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A. Relaxed limit

Let X be a metric space with metric d. Let D be a subset of X. Let
{u*}o<e<1 be a one-parameter family of functions defined on D with
values in R(:= R U { £oo}. We define the upper relaxed limit

(limsup;_, u7)(z) == lim,jgsup{v® (y) : y € D, d(y,z) <7, 0 <e<
r},z €D,

where D is the closure of D in X. The lower relaxed limit is defined
as liminf, u® = —limsup”(—u®). We often write 7 = limsup” «® and
u = liminf, u®. Prove the following statements.

1. Let 2o be a point in D. Assume that u(z) = (limsup”* u®)(z) <
co. Then there are sequences {g;}52; C (0,1) and {2;}32, C
D such that ¢; — 0 as j — oo, lim; . u™(z;) = u(z) and
limj_,oo Zj = Z0-

2. The function @ = limsup._ ,° is an upper semicontinuous func-
tion defined in D, i.e., u(z) > limsup, ., u(y) for z € D. Similarly,
the function u = liminf,._,o u® is a lower semicontinuous function
in D.

3. Assume that D is locally compact. If u(z) = u(z) € R for all
z € D, then u*® converges to u locally uniformly in D as ¢ — 0.

4. Assume that D is locally compact. Assume that u® is a (real-
valued) upper semicontinuous function in D and that @ attains a
strict local maximum (# 0o) at zy € D. Then there are sequences
{5152, € (0,1) and {2z;}52, C D such that z; is a local maximizer
of v and that z; — 2 and ¢; — 0 as j — o0o. Moreover,
limj_,oo Uej (Zj) = ﬂ(Z()).



5. Assume that X is compact and that u® is upper semicontinuous
inD=X. Weset K ={z¢€ X : u(z) >0}. Let d. be defined
by

d. =sup{d(z,K) : v (2) >0, z € X}.
Then d. — 0 as ¢ — 0.

6. Assume that X = R"™ and w = w in X and that u® is contin-
uous. Assume that K = {a € X : w(z) > 0} is compact
and that K = H with H = {# € X : w(z) > 0}. Then
K. ={z¢€ X : u(z) > 0} converges to K as ¢ — 0 in the
sense of Hausdorff distance topology provided that K. is com-
pact. (Here is a definition of the Hausdorff distance for two sets
A, B C X: dy(A, B) = max{sup,c, d(x,B), sup,cp d(y,A)}.)

7. Give an example that the conclusion of Problem 6 is false if one
drops the assumption K = H even if one assumes that I' = {z €
X : u(z) = 0} has no interior.

8. Assume that ug is continuous on a compact set K in R¢. For
zo € K and A > 0 we set V) 4, (z) = A +uo(x9) + C|z — z0|*>. Then
for each A > 0 there is a constant C' depending only on A (and uy)
such that

up(z) < Vag(z) forall z € K.

We shall write such C' by C = C'(X). Then ug(x) = inf{V) 4, () :
A>0, C=C(N), o€ K}.

9. Assume that ug is continuous in Q, where € is a bounded open
set in R%. Let V) ., be as in Problem 8 with C'= C()). Assume
that u® : Q2 x (0,7) — RU{—o0} satisfies

u(x,t) < Vi glz) + C(NL.

Then u(z,0) < up(z) for all x € Q, where w = limsup._, u°.

B. Viscosity Solutions

Prove the following statements.

10. Assume that u® is a viscosity subsolution of the level set mean
curvature flow equation u; — |Vu| div (Vu/|Vul) = 0 in R? x
(0,7). Then w = limsup._,,u° is a viscosity subsolution of the
same equation in RY x (0,7) provided that u(z) < oo for all
z € R4 x (0,T). One may replace R? by an open set 2 in R
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11. The stability result in Problem 10 is still vaild for the Neumann
boundary value problem in Q x (0, 7).

12. Let u : @ — R U {—00} be an upper semicontinuous function,
where @ = Q x (0,7) and Q is an open set in R%. Then u is a
viscosity subsolution of a level set mean curvature flow equation
in Q if (and only if) (¢, 2) € C*(Q) x Q satisfies

(i) ¢ — [Voldiv (Vo/[Ve]) < 0at 2 € Q if Vé(2) # 0 and
(i) ¢i(2) < 0if Vo(2) = 0, V26(2) = O

whenever maxg(u — ¢) = (u — ¢)(2).
Hint : Assume that u — ¢ takes its strict maximum at Z € () and
Vo(2) = 0. We consider u — ¢, with ¢.(z,y,t) = |z — y|*/4e +
o(y,t), e > 0 and derive several inequalities for ¢. at a maximizer
of u(x,t) — ¢ (x,y,t) in Q.
13. The function
u(z,t) = min(0, t — |z|)

is a viscosity solution of the Neumann problem

O — |[Vu| =01in {|z| < 1} x (0,7T)
Ou/Ov =0 on d{|z| < 1} x (0,7)

(although the slope Ou/0v at |xr| = 1 is not zero.) Here 0/0v
denotes the exterior normal differential operator.

