On the infinity Laplace operator

Petri Juutinen

Köln, July 2008

• Gunnar Aronsson (1960's): variational problems of the form

$$S(u,\Omega) = \operatorname{ess\,sup}_{x \in \Omega} H(x, u(x), Du(x)). \tag{1}$$

• Gunnar Aronsson (1960's): variational problems of the form

$$S(u,\Omega) = \operatorname{ess\,sup}_{x \in \Omega} H(x, u(x), Du(x)). \tag{1}$$

• Special case $H(x, r, p) = \frac{1}{2}|p|^2$ corresponds to the minimal Lipschitz extension problem.

• Gunnar Aronsson (1960's): variational problems of the form

$$S(u,\Omega) = \operatorname{ess\,sup}_{x \in \Omega} H(x, u(x), Du(x)). \tag{1}$$

- Special case $H(x, r, p) = \frac{1}{2}|p|^2$ corresponds to the minimal Lipschitz extension problem.
- an Euler-Lagrange equation (the Aronsson equation)

$$-\frac{d}{dx}(H(x,u(x),Du(x))\cdot H_p(x,u(x),Du(x))=0$$
 (2)

to (1). Here H_p denotes the derivative of H with respect to the gradient variable, and u is scalar valued.

• Gunnar Aronsson (1960's): variational problems of the form

$$S(u,\Omega) = \operatorname{ess\,sup}_{x \in \Omega} H(x, u(x), Du(x)). \tag{1}$$

- Special case $H(x, r, p) = \frac{1}{2}|p|^2$ corresponds to the minimal Lipschitz extension problem.
- an Euler-Lagrange equation (the Aronsson equation)

$$-\frac{d}{dx}(H(x,u(x),Du(x))\cdot H_p(x,u(x),Du(x)) = 0$$
 (2)

to (1). Here H_p denotes the derivative of H with respect to the gradient variable, and u is scalar valued.

• If $H(x, r, p) = \frac{1}{2}|p|^2$, then (2) reduces to

$$\Delta_{\infty} u := (D^2 u D u) \cdot D u = \sum_{i,j=1}^{n} u_{x_i} u_{x_j} u_{x_i x_j} = 0.$$
 (3)

Derivation of the equation

We approximate the Lipschitz extension problem by the problems of minimizing

$$\int_{\Omega} |Du|^p \, dx, \qquad 1$$

with given boundary values.

Derivation of the equation

We approximate the Lipschitz extension problem by the problems of minimizing

$$\int_{\Omega} |Du|^p \, dx, \qquad 1$$

with given boundary values. The Euler-Lagrange equation of this problem is the p-Laplace equation

$$\operatorname{div}(|Du|^{p-2}Du) = 0,$$

which can be written as

$$(p-2)|Du|^{p-4}\left(\frac{|Du|^2}{p-2}\Delta u + \Delta_{\infty}u\right) = 0.$$

Derivation of the equation

We approximate the Lipschitz extension problem by the problems of minimizing

$$\int_{\Omega} |Du|^p dx, \qquad 1$$

with given boundary values. The Euler-Lagrange equation of this problem is the p-Laplace equation

$$\operatorname{div}(|Du|^{p-2}Du) = 0,$$

which can be written as

$$(p-2)|Du|^{p-4}\left(\frac{|Du|^2}{p-2}\Delta u + \Delta_\infty u\right) = 0.$$

If $Du \neq 0$, this implies

$$\Delta_{\infty} u = -\frac{|Du|^2}{p-2} \Delta u,$$

and thus letting $p \to \infty$ we recover the infinity Laplace equation

$$\Delta_{\infty} u = 0.$$

Motivation

• Δ_{∞} is "the Laplacian of Calculus of variations of L^{∞} functionals"

Motivation

- Δ_{∞} is "the Laplacian of Calculus of variations of L^{∞} functionals"
- applications: image processing, shape metamorphism, differential games etc.

