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Gunnar Aronsson (1960’s): variational problems of the form

S(u, Q) = es:es;)lp H(z,u(z), Du(z)). (1)

Special case H(z,r,p) = %| p|? corresponds to the minimal
Lipschitz extension problem.

an Euler-Lagrange equation (the Aronsson equation)

- %(H(xv ’U,(CE), Du(x)) ’ Hp(x» U(x)a Du(x)) =0 (2)

to (1). Here H, denotes the derivative of H with respect to the
gradient variable, and w is scalar valued.

If H(z,r,p) = 1|p|*, then (2) reduces to

Aou = (DQu Du) - Du = Z U, Uy, Uz, g, = 0. (3)

ij=1
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Derivation of the equation

We approximate the Lipschitz extension problem by the problems of
minimizing

/|Du|p dx, 1<p<oo,
Q

with given boundary values. The Euler-Lagrange equation of this
problem is the p-Laplace equation

div(|Du|P~2Du) = 0,
which can be written as

| Dul?

(p — 2)|Du|P~* <2Au + Aoou> =0.
p—

If Du # 0, this implies

| Duf?

Asou =
U b—2

Au

)

and thus letting p — oo we recover the infinity Laplace equation
A u =0.
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Motivation

o A is “the Laplacian of Calculus of variations of L* functionals”
e applications: image processing, shape metamorphism, differential
games etc.

e stochastic version: the random turn Tug-of-War of Peres,
Schramm, Sheffield and Wilson (J. Amer. Math. Soc. 2008)
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Remark

Minimizing the functional esssup |Dul|? is equivalent to minimizing
esssup |Du|. Thus we could use, instead of (3), the singular and
one-homogeneous version

s, 1 } : _
Aoou = W UIZ’LLI] uiﬂzzj = 0.
However, the non-homogeneous equations such as

Au(z) = f()

and

are, of course, not equivalent.

NESS OF

SOLUTIONS
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Viscosity solutions

Definition

Let Q C R™ be an open set. An upper semicontinuous function
u : Q — R is a viscosity subsolution of (3) in Q if, whenever Z € Q and
¢ € C?(Q) are such that

(1) w(2) = ¢(2),
(i1) u(z) < p(z) for all z # &
then
Aocp(2) > 0.

A lower semicontinuous function v : Q — R is a viscosity
supersolution of (3) in Q if —v is a viscosity subsolution.

Finally, a continuous function h : Q — R is a viscosity solution of (3)
in Q if it is both a viscosity subsolution and a viscosity supersolution.

v
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Remark

o A function u € C? is is a viscosity solution of (3) in Q if and
only if Ascu(z) =0 for all x € Q.
o u:R? =R, u(z,y) = |z|*3 — |y[*/*

u ¢ C?.

s a viscosity solution, and
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Absolute minimizers

Functionals of the form
10,9) = [ (o, u(2), Dufe)) s
Q

are set-additive. Thus if v minimizes I(-, Q) (with given boundary
data), then it automatically also minimizes I(-, V'), subject to its own
boundary values, for every open V C Q. The same is not true for the
supremum functionals S(u, Q) = esssup,cq H(z, u(z), Du(z)).

Definition

A locally Lipschitz continuous function u : Q — R™, m > 1, is called
an absolute minimizer of S(-, ), if

S(u, V) < S(v, V)

for every V. CcC Q and v € WL°(V)N C(V)) such that v|sy = ulav .
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INTRODUC

Comparison principle

Theorem (Jensen 1993)

Let Q C R™ be a bounded domain, and suppose that u and v are a
subsolution and a supersolution of (3) in S, respectively, such that
u<wvondQ. Then u<wv in S.

e The main point of the proof is to approximate a given
subsolution by subsolutions with non-vanishing gradient.

e The case of unbounded domains has been considered by Crandall,
Gunnarsson and Wang (2007).
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FExistence

Theorem

Let Q C R™ be a bounded domain, and suppose that g: 0Q2 — R is
continuous. Then there is a unique u such that

Aou=0 1inQ,
u=g on 0N.