C. Structure of equations and examples of solutions

14. Write the mean curvature flow equation V' = H for u = u(xy,t),
when I';, € R¥ is a hypersurface of rotation of the form

Ty ={(z1, - ,zn) € RN|r = u(zy,t), r = (Z x)Y/2}.

7j=2
15. Write the mean curvature flow equation V' = H for u = u(zy, -+ ,2n_1,1),
when I'; € RY is of the form
[y ={(v1, -+ ,2n) € RN|CI7N = u(zy, TN, 1)}



16.

17.

18.

19.

20.

21.

Assume that F' = F(p, X) (defined in (RM\{0}) x SV ) is geo-
metric. Assume that X +— F(p, X) is continuous for each p €
RM\{0}. Assume that F is (degenerate) elliptic. Prove that F
satisfies

FlpX+y®@p+pey)=F(p,X) (5G)
for all y € RV, X € S¥ p € RV\{0}. (In other words F' is

strongly geometric.)

Give an example that F' is geometric but not fulfills the condition
(SG) of Problem 16.

Assume that v is a viscosity solution of
up + F(Vu, Vu) =01in Q = Q x (0,7).

Assume that F' is geometric and continuous in (R¥\{0}) x S¥.
Assume that F' can be extended continuously at (0,0). Prove
that 6 o u is a viscosity subsolution of the above equation in @
provided that 6 is continuous and nondecreasing. Here () is an
open set in RY.

Assume that v : RY — [0, 00) is positively homogeneous of degree
one. Assume that v € C?*(RV\{0}). Prove that

V2y(p) +p®p > O for all p € RV\{0}.

if and only if V2(v?)(p) > 0 for all p € RY\{0}.
Under the assumption of Problem 19 prove that

Frnak 7 = {p € R : y(p) < 1}

is strictly convex (in the sense that all inward principal curvatures
of & (Frank ) are positive) if and only if V2v(p) +p®p > O for
all p € RM\{0}.

Assume that same hypotheses of Problem 19 concerning . As-
sume that Frank v is strictly convex. Prove that the Wulff shape

W, ={peR"|p-m < ~(m) for all m € SV~'}.

is strictly convex and C?.



22. Assume the same hypotheses of Problem 21 concerning ~. Prove
that there exists a shrinking self-similar solution of the form a(t)0W,
of

V = —7(n) divr,(Vy(n)).
23. For ug, vy € C(RY) assume that
{ug > 0} C {vyg > 0}(= {x € RN|vy(x) > 0}).

Assume that {vy > 0} is compact. Prove that there exists a non-
decreasing function § € C'(R) such that 6(s) = 0 (for s < 0) and
0(s) > 0 (for s > 0) and

U()SQOUO iIlRN.

D. Dynamical programing principle

Let K be a compact set in R%. Assume that f : R x K — R" is
continuous and that there is a constant L satisfying

|f(x,a) = f(y,a)] < L]z —y|

forall z,y € RY | a € K. Let T be a positive number (called terminal
time). Let A be of the form

A={a:[0,T] —» K| « is Lebesgue measurable}.

(An element of this set is called a control.) Let X7 (s) be the solution
of the state equation

X = f(X(s), afs), T>s>t
Xt)y=zeRY, s=t.

Let ¢ be a real-valued continuous function defined in RY. Let u be the
value function (with the terminal data g) of the form

u(z,t) = inf g(X2,(T)).
24. Prove that the dynamical programing principle

u(z,t) = irelg{u(X;"’t(t%—(S) ,t+ ) fort+0<T, 6>0.



25. Prove that v(x,t) = u(x,T —t) is a viscosity solution of
vy — H(z,Vv) =0 in RY x (0,7)

with H(x,p) = mingex p - f(z,a).

26*. Let Q be a bounded C? convex domain in R?. Let S(z,v) , = €
Q, v € S? be the billiard semiflow in €. Prove that for any fixed
t>0, € Qandv € S, there exists d; > 0, 3 € 00N By(7)
where [ =1,2,--- such that ) ;° div(y;) converges and

o!(2,0) = 3 dw(y)

where of(x,v) = S*(z,v) — (x + tv) is a boundary adjustor. Here
v denotes the unit outward normal of 0f2.

