > 0,

sin(
√−λmin(x,y)) sin(

√−λ(1−max(x,y)))√−λ sin(
√−λ)

for λ < 0,

(A.1)

when
√−λ is not a multiple of π . Consistent with (5) one finds

g0(x, y) = lim
λ→0

gλ(x, y) = min(x, y)
(
1 − max(x, y)

)
.

The denominator in (A.1) turns 0 for λ = −k2π2 with k ∈ N
+. Since the numerators

in (A.1) changes sign for some x and y if and only if λ < −π2, one finds that the
Green function is positive if and only if λ > −π2. �

Proof of Lemma 2.2 Let λ > 0 and write μ = 4
√

λ/4. The function

w(μ,p) = sin(μp) cosh
(
μ(2 − p)

) + cos(μp) sinh
(
μ(2 − p)

)

+ sinh(μp) cos
(
μ(2 − p)

) + cosh(μp) sin
(
μ(2 − p)

)
, (A.2)

satisfies (( d
dx

)4 + λ)w(μ,x) = 0. Then the Green function is

gλ(x, y) = w(μ, |x − y|) − w(μ,x + y)

8μ3(cosh(2μ) − cos(2μ))
. (A.3)

See Fig. 28 (right). Indeed, it satisfies the same differential equation as w for x �= y.
One may check that

w(μ,p) = w0(μ) + w2(μ)p2 + w3(μ)p3 +O
(
p4) (A.4)
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with

w0(μ) = sinh(2μ) + sin(2μ),

w2(μ) = −μ2(sinh(2μ) − sin(2μ)
)
,

w3(μ) = 2
3μ3(cosh(2μ) − cos(2μ)

)
.

The first odd power of p that appears in (A.4) is 3 and with its coefficient this explains

(
d

dx

)4

gλ(x, y) + λgλ(x, y) = δy(x).

The boundary conditions gλ(0, y) = 0 and ( d
dx

)2gλ(0, y) = 0 follow from (A.3) and
(A.2). The ones in x = 1 from w(μ,p) = w(μ,2 − p).

The first eigenvalue is reached for λ = −π4 and for λ > −π4 the Green function
depends smoothly on λ. Where does positivity break down for λ > 0? One may show
that for λ �→ gλ(·, ·) no interior zero can appear and hence that new ‘zeros come
in through the boundary’ at λc if λc denotes the value for which positivity of the
Green function breaks down. Schröder [73] studied the question and showed that for
λ = λc one encounters either a standard eigenvalue or a ‘switched’ eigenvalue. The
standard eigenvalues are negative, so λc is, according to Schröder, an eigenvalue with
a positive eigenfunction of the ‘switched’ eigenvalue problem:

⎧
⎪⎨

⎪⎩

ϕ′′′′ + λϕ = 0 in (0,1),

ϕ(0) = ϕ′(0) = ϕ′′(0) = 0,

ϕ(1) = 0.

(A.5)

Switched, since ϕ′′(1) = 0 is replaced by ϕ′(0) = 0. One could also have replaced
ϕ′′(0) = 0 is replaced by ϕ′(1) = 0, but by symmetry one finds the same value λc.
The first eigenfunction for (A.5) is

ϕ(x) = sin(μcx) cosh(μcx) − sinh(μcx) cos(μcx),

with μc the first positive solution of tanμc = tanhμc and hence λc = 4μ4
c . �

Proof of Lemma 2.3 The Green function here is

gg(μ,x, y) = g(μ,x, y) − rl(μ, x, y) − rr(μ,x, y),

with g(μ,x, y) from (A.3),

rl(μ, x, y) = sin(μ(2 − y)) sinh(μy) − sin(μy) sinh(μ(2 − y))

μ3(cosh(2μ) − cos(2μ))(cosh(2μ) + cos(2μ) − 2)

× (
sin(μ) sinh(μx) sin

(
μ(1 − x)

) − sinh(μ) sin(μx) sinh
(
μ(1 − x)

))

and

rr(μ,x, y) = rl(μ,1 − x,1 − y).
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See Fig. 28 (left). The value λ1 = −ρ1 := −(2μ1)
4 corresponds to the first eigenvalue

for the clamped problem

ϕ1(x) = cos
(
2μ1

(
x − 1

2

)) − cosμ1

coshμ1
cosh

(
2μ1

(
x − 1

2

))

with μ1 the first positive solution of tanμ1 + tanhμ1 = 0. To determine the value
λc one considers the switched eigenvalue problem where ϕ′(1) = 0 is replaced by
ϕ′′(0) = 0, which is again problem (A.5), and hence one obtains the same value λc as
before. �

Remark A.1 It might appear surprising, that the value λc from Lemma 2.2 for the
supported beam and the λc from Lemma 2.3 for the clamped beam are identical. The
reason is that the corresponding switched eigenvalue problems in the sense of [73],
which determine λc , are identical. Indeed, in both cases one arrives at (A.5).

