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A. Relaxed limit

Let X be a metric space with metric d. Let D be a subset of X. Let
{uε}0<ε<1 be a one-parameter family of functions defined on D with
values in R(:= R ∪ { ±∞}. We define the upper relaxed limit

(lim sup∗ε→0 u
ε)(z) := limr↓0 sup{uε (y) : y ∈ D, d(y, z) < r, 0 < ε <

r}, z ∈ D,

where D is the closure of D in X. The lower relaxed limit is defined
as lim inf∗ u

ε = − lim sup∗(−uε). We often write u = lim sup∗ uε and
u = lim inf∗ u

ε. Prove the following statements.

1. Let z0 be a point in D. Assume that u(z0) = (lim sup∗ uε)(z0) <
∞. Then there are sequences {εj}∞j=1 ⊂ (0, 1) and {zj}∞j=1 ⊂
D such that εj → 0 as j → ∞, limj→∞ u

εj (zj) = u(z0) and
limj→∞ zj = z0.

2. The function u = lim sup∗ε→0 u
ε is an upper semicontinuous func-

tion defined in D, i.e., u(z) ≥ lim supy→z u(y) for z ∈ D. Similarly,
the function u = lim inf∗ε→0 u

ε is a lower semicontinuous function
in D.

3. Assume that D is locally compact. If u(z) = u(z) ∈ R for all
z ∈ D, then uε converges to u locally uniformly in D as ε→ 0.

4. Assume that D is locally compact. Assume that uε is a (real-
valued) upper semicontinuous function in D and that u attains a
strict local maximum ( 6=∞) at z0 ∈ D. Then there are sequences
{εj}∞j=1 ⊂ (0, 1) and {zj}∞j=1 ⊂ D such that zj is a local maximizer
of uεj and that zj → z0 and εj → 0 as j → ∞. Moreover,
limj→∞ u

εj (zj) = u(z0).
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5. Assume that X is compact and that uε is upper semicontinuous
in D = X. We set K = {z ∈ X : u(z) ≥ 0}. Let dε be defined
by

dε = sup{d(z,K) : uε(z) ≥ 0, z ∈ X}.
Then dε → 0 as ε→ 0.

6. Assume that X = Rn and u = u in X and that uε is contin-
uous. Assume that K = {a ∈ X : u(z) ≥ 0} is compact
and that K = H with H = {z ∈ X : u(z) > 0}. Then
Kε = {z ∈ X : u(z) > 0} converges to K as ε → 0 in the
sense of Hausdorff distance topology provided that Kε is com-
pact. (Here is a definition of the Hausdorff distance for two sets
A,B ⊂ X: dH(A,B) = max{supx∈A d(x,B), supy∈B d(y, A)}.)

7. Give an example that the conclusion of Problem 6 is false if one
drops the assumption K = H even if one assumes that Γ = {x ∈
X : u(z) = 0} has no interior.

8. Assume that u0 is continuous on a compact set K in Rd. For
x0 ∈ K and λ > 0 we set Vλ,x0(x) = λ+u0(x0) +C|x−x0|2. Then
for each λ > 0 there is a constant C depending only on λ (and u0)
such that

u0(x) ≤ Vλ,x0(x) for all x ∈ K.
We shall write such C by C = C(λ). Then u0(x) = inf{Vλ,x0(x) :
λ > 0, C = C(λ), x0 ∈ K}.

9. Assume that u0 is continuous in Ω, where Ω is a bounded open
set in Rd. Let Vλ,x0 be as in Problem 8 with C = C(λ). Assume
that uε : Ω× (0, T )→ R ∪ {−∞} satisfies

uε(x, t) ≤ Vλ,x0(x) + C(λ)t.

Then u(x, 0) ≤ u0(x) for all x ∈ Ω, where u = lim sup∗ε→0 uε.

B. Viscosity Solutions

Prove the following statements.

10. Assume that uε is a viscosity subsolution of the level set mean
curvature flow equation ut − |∇u| div (∇u/|∇u|) = 0 in Rd ×
(0, T ). Then u = lim sup∗ε→0 u

ε is a viscosity subsolution of the
same equation in Rd × (0, T ) provided that u(z) < ∞ for all
z ∈ Rd × (0, T ). One may replace Rd by an open set Ω in Rd.
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11. The stability result in Problem 10 is still vaild for the Neumann
boundary value problem in Ω× (0, T ).