27*. Assume that {uf}o..; is uniformly bounded in Qx (0, 7). Assume
that u® fullfills

u(z,t) = hi;\n:f1 bs_ufl ua(Sﬂe(x,bv) ,t+e?)

forz € Q,t € (0,T), t+e2 <T. Let u be u = liminf,._ou’.
Prove that v(z,t) = u(z, T — t) is a viscosity supersolution of
v — |Voldiv(Ve/|Vo|) =0 in 2 x (0,7,
0v/dv =0 on 00 x (0,T).

E. Variational problem with obstacles

Let Z be a real-valued C? (or C*') function defined in a bounded
interval I, where I = (a,b). For a given A > 0 let K. be the subset of
H(I) of the form

K:={¢eH'(I): Z(x) - A2 < () < Z(x) + A/2, &(a) =
Z(a) — AJ2,£(b) = Z(b) £ A/2}.

Let J. be the functional in L?(I) defined by

J(§) = {gao f@)fdz, € € Ke

, otherwise.



28.
29.
30.
31.

32.

33.

34.

35.

36.

37.

Prove that H'(I) C CY*(I) c C(I).
Prove that J. is lower semicontinuous, convex on L*(T).
Prove that Jy admits a unique (absolute) minimizer.

Let &; be the minimizer of J,. Let Dy be the coincidence set
defined by

Di={zel : & =Z(x)£A/2}.

Prove that &, is concave in a neighborhood of D_ and that &,
is convex in a neighborhood of D,. Prove that &, = 0 outside
D, U D_. (We say that ¢ satisfies the concave-convex condition
if these three properties are fulfilled.)

If ¢ satisfies the concave-convex condition and £(a) = Z(a) — A/2,
£(b) = Z(b) £ A/2, it must be the minimizer of J.

Let &, be the minimizer of J,. Prove that &, is C*! and
sup [§{ ()] < sup | Z"(x)].
zel zel

Suppose that the concave hull Z.,. of Z in [ is smaller than
Z+AJ21e Zewe < Z+ A/2in I. Let & be the minimizer of
J_. Prove that

() = Ziaye(@), T € L.

: : : _ Z(b)—Z(a)+A
Suppose that staight line function {(v) = £(a) + =>7=—

is in K. Prove that ¢ is the minimizer of J,.

(z—a)

(Comparison principle)
Let &4 be the minimizer of J.. It is determined by I. Let
As(z, 1) =& (v).
Prove that
Ar(z, ) < Ap(z, L) for z € Iy
if I, C 1.

Let J¥ be the functional defined as J by replacing Z by Z _k (k =
1,2,---), where Z* is a real-valued C? function defined in I. As-

sume that Z% conveges to Z uniformly with its first derivatie in
I. Prove that for any & — & in L*(I)

J1(€) < liminf JE(&).



38. Assume that the same hypotheses of Problem 37 concerning Z*.
Prove that for each & € L?(I) there is a sequence &, — & in L*(I)
such that

J(§) = klggo JE (&)

39. (Convergence of minimizers under (realxed limit) I'— convergence)

Assume that same hypotheses of Problem 37 concerning Z*. Let
&% be the minimizer of J§ and 4 be the minimizer of J. Then
¥ — &y in LA(I).

40. Let D be a compact metric space. Assume that u® be a real-valued
lower semicontinuous function on D. Let z° be an (absolute) min-
imizer of u®. Prove that there is a subsequence 2% (¢; — 0) such
that it converges to an (absolute) minimizer z of u in D.

41. (Stability)
Assume that

supsup |(d/dx)?Z*(z)| < oo and Z*¥ — Z in C(I).
k>1 wel
Let
AL (x, 1) = (d/dz)Ek (2),
where £1 be the minimzier of Jk. Prove that A% converges to
A (z, I) uniformly in I as k — oo. (Use Problem 33.)

42. Let Z be a C? function in R. Prove that Ay(x,I) is continuous
with respect to I. (Clarify the meaning of continuity.) Assume
furthermore that |(d/dx)?Z| is bounded in R. Prove that for each
r >0

lim sup  sup |As(z,(a,b)) — As(x —p, (a—p, b—p))|=0.
b=00<h—a<r a<z<b

F. Sup-convolution (regularization)

Let ¢ be a function from R x (0,1] to [0,00). Assume that ¢ fulfills
following conditions.

(i) For each \,0 < A < 1, ¢(-,A) is Lipschitz continuous on every
bounded set in R.

(i) @(&, ) is even in £, i.e. ¢(§,\) = (=&, )
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(iii) ¢(&, A) is nonincreasing in A for all &.