Motivation

- Δ_{∞} is "the Laplacian of Calculus of variations of L^{∞} functionals"
- applications: image processing, shape metamorphism, differential games etc.
- stochastic version: the random turn Tug-of-War of Peres, Schramm, Sheffield and Wilson (J. Amer. Math. Soc. 2008)

Minimizing the functional ess $\sup |Du|^2$ is equivalent to minimizing ess $\sup |Du|$.

Minimizing the functional ess $\sup |Du|^2$ is equivalent to minimizing ess $\sup |Du|$. Thus we could use, instead of (3), the singular and one-homogeneous version

$$\Delta_{\infty}^{S} u = \frac{1}{|Du|^{2}} \sum u_{x_{i}} u_{x_{j}} u_{x_{i}x_{j}} = 0.$$

Minimizing the functional ess $\sup |Du|^2$ is equivalent to minimizing ess $\sup |Du|$. Thus we could use, instead of (3), the singular and one-homogeneous version

$$\Delta_{\infty}^{S} u = \frac{1}{|Du|^{2}} \sum u_{x_{i}} u_{x_{j}} u_{x_{i}x_{j}} = 0.$$

However, the non-homogeneous equations such as

$$\Delta_{\infty}u(x)=f(x)$$

and

$$\Delta_{\infty}^S u(x) = f(x)$$

are, of course, not equivalent.

Viscosity solutions

Definition

Let $\Omega \subset \mathbb{R}^n$ be an open set. An upper semicontinuous function $u: \Omega \to \mathbb{R}$ is a viscosity subsolution of (3) in Ω if, whenever $\hat{x} \in \Omega$ and $\varphi \in C^2(\Omega)$ are such that

(i)
$$u(\hat{x}) = \varphi(\hat{x}),$$

(ii)
$$u(x) < \varphi(x)$$
 for all $x \neq \hat{x}$

Viscosity solutions

Definition

Let $\Omega \subset \mathbb{R}^n$ be an open set. An upper semicontinuous function $u: \Omega \to \mathbb{R}$ is a viscosity subsolution of (3) in Ω if, whenever $\hat{x} \in \Omega$ and $\varphi \in C^2(\Omega)$ are such that

(i)
$$u(\hat{x}) = \varphi(\hat{x}),$$

(ii)
$$u(x) < \varphi(x)$$
 for all $x \neq \hat{x}$

then

$$\Delta_{\infty}\varphi(\hat{x})\geq 0.$$

Viscosity solutions

Definition

Let $\Omega \subset \mathbb{R}^n$ be an open set. An upper semicontinuous function $u: \Omega \to \mathbb{R}$ is a viscosity subsolution of (3) in Ω if, whenever $\hat{x} \in \Omega$ and $\varphi \in C^2(\Omega)$ are such that

(i)
$$u(\hat{x}) = \varphi(\hat{x}),$$

(ii)
$$u(x) < \varphi(x)$$
 for all $x \neq \hat{x}$

then

$$\Delta_{\infty}\varphi(\hat{x})\geq 0.$$

A lower semicontinuous function $v: \Omega \to \mathbb{R}$ is a viscosity supersolution of (3) in Ω if -v is a viscosity subsolution. Finally, a continuous function $h: \Omega \to \mathbb{R}$ is a viscosity solution of (3) in Ω if it is both a viscosity subsolution and a viscosity supersolution.

• A function $u \in C^2$ is is a viscosity solution of (3) in Ω if and only if $\Delta_{\infty} u(x) = 0$ for all $x \in \Omega$.

- A function $u \in C^2$ is is a viscosity solution of (3) in Ω if and only if $\Delta_{\infty} u(x) = 0$ for all $x \in \Omega$.
- $u: \mathbb{R}^2 \to \mathbb{R}$, $u(x, y) = |x|^{4/3} |y|^{4/3}$ is a viscosity solution, and $u \notin C^2$.

Absolute minimizers

Functionals of the form

$$I(v,\Omega) = \int_{\Omega} f(x, u(x), Du(x)) dx$$

are set-additive. Thus if u minimizes $I(\cdot, \Omega)$ (with given boundary data), then it automatically also minimizes $I(\cdot, V)$, subject to its own boundary values, for every open $V \subset \Omega$.

