From partitions to modular forms

KWG PhD prize
20 May 2021 Jan-Willem van Ittersum Utrecht University

Partitions \& modular forms

String theory

Ingredients: partitions
Ex Partitions λ of $n=5$ are

Def A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ is a way to write an integer n as a sum of positive integers $\lambda_{1}, \lambda_{2}, \ldots$ (whee the order of summation doesit matter).

The (Euler) $\sum_{\lambda \in P} q^{|\lambda|}=1+q+2 q^{2}+3 q^{3}+5 q^{4}+7 q^{5}+\ldots=\prod_{m=1}^{\infty} \frac{1}{(1-q)^{m}}$.

Ingredients: how much of each partition?
Recall 200 g , butter, 200 g sugar, ...
set of all partitions
$n=1+\lambda+2)$
Symmetric functions $S_{k}: \rho \rightarrow \mathbb{Q} \quad S_{k}(\lambda)=\sum_{i} \lambda_{i}^{k}$

$$
\begin{array}{rl|ll}
\text { Ex } S_{3}(2+2+1) & =2^{3}+2^{3}+1 & \text { Ex } S_{1}(\lambda)=\sum_{i} \lambda_{i}=|\lambda| \\
& =17 . & 0 & \varnothing
\end{array}
$$

Whisk: the q-bracket
Given $f: \rho \rightarrow \mathbb{Q}$, the q-bracket of f is given by

$$
\langle f\rangle_{q}:=\frac{\sum_{\lambda \in \rho} f(\lambda) q^{|\lambda|}}{\sum_{\lambda \in \rho} q^{|\lambda|}<\mathbb{Q}[[q]]} \quad \begin{aligned}
& \text { ferencoling series of part }
\end{aligned}
$$

formal power series in q

Ex

$$
\begin{aligned}
&\left\langle S_{1}\right\rangle_{q}=\frac{\sum_{\lambda \in \rho}|\lambda| q^{|\lambda|}}{\sum_{\lambda \in \rho} q^{|\lambda|}}=q+3 q^{2}+4 q^{3}+7 q^{4}+6 q^{5}+\ldots \\
&=\sum_{n}\left(\sum_{d i n} d\right) q^{n} \in \text { a quasimeduluer } \\
&=\sum_{\lambda} \quad \text { form }
\end{aligned}
$$

Result: a (quasi) modular form
Quasimodulor forms are everywhere:

- Fermat's last theoren
- Sphere packing problem
- Coverings of tori

Two key properties of quasimodular forms (QMF):
(i) The sum, difference and product of two QMFs is a QMF Also, the derivative is a QMF.
(ii) Only one QMF is nodded to generate all of then using (i) iteratively.

3 recipes : addition

3 recipes: addition

3 recipes: multiplication

3 recipes: multiplication

Result: a (quasi) modular form Observation $\left\langle S_{1}^{2}\right\rangle_{q},\left\langle S_{3}^{2}\right\rangle_{q},\left\langle S_{s}^{2}\right\rangle_{q},\left\langle S_{q}^{2}\right\rangle_{q}$ we all $Q M F S$. Even combinations as $\left(S_{1} S_{3}\right)_{q} ;\left(S_{1} S_{5} S_{7}\right)_{q}$ and $\left\langle S_{1}{ }^{2} S_{3} S_{8}{ }^{3} S_{7}^{4}\right\rangle_{q}$ are QMFs:

The (vI)
For all f in the algebace generated by the S_{k} (k odd) $v e c t o r ~ s p a c e ~$
\& sing $\langle f\rangle_{\varepsilon}$ is a QMF.

Rt. Another such algebra, going back to the work of $D_{j k g r a a f ~ i n ~ s t r i n g ~}^{\text {- }}$ theory, was found by Bloch-Okounkov.

- How could such a result exist? There is a truly wonderful explanation using convolution products, but it doesn't fit in this margin.

Recipe
From partitions to modular forms
stable under addition ánd multiplication

Thark you!

