A Kaneko-Zagier equation for Jacobi forms

Jan-Willem van Ittersum
(joint with Georg Oberdieck
and Aaron Pixton)
November 3, 2020
Universiteit Utrecht
Max Planck Institute for Mathematics

The Kaneko-Zagier equation

The study of supersingular elliptic curves leads to the Kaneko-Zagier equation

$$
\vartheta_{k+2} \vartheta_{k} f_{k}=\frac{k(k+2)}{144} E_{4} f_{k} \quad(k \in \mathbb{Z}) .
$$

Theorem This equation has a unique (normalized) modular solution f_{k} of weight k if $k \equiv 0$ or $k \equiv 4 \bmod 6$:

$$
f_{k}= \begin{cases}E_{4}^{k / 4} F\left(-\frac{k}{12},-\frac{k-4}{12},-\frac{k-5}{6} ; \frac{E_{4}^{3}-E_{6}^{2}}{E_{4}^{3}}\right) & k \equiv 0,4 \bmod 12 \\ E_{4}^{\frac{k-6}{4}} E_{6} F\left(-\frac{k-6}{12},-\frac{k-10}{12},-\frac{k-5}{6} ; \frac{E_{4}^{3}-E_{6}^{2}}{E_{4}^{3}}\right) & k \equiv 6,10 \bmod 12\end{cases}
$$

Here:

- $D_{\tau}=\frac{1}{2 \pi i} \frac{\partial}{\partial \tau}$ and the Serre derivative $\vartheta_{k}=D_{\tau}-\frac{k}{12} E_{2}(\tau)$,
- Eisenstein series: $E_{k}(\tau)=\frac{1}{2} \sum_{\substack{m, n, \mathbb{Z} \\(m, n)=1}}^{\prime} \frac{1}{(m \tau+n)^{k}}$, where $\operatorname{Im}(\tau)>0$
- Hypergeometric function: $(m, n)=1$

$$
F(a, b, c ; x)=\sum_{n=0}^{\infty} \frac{a(a+1) \cdots(a+n-1) b(b+1) \cdots(b+n-1)}{c(c+1) \cdots(c+n-1)} \frac{x^{n}}{n!}
$$

The solutions are given by the Weierstrass \wp function

Weierstrass \wp function

$$
\wp(\tau, z)=\frac{1}{z^{2}}+\sum_{m, n \in \mathbb{Z}}^{*}\left(\frac{1}{(z+m \tau+n)^{2}}-\frac{1}{(m \tau+n)^{2}}\right) .
$$

For all $k \in \mathbb{Z}$ one has

$$
f_{k}=\operatorname{Res}_{z=0}\left(\frac{\wp^{\prime}(\tau, z)}{-2}\right)^{-(k+1) / 3} .
$$

or, by Lagrange inversion, in terms of generating series

$$
x=\sum_{k \geq 0} f_{k} \frac{y^{k+1}}{k+1} \Longleftrightarrow y=\left(\frac{\wp^{\prime}(x)}{-2}\right)^{-1 / 3} .
$$

A differential equation for quasi-Jacobi forms

The study of Gromov-Witten invariants of K3 surfaces leads for all $m \in \mathbb{Z}$ to the differential equation

$$
D_{\tau}^{2} \varphi_{m}=m^{2} B \varphi_{m},
$$

where

$$
B=\frac{1}{\Theta} D_{\tau}^{2} \Theta, \quad \Theta=\left(p^{1 / 2}-p^{-1 / 2}\right) \prod_{n \geq 1} \frac{\left(1-p q^{n}\right)\left(1-p^{-1} q^{n}\right)}{\left(1-q^{n}\right)^{2}},
$$

with $p=e^{2 \pi i z}, q=e^{2 \pi i \tau}$.
Compare to the Kaneko-Zagier equation where

$$
\frac{E_{4}}{144}=\frac{1}{\eta} D_{\tau}^{2} \eta, \quad \eta=q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right)
$$

The solutions are given by a ratio of Jacobi theta functions

Analogue for Jacobi forms:

$$
D_{\tau}^{2} \varphi_{m}=m^{2} B \varphi_{m}
$$

Theorem (Oberdieck-Pixton-vl) For all $m \geq 0$ we have

$$
\varphi_{m}=\operatorname{Res}_{x=0}\left(\frac{\Theta(x+z)}{\Theta(x)}\right)^{m}
$$

In terms of generating series

$$
x=\sum_{m=1}^{\infty} \varphi_{m} \frac{y^{m}}{m} \quad \Longleftrightarrow \quad y=\frac{\Theta(x)}{\Theta(x+z)}
$$

In order to understand the functions φ_{m} we have to understand the meromorphic Jacobi form $\frac{\Theta(x+z)}{\Theta(x)}$ (to be continued).

A recurring theme: residues of Jacobi forms

Situation: f meromorphic of weight -1 , and a differential equation

$$
D_{\tau}^{2} \varphi_{m}=m^{2} \frac{D_{\tau}^{2} f}{f} \varphi_{m}
$$

with solutions for $m \geq 0$ given by

$$
\varphi_{m}=\operatorname{Res}_{x=0} F^{m} .
$$

Examples

$$
f \quad F
$$

Kaneko-Zagier
η^{2}

$$
\left(-\frac{1}{2} \gamma^{\prime}\right)^{-1 / 3}=\left(-\frac{1}{2} D_{z}^{3} \log \Theta\right)^{-1 / 3}
$$

Oberdieck-Pixton-vl
$\Theta \quad \frac{\Theta(x)}{\Theta(x+z)}$

Tomoaki Nakaya

$$
\eta(\tau) \eta(2 \tau) \quad\left(-D_{z} \frac{\Theta(2 \tau, 2 z)}{2 \Theta(\tau, z)^{2}}\right)^{-1 / 2}
$$

Question Is it possible to formulate this observation as a theorem?