Absolute minimizers

Functionals of the form

$$I(v,\Omega) = \int_{\Omega} f(x, u(x), Du(x)) dx$$

are set-additive. Thus if u minimizes $I(\cdot, \Omega)$ (with given boundary data), then it automatically also minimizes $I(\cdot, V)$, subject to its own boundary values, for every open $V \subset \Omega$. The same is not true for the supremum functionals $S(u, \Omega) = \operatorname{ess\,sup}_{x \in \Omega} H(x, u(x), Du(x))$.

Absolute minimizers

Functionals of the form

$$I(v,\Omega) = \int_{\Omega} f(x, u(x), Du(x)) dx$$

are set-additive. Thus if u minimizes $I(\cdot,\Omega)$ (with given boundary data), then it automatically also minimizes $I(\cdot,V)$, subject to its own boundary values, for every open $V \subset \Omega$. The same is not true for the supremum functionals $S(u,\Omega) = \operatorname{ess\,sup}_{x\in\Omega} H(x,u(x),Du(x))$.

Definition

A locally Lipschitz continuous function $u: \Omega \to \mathbb{R}^m$, $m \ge 1$, is called an absolute minimizer of $S(\cdot, \Omega)$, if

$$S(u, V) \leq S(v, V)$$

for every $V \subset\subset \Omega$ and $v \in W^{1,\infty}(V) \cap C(\overline{V})$ such that $v|_{\partial V} = u|_{\partial V}$.

Comparison principle

Theorem (Jensen 1993)

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, and suppose that u and v are a subsolution and a supersolution of (3) in Ω , respectively, such that $u \leq v$ on $\partial \Omega$. Then $u \leq v$ in Ω .

Comparison principle

Theorem (Jensen 1993)

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, and suppose that u and v are a subsolution and a supersolution of (3) in Ω , respectively, such that $u \leq v$ on $\partial \Omega$. Then $u \leq v$ in Ω .

- The main point of the proof is to approximate a given subsolution by subsolutions with non-vanishing gradient.
- The case of unbounded domains has been considered by Crandall, Gunnarsson and Wang (2007).

Existence

Theorem

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, and suppose that $g \colon \partial \Omega \to \mathbb{R}$ is continuous. Then there is a unique u such that

$$\begin{cases} \Delta_{\infty} u = 0 & \text{in } \Omega, \\ u = g & \text{on } \partial \Omega. \end{cases}$$

Existence

Theorem

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, and suppose that $g \colon \partial \Omega \to \mathbb{R}$ is continuous. Then there is a unique u such that

$$\begin{cases} \Delta_{\infty} u = 0 & \text{in } \Omega, \\ u = g & \text{on } \partial \Omega. \end{cases}$$

The existence can be obtained using

- 1. Perron's method.
- 2. the approximation involving p-Laplace equation.
- 3. Tug-of-War.

Regularity

Let u be a viscosity solution of $\Delta_{\infty} u = 0$ in $\Omega \subset \mathbb{R}^n$. Then

• *u* is locally Lipschitz continuous.

Regularity

Let u be a viscosity solution of $\Delta_{\infty} u = 0$ in $\Omega \subset \mathbb{R}^n$. Then

- *u* is locally Lipschitz continuous.
- if $n=2, u\in C^{1,\alpha}$ (Savin 2005, Evans and Savin 2008).

Regularity

Let u be a viscosity solution of $\Delta_{\infty} u = 0$ in $\Omega \subset \mathbb{R}^n$. Then

- *u* is locally Lipschitz continuous.
- if $n=2,\ u\in C^{1,\alpha}$ (Savin 2005, Evans and Savin 2008).
- $C^{1,1/3}$ is the best one can hope for (in any dimension).

Existence and uniqueness of solutions

Comparison with cones

The cone functions

$$C(x) = a|x - x_0| + b$$

are solutions of the infinity Laplace equation in $\mathbb{R}^n \setminus \{x_0\}$. These are "fundamental solutions".

