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Outline Introduction Existence and uniqueness of solutions

The infinity Laplace equation

• Gunnar Aronsson (1960’s): variational problems of the form

S (u,Ω) = ess sup
x∈Ω

H (x , u(x ),Du(x )). (1)

• Special case H (x , r , p) = 1
2 |p|

2 corresponds to the minimal
Lipschitz extension problem.

• an Euler-Lagrange equation (the Aronsson equation)

− d
dx

(
H (x , u(x ),Du(x )) ·Hp(x , u(x ),Du(x )) = 0 (2)

to (1). Here Hp denotes the derivative of H with respect to the
gradient variable, and u is scalar valued.

• If H (x , r , p) = 1
2 |p|

2, then (2) reduces to

∆∞u :=
(
D2u Du

)
·Du =

n∑
i,j=1

uxi uxj uxixj = 0. (3)
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Outline Introduction Existence and uniqueness of solutions

Derivation of the equation
We approximate the Lipschitz extension problem by the problems of
minimizing ∫

Ω

|Du|p dx , 1 < p < ∞,

with given boundary values.

The Euler-Lagrange equation of this
problem is the p-Laplace equation

div(|Du|p−2Du) = 0,

which can be written as

(p − 2)|Du|p−4

(
|Du|2

p − 2
∆u + ∆∞u

)
= 0.

If Du 6= 0, this implies

∆∞u = −|Du|2

p − 2
∆u,

and thus letting p →∞ we recover the infinity Laplace equation
∆∞u = 0.
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Motivation

• ∆∞ is “the Laplacian of Calculus of variations of L∞ functionals”

• applications: image processing, shape metamorphism, differential
games etc.

• stochastic version: the random turn Tug-of-War of Peres,
Schramm, Sheffield and Wilson (J. Amer. Math. Soc. 2008)
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Remark

Minimizing the functional ess sup |Du|2 is equivalent to minimizing
ess sup |Du|.

Thus we could use, instead of (3), the singular and
one-homogeneous version

∆S
∞u =

1
|Du|2

∑
uxi

uxj
uxixj

= 0.

However, the non-homogeneous equations such as

∆∞u(x ) = f (x )

and
∆S
∞u(x ) = f (x )

are, of course, not equivalent.
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Viscosity solutions

Definition

Let Ω ⊂ Rn be an open set. An upper semicontinuous function
u : Ω → R is a viscosity subsolution of (3) in Ω if, whenever x̂ ∈ Ω and
ϕ ∈ C 2(Ω) are such that
(i) u(x̂ ) = ϕ(x̂ ),
(ii) u(x ) < ϕ(x ) for all x 6= x̂

then
∆∞ϕ(x̂ ) ≥ 0.

A lower semicontinuous function v : Ω → R is a viscosity
supersolution of (3) in Ω if −v is a viscosity subsolution.
Finally, a continuous function h : Ω → R is a viscosity solution of (3)
in Ω if it is both a viscosity subsolution and a viscosity supersolution.
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Remark

• A function u ∈ C 2 is is a viscosity solution of (3) in Ω if and
only if ∆∞u(x ) = 0 for all x ∈ Ω.

• u : R2 → R, u(x , y) = |x |4/3 − |y |4/3 is a viscosity solution, and
u /∈ C 2.
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Absolute minimizers

Functionals of the form

I (v ,Ω) =

∫
Ω

f (x , u(x ),Du(x )) dx

are set-additive. Thus if u minimizes I (·,Ω) (with given boundary
data), then it automatically also minimizes I (·,V ), subject to its own
boundary values, for every open V ⊂ Ω.

The same is not true for the
supremum functionals S (u,Ω) = ess supx∈Ω H (x , u(x ),Du(x )).

Definition

A locally Lipschitz continuous function u : Ω → Rm , m ≥ 1, is called
an absolute minimizer of S (·,Ω), if

S (u,V ) ≤ S (v ,V )

for every V ⊂⊂ Ω and v ∈ W 1,∞(V )∩C (V )) such that v |∂V = u|∂V .
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Comparison principle

Theorem (Jensen 1993)

Let Ω ⊂ Rn be a bounded domain, and suppose that u and v are a
subsolution and a supersolution of (3) in Ω, respectively, such that
u ≤ v on ∂Ω. Then u ≤ v in Ω.

• The main point of the proof is to approximate a given
subsolution by subsolutions with non-vanishing gradient.

• The case of unbounded domains has been considered by Crandall,
Gunnarsson and Wang (2007).
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Existence

Theorem

Let Ω ⊂ Rn be a bounded domain, and suppose that g : ∂Ω → R is
continuous. Then there is a unique u such that{

∆∞u = 0 in Ω,

u = g on ∂Ω.

The existence can be obtained using
1. Perron’s method.
2. the approximation involving p-Laplace equation.
3. Tug-of-War.
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Regularity

Let u be a viscosity solution of ∆∞u = 0 in Ω ⊂ Rn . Then
• u is locally Lipschitz continuous.

