Surface Evolution Equations - A level set approach Exercises

July 2008

Yoshikazu Giga University of Tokyo

A. Relaxed limit

Let X be a metric space with metric d. Let D be a subset of X. Let $\{u^{\varepsilon}\}_{0<\varepsilon<1}$ be a one-parameter family of functions defined on D with values in $\overline{\mathbf{R}}(:=\mathbf{R}\cup\{\pm\infty\})$. We define the upper relaxed limit

$$(\limsup_{\varepsilon \to 0}^* u^{\varepsilon})(z) := \lim_{r \downarrow 0} \sup \{ u^{\varepsilon} (y) : y \in D, d(y, z) < r, 0 < \varepsilon < r \}, z \in \overline{D},$$

where \overline{D} is the closure of D in X. The lower relaxed limit is defined as $\liminf_* u^{\varepsilon} = -\limsup^* (-u^{\varepsilon})$. We often write $\overline{u} = \limsup^* u^{\varepsilon}$ and $\underline{u} = \liminf_* u^{\varepsilon}$. Prove the following statements.

- 1. Let z_0 be a point in \overline{D} . Assume that $\overline{u}(z_0) = (\limsup^* u^{\varepsilon})(z_0) < \infty$. Then there are sequences $\{\varepsilon_j\}_{j=1}^{\infty} \subset (0,1)$ and $\{z_j\}_{j=1}^{\infty} \subset D$ such that $\varepsilon_j \to 0$ as $j \to \infty$, $\lim_{j\to\infty} u^{\varepsilon_j}(z_j) = \overline{u}(z_0)$ and $\lim_{j\to\infty} z_j = z_0$.
- 2. The function $\overline{u} = \limsup_{\varepsilon \to 0}^* u^{\varepsilon}$ is an upper semicontinuous function defined in \overline{D} , i.e., $\overline{u}(z) \geq \limsup_{y \to z} \overline{u}(y)$ for $z \in \overline{D}$. Similarly, the function $\underline{u} = \liminf_{*\varepsilon \to 0} u^{\varepsilon}$ is a lower semicontinuous function in \overline{D} .
- 3. Assume that \overline{D} is locally compact. If $\overline{u}(z) = \underline{u}(z) \in \mathbf{R}$ for all $z \in D$, then u^{ε} converges to \overline{u} locally uniformly in D as $\varepsilon \to 0$.
- 4. Assume that D is locally compact. Assume that u^{ε} is a (real-valued) upper semicontinuous function in D and that \overline{u} attains a strict local maximum $(\neq \infty)$ at $z_0 \in \overline{D}$. Then there are sequences $\{\varepsilon_j\}_{j=1}^{\infty} \subset (0,1)$ and $\{z_j\}_{j=1}^{\infty} \subset D$ such that z_j is a local maximizer of u^{ε_j} and that $z_j \to z_0$ and $\varepsilon_j \to 0$ as $j \to \infty$. Moreover, $\lim_{j\to\infty} u^{\varepsilon_j}(z_j) = \overline{u}(z_0)$.

5. Assume that X is compact and that u^{ε} is upper semicontinuous in D = X. We set $K = \{z \in X : \overline{u}(z) \geq 0\}$. Let d_{ε} be defined by

$$d_{\varepsilon} = \sup\{d(z, K) : u^{\varepsilon}(z) \ge 0, z \in X\}.$$

Then $d_{\varepsilon} \to 0$ as $\varepsilon \to 0$.

- 6. Assume that $X = \mathbb{R}^n$ and $\overline{u} = \underline{u}$ in X and that u^{ε} is continuous. Assume that $K = \{a \in X : \overline{u}(z) \geq 0\}$ is compact and that $K = \overline{H}$ with $H = \{z \in X : \overline{u}(z) > 0\}$. Then $K_{\varepsilon} = \{z \in X : \overline{u}(z) > 0\}$ converges to K as $\varepsilon \to 0$ in the sense of Hausdorff distance topology provided that K_{ε} is compact. (Here is a definition of the Hausdorff distance for two sets $A, B \subset X$: $d_H(A, B) = \max\{\sup_{x \in A} d(x, B), \sup_{u \in B} d(y, A)\}$.)
- 7. Give an example that the conclusion of Problem 6 is false if one drops the assumption $K = \overline{H}$ even if one assumes that $\Gamma = \{x \in X : \overline{u}(z) = 0\}$ has no interior.
- 8. Assume that u_0 is continuous on a compact set K in \mathbf{R}^d . For $x_0 \in K$ and $\lambda > 0$ we set $V_{\lambda,x_0}(x) = \lambda + u_0(x_0) + C|x x_0|^2$. Then for each $\lambda > 0$ there is a constant C depending only on λ (and u_0) such that

$$u_0(x) \le V_{\lambda, x_0}(x)$$
 for all $x \in K$.