Comparison with cones

The cone functions

$$C(x) = a|x - x_0| + b$$

are solutions of the infinity Laplace equation in $\mathbb{R}^n \setminus \{x_0\}$. These are "fundamental solutions".

Definition (Crandall, Evans, Gariepy 2001)

A function $u \in C(\Omega)$ enjoys comparison with cones from above if, whenever $V \subset\subset \Omega$ is open, $x_0 \notin V$, $a, b \in \mathbb{R}$, a > 0, are such that

$$u(x) \le C(x) := a|x - x_0| + b$$
 on ∂V ,

we have

$$u(x) \le C(x)$$
 in V .

Comparison with cones

The cone functions

$$C(x) = a|x - x_0| + b$$

are solutions of the infinity Laplace equation in $\mathbb{R}^n \setminus \{x_0\}$. These are "fundamental solutions".

Definition (Crandall, Evans, Gariepy 2001)

A function $u \in C(\Omega)$ enjoys comparison with cones from above if, whenever $V \subset\subset \Omega$ is open, $x_0 \notin V$, $a, b \in \mathbb{R}$, a > 0, are such that

$$u(x) \le C(x) := a|x - x_0| + b$$
 on ∂V ,

we have

$$u(x) \le C(x)$$
 in V .

A function $v \in C(\Omega)$ enjoys comparison with cones from below if -v enjoys comparison with cones from above.

Finally, $u \in C(\Omega)$ enjoys comparison with cones if it enjoys comparison with cones both from above and below.

Equivalence

Theorem (Jensen 1993, Crandall et al 2001)

Let $u : \Omega \to \mathbb{R}$ be a locally Lipschitz continuous function. Then the following are equivalent:

- (1) u is an absolute minimizer of the functional $S(v) = \operatorname{ess\,sup} |Du|$.
- (2) u is an AMLE (=absolutely minimizing Lipschitz extension): for every open $V \subset\subset \Omega$ we have $Lip(u, V) = Lip(u, \partial V)$.
- (3) u is a viscosity solution of the infinity Laplacian.
- (4) u enjoys comparison with cones.

$$(4) \implies (2)$$
: Since

$$u(z) - Lip(u, \partial V)|x - z| \le u(x) \le u(z) + Lip(u, \partial V)|x - z|$$

holds for $x, z \in \partial V$ and $V \subset\subset \Omega$

$$(4) \implies (2)$$
: Since

$$|u(z) - Lip(u, \partial V)|x - z| \le u(x) \le u(z) + Lip(u, \partial V)|x - z|$$

holds for $x, z \in \partial V$ and $V \subset\subset \Omega$ and u enjoys comparison with cones from above and below, the inequalities hold also if $x \in V$.

$$(4) \implies (2)$$
: Since

$$u(z) - Lip(u, \partial V)|x - z| \le u(x) \le u(z) + Lip(u, \partial V)|x - z|$$

holds for $x, z \in \partial V$ and $V \subset\subset \Omega$ and u enjoys comparison with cones from above and below, the inequalities hold also if $x \in V$. Thus

$$Lip(u, \partial(V \setminus \{x\})) = Lip(u, \partial V)$$

for any fixed $x \in V$.

$$(4) \implies (2)$$
: Since

$$|u(z) - Lip(u, \partial V)|x - z| \le u(x) \le u(z) + Lip(u, \partial V)|x - z|$$

holds for $x, z \in \partial V$ and $V \subset\subset \Omega$ and u enjoys comparison with cones from above and below, the inequalities hold also if $x \in V$. Thus

$$Lip(u, \partial(V \setminus \{x\})) = Lip(u, \partial V)$$

for any fixed $x \in V$. Using this twice, we have

$$Lip(u, \partial V) = Lip(u, \partial (V \setminus \{x, y\}))$$
 for $x, y \in V$.