12. Let u : Q → R ∪ {−∞} be an upper semicontinuous function,
where Q = Ω × (0, T ) and Ω is an open set in Rd. Then u is a
viscosity subsolution of a level set mean curvature flow equation
in Q if (and only if) (φ, ẑ) ∈ C2(Q)×Q satisfies

(i) φt − |∇φ|div (∇φ/|∇φ|) ≤ 0 at ẑ ∈ Q if ∇φ(ẑ) 6= 0 and

(ii) φt(ẑ) ≤ 0 if ∇φ(ẑ) = 0, ∇2φ(ẑ) = O

whenever maxQ(u− φ) = (u− φ)(ẑ).

Hint : Assume that u− φ takes its strict maximum at ẑ ∈ Q and
∇φ(ẑ) = 0. We consider u − φε with φε(x, y, t) = |x − y|4/4ε +
φ(y, t), ε > 0 and derive several inequalities for φε at a maximizer
of u(x, t)− φε(x, y, t) in Q.

13. The function
u(x, t) = min(0, t− |x|)

is a viscosity solution of the Neumann problem{
∂tu− |∇u| = 0 in {|x| < 1} × (0, T )

∂u/∂ν = 0 on ∂{|x| < 1} × (0, T )

(although the slope ∂u/∂ν at |x| = 1 is not zero.) Here ∂/∂ν
denotes the exterior normal differential operator.

C. Structure of equations and examples of solutions

14. Write the mean curvature flow equation V = H for u = u(x1, t),
when Γt ⊂ RN is a hypersurface of rotation of the form

Γt = {(x1, · · · , xN) ∈ RN |r = u(x1, t), r = (
N∑
j=2

x2
j)

1/2}.

15. Write the mean curvature flow equation V = H for u = u(x1, · · · , xN−1, t),
when Γt ⊂ RN is of the form

Γt = {(x1, · · · , xN) ∈ RN |xN = u(x1, · · · , xN−1, t)}.
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16. Assume that F = F (p,X) (defined in (RN\{0}) × SN ) is geo-
metric. Assume that X 7→ F (p,X) is continuous for each p ∈
RN\{0}. Assume that F is (degenerate) elliptic. Prove that F
satisfies

F (p,X + y ⊗ p+ p⊗ y) = F (p,X) (SG)

for all y ∈ RN , X ∈ SN , p ∈ RN\{0}. (In other words F is
strongly geometric.)

17. Give an example that F is geometric but not fulfills the condition
(SG) of Problem 16.

18. Assume that u is a viscosity solution of

ut + F (∇u,∇2u) = 0 in Q = Ω× (0, T ).

Assume that F is geometric and continuous in (RN\{0}) × SN .
Assume that F can be extended continuously at (0, O). Prove
that θ ◦ u is a viscosity subsolution of the above equation in Q
provided that θ is continuous and nondecreasing. Here Ω is an
open set in RN .

19. Assume that γ : RN → [0,∞) is positively homogeneous of degree
one. Assume that γ ∈ C2(RN\{0}). Prove that

∇2γ(p) + p⊗ p > O for all p ∈ RN\{0}.

if and only if ∇2(γ2)(p) > 0 for all p ∈ R∪\{0}.
20. Under the assumption of Problem 19 prove that

Frnak γ = {p ∈ RN : γ(p) ≤ 1}

is strictly convex (in the sense that all inward principal curvatures
of ∂ (Frank γ) are positive) if and only if ∇2γ(p) + p⊗ p > O for
all p ∈ RN\{0}.

21. Assume that same hypotheses of Problem 19 concerning γ. As-
sume that Frank γ is strictly convex. Prove that the Wulff shape

Wγ = {p ∈ RN |p ·m ≤ γ(m) for all m ∈ SN−1}.

is strictly convex and C2.
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22. Assume the same hypotheses of Problem 21 concerning γ. Prove
that there exists a shrinking self-similar solution of the form a(t)∂Wγ

of
V = −γ(n) divΓt(∇γ(n)).

23. For u0, v0 ∈ C(RN) assume that

{u0 > 0} ⊂ {v0 > 0}(= {x ∈ RN |v0(x) > 0}).

Assume that {v0 > 0} is compact. Prove that there exists a non-
decreasing function θ ∈ C(R) such that θ(s) = 0 (for s ≤ 0) and
θ(s) > 0 (for s > 0) and

u0 ≤ θ ◦ v0 in RN .

D. Dynamical programing principle

Let K be a compact set in Rd. Assume that f : RN × K → RN is
continuous and that there is a constant L satisfying

|f(x, a)− f(y, a)| ≤ L|x− y|

for all x, y ∈ RN , a ∈ K. Let T be a positive number (called terminal
time). Let A be of the form

A = {α : [0, T ]→ K| α is Lebesgue measurable}.