We shall write such C by $C = C(\lambda)$. Then $u_0(x) = \inf\{V_{\lambda,x_0}(x) : \lambda > 0, \ C = C(\lambda), \ x_0 \in K\}.$

9. Assume that u_0 is continuous in $\overline{\Omega}$, where Ω is a bounded open set in \mathbf{R}^d . Let V_{λ,x_0} be as in Problem 8 with $C = C(\lambda)$. Assume that $u^{\varepsilon}: \Omega \times (0,T) \to \mathbf{R} \cup \{-\infty\}$ satisfies

$$u^{\varepsilon}(x,t) \leq V_{\lambda,x_0}(x) + C(\lambda)t.$$

Then $\overline{u}(x,0) \leq u_0(x)$ for all $x \in \Omega$, where $\overline{u} = \limsup_{\varepsilon \to 0}^* u^{\varepsilon}$.

B. Viscosity Solutions

Prove the following statements.

10. Assume that u^{ε} is a viscosity subsolution of the level set mean curvature flow equation $u_t - |\nabla u| \operatorname{div} (\nabla u/|\nabla u|) = 0$ in $\mathbf{R}^d \times (0,T)$. Then $\overline{u} = \limsup_{\varepsilon \to 0} u^{\varepsilon}$ is a viscosity subsolution of the same equation in $\mathbf{R}^d \times (0,T)$ provided that $\overline{u}(z) < \infty$ for all $z \in \mathbf{R}^d \times (0,T)$. One may replace \mathbf{R}^d by an open set Ω in \mathbf{R}^d .

- 11. The stability result in Problem 10 is still vaild for the Neumann boundary value problem in $\Omega \times (0, T)$.
- 12. Let $u: Q \to \mathbf{R} \cup \{-\infty\}$ be an upper semicontinuous function, where $Q = \Omega \times (0,T)$ and Ω is an open set in \mathbf{R}^d . Then u is a viscosity subsolution of a level set mean curvature flow equation in Q if (and only if) $(\phi, \hat{z}) \in C^2(Q) \times Q$ satisfies
 - (i) $\phi_t |\nabla \phi| \text{div } (\nabla \phi/|\nabla \phi|) \leq 0 \text{ at } \hat{z} \in Q \text{ if } \nabla \phi(\hat{z}) \neq 0 \text{ and }$
 - (ii) $\phi_t(\hat{z}) \leq 0$ if $\nabla \phi(\hat{z}) = 0$, $\nabla^2 \phi(\hat{z}) = 0$

whenever $\max_{Q}(u-\phi)=(u-\phi)(\hat{z}).$

Hint: Assume that $u - \phi$ takes its strict maximum at $\hat{z} \in Q$ and $\nabla \phi(\hat{z}) = 0$. We consider $u - \phi_{\varepsilon}$ with $\phi_{\varepsilon}(x, y, t) = |x - y|^4/4\varepsilon + \phi(y, t)$, $\varepsilon > 0$ and derive several inequalities for ϕ_{ε} at a maximizer of $u(x, t) - \phi_{\varepsilon}(x, y, t)$ in Q.

13. The function

$$u(x,t) = \min(0, t - |x|)$$

is a viscosity solution of the Neumann problem

$$\begin{cases} \partial_t u - |\nabla u| = 0 \text{ in } \{|x| < 1\} \times (0, T) \\ \partial u / \partial \nu = 0 \text{ on } \partial \{|x| < 1\} \times (0, T) \end{cases}$$

(although the slope $\partial u/\partial \nu$ at |x|=1 is not zero.) Here $\partial/\partial \nu$ denotes the exterior normal differential operator.

- C. Structure of equations and examples of solutions
 - 14. Write the mean curvature flow equation V = H for $u = u(x_1, t)$, when $\Gamma_t \subset \mathbf{R}^N$ is a hypersurface of rotation of the form

$$\Gamma_t = \{(x_1, \dots, x_N) \in \mathbf{R}^N | r = u(x_1, t), \ r = (\sum_{j=2}^N x_j^2)^{1/2} \}.$$

15. Write the mean curvature flow equation V = H for $u = u(x_1, \dots, x_{N-1}, t)$, when $\Gamma_t \subset \mathbf{R}^N$ is of the form

$$\Gamma_t = \{(x_1, \dots, x_N) \in \mathbf{R}^N | x_N = u(x_1, \dots, x_{N-1}, t)\}.$$

16. Assume that F = F(p, X) (defined in $(\mathbf{R}^N \setminus \{0\}) \times \mathbf{S}^N$) is geometric. Assume that $X \mapsto F(p, X)$ is continuous for each $p \in \mathbf{R}^N \setminus \{0\}$. Assume that F is (degenerate) elliptic. Prove that F satisfies

$$F(p, X + y \otimes p + p \otimes y) = F(p, X)$$
 (SG)

for all $y \in \mathbf{R}^N, X \in \mathbf{S}^N$, $p \in \mathbf{R}^N \setminus \{0\}$. (In other words F is strongly geometric.)