$$(4) \implies (2)$$
: Since

$$|u(z) - Lip(u, \partial V)|x - z| \le u(x) \le u(z) + Lip(u, \partial V)|x - z|$$

holds for $x, z \in \partial V$ and $V \subset\subset \Omega$ and u enjoys comparison with cones from above and below, the inequalities hold also if $x \in V$. Thus

$$Lip(u, \partial(V \setminus \{x\})) = Lip(u, \partial V)$$

for any fixed $x \in V$. Using this twice, we have

$$Lip(u, \partial V) = Lip(u, \partial (V \setminus \{x, y\})) \text{ for } x, y \in V.$$

Hence $|u(x) - u(y)| \le Lip(u, \partial V)|x - y|$, which shows that $Lip(u, V) = Lip(u, \partial V)$.

$$|Du(x_0)| > \operatorname{ess\,sup}_{V} |Dv|. \tag{4}$$

$$|Du(x_0)| > \operatorname{ess\,sup}_V |Dv|.$$
 (4)

Let γ be the unit speed integral curve of the vector field $x \mapsto Du(x)$ that passes through x_0 .

$$|Du(x_0)| > \operatorname{ess\,sup}_V |Dv|.$$
 (4)

Let γ be the unit speed integral curve of the vector field $x \mapsto Du(x)$ that passes through x_0 . Since

$$0 = \Delta_{\infty} u(x) = \frac{1}{2} D(|Du(x)|^2) \cdot Du(x)$$

in Ω , $x \mapsto |Du(x)|^2$ is constant along γ .

$$|Du(x_0)| > \operatorname{ess\,sup}_V |Dv|.$$
 (4)

Let γ be the unit speed integral curve of the vector field $x \mapsto Du(x)$ that passes through x_0 . Since

$$0 = \Delta_{\infty} u(x) = \frac{1}{2} D(|Du(x)|^2) \cdot Du(x)$$

in Ω , $x \mapsto |Du(x)|^2$ is constant along γ . Let $y, z \in \partial V \cap \gamma$. Now

$$|u(y)-u(z)|=|\int_{\gamma}Du(\gamma(t))\cdot\dot{\gamma}(t)|dt|=\int_{\gamma}|Du(\gamma(t))||dt=|Du(x_0)|\int_{\gamma}|dt,$$

$$|Du(x_0)| > \operatorname{ess\,sup}_V |Dv|.$$
 (4)

Let γ be the unit speed integral curve of the vector field $x \mapsto Du(x)$ that passes through x_0 . Since

$$0 = \Delta_{\infty} u(x) = \frac{1}{2} D(|Du(x)|^2) \cdot Du(x)$$

in Ω , $x \mapsto |Du(x)|^2$ is constant along γ . Let $y, z \in \partial V \cap \gamma$. Now

$$|u(y)-u(z)|=|\int_{\gamma}Du(\gamma(t))\cdot\dot{\gamma}(t)|dt|=\int_{\gamma}|Du(\gamma(t))||dt=|Du(x_0)|\int_{\gamma}|dt,$$

while

$$|v(y) - v(z)| \le \operatorname{ess\,sup}_{V} |Dv| \int_{\gamma} dt.$$

$$|Du(x_0)| > \operatorname{ess\,sup}_{V} |Dv|. \tag{4}$$

Let γ be the unit speed integral curve of the vector field $x \mapsto Du(x)$ that passes through x_0 . Since

$$0 = \Delta_{\infty} u(x) = \frac{1}{2} D(|Du(x)|^2) \cdot Du(x)$$

in Ω , $x \mapsto |Du(x)|^2$ is constant along γ . Let $y, z \in \partial V \cap \gamma$. Now

$$|u(y)-u(z)|=|\int_{\gamma}Du(\gamma(t))\cdot\dot{\gamma}(t)|dt|=\int_{\gamma}|Du(\gamma(t))||dt=|Du(x_0)|\int_{\gamma}dt,$$

while

$$|v(y) - v(z)| \le \operatorname{ess\,sup}_{V} |Dv| \int_{\gamma} dt.$$

Combining these two inequalities with (4) yields |u(y) - u(z)| > |v(y) - v(z)|, which contradicts u = v on ∂V .

Recently Peres, Schramm, Sheffield and Wilson considered the following zero-sum two player stochastic game called tug-of-war:

• given: bounded domain $\Omega \subset \mathbb{R}^n$ and $g \in C(\partial \Omega)$.