(iv) lime oo #(€,1) = oo and ¢(€, A) is nondecreasing in & > 0, for
0<A<1

(v) limyjo¢(&,\) = oo unless € =0 and ¢(0,\) =0, 0 < A < 1.

Let f be a function in R with values in R U {—o00}. We say that

fAx) = sup{f (&) — 6(§ — 2, \)}

£ER

is a sup-convolution of f by ¢. Prove the following statements under
assumptions (i)-(v) for ¢.

43. Let f(#% —oo) be a function on R with values in R U {—o0}.
Assume that f is locally bounded from above and that

lim max(f(£),0)/o(§ —x, 1) =0 for each z € R.

|§]—o0
Then f* is locally Lipschitz. Moreover,
fA> > ffor A>p>0

and limyjo fA(z) = f*(x) for each z € R. Here f* denotes the
upper semicontinuous envelope of f, i.e.

(@) :lg$SUP{f(y) e -yl < e}

44. Assume that same hypotheses of Problem 43. Let B and B’ be
bounded open sets in R with B C B’. Then for each Ky > 0 there
is A\o(Kp) > 0 such that

sup sup H(& x,\) < —Kj for A < \g(Kp)
z€EB 5%3/

with H(&,z, \) = f(§) — #(§ — =, A). Moreover,

fMx)=sup H(,z,)\) for x € B
Lep’

provided that infg f* > —oo and A < Ay = \g(max(0, —infz f*)}.
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45.

46.

47.

48.

49.

20.

Assume that same hypotheses of Problem 43. If Z be a maximizer
of f over B', then fA(z) < f(2) for z € B provided that

A < N = Ao(max(0, — £(2))).

Assume that f: R — RU{—o0}, f # —oo is locally bounded
from above. If ¢(z,\) = |z|>/), then f* is semi- convex in R. In
fact, fA(x) + |x[*/\ is convex.

Assume that for 0 < A <1

ox:=sup{[¢] @5, A) =0} > 0.

Assume that same hypotheses of Problem 43. Assume that f has
a local maximum at £ € R and that f is not a constant function.
Then there is a small A;, 0 < A\; < 1 such that for A < \;
(i) f* is faceted at 2 in R with slope zero and fA () = f(2).
(ii) 2 is an interior point of the faceted region.
Let
(x_p)Q/)‘a xr>p

Iz, p,A) =40 , lzl<p
(x+p)2/>\’ rT<—=p
Then for each p > 0, ¢(z, ) = J(x, p, A) satisfies all assumptions
(i)-(v) in the begining of Section F and that o) > 0, where o, is
defined in Problem 47.

Let ¥ be as in Problem 48. Then

(a) 19('I7 pP—a, )‘_ﬂ) = Sup{ER{ﬁ(gv Ps )\)_79(5_'%‘7 «, 6>} forz € R
provided that 0 < a <p, 0 <3 <.

(b) Yz —y,p— (1 + a2), A= (B + B)) = supesup, {J(§ —
n, ps )‘) - ﬁ(f - xaabﬁl) - 19(77 - yaa2>ﬂ2)} for r,Y € R
provided that 0 < «;, 0 < (;(i = 1,2) and that ag + ag < p
and () + P2 < A.

(Constancy Lemma) Let K be a compact set in RY and let h be a

real- valued upper semicontinuous function on K. Let ¢ be a C?

function in R% with 1 < d < N. Let G be a bounded domain in

RY. For each £ € G assume that there is a maximizer (r¢, p¢) € K
of

HE(Tv P) = h(T’, P) - QO(T - 5)
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over K such that Vo(re — &) = 0. Then

hy(§) = sup{He(r,p) : (r,p) € K}
is constant on G.

51. We set J(z,\) = J(x,1,\), where 9 is defined in Problem 48.
Let u and —v be upper semicontinuous functions defined in ) =
(0,7) x Q, where € is a bounded open interval with values in
RU{—oc}. Let S be a real-valued continuous function in [0, 7] x
[0, T]. Assume that (£,2,5,7) € QxQ is a point such that u(t, z)—

~

’U(S,y) _S(ta S) —’(9({L‘—y— (‘%_g)v)‘) < u(t:i') —U(g,g) _S(t7‘§>
for all (t,7,s,y) € Q x Q for all A < ),

where )\ is a positive number. Then u®(t, x)—va(s,y) < u®(t,2)—
Va(8,9)+9(x—y—(—9), 2X0)+S(t,s)—S(L, ) for all (¢, z), (s,y) €
[0,T] x @ provided that 0 < a < oy = min(ay, zl;)‘0>' Here u® de-
notes the sup-convolution of u(-,t) by ¢(z,a) = ¥(x,«) and v,
denotes the inf-convolution of v(-,t) by ¢(z,«). Here ag > 0 is a
constant such that u®(f,-), va(3,-) are faceted at &, § respectively
with slope zero and that z, 1y respectively belongs to the interior
region of the faceted regions for all 0 < a < «agy. (Existence of
such «q is guaranteed by Problem 47.)