• if n = 2, u ∈ C 1,α (Savin 2005, Evans and Savin 2008).
• C 1,1/3 is the best one can hope for (in any dimension).
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Comparison with cones

The cone functions
C (x ) = a|x − x0|+ b

are solutions of the infinity Laplace equation in Rn \ {x0}. These are
“fundamental solutions”.

Definition (Crandall, Evans, Gariepy 2001)

A function u ∈ C (Ω) enjoys comparison with cones from above if,
whenever V ⊂⊂ Ω is open, x0 /∈ V , a, b ∈ R, a > 0, are such that

u(x ) ≤ C (x ) := a|x − x0|+ b on ∂V ,

we have
u(x ) ≤ C (x ) in V .

A function v ∈ C (Ω) enjoys comparison with cones from below if −v
enjoys comparison with cones from above.
Finally, u ∈ C (Ω) enjoys comparison with cones if it enjoys
comparison with cones both from above and below.
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Equivalence

Theorem (Jensen 1993, Crandall et al 2001)

Let u : Ω → R be a locally Lipschitz continuous function. Then the
following are equivalent:
(1) u is an absolute minimizer of the functional S (v) = ess sup |Du|.
(2) u is an AMLE (=absolutely minimizing Lipschitz extension): for

every open V ⊂⊂ Ω we have Lip(u,V ) = Lip(u, ∂V ).
(3) u is a viscosity solution of the infinity Laplacian.
(4) u enjoys comparison with cones.
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(4) =⇒ (2): Since

u(z )− Lip(u, ∂V )|x − z | ≤ u(x ) ≤ u(z ) + Lip(u, ∂V )|x − z |

holds for x , z ∈ ∂V and V ⊂⊂ Ω

and u enjoys comparison with cones
from above and below, the inequalities hold also if x ∈ V . Thus

Lip(u, ∂(V \ {x})) = Lip(u, ∂V )

for any fixed x ∈ V . Using this twice, we have

Lip(u, ∂V ) = Lip(u, ∂(V \ {x , y})) for x , y ∈ V .

Hence |u(x )− u(y)| ≤ Lip(u, ∂V )|x − y |, which shows that
Lip(u,V ) = Lip(u, ∂V ).
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(3) =⇒ (1): Let u ∈ C 2(Ω) satisfy ∆∞u(x ) = 0 in Ω, and suppose
there is V ⊂⊂ Ω, x0 ∈ V and v ∈ W 1,∞(Ω) ∩ C (Ω) such that u = v
on ∂V and

|Du(x0)| > ess sup
V

|Dv |. (4)

Let γ be the unit speed integral curve of the vector field x 7→ Du(x )
that passes through x0. Since

0 = ∆∞u(x ) =
1
2
D(|Du(x )|2) ·Du(x )

in Ω, x 7→ |Du(x )|2 is constant along γ. Let y , z ∈ ∂V ∩ γ. Now

|u(y)−u(z )| = |
∫

γ

Du(γ(t))·γ̇(t) dt | =
∫

γ

|Du(γ(t))| dt = |Du(x0)|
∫

γ

dt ,

while
|v(y)− v(z )| ≤ ess sup

V
|Dv |

∫
γ

dt .

Combining these two inequalities with (4) yields
|u(y)− u(z )| > |v(y)− v(z )|, which contradicts u = v on ∂V .
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Tug-of-war

Recently Peres, Schramm, Sheffield and Wilson considered the
following zero-sum two player stochastic game called tug-of-war:

• given: bounded domain Ω ⊂ Rn and g ∈ C (∂Ω).

• fix x = x0 ∈ Ω and step-size ε > 0.
• At the k th turn, the players toss a coin and winner chooses an xk

with |xk − xk−1| < ε.
• The game ends when xk ∈ ∂Ω, and player I ’s payoff is g(xk ).

The value function uε(x ) of the above game is continuous for each
ε > 0 and uε → u uniformly, where u is the unique viscosity solution
of the infinity Laplacian so that u = g on ∂Ω.
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The dynamic programming principle (DPP) reads

uε(x ) =
1
2
(

max
Bε(x)

uε + min
Bε(x)

uε

)
.

Suppose that u − ϕ, where ϕ ∈ C 2(Ω), has a strict local maximum at
x . Then uε − ϕ has a local max at xε and xε → x .

(DPP) =⇒ ϕ(xε) ≤
1
2
(

max
Bε(xε)

ϕ + min
Bε(xε)

ϕ
)
. (5)

For ε small, we have

max
Bε(xε)

ϕ = ϕ(xε) + ε|Dϕ(xε)|+
ε2

2
D2ϕ(xε)

Dϕ(xε)

|Dϕ(xε)|
· Dϕ(xε)

|Dϕ(xε)|
+ o(ε2),

min
Bε(xε)

ϕ = ϕ(xε)− ε|Dϕ(xε)|+
ε2

2
D2ϕ(xε)

Dϕ(xε)

|Dϕ(xε)|
· Dϕ(xε)

|Dϕ(xε)|
+ o(ε2).

Substituting these to (5), dividing by ε2 and letting ε → 0 yields

0 ≤ D2ϕ(x )
Dϕ(x )

|Dϕ(x )|
· Dϕ(x )

|Dϕ(x )|
= ∆S

∞ϕ(x ).
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