Recently Peres, Schramm, Sheffield and Wilson considered the following zero-sum two player stochastic game called tug-of-war:

- given: bounded domain $\Omega \subset \mathbb{R}^n$ and $g \in C(\partial \Omega)$.
- fix $x = x_0 \in \Omega$ and step-size $\varepsilon > 0$.

Recently Peres, Schramm, Sheffield and Wilson considered the following zero-sum two player stochastic game called tug-of-war:

- given: bounded domain $\Omega \subset \mathbb{R}^n$ and $g \in C(\partial \Omega)$.
- fix $x = x_0 \in \Omega$ and step-size $\varepsilon > 0$.
- At the k^{th} turn, the players toss a coin and winner chooses an x_k with $|x_k x_{k-1}| < \varepsilon$.

$Tug ext{-}of ext{-}war$

Recently Peres, Schramm, Sheffield and Wilson considered the following zero-sum two player stochastic game called tug-of-war:

- given: bounded domain $\Omega \subset \mathbb{R}^n$ and $g \in C(\partial \Omega)$.
- fix $x = x_0 \in \Omega$ and step-size $\varepsilon > 0$.
- At the k^{th} turn, the players toss a coin and winner chooses an x_k with $|x_k x_{k-1}| < \varepsilon$.
- The game ends when $x_k \in \partial \Omega$, and player I's payoff is $g(x_k)$.

Recently Peres, Schramm, Sheffield and Wilson considered the following zero-sum two player stochastic game called tug-of-war:

- given: bounded domain $\Omega \subset \mathbb{R}^n$ and $g \in C(\partial \Omega)$.
- fix $x = x_0 \in \Omega$ and step-size $\varepsilon > 0$.
- At the k^{th} turn, the players toss a coin and winner chooses an x_k with $|x_k x_{k-1}| < \varepsilon$.
- The game ends when $x_k \in \partial \Omega$, and player I's payoff is $g(x_k)$.

The value function $u_{\varepsilon}(x)$ of the above game is continuous for each $\varepsilon > 0$ and $u_{\varepsilon} \to u$ uniformly, where u is the unique viscosity solution of the infinity Laplacian so that u = g on $\partial \Omega$.

$$u_{\varepsilon}(x) = \frac{1}{2} \Big(\max_{B_{\varepsilon}(x)} u_{\varepsilon} + \min_{B_{\varepsilon}(x)} u_{\varepsilon} \Big).$$

$$u_{\varepsilon}(x) = \frac{1}{2} \Big(\max_{B_{\varepsilon}(x)} u_{\varepsilon} + \min_{B_{\varepsilon}(x)} u_{\varepsilon} \Big).$$

Suppose that $u - \varphi$, where $\varphi \in C^2(\Omega)$, has a strict local maximum at x. Then $u_{\varepsilon} - \varphi$ has a local max at x_{ε} and $x_{\varepsilon} \to x$.

$$u_{\varepsilon}(x) = \frac{1}{2} \Big(\max_{B_{\varepsilon}(x)} u_{\varepsilon} + \min_{B_{\varepsilon}(x)} u_{\varepsilon} \Big).$$

Suppose that $u - \varphi$, where $\varphi \in C^2(\Omega)$, has a strict local maximum at x. Then $u_{\varepsilon} - \varphi$ has a local max at x_{ε} and $x_{\varepsilon} \to x$.

$$(DPP) \implies \varphi(x_{\varepsilon}) \le \frac{1}{2} \Big(\max_{B_{\varepsilon}(x_{\varepsilon})} \varphi + \min_{B_{\varepsilon}(x_{\varepsilon})} \varphi \Big). \tag{5}$$

$$u_{\varepsilon}(x) = \frac{1}{2} \Big(\max_{B_{\varepsilon}(x)} u_{\varepsilon} + \min_{B_{\varepsilon}(x)} u_{\varepsilon} \Big).$$