(An element of this set is called a control.) Let Xα
t,x(s) be the solution

of the state equation{
dX
ds

= f(X(s) , α(s)) , T > s > t

X(t) = x ∈ RN , s = t.

Let g be a real-valued continuous function defined in RN . Let u be the
value function (with the terminal data g) of the form

u(x, t) = inf
α∈A

g(Xα
x,t(T )).

24. Prove that the dynamical programing principle

u(x, t) = inf
α∈A
{u(Xα

x,t(t+ δ) , t+ δ)} for t+ δ ≤ T , δ > 0.
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25. Prove that v(x, t) = u(x, T − t) is a viscosity solution of

vt −H(x,∇v) = 0 in RN × (0, T )

with H(x, p) = mina∈K p · f(x, a).

26*. Let Ω be a bounded C2 convex domain in R2. Let St(x, v) , x ∈
Ω , v ∈ S1 be the billiard semiflow in Ω. Prove that for any fixed
t ≥ 0 , x ∈ Ω and v ∈ S1, there exists dl ≥ 0 , yl ∈ ∂Ω ∩ Bt(x)
where l = 1, 2, · · · such that

∑∞
l=0 dlν(yl) converges and

αt(x, v) =
∞∑
l=0

dlν(yl)

where αt(x, v) = St(x, v)− (x+ tv) is a boundary adjustor. Here
ν denotes the unit outward normal of ∂Ω.

27*. Assume that {uε}0<ε<1 is uniformly bounded in Ω×(0, T ). Assume
that uε fullfills

uε(x, t) = inf
|v|=1

sup
b=±1

uε(S
√

2ε(x, bv) , t+ ε2)

for x ∈ Ω, t ∈ (0, T ), t + ε2 ≤ T . Let u be u = lim inf∗ε→0 u
ε.

Prove that v(x, t) = u(x, T − t) is a viscosity supersolution of

vt − |∇v|div(∇v/|∇v|) = 0 in Ω× (0, T ),

∂v/∂ν = 0 on ∂Ω× (0, T ).

E. Variational problem with obstacles

Let Z be a real-valued C2 (or C1,1) function defined in a bounded
interval I, where I = (a, b). For a given ∆ > 0 let K± be the subset of
H1(I) of the form

K± = {ξ ∈ H1(I) : Z(x)−∆/2 ≤ ξ(x) ≤ Z(x) + ∆/2, ξ(a) =
Z(a)−∆/2, ξ(b) = Z(b)±∆/2}.

Let J± be the functional in L2(I) defined by

J±(ξ) =

{∫ b

a
|ξ′(x)|2dx, ξ ∈ K±

∞ , otherwise.
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28. Prove that H1(I) ⊂ C1/2(I) ⊂ C(I).

29. Prove that J± is lower semicontinuous, convex on L2(I).

30. Prove that J± admits a unique (absolute) minimizer.

31. Let ξ+ be the minimizer of J+. Let D± be the coincidence set
defined by

D± = {x ∈ I : ξ+ = Z(x)±∆/2}.

Prove that ξ+ is concave in a neighborhood of D− and that ξ+

is convex in a neighborhood of D+. Prove that ξ′+ = 0 outside
D+ ∪ D−. (We say that ξ satisfies the concave-convex condition
if these three properties are fulfilled.)

32. If ξ satisfies the concave-convex condition and ξ(a) = Z(a)−∆/2,
ξ(b) = Z(b)±∆/2, it must be the minimizer of J±.

33. Let ξ+ be the minimizer of J+. Prove that ξ+ is C1,1 and

sup
x∈I
|ξ′′+(x)| ≤ sup

x∈I
|Z ′′(x)|.

34. Suppose that the concave hull Zcave of Z in I is smaller than
Z + ∆/2 i.e. Zcave ≤ Z + ∆/2 in I. Let ξ− be the minimizer of
J−. Prove that

ξ′−(x) = Z ′cave(x), x ∈ I.

35. Suppose that staight line function ξ(x) = ξ(a)+ Z(b)−Z(a)+∆
b−a (x−a)

is in K+. Prove that ξ is the minimizer of J+.

36. (Comparison principle)

Let ξ± be the minimizer of J±. It is determined by I. Let

Λ±(x, I) = ξ′±(x).

Prove that
Λ±(x, I1) ≤ Λ±(x, I2) for x ∈ I2

if I2 ⊂ I1.