- 17. Give an example that F is geometric but not fulfills the condition (SG) of Problem 16.
- 18. Assume that u is a viscosity solution of

$$u_t + F(\nabla u, \nabla^2 u) = 0 \text{ in } Q = \Omega \times (0, T).$$

Assume that F is geometric and continuous in $(\mathbf{R}^N \setminus \{0\}) \times \mathbf{S}^N$. Assume that F can be extended continuously at (0, O). Prove that $\theta \circ u$ is a viscosity subsolution of the above equation in Q provided that θ is continuous and nondecreasing. Here Ω is an open set in \mathbf{R}^N .

19. Assume that $\gamma: \mathbf{R}^N \to [0, \infty)$ is positively homogeneous of degree one. Assume that $\gamma \in C^2(\mathbf{R}^N \setminus \{0\})$. Prove that

$$\nabla^2 \gamma(p) + p \otimes p > O \text{ for all } p \in \mathbf{R}^N \setminus \{0\}.$$

if and only if $\nabla^2(\gamma^2)(p) > 0$ for all $p \in R^{\cup} \setminus \{0\}$.

20. Under the assumption of Problem 19 prove that

Frnak
$$\gamma = \{ p \in \mathbf{R}^N : \gamma(p) \le 1 \}$$

is strictly convex (in the sense that all inward principal curvatures of ∂ (Frank γ) are positive) if and only if $\nabla^2 \gamma(p) + p \otimes p > O$ for all $p \in \mathbf{R}^N \setminus \{0\}$.

21. Assume that same hypotheses of Problem 19 concerning γ . Assume that Frank γ is strictly convex. Prove that the Wulff shape

$$W_{\gamma} = \{ p \in \mathbf{R}^N | p \cdot m \le \gamma(m) \text{ for all } m \in S^{N-1} \}.$$

is strictly convex and C^2 .

22. Assume the same hypotheses of Problem 21 concerning γ . Prove that there exists a shrinking self-similar solution of the form $a(t)\partial W_{\gamma}$ of

$$V = -\gamma(\mathbf{n}) \operatorname{div}_{\Gamma_t}(\nabla \gamma(\mathbf{n})).$$

23. For $u_0, v_0 \in C(\mathbf{R}^N)$ assume that

$${u_0 > 0} \subset {v_0 > 0} (= {x \in \mathbf{R}^N | v_0(x) > 0}).$$

Assume that $\overline{\{v_0 > 0\}}$ is compact. Prove that there exists a non-decreasing function $\theta \in C(\mathbf{R})$ such that $\theta(s) = 0$ (for $s \leq 0$) and $\theta(s) > 0$ (for s > 0) and

$$u_0 \le \theta \circ v_0 \text{ in } \mathbf{R}^N.$$

D. Dynamical programing principle

Let K be a compact set in \mathbf{R}^d . Assume that $f: \mathbf{R}^N \times K \to \mathbf{R}^N$ is continuous and that there is a constant L satisfying

$$|f(x,a) - f(y,a)| \le L|x - y|$$

for all $x,y\in\mathbf{R}^N$, $a\in K.$ Let T be a positive number (called terminal time). Let A be of the form

$$A = \{\alpha : [0, T] \to K | \alpha \text{ is Lebesgue measurable} \}.$$

(An element of this set is called a control.) Let $X_{t,x}^{\alpha}(s)$ be the solution of the state equation

$$\begin{cases} \frac{dX}{ds} = f(X(s), \ \alpha(s)), \ T > s > t \\ X(t) = x \in \mathbf{R}^N, \ s = t. \end{cases}$$

Let g be a real-valued continuous function defined in \mathbb{R}^N . Let u be the value function (with the terminal data g) of the form

$$u(x,t) = \inf_{\alpha \in A} g(X_{x,t}^{\alpha}(T)).$$

24. Prove that the dynamical programing principle

$$u(x,t) = \inf_{\alpha \in A} \{ u(X_{x,t}^{\alpha}(t+\delta), t+\delta) \} \text{ for } t+\delta \leq T, \delta > 0.$$

25. Prove that v(x,t) = u(x,T-t) is a viscosity solution of

$$v_t - H(x, \nabla v) = 0 \text{ in } \mathbf{R}^N \times (0, T)$$

with $H(x, p) = \min_{a \in K} p \cdot f(x, a)$.