Suppose that $u - \varphi$, where $\varphi \in C^2(\Omega)$, has a strict local maximum at x. Then $u_{\varepsilon} - \varphi$ has a local max at x_{ε} and $x_{\varepsilon} \to x$.

$$(DPP) \implies \varphi(x_{\varepsilon}) \le \frac{1}{2} \Big(\max_{B_{\varepsilon}(x_{\varepsilon})} \varphi + \min_{B_{\varepsilon}(x_{\varepsilon})} \varphi \Big). \tag{5}$$

For ε small, we have

$$\max_{B_{\varepsilon}(x_{\varepsilon})} \varphi = \varphi(x_{\varepsilon}) + \varepsilon |D\varphi(x_{\varepsilon})| + \frac{\varepsilon^{2}}{2} D^{2} \varphi(x_{\varepsilon}) \frac{D\varphi(x_{\varepsilon})}{|D\varphi(x_{\varepsilon})|} \cdot \frac{D\varphi(x_{\varepsilon})}{|D\varphi(x_{\varepsilon})|} + o(\varepsilon^{2}),$$

$$\min_{B_{\varepsilon}(x_{\varepsilon})} \varphi = \varphi(x_{\varepsilon}) - \varepsilon |D\varphi(x_{\varepsilon})| + \frac{\varepsilon^2}{2} D^2 \varphi(x_{\varepsilon}) \frac{D\varphi(x_{\varepsilon})}{|D\varphi(x_{\varepsilon})|} \cdot \frac{D\varphi(x_{\varepsilon})}{|D\varphi(x_{\varepsilon})|} + o(\varepsilon^2).$$

$$u_{\varepsilon}(x) = \frac{1}{2} \Big(\max_{B_{\varepsilon}(x)} u_{\varepsilon} + \min_{B_{\varepsilon}(x)} u_{\varepsilon} \Big).$$

Suppose that $u - \varphi$, where $\varphi \in C^2(\Omega)$, has a strict local maximum at x. Then $u_{\varepsilon} - \varphi$ has a local max at x_{ε} and $x_{\varepsilon} \to x$.

$$(DPP) \implies \varphi(x_{\varepsilon}) \le \frac{1}{2} \Big(\max_{B_{\varepsilon}(x_{\varepsilon})} \varphi + \min_{B_{\varepsilon}(x_{\varepsilon})} \varphi \Big). \tag{5}$$

For ε small, we have

$$\max_{B_{\varepsilon}(x_{\varepsilon})} \varphi = \varphi(x_{\varepsilon}) + \varepsilon |D\varphi(x_{\varepsilon})| + \frac{\varepsilon^{2}}{2} D^{2} \varphi(x_{\varepsilon}) \frac{D\varphi(x_{\varepsilon})}{|D\varphi(x_{\varepsilon})|} \cdot \frac{D\varphi(x_{\varepsilon})}{|D\varphi(x_{\varepsilon})|} + o(\varepsilon^{2}),$$

$$\min_{B_{\varepsilon}(x_{\varepsilon})} \varphi = \varphi(x_{\varepsilon}) - \varepsilon |D\varphi(x_{\varepsilon})| + \frac{\varepsilon^2}{2} D^2 \varphi(x_{\varepsilon}) \frac{D\varphi(x_{\varepsilon})}{|D\varphi(x_{\varepsilon})|} \cdot \frac{D\varphi(x_{\varepsilon})}{|D\varphi(x_{\varepsilon})|} + o(\varepsilon^2).$$

Substituting these to (5), dividing by ε^2 and letting $\varepsilon \to 0$ yields

$$0 \le D^2 \varphi(x) \frac{D \varphi(x)}{|D \varphi(x)|} \cdot \frac{D \varphi(x)}{|D \varphi(x)|} = \Delta_{\infty}^S \varphi(x).$$

- G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551–561.
- G. Aronsson, M. G. Crandall, and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 4, 439–505.
- M. G. Crandall, L. C. Evans, and R. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13 (2001), no. 2, 123–139.
- R. Jensen,
 Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient,
 Arch. Rational Mech. Anal. 123 (1993), no. 1, 51–74.
- Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., to appear.