Fig. 28 Sketches of the Green functions for the clamped (left) and for the hinged beam with
λ = 5184 > λc . On the dark (red) part the Green function is negative. The line depicts the diagonal,
where x �→ ( d

dx
)3gλ(x, y) has a jump

Proof of Lemma 2.4 The first eigenfunction that corresponds to Problem 5, is

ϕ1(x) = sinh(νx) − sin(νx) − sinν + sinhν

cosν + coshν

(
cosh(νx) − cos(νx)

)
,

with eigenvalue d1 = ν4
1 , where ν1 the first positive zero of coshν cosν + 1 = 0.

According to [73] the critical value dc is determined by one of the following two
switched eigenvalue problems, namely

⎧
⎪⎨

⎪⎩

ϕ′′′′ + λϕ = 0 in (0,1),

ϕ(0) = ϕ′(0) = ϕ′′(0) = 0,

ϕ′′(1) = 0,

and

⎧
⎪⎨

⎪⎩

ϕ′′′′ + λϕ = 0 in (0,1),

ϕ(0) = 0,

ϕ(1) = ϕ′′(1) = ϕ′′′(1) = 0.

(A.6)

The corresponding first eigenfunctions of (A.6) are related through

ϕleft(x) = ϕ′′
right(1 − x),

and hence give the same eigenvalue. Since

ϕleft(x) = sinh(μ1x) cos(μ1x) − sin(μ1x) cosh(μ1x),
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where μ1 is the first positive number such that ϕ′′
left(1) = 0, the same μ1 as for

Lemma 2.3 but here implying that dc = 4μ4
1 ≈ 125.141. �

Appendix B: A Sharper Version of Kreı̆n–Rutman

In a more general setting such as for cooperative systems the strong positivity condi-
tion, which is used for the version of Kreı̆n–Rutman above, i.e. Theorem 3.4, is too
restrictive. Instead of strong positivity, some weaker positivity is sufficient, whenever
one can show that the spectral radius is strictly positive. Showing that the spectral
radius is positive, most of the time will need some tedious constructions in order
to obtain a more or less explicit (super)solution. A breakthrough is a theorem of de
Pagter in [66]. The slight disadvantage is that one needs the structure of Banach lat-
tices, which may not be a common tool for the analyst working on partial differential
equations. The spaces C(Ω) and Lp(Ω), home turf for analysts, with the natural
ordering, however are Banach lattices. Let us briefly introduce the setting.

Definition B.1 The real vectorspace X gives a vector lattice (X,≤), if:

1. ≤ is a partial ordering on X;
2. for all u,v,w ∈ X: u ≤ v implies u + w ≤ v + w;
3. for all u ∈ X and t ∈ R

+: 0 ≤ u implies 0 ≤ tu;
4. for all u,v ∈ X also inf(u, v), sup(u, v) ∈ X, where inf(u, v) is the largest lower

bound and sup(u, v) the least upper bound for u,v.

Note that u ∈ C(Ω) implies |u| ∈ C(Ω) and a similar result holds for Lp(Ω) or
W 1,2(Ω). For C1(Ω) and W 2,2(Ω) such a result is not true. One also needs a relation
between the norm and the absolute value of a function, |u| := sup(u,−u).

Definition B.2 If (X,≤) is a vector lattice and (X,‖ · ‖) a Banach space, then (X,

‖ · ‖,≤) is a Banach lattice if for all u,v ∈ X one has: |u| ≤ |v| implies ‖u‖ ≤ ‖v‖.

The space (C(Ω),‖ · ‖∞,≤) is a Banach lattice and (W 1,2(Ω),‖ · ‖W 1,2,≤) is
not.

Definition B.3 Let (X,‖ · ‖,≤) be a Banach lattice. A subspace I ⊂ X is called a
lattice ideal, if

1. for all u ∈ I one has |u| ∈ I and
2. for all u ∈ I and v ∈ X with 0 ≤ v ≤ u one has v ∈ I .

Definition B.4 Let (X,‖ · ‖,≤) be a Banach lattice and T ∈ L(X). T is called irre-
ducible if {0} and X are the only closed T -invariant lattice ideals.

The properties of g1, g2, g3 and g5 in (5), (6), (10), (11), and for more general
second order equations the strong maximum principle, imply that the corresponding
G ∈ L(C(Ω)) is irreducible, without assuming more on the boundary than that G
indeed maps from C(Ω) into C(Ω).
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Using the concept of Banach lattice one may formulate an optimal version of the
Kreı̆n–Rutman theorem.

Theorem B.5 (Kreı̆n–Rutman–de Pagter) Let (X,‖ · ‖,≤) be a Banach lattice with
dim(X) > 1 and let T ∈ L(X) be compact, positive and irreducible. Then:

1. the spectral radius ν(T ) is strictly positive;
2. ν(T ) is an eigenvalue for T with algebraic multiplicity 1;
3. all other eigenvalues νi satisfy |νi | < ν(T );
4. the eigenfunction for ν(T ) is of fixed sign and (up to multiples) it is the only

eigenfunction of T with a fixed sign.

The value ν(T ) is called the principal eigenvalue of T just as the corresponding
eigenfunction is called the principal eigenfunction of T .

The theorem combines a classical result of Kreı̆n and Rutman with a result of de
Pagter [66]. See also [37] or [77].
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