The existence can be obtained using
1. Perron’s method.
2. the approximation involving p-Laplace equation.

3. Tug-of-War.
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Regularity

Let u be a viscosity solution of Ay u =0 in Q C R™. Then
e 1 is locally Lipschitz continuous.
o if n =2, u € CH* (Savin 2005, Evans and Savin 2008).

e C11/3 is the best one can hope for (in any dimension).
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Comparison with cones

The cone functions
C(z)=alzx — x|+

are solutions of the infinity Laplace equation in R™ \ {29}. These are
“fundamental solutions”.

Definition (Crandall, Fvans, Gariepy 2001)

A function u € C(Q) enjoys comparison with cones from above if,
whenever V CC Q is open, 2o ¢ V, a,b € R, a > 0, are such that

u(z) < C(z) == alx — x| + b on 9V,

we have
u(z) < C(z) in V.

A function v € C(Q) enjoys comparison with cones from below if —v
enjoys comparison with cones from above.

Finally, © € C(Q) enjoys comparison with cones if it enjoys
comparison with cones both from above and below.
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FEquivalence

Theorem (Jensen 1993, Crandall et al 2001)

Let u: Q — R be a locally Lipschitz continuous function. Then the
following are equivalent:

(1) w is an absolute minimizer of the functional S(v) = esssup |Du.

(2) wis an AMLE (=absolutely minimizing Lipschitz extension): for
every open V CC Q we have Lip(u, V') = Lip(u,d0V).

(8) w is a viscosity solution of the infinity Laplacian.

(4) w enjoys comparison with cones.




INTRODUCTION EXISTENCE AND UNIQUENESS OF SOLUTIONS

(4) = (2): Since
u(z) — Lip(u,0V)|z — 2| < u(z) < u(z) + Lip(u,0V)|z — 2|

holds for z,z € 0V and V CC Q



INTRODUCTION EXISTENCE AND UNIQUENESS OF SOLUTIONS

(4) = (2): Since
u(z) — Lip(u,0V)|z — 2| < u(z) < u(z) + Lip(u,0V)|z — 2|

holds for z,z € 0V and V CC Q and u enjoys comparison with cones
from above and below, the inequalities hold also if x € V.



INE INTRODUCTIO EXISTENCE AND UNIQUENESS OF SOLUTIONS

(4) = (2): Since
u(z) — Lip(u,0V)|z — 2| < u(z) < u(z) + Lip(u,0V)|z — 2|

holds for z,z € 0V and V CC Q and u enjoys comparison with cones
from above and below, the inequalities hold also if z € V. Thus

Lip(u, 0(V \ {z})) = Lip(u,0V)

for any fixed z € V.



INE INTRODUCTIO EXISTENCE AND UNIQUENESS OF SOLUTIONS

(4) = (2): Since
u(z) — Lip(u,0V)|z — 2| < u(z) < u(z) + Lip(u,0V)|z — 2|

holds for z,z € 0V and V CC Q and u enjoys comparison with cones
from above and below, the inequalities hold also if z € V. Thus

Lip(u, 0(V \{z})) = Lip(u,0V)
for any fixed z € V. Using this twice, we have

Lip(u,0V) = Lip(u, 0(V \ {z,y})) forz,yec V.
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(4) = (2): Since
u(z) — Lip(u,0V)|z — 2| < u(z) < u(z) + Lip(u,0V)|z — 2|

holds for z,z € 0V and V CC Q and u enjoys comparison with cones
from above and below, the inequalities hold also if z € V. Thus

Lip(u, 0(V \{z})) = Lip(u,0V)
for any fixed z € V. Using this twice, we have
Lip(u,0V) = Lip(u, 0(V \ {z,y})) forz,yec V.