26*. Let Ω be a bounded C^2 convex domain in \mathbf{R}^2 . Let $S^t(x,v)$, $x \in \Omega$, $v \in S^1$ be the billiard semiflow in Ω . Prove that for any fixed $t \geq 0$, $x \in \overline{\Omega}$ and $v \in S^1$, there exists $d_l \geq 0$, $y_l \in \partial \Omega \cap B_t(x)$ where $l = 1, 2, \cdots$ such that $\sum_{l=0}^{\infty} d_l \nu(y_l)$ converges and

$$\alpha^t(x,v) = \sum_{l=0}^{\infty} d_l \nu(y_l)$$

where $\alpha^t(x,v) = S^t(x,v) - (x+tv)$ is a boundary adjustor. Here ν denotes the unit outward normal of $\partial\Omega$.

27*. Assume that $\{u^{\varepsilon}\}_{0<\varepsilon<1}$ is uniformly bounded in $\overline{\Omega}\times(0,T)$. Assume that u^{ε} fullfills

$$u^{\varepsilon}(x,t) = \inf_{|v|=1} \sup_{b=\pm 1} u^{\varepsilon}(S^{\sqrt{2}\varepsilon}(x,bv), t+\varepsilon^2)$$

for $x \in \overline{\Omega}$, $t \in (0,T)$, $t + \varepsilon^2 \leq T$. Let \underline{u} be $\underline{u} = \liminf_{\varepsilon \to 0} u^{\varepsilon}$. Prove that $v(x,t) = \underline{u}(x,T-t)$ is a viscosity supersolution of

$$v_t - |\nabla v| \operatorname{div}(\nabla v/|\nabla v|) = 0 \text{ in } \Omega \times (0, T),$$

 $\partial v/\partial \nu = 0 \text{ on } \partial \Omega \times (0, T).$

E. Variational problem with obstacles

Let Z be a real-valued C^2 (or $C^{1,1}$) function defined in a bounded interval \overline{I} , where I=(a,b). For a given $\Delta>0$ let K_{\pm} be the subset of $H^1(I)$ of the form

$$K_{\pm} = \{ \xi \in H^{1}(I) : Z(x) - \Delta/2 \le \xi(x) \le Z(x) + \Delta/2, \ \xi(a) = Z(a) - \Delta/2, \xi(b) = Z(b) \pm \Delta/2 \}.$$

Let J_{\pm} be the functional in $L^2(I)$ defined by

$$J_{\pm}(\xi) = \begin{cases} \int_a^b |\xi'(x)|^2 dx, & \xi \in K_{\pm} \\ \infty, & \text{otherwise.} \end{cases}$$

- 28. Prove that $H^1(I) \subset C^{1/2}(\overline{I}) \subset C(\overline{I})$.
- 29. Prove that J_{\pm} is lower semicontinuous, convex on $L^2(I)$.
- 30. Prove that J_{\pm} admits a unique (absolute) minimizer.
- 31. Let ξ_+ be the minimizer of J_+ . Let D_{\pm} be the coincidence set defined by

$$D_{\pm} = \{ x \in \overline{I} : \xi_{+} = Z(x) \pm \Delta/2 \}.$$

Prove that ξ_+ is concave in a neighborhood of D_- and that ξ_+ is convex in a neighborhood of D_+ . Prove that $\xi'_+ = 0$ outside $D_+ \cup D_-$. (We say that ξ satisfies the concave-convex condition if these three properties are fulfilled.)

- 32. If ξ satisfies the concave-convex condition and $\xi(a) = Z(a) \Delta/2$, $\xi(b) = Z(b) \pm \Delta/2$, it must be the minimizer of J_{\pm} .
- 33. Let ξ_+ be the minimizer of J_+ . Prove that ξ_+ is $C^{1,1}$ and

$$\sup_{x \in I} |\xi''_{+}(x)| \le \sup_{x \in I} |Z''(x)|.$$

34. Suppose that the concave hull Z_{cave} of Z in I is smaller than $Z + \Delta/2$ i.e. $Z_{\text{cave}} \leq Z + \Delta/2$ in I. Let ξ_- be the minimizer of J_- . Prove that

$$\xi'_{-}(x) = Z'_{\text{cave}}(x), \ x \in I.$$

- 35. Suppose that staight line function $\xi(x) = \xi(a) + \frac{Z(b) Z(a) + \Delta}{b a}(x a)$ is in K_+ . Prove that ξ is the minimizer of J_+ .
- 36. (Comparison principle)

Let ξ_{\pm} be the minimizer of J_{\pm} . It is determined by I. Let

$$\Lambda_{\pm}(x,I) = \xi'_{\pm}(x).$$

Prove that

$$\Lambda_{\pm}(x, I_1) \leq \Lambda_{\pm}(x, I_2)$$
 for $x \in I_2$

if $I_2 \subset I_1$.