G. Doubling variables and comparison principle

Let © be a bounded open set in R% and Q = (0,T) x Q for T > 0. Let
u and —v upper semicontiunous in @ with values in R U {—oc}. For
z=(t,z) and 2 = (s,y) € Q we set

w(z, ) = u(2) —v.(), 2,2 € Q.
Let M be the maximum (value) of w over @ x Q. In other words
M =max{w(z,2') : 2€Q,? € Q}.
We consider barrier functions
D(2,2,6,0,7,7) = Bo(w —y — () + S(t,5;0,7,7)

B.(r) = %,S(t,sm,%v’) = |t —s]?/o+~/(T —t)++'/(T —s)
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for positive parameters ¢, 0,7y, and ¢ € RY. We set
Pe(z,2') =w(z,2") — De(z,2).

Let (z¢, 2) = (t¢, x¢, 5¢, yc) be a maximizer of ¢ over Q x Q. Assume
that
mo = sup{u(z) —v(z): 2 € Q} > 0.

52. Prove that for each my, € (0,mg) there are 7,7, > 0 such that
sup P > mg foralle >0, 0 >0, 79 >7>0, 75 >7 >0

and |¢] < ko(e) = 3(e(mo — my))'/2.
53. Prove that
lte — s¢| < (Mo)'?, Jze —ye — (| < (Me)'/?
foralle >0, 0 >0, v >~ >0, 7, ¥ > 0and ¢ with || < ko(e).

Here 79,7, ko are defined as in Problem 52.

54. (Boundary condition and maximizers). Assume that u* < v, on
0,9, where 9,Q = (0,T) x 9Q U {0} x Q. Prove that there are
positive numbers &g, 0y such that (2, z{) is an (interior) point of
QxQforalll<e<ey, 0<o <0y 0<y<yand0 <y <7
and |C] < ko(e). Here 79,7, ko are defined as in Problem 52 with
my = mo/2.

55. (Comparison principle) Assume that H = H(x,p) is a real-valued
continuous function on Q x R?, where Q is a bounded domain in
R?. Assume furthermore that there exists a constant C' such that

|H(x,p) = H(y,p)| < C(1+ |p)z -yl

forall z,y € Q, p € R Let u and v be, respectively, a subsolution
and a supersolution of

u + H(z,Vu) =0 in Q.
Assume that u* < v, on 9,Q. Prove that v* < v, in Q.

H. Miscellaneous problems
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26.

57.

28.

(Level set solution and graph-like solution) Let u be an upper
semicontinuous subsolution of
us — |Vu| div (Vu/|Vu|) =0 in
in R? x (0,7). For ¢ € R let u¥ denote the ’height’ function of
{u > clie.,
u¥(t,2") = sup{zg :u(ay, -, xq,t) > ¢, &' = (21, -+ ,2q-1)}.
Assume that u# < oco. Prove that u# is a subsolution of
V'
v — /14 |V|2 div (—————=)=01in (0,7) x R* %,
VIRV A (i) = 0in (07)

Here we set u” (t, 2') = —oo if there is no x4 such that u(a’, x4, t) >
c. Here V', div’ denote the gradient and the divergence with re-
spect to z’.

Let u be a continuous solution of

Vu

u; — |Vu| div (=—) = 0 in R% x (0, 7).

Assume that c—level set {z € R%u(x,t) = c} is written as the
graph of a continuous function v(t, ') in U = (tg,t;) x (=L, L)%*
with values in (—L, L). Prove that v is a viscosity solution of

V'
v, — /14 V|2 div (———=) =01in U.
VIR Y ()

Assume that f is a real-valued C* function in R. We set

(2.1) b x<ct, (2.1) a x <ct,
ugp(x,t) = un(x,t) =
P a x> ct, N b x> ct,

where a < b, a,b € R and
f(b) — f(a)
b—a
Prove that ug is a proper viscosity solution of
0

C) w+—-(f(u)=0

(©) o (f(u)
in R x (0,00). Prove that both ug and wuy is a viscosity solution
of (C) in R x (0,00). Prove that uy is not a proper viscosity
subsolution nor a proper viscosity supersolution.

C =
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