Hence |u(z) — u(y)| < Lip(u,0V)|z — y|, which shows that
Lip(u, V) = Lip(u, 0V
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(8) = (1): Let u € C*(Q) satisfy A u(z) =0 in Q, and suppose
thereis V. CC Q, 7 € V and v € Wh(Q) N C(Q) such that u = v
on OV and
| Du(xp)| > esssup |Dv|. (4)
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(8) = (1): Let u € C*(Q) satisfy Ay u(r) =0 in Q, and suppose
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(3) = (1): Let u € C%(Q) satisfy Ascu(z) =0 in ©, and suppose
thereis V. CC Q, 7 € V and v € Wh(Q) N C(Q) such that u = v
on OV and
| Du(xp)| > esssup |Dv|. (4)
1%

Let v be the unit speed integral curve of the vector field z — Du(z)
that passes through zy. Since

0=Aru(z)= %D(|Du(x)|2) - Du(z)

in Q, x — |Du(x)|? is constant along 7. Let y,z € 9V N~. Now
u(w)-u(2)| = | [ DuGr)i(0)dtl = [ IDur(e)] de = [Dua)| [
Y v Y

while

lo(y) — o(2)| Sesssup|Dv|/ dt.
\4

~
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(3) = (1): Let u € C?*(Q) satisfy Au(z) =0 in Q, and suppose
thereis V CC Q, 290 € V and v € WH>(Q) N C() such that u = v

on OV and
| Du(xp)| > esssup |Dv|. (4)
1%

Let v be the unit speed integral curve of the vector field z — Du(z)
that passes through zy. Since

0=Aru(z)= %D(|Du(x)|2) - Du(z)

in Q, x — |Du(x)|? is constant along 7. Let y,z € 9V N~. Now
u(w)-u(2)| = | [ DuGr)i(0)dtl = [ IDur(e)] de = [Dua)| [
Y v Y

while

lo(y) — o(2)| Sesssup|Dv|/ dat
\4

~

Combining these two inequalities with (4) yields
lu(y) — u(2)| > |v(y) — v(z)|, which contradicts u = v on 9V.
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Tug-of-war

Recently Peres, Schramm, Sheffield and Wilson considered the
following zero-sum two player stochastic game called tug-of-war:
e given: bounded domain Q C R™ and g € C(99Q).
e fix z = x5 € Q and step-size € > 0.
e At the k" turn, the players toss a coin and winner chooses an
with |.Z'k — .Z'kfl‘ <e.
e The game ends when z;, € 99, and player I’s payoff is g(z).

The value function u.(z) of the above game is continuous for each
€ > 0 and u. — u uniformly, where u is the unique viscosity solution
of the infinity Laplacian so that uv = ¢g on 9.
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The dynamic programming principle (DPP) reads
1
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The dynamic programming principle (DPP) reads
1

us(z) = i(g:?x) Ue + g:gl) u.).

Suppose that u — ¢, where ¢ € C?(2), has a strict local maximum at
z. Then u. — ¢ has a local max at z. and . — z.

(DPP) = o(z:) < ~(m

5 max ¢ + min ). (5)

B () B ()

For £ small, we have

e? Dp(z.) De(x.)
ma = ¢(z.) + e|Dp(x.)| + —D?*p(x. e =+ o(e?),
gy e = elae) delDela)l 5 DRelas) 5oe - gy o)
e? Dp(z.) De(x.)
min ¢ = o(z.) — e|Do(z.)| + — D% (- = =L 4 o(e?
griny e = elae) = elDelas)l 5 DRelas) 5o gy o)
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The dynamic programming principle (DPP) reads
1

us(z) = i(g:?x) Us + g:gl) u.).

Suppose that u — ¢, where ¢ € C?(2), has a strict local maximum at
z. Then u. — ¢ has a local max at z. and . — z.

1
DPP) — T — X ¢+ mi . 5
(DPP) p(z:) < 2(3 ax o+ 1 (%)sﬂ) (5)

For £ small, we have

— o(z c T f 2,( Dep(:) . Dep(az) ofe2
e = ploe) +elDola)l + 5 DRl 5 Ze 8T D] T )
min @ = ¢(z.) — e|Dip(e)| + 5 () DAL, DA 2y

Be(a2) [De(a.)] [Dep(z)]
Substituting these to (5), dividing by €2 and letting ¢ — 0 yields

DL,D(I) . D<p(:v) _ S (:E)

0= DD et ~ 2=¢
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