37. Let J_{\pm}^k be the functional defined as J by replacing Z by $Z^k(k = 1, 2, \cdots)$, where Z^k is a real-valued C^2 function defined in \overline{I} . Assume that Z^k conveges to Z uniformly with its first derivatie in \overline{I} . Prove that for any $\xi_k \to \xi$ in $L^2(I)$

$$J_{\pm}(\xi) \le \liminf_{k \to \infty} J_{\pm}^k(\xi_k).$$

38. Assume that the same hypotheses of Problem 37 concerning Z^k . Prove that for each $\xi \in L^2(I)$ there is a sequence $\xi_k \to \xi$ in $L^2(I)$ such that

$$J_{\pm}(\xi) = \lim_{k \to \infty} J_{\pm}^k(\xi_k)$$

- 39. (Convergence of minimizers under (realxed limit) Γ convergence) Assume that same hypotheses of Problem 37 concerning Z^k . Let ξ_{\pm}^k be the minimizer of J_{\pm}^k and ξ_{\pm} be the minimizer of J_{\pm} . Then $\xi_{\pm}^k \to \xi_{\pm}$ in $L^2(I)$.
- 40. Let D be a compact metric space. Assume that u^{ε} be a real-valued lower semicontinuous function on D. Let z^{ε} be an (absolute) minimizer of u^{ε} . Prove that there is a subsequence $z^{\varepsilon_j}(\varepsilon_j \to 0)$ such that it converges to an (absolute) minimizer z of \underline{u} in D.
- 41. (Stability)

Assume that

$$\sup_{k\geq 1}\sup_{x\in I}|(d/dx)^2Z^k(x)|<\infty \text{ and } Z^k\to Z \text{ in } C^1(\overline{I}).$$

Let

$$\Lambda_{\pm}^{k}(x,I) = (d/dx)\xi_{\pm}^{k}(x),$$

where ξ_{\pm} be the minimzier of J_{\pm}^{k} . Prove that Λ_{\pm}^{k} converges to $\Lambda_{\pm}(x,I)$ uniformly in \overline{I} as $k \to \infty$. (Use Problem 33.)

42. Let Z be a C^2 function in \mathbf{R} . Prove that $\Lambda_{\pm}(x,I)$ is continuous with respect to I. (Clarify the meaning of continuity.) Assume furthermore that $|(d/dx)^2Z|$ is bounded in \mathbf{R} . Prove that for each r>0

$$\lim_{\mu \to 0} \sup_{0 < b - a < r} \sup_{a < x < b} |\Lambda_{\pm}(x, (a, b)) - \Lambda_{\pm}(x - \mu, (a - \mu, b - \mu))| = 0.$$

F. Sup-convolution (regularization)

Let ϕ be a function from $\mathbf{R} \times (0,1]$ to $[0,\infty)$. Assume that ϕ fulfills following conditions.

- (i) For each $\lambda, 0 < \lambda \leq 1$, $\phi(\cdot, \lambda)$ is Lipschitz continuous on every bounded set in **R**.
- (ii) $\phi(\xi, \lambda)$ is even in ξ , i.e. $\phi(\xi, \lambda) = \phi(-\xi, \lambda)$

- (iii) $\phi(\xi, \lambda)$ is nonincreasing in λ for all ξ .
- (iv) $\lim_{\xi \to \infty} \phi(\xi, 1) = \infty$ and $\phi(\xi, \lambda)$ is nondecreasing in $\xi \geq 0$, for $0 < \lambda \leq 1$.
- (v) $\lim_{\lambda \downarrow 0} \phi(\xi, \lambda) = \infty$ unless $\xi = 0$ and $\phi(0, \lambda) = 0, 0 < \lambda \le 1$.

Let f be a function in **R** with values in $\mathbf{R} \cup \{-\infty\}$. We say that

$$f^{\lambda}(x) = \sup_{\xi \in \mathbf{R}} \{ f(\xi) - \phi(\xi - x, \lambda) \}$$

is a *sup-convolution* of f by ϕ . Prove the following statements under assumptions (i)-(v) for ϕ .