37. Let Jk± be the functional defined as J by replacing Z by Zk(k =
1, 2, · · · ), where Zk is a real-valued C2 function defined in I. As-
sume that Zk conveges to Z uniformly with its first derivatie in
I. Prove that for any ξk → ξ in L2(I)

J±(ξ) ≤ lim inf
k→∞

Jk±(ξk).
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38. Assume that the same hypotheses of Problem 37 concerning Zk.
Prove that for each ξ ∈ L2(I) there is a sequence ξk → ξ in L2(I)
such that

J±(ξ) = lim
k→∞

Jk±(ξk)

39. (Convergence of minimizers under (realxed limit) Γ− convergence)

Assume that same hypotheses of Problem 37 concerning Zk. Let
ξk± be the minimizer of Jk± and ξ± be the minimizer of J±. Then
ξk± → ξ± in L2(I).

40. Let D be a compact metric space. Assume that uε be a real-valued
lower semicontinuous function on D. Let zε be an (absolute) min-
imizer of uε. Prove that there is a subsequence zεj (εj → 0) such
that it converges to an (absolute) minimizer z of u in D.

41. (Stability)

Assume that

sup
k≥1

sup
x∈I
|(d/dx)2Zk(x)| <∞ and Zk → Z in C1(I).

Let
Λk
±(x, I) = (d/dx)ξk±(x),

where ξ± be the minimzier of Jk±. Prove that Λk
± converges to

Λ±(x, I) uniformly in I as k →∞. (Use Problem 33.)

42. Let Z be a C2 function in R. Prove that Λ±(x, I) is continuous
with respect to I. (Clarify the meaning of continuity.) Assume
furthermore that |(d/dx)2Z| is bounded in R. Prove that for each
r > 0

lim
µ→0

sup
0<b−a<r

sup
a<x<b

|Λ±(x, (a, b))− Λ±(x− µ, (a− µ, b− µ))| = 0.

F. Sup-convolution (regularization)

Let φ be a function from R × (0, 1] to [0,∞). Assume that φ fulfills
following conditions.

(i) For each λ, 0 < λ ≤ 1, φ(·, λ) is Lipschitz continuous on every
bounded set in R.

(ii) φ(ξ, λ) is even in ξ, i.e. φ(ξ, λ) = φ(−ξ, λ)

8



(iii) φ(ξ, λ) is nonincreasing in λ for all ξ.

(iv) limξ→∞ φ(ξ, 1) = ∞ and φ(ξ, λ) is nondecreasing in ξ ≥ 0, for
0 < λ ≤ 1.

(v) limλ↓0 φ(ξ, λ) =∞ unless ξ = 0 and φ(0, λ) = 0, 0 < λ ≤ 1.

Let f be a function in R with values in R ∪ {−∞}. We say that

fλ(x) = sup
ξ∈R
{f(ξ)− φ(ξ − x, λ)}

is a sup-convolution of f by φ. Prove the following statements under
assumptions (i)-(v) for φ.

43. Let f(6≡ −∞) be a function on R with values in R ∪ {−∞}.
Assume that f is locally bounded from above and that

lim
|ξ|→∞

max(f(ξ), 0)/φ(ξ − x, 1) = 0 for each x ∈ R.

Then fλ is locally Lipschitz. Moreover,

fλ ≥ fµ ≥ f for λ ≥ µ > 0

and limλ↓0 f
λ(x) = f ∗(x) for each x ∈ R. Here f ∗ denotes the

upper semicontinuous envelope of f , i.e.

f ∗(x) = lim
ε↓0

sup{f(y) : |x− y| < ε}.

44. Assume that same hypotheses of Problem 43. Let B and B′ be
bounded open sets in R with B ⊂ B′. Then for each K0 > 0 there
is λ0(K0) > 0 such that

sup
x∈B

sup
ξ/∈B′

H(ξ, x, λ) < −K0 for λ < λ0(K0)

with H(ξ, x, λ) = f(ξ)− φ(ξ − x, λ). Moreover,

fλ(x) = sup
ξ∈B′

H(ξ, x, λ) for x ∈ B

provided that infB f
∗ > −∞ and λ < λ0 ≡ λ0(max(0,− infB f

∗)}.
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45. Assume that same hypotheses of Problem 43. If x̂ be a maximizer
of f over B′, then fλ(x) ≤ f(x̂) for x ∈ B provided that

λ < λ′′0 ≡ λ0(max(0,−f(x̂))).