Proof sketch of such a result

How does one proof that

$$
D_{\tau}^{2} \varphi_{m}=m^{2} \frac{D_{\tau}^{2} f}{f} \varphi_{m} \quad \text { is solved by } \quad \varphi_{m}=\operatorname{Res}_{x=0} F^{m} ?
$$

Proof sketch. Observe

$$
D_{\tau}^{2} G=\frac{D_{\tau}^{2} f}{f} D_{y}^{2} G, \quad \text { where } \quad G=\sum_{m=1}^{\infty} \varphi_{m} \frac{y^{m}}{m} \quad \text { and } \quad D_{y}=y \frac{\partial}{\partial y}
$$

Applying

$$
y=\frac{1}{H(x)} \Longleftrightarrow x=G(y)
$$

yields

$$
\begin{aligned}
D_{x}(H)^{2} D_{\tau}^{2}(H)-2 D_{x}(H) D_{x} D_{\tau}(H) D_{\tau}(H)+D_{x}^{2}(H) & D_{\tau}(H)^{2}
\end{aligned}=
$$

'Simply' checking that $F=H$ solves this differential equation suffices!
\Longrightarrow We have to understand the space of derivatives of Jacobi forms.

Intermezzo: transformation of some special functions

Let $A=D_{z} \log \Theta$. Write $e(x)=e^{2 \pi i x}$.
Elliptic transformation For all $m, n \in \mathbb{Z}$

$$
\begin{aligned}
\wp(\tau, z+m \tau+n) & =\wp(\tau, z) \\
e\left(\frac{1}{2}\left(m^{2} \tau+2 m z+m^{2}+n^{2}\right)\right) \Theta(\tau, z+m \tau+n) & =\Theta(\tau, z) \\
A(\tau, z+m \tau+n) & =A(\tau, z)-m .
\end{aligned}
$$

Modular transformation For all $\left(\begin{array}{lll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$

$$
\begin{aligned}
(c \tau+d)^{-2} \wp\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) & =\wp(\tau, z) \\
(c \tau+d) e\left(\frac{1}{2} \frac{c^{2}}{c \tau+d}\right) \Theta\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) & =\Theta(\tau, z) \\
(c \tau+d)^{-1} A\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) & =A(\tau, z)+\frac{c z}{c \tau+d} \\
(c \tau+d)^{-2} E_{2}\left(\frac{a \tau+b}{c \tau+d}\right) & =E_{2}(\tau)+\frac{12}{2 \pi i} \frac{c}{c \tau+d} .
\end{aligned}
$$

Quasi-Jacobi forms

Definition

A quasi-Jacobi form is a polynomial in A and E_{2} with Jacobi forms as coefficients.

Proposition

The space of meromorphic quasi-Jacobi forms is

- finite dimensional after fixing a weight, index and discrete set of allowed poles $z=a \tau+b$;
- closed under the differential operators D_{τ} and D_{z}.

Corollary

It is a finite computation to check whether $F=H$ solves a differential equation as

$$
\begin{aligned}
D_{x}(H)^{2} D_{\tau}^{2}(H)-2 D_{x}(H) D_{x} D_{\tau}(H) D_{\tau}(H)+D_{x}^{2}(H) & D_{\tau}(H)^{2}
\end{aligned}=\left\{\begin{array}{l}
\frac{D_{\tau}^{2} f}{f} D_{x}^{2} \log (H) H^{3} .
\end{array}\right.
$$

The solutions φ_{m} as quasi-Jacobi forms

Theorem (Oberdieck-Pixtion-vl) For $m \geq 0$, the functions

$$
\varphi_{m}=\operatorname{Res}_{x=0}\left(\frac{\Theta(x+z)}{\Theta(x)}\right)^{m}
$$

are quasi-Jacobi forms of weight -1 and index $m / 2$, satisfying

$$
\begin{aligned}
\frac{\partial}{\partial E_{2}} \varphi_{m} & =0 \\
\frac{\partial}{\partial A} \varphi_{m} & =\frac{1}{2} \sum_{\substack{i+j=m \\
i, j \geq 1}} \frac{m^{2}}{i j} \varphi_{i} \varphi_{j} .
\end{aligned}
$$

Moreover, the Taylor coefficients of φ_{m} are quasimodular forms, depending polynomially on m :

$$
\begin{aligned}
\varphi_{m} & =m z-G_{2} m^{3} z^{3}+\left(\left(\frac{1}{3} G_{2}^{2}-\frac{1}{72} G_{4}\right) m^{5}+\left(\frac{1}{6} G_{2}^{2}-\frac{5}{72} G_{4}\right) m^{3}\right) z^{5}+ \\
& +\left(\left(-\frac{1}{18} G_{2}^{3}+\frac{1}{180} G_{2} G_{4}-\frac{1}{43200} G_{6}\right) m^{7}+\left(-\frac{1}{9} G_{2}^{3}+\frac{1}{18} G_{2} G_{4}-\frac{7}{8640} G_{6}\right) m^{5}+\right. \\
& \left.+\left(\frac{1}{45} G_{2} G_{4}-\frac{7}{3600} G_{6}\right) m^{3}\right) z^{7}+\ldots
\end{aligned}
$$

Thank you!