43. Let $f(\not\equiv -\infty)$ be a function on **R** with values in $\mathbf{R} \cup \{-\infty\}$. Assume that f is locally bounded from above and that

$$\lim_{|\xi| \to \infty} \max(f(\xi), 0) / \phi(\xi - x, 1) = 0 \text{ for each } x \in \mathbf{R}.$$

Then f^{λ} is locally Lipschitz. Moreover,

$$f^{\lambda} \ge f^{\mu} \ge f$$
 for $\lambda \ge \mu > 0$

and $\lim_{\lambda\downarrow 0} f^{\lambda}(x) = f^{*}(x)$ for each $x \in \mathbf{R}$. Here f^{*} denotes the upper semicontinuous envelope of f, i.e.

$$f^*(x) = \lim_{\varepsilon \downarrow 0} \sup \{ f(y) : |x - y| < \varepsilon \}.$$

44. Assume that same hypotheses of Problem 43. Let B and B' be bounded open sets in \mathbf{R} with $\overline{B} \subset B'$. Then for each $K_0 > 0$ there is $\lambda_0(K_0) > 0$ such that

$$\sup_{x \in \overline{B}} \sup_{\xi \notin B'} H(\xi, x, \lambda) < -K_0 \text{ for } \lambda < \lambda_0(K_0)$$

with $H(\xi, x, \lambda) = f(\xi) - \phi(\xi - x, \lambda)$. Moreover,

$$f^{\lambda}(x) = \sup_{\xi \in B'} H(\xi, x, \lambda) \text{ for } x \in \overline{B}$$

provided that $\inf_{\overline{B}} f^* > -\infty$ and $\lambda < \lambda_0 \equiv \lambda_0(\max(0, -\inf_{\overline{B}} f^*))$.

45. Assume that same hypotheses of Problem 43. If \hat{x} be a maximizer of f over B', then $f^{\lambda}(x) \leq f(\hat{x})$ for $x \in \overline{B}$ provided that

$$\lambda < \lambda_0'' \equiv \lambda_0(\max(0, -f(\hat{x}))).$$

- 46. Assume that $f: \mathbf{R} \to \mathbf{R} \cup \{-\infty\}$, $f \not\equiv -\infty$ is locally bounded from above. If $\phi(x,\lambda) = |x|^2/\lambda$, then f^{λ} is semi-convex in \mathbf{R} . In fact, $f^{\lambda}(x) + |x|^2/\lambda$ is convex.
- 47. Assume that for $0 < \lambda \le 1$

$$\sigma_{\lambda} := \sup\{|\xi| : \phi(\xi, \lambda) = 0\} > 0.$$

Assume that same hypotheses of Problem 43. Assume that f has a local maximum at $\hat{x} \in \mathbf{R}$ and that f is not a constant function. Then there is a small λ_1 , $0 < \lambda_1 \le 1$ such that for $\lambda \le \lambda_1$

- (i) f^{λ} is faceted at \hat{x} in **R** with slope zero and $f^{\lambda}(\hat{x}) = f(\hat{x})$.
- (ii) \hat{x} is an interior point of the faceted region.
- 48. Let

$$\vartheta(x,\rho,\lambda) = \begin{cases} (x-\rho)^2/\lambda, & x > \rho \\ 0, & |x| \le \rho \\ (x+\rho)^2/\lambda, & x < -\rho \end{cases}$$

Then for each $\rho > 0$, $\phi(x, \lambda) = \vartheta(x, \rho, \lambda)$ satisfies all assumptions (i)-(v) in the beginning of Section F and that $\sigma_{\lambda} > 0$, where σ_{λ} is defined in Problem 47.

- 49. Let ϑ be as in Problem 48. Then
 - (a) $\vartheta(x, \rho \alpha, \lambda \beta) = \sup_{\xi \in \mathbf{R}} \{ \vartheta(\xi, \rho, \lambda) \vartheta(\xi x, \alpha, \beta) \}$ for $x \in \mathbf{R}$ provided that $0 \le \alpha \le \rho$, $0 < \beta < \lambda$.
 - (b) $\vartheta(x-y,\rho-(\alpha_1+\alpha_2), \ \lambda-(\beta_1+\beta_2)) = \sup_{\xi} \sup_{\eta} \{\vartheta(\xi-\eta, \rho, \lambda) \vartheta(\xi-x, \alpha_1, \beta_1) \vartheta(\eta-y, \alpha_2, \beta_2)\}$ for $x,y \in \mathbf{R}$ provided that $0 \le \alpha_i$, $0 < \beta_i (i = 1, 2)$ and that $\alpha_1 + \alpha_2 \le \rho$ and $\beta_1 + \beta_2 < \lambda$.
- 50. (Constancy Lemma) Let K be a compact set in \mathbf{R}^N and let h be a real- valued upper semicontinuous function on K. Let φ be a C^2 function in \mathbf{R}^d with $1 \leq d < N$. Let G be a bounded domain in \mathbf{R}^d . For each $\xi \in G$ assume that there is a maximizer $(r_{\xi}, \rho_{\xi}) \in K$ of

$$H_{\xi}(r,\rho) = h(r,\rho) - \varphi(r-\xi)$$

over K such that $\nabla \varphi(r_{\xi} - \xi) = 0$. Then

$$h_{\varphi}(\xi) = \sup\{H_{\xi}(r, \rho) : (r, \rho) \in K\}$$

is constant on G.