46. Assume that f : R → R ∪ {−∞}, f 6≡ −∞ is locally bounded
from above. If φ(x, λ) = |x|2/λ, then fλ is semi- convex in R. In
fact, fλ(x) + |x|2/λ is convex.

47. Assume that for 0 < λ ≤ 1

σλ := sup{|ξ| : φ(ξ, λ) = 0} > 0.

Assume that same hypotheses of Problem 43. Assume that f has
a local maximum at x̂ ∈ R and that f is not a constant function.
Then there is a small λ1, 0 < λ1 ≤ 1 such that for λ ≤ λ1

(i) fλ is faceted at x̂ in R with slope zero and fλ(x̂) = f(x̂).

(ii) x̂ is an interior point of the faceted region.

48. Let

ϑ(x, ρ, λ) =


(x− ρ)2/λ, x > ρ

0 , |x| ≤ ρ

(x+ ρ)2/λ, x < −ρ
Then for each ρ > 0, φ(x, λ) = ϑ(x, ρ, λ) satisfies all assumptions
(i)-(v) in the begining of Section F and that σλ > 0, where σλ is
defined in Problem 47.

49. Let ϑ be as in Problem 48. Then

(a) ϑ(x, ρ−α, λ−β) = supξ∈R{ϑ(ξ, ρ, λ)−ϑ(ξ−x, α, β)} for x ∈ R
provided that 0 ≤ α ≤ ρ, 0 < β < λ.

(b) ϑ(x − y, ρ − (α1 + α2), λ − (β1 + β2)) = supξ supη{ϑ(ξ −
η , ρ, λ) − ϑ(ξ − x, α1, β1) − ϑ(η − y, α2, β2)} for x, y ∈ R
provided that 0 ≤ αi, 0 < βi(i = 1, 2) and that α1 + α2 ≤ ρ
and β1 + β2 < λ.

50. (Constancy Lemma) Let K be a compact set in RN and let h be a
real- valued upper semicontinuous function on K. Let ϕ be a C2

function in Rd with 1 ≤ d < N . Let G be a bounded domain in
Rd. For each ξ ∈ G assume that there is a maximizer (rξ, ρξ) ∈ K
of

Hξ(r, ρ) = h(r, ρ)− ϕ(r − ξ)
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over K such that ∇ϕ(rξ − ξ) = 0. Then

hϕ(ξ) = sup{Hξ(r, ρ) : (r, ρ) ∈ K}

is constant on G.

51. We set ϑ(x, λ) = ϑ(x, 1, λ), where ϑ is defined in Problem 48.
Let u and −v be upper semicontinuous functions defined in Q =
(0, T ) × Ω, where Ω is a bounded open interval with values in
R∪{−∞}. Let S be a real-valued continuous function in [0, T ]×
[0, T ]. Assume that (t̂, x̂, ŝ, ŷ) ∈ Q×Q is a point such that u(t, x)−
v(s, y)−S(t, s)− ϑ(x− y− (x̂− ŷ), λ) ≤ u(t̂, x̂)− v(ŝ, ŷ)−S(t̂, ŝ)

for all (t, x, s, y) ∈ Q×Q for all λ ≤ λ0,

where λ0 is a positive number. Then uα(t, x)−vα(s, y) ≤ uα(t̂, x̂)−
vα(ŝ, ŷ)+ϑ(x−y−(x̂−ŷ), 1

2
λ0)+S(t, s)−S(t̂, ŝ) for all (t, x), (s, y) ∈

[0, T ]×Q provided that 0 < α ≤ α1 = min(α0,
1
4
λ0). Here uα de-

notes the sup-convolution of u(·, t) by φ(x, α) = ϑ(x, α) and vα
denotes the inf-convolution of v(·, t) by φ(x, α). Here α0 > 0 is a
constant such that uα(t̂, ·), vα(ŝ, ·) are faceted at x̂, ŷ respectively
with slope zero and that x̂, ŷ respectively belongs to the interior
region of the faceted regions for all 0 < α < α0. (Existence of
such α0 is guaranteed by Problem 47.)

G. Doubling variables and comparison principle

Let Ω be a bounded open set in Rd and Q = (0, T )×Ω for T > 0. Let
u and −v upper semicontiunous in Q with values in R ∪ {−∞}. For
z = (t, x) and z′ = (s, y) ∈ Q we set

w(z, z′) = u∗(z)− v∗(z′), z, z′ ∈ Q.

Let M be the maximum (value) of w over Q×Q. In other words

M = max{w(z, z′) : z ∈ Q, z′ ∈ Q}.