51. We set $\vartheta(x,\lambda) = \vartheta(x,1,\lambda)$, where ϑ is defined in Problem 48. Let u and -v be upper semicontinuous functions defined in $Q = (0,T) \times \Omega$, where Ω is a bounded open interval with values in $\mathbf{R} \cup \{-\infty\}$. Let S be a real-valued continuous function in $[0,T] \times [0,T]$. Assume that $(\hat{t},\hat{x},\hat{s},\hat{y}) \in Q \times Q$ is a point such that $u(t,x) - v(s,y) - S(t,s) - \vartheta(x-y-(\hat{x}-\hat{y}),\lambda) \leq u(\hat{t},\hat{x}) - v(\hat{s},\hat{y}) - S(\hat{t},\hat{s})$

for all
$$(t, x, s, y) \in \overline{Q} \times \overline{Q}$$
 for all $\lambda \leq \lambda_0$,

where λ_0 is a positive number. Then $u^{\alpha}(t,x) - v_{\alpha}(s,y) \leq u^{\alpha}(\hat{t},\hat{x}) - v_{\alpha}(\hat{s},\hat{y}) + \vartheta(x - y - (\hat{x} - \hat{y}), \frac{1}{2}\lambda_0) + S(t,s) - S(\hat{t},\hat{s})$ for all $(t,x), (s,y) \in [0,T] \times Q$ provided that $0 < \alpha \leq \alpha_1 = \min(\alpha_0, \frac{1}{4}\lambda_0)$. Here u^{α} denotes the sup-convolution of $u(\cdot,t)$ by $\phi(x,\alpha) = \vartheta(x,\alpha)$ and v_{α} denotes the inf-convolution of $v(\cdot,t)$ by $\phi(x,\alpha)$. Here $\alpha_0 > 0$ is a constant such that $u^{\alpha}(\hat{t},\cdot), \ v_{\alpha}(\hat{s},\cdot)$ are faceted at \hat{x},\hat{y} respectively with slope zero and that \hat{x},\hat{y} respectively belongs to the interior region of the faceted regions for all $0 < \alpha < \alpha_0$. (Existence of such α_0 is guaranteed by Problem 47.)

G. Doubling variables and comparison principle

Let Ω be a bounded open set in \mathbf{R}^d and $Q = (0, T) \times \Omega$ for T > 0. Let u and -v upper semicontiunous in Q with values in $\mathbf{R} \cup \{-\infty\}$. For z = (t, x) and $z' = (s, y) \in Q$ we set

$$w(z, z') = u^*(z) - v_*(z'), z, z' \in \overline{Q}.$$

Let M be the maximum (value) of w over $\overline{Q} \times \overline{Q}$. In other words

$$M = \max\{w(z, z') : z \in \overline{Q}, z' \in \overline{Q}\}.$$

We consider barrier functions

$$\Phi_{\zeta}(z, z', \varepsilon, \sigma, \gamma, \gamma') = B_{\varepsilon}(x - y - \zeta) + S(t, s; \sigma, \gamma, \gamma')$$

$$B_{\varepsilon}(x) = \frac{|x|^2}{\varepsilon}, S(t, s; \sigma, \gamma, \gamma') = |t - s|^2 / \sigma + \gamma / (T - t) + \gamma' / (T - s)$$

for positive parameters $\varepsilon, \sigma, \gamma, \gamma'$ and $\zeta \in \mathbf{R}^d$. We set

$$\Phi_{\zeta}(z,z') = w(z,z') - \Phi_{\zeta}(z,z').$$

Let $(z_{\zeta}, z'_{\zeta}) = (t_{\zeta}, x_{\zeta}, s_{\zeta}, y_{\zeta})$ be a maximizer of Φ_{ζ} over $\overline{Q} \times \overline{Q}$. Assume that

$$m_0 = \sup\{u(z) - v(z) : z \in Q\} > 0.$$

52. Prove that for each $m'_0 \in (0, m_0)$ there are $\gamma_0, \gamma'_0 > 0$ such that

$$\sup \Phi_{\zeta} > m_0' \text{ for all } \varepsilon > 0, \ \sigma > 0, \ \gamma_0 > \gamma > 0, \ \gamma_0' > \gamma' > 0$$

and
$$|\zeta| \le \kappa_0(\varepsilon) = \frac{1}{2} (\varepsilon (m_0 - m_0'))^{1/2}$$
.

53. Prove that

$$|t_{\zeta} - s_{\zeta}| \le (M\sigma)^{1/2}, |x_{\zeta} - y_{\zeta} - \zeta| \le (M\varepsilon)^{1/2}$$

for all $\varepsilon > 0$, $\sigma > 0$, $\gamma_0 > \gamma > 0$, γ_0' , $\gamma' > 0$ and ζ with $|\zeta| \le \kappa_0(\varepsilon)$. Here $\gamma_0, \gamma_0', \kappa_0$ are defined as in Problem 52.

- 54. (Boundary condition and maximizers). Assume that $u^* \leq v_*$ on $\overline{\partial_p \Omega}$, where $\partial_p \Omega = (0,T) \times \partial \Omega \cup \{0\} \times \overline{\Omega}$. Prove that there are positive numbers ε_0 , σ_0 such that (z_ζ, z'_ζ) is an (interior) point of $Q \times Q$ for all $0 < \varepsilon < \varepsilon_0$, $0 < \sigma < \sigma_0$, $0 < \gamma < \gamma_0$ and $0 < \gamma < \gamma'_0$ and $|\zeta| \leq \kappa_0(\varepsilon)$. Here $\gamma_0, \gamma'_0, \kappa_0$ are defined as in Problem 52 with $m'_0 = m_0/2$.
- 55. (Comparison principle) Assume that H = H(x, p) is a real-valued continuous function on $\Omega \times \mathbf{R}^d$, where Ω is a bounded domain in \mathbf{R}^d . Assume furthermore that there exists a constant C such that

$$|H(x,p) - H(y,p)| \le C(1+|p|)|x-y|$$

for all $x, y \in \overline{\Omega}$, $p \in \mathbf{R}^d$. Let u and v be, respectively, a subsolution and a supersolution of

$$u_t + H(x, \nabla u) = 0$$
 in Q .

Assume that $u^* \leq v_*$ on $\partial_p Q$. Prove that $u^* \leq v_*$ in Q.

H. Miscellaneous problems

56. (Level set solution and graph-like solution) Let u be an upper semicontinuous subsolution of

$$u_t - |\nabla u| \operatorname{div} (\nabla u/|\nabla u|) = 0 \operatorname{in}$$

in $\mathbf{R}^d \times (0,T)$. For $c \in \mathbf{R}$ let $u^\#$ denote the 'height' function of $\{u \geq c\}$ i.e.,

$$u^{\#}(t, x') = \sup\{x_d : u(x_1, \dots, x_d, t) \ge c, \ x' = (x_1, \dots, x_{d-1})\}.$$

Assume that $u^{\#} < \infty$. Prove that $u^{\#}$ is a subsolution of

$$v_t - \sqrt{1 + |\nabla' v|^2} \operatorname{div}' \left(\frac{\nabla' v}{\sqrt{1 + |\nabla' v|^2}} \right) = 0 \text{ in } (0, T) \times \mathbf{R}^{d-1}.$$

Here we set $u^{\#}(t, x') = -\infty$ if there is no x_d such that $u(x', x_d, t) \ge c$. Here ∇' , div' denote the gradient and the divergence with respect to x'.

57. Let u be a continuous solution of

$$u_t - |\nabla u| \operatorname{div} \left(\frac{\nabla u}{|\nabla u|}\right) = 0 \text{ in } \mathbf{R}^d \times (0, T).$$

Assume that c-level set $\{x \in \mathbf{R}^d | u(x,t) = c\}$ is written as the graph of a continuous function v(t,x') in $U = (t_0,t_1) \times (-L,L)^{d-1}$ with values in (-L,L). Prove that v is a viscosity solution of

$$v_t - \sqrt{1 + |\nabla' v|^2} \operatorname{div}' \left(\frac{\nabla' v}{\sqrt{1 + |\nabla' v|^2}} \right) = 0 \text{ in } U.$$

58. Assume that f is a real-valued C^1 function in **R**. We set

$$u_E(x,t) = \begin{cases} b & x \le ct, \\ a & x > ct, \end{cases} \quad u_N(x,t) = \begin{cases} a & x < ct, \\ b & x \ge ct, \end{cases}$$

where a < b, $a, b \in \mathbf{R}$ and

$$c = \frac{f(b) - f(a)}{b - a}.$$

Prove that u_E is a proper viscosity solution of

(C)
$$u_t + \frac{\partial}{\partial x}(f(u)) = 0$$

in $\mathbf{R} \times (0, \infty)$. Prove that both u_E and u_N is a viscosity solution of (C) in $\mathbf{R} \times (0, \infty)$. Prove that u_N is not a proper viscosity subsolution nor a proper viscosity supersolution.