We consider barrier functions

Φζ(z, z
′, ε, σ, γ, γ′) = Bε(x− y − ζ) + S(t, s;σ, γ, γ′)

Bε(x) =
|x|2

ε
, S(t, s;σ, γ, γ′) = |t− s|2/σ + γ/(T − t) + γ′/(T − s)

11



for positive parameters ε, σ, γ, γ′ and ζ ∈ Rd. We set

Φζ(z, z
′) = w(z, z′)− Φζ(z, z

′).

Let (zζ , z
′
ζ) = (tζ , xζ , sζ , yζ) be a maximizer of Φζ over Q×Q. Assume

that
m0 = sup{u(z)− v(z) : z ∈ Q} > 0.

52. Prove that for each m′0 ∈ (0,m0) there are γ0, γ
′
0 > 0 such that

sup Φζ > m′0 for all ε > 0, σ > 0, γ0 > γ > 0, γ′0 > γ′ > 0

and |ζ| ≤ κ0(ε) = 1
2
(ε(m0 −m′0))1/2.

53. Prove that

|tζ − sζ | ≤ (Mσ)1/2, |xζ − yζ − ζ| ≤ (Mε)1/2

for all ε > 0, σ > 0, γ0 > γ > 0, γ′0, γ
′ > 0 and ζ with |ζ| ≤ κ0(ε).

Here γ0, γ
′
0, κ0 are defined as in Problem 52.

54. (Boundary condition and maximizers). Assume that u∗ ≤ v∗ on
∂pΩ, where ∂pΩ = (0, T ) × ∂Ω ∪ {0} × Ω. Prove that there are
positive numbers ε0, σ0 such that (zζ , z

′
ζ) is an (interior) point of

Q×Q for all 0 < ε < ε0, 0 < σ < σ0, 0 < γ < γ0 and 0 < γ < γ′0
and |ζ| ≤ κ0(ε). Here γ0, γ

′
0, κ0 are defined as in Problem 52 with

m′0 = m0/2.

55. (Comparison principle) Assume that H = H(x, p) is a real-valued
continuous function on Ω×Rd, where Ω is a bounded domain in
Rd. Assume furthermore that there exists a constant C such that

|H(x, p)−H(y, p)| ≤ C(1 + |p|)|x− y|

for all x, y ∈ Ω, p ∈ Rd. Let u and v be, respectively, a subsolution
and a supersolution of

ut +H(x,∇u) = 0 in Q.

Assume that u∗ ≤ v∗ on ∂pQ. Prove that u∗ ≤ v∗ in Q.

H. Miscellaneous problems
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56. (Level set solution and graph-like solution) Let u be an upper
semicontinuous subsolution of

ut − |∇u| div (∇u/|∇u|) = 0 in

in Rd × (0, T ). For c ∈ R let u# denote the ’height’ function of
{u ≥ c}i.e.,

u#(t, x′) = sup{xd : u(x1, · · · , xd, t) ≥ c, x′ = (x1, · · · , xd−1)}.
Assume that u# <∞. Prove that u# is a subsolution of

vt −
√

1 + |∇′v|2 div′ (
∇′v√

1 + |∇′v|2
) = 0 in (0, T )×Rd−1.

Here we set u#(t, x′) = −∞ if there is no xd such that u(x′, xd, t) ≥
c. Here ∇′, div′ denote the gradient and the divergence with re-
spect to x′.

57. Let u be a continuous solution of

ut − |∇u| div (
∇u
|∇u|

) = 0 in Rd × (0, T ).

Assume that c−level set {x ∈ Rd|u(x, t) = c} is written as the
graph of a continuous function v(t, x′) in U = (t0, t1)× (−L,L)d−1

with values in (−L,L). Prove that v is a viscosity solution of

vt −
√

1 + |∇′v|2 div′ (
∇′v√

1 + |∇′v|2
) = 0 in U.

58. Assume that f is a real-valued C1 function in R. We set

uE(x, t) =

{
b x ≤ ct,

a x > ct,
uN(x, t) =

{
a x < ct,

b x ≥ ct,

where a < b, a, b ∈ R and

c =
f(b)− f(a)

b− a
.

Prove that uE is a proper viscosity solution of

(C) ut +
∂

∂x
(f(u)) = 0

in R× (0,∞). Prove that both uE and uN is a viscosity solution
of (C) in R × (0,∞). Prove that uN is not a proper viscosity
subsolution nor a proper viscosity supersolution.
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