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The Kaneko–Zagier equation

The study of supersingular elliptic curves leads to the Kaneko–Zagier

equation

ϑk+2ϑk fk =
k(k + 2)

144
E4fk (k ∈ Z).

Theorem This equation has a unique (normalized) modular solution fk
of weight k if k ≡ 0 or k ≡ 4 mod 6 :

fk =

E
k/4
4 F

(
− k

12 ,−
k−4
12 ,−

k−5
6 ;

E 3
4−E

2
6

E 3
4

)
k ≡ 0, 4 mod 12,

E
k−6

4
4 E6 F

(
− k−6

12 ,−
k−10

12 ,− k−5
6 ;

E 3
4−E

2
6

E 3
4

)
k ≡ 6, 10 mod 12.

Here:

• Dτ = 1
2πi

∂
∂τ and the Serre derivative ϑk = Dτ − k

12E2(τ),

• Eisenstein series: Ek(τ) =
1

2

∑
m,n∈Z

(m,n)=1

′ 1

(mτ + n)k
, where Im(τ) > 0

• Hypergeometric function:

F (a, b, c ; x) =
∞∑
n=0

a(a + 1) · · · (a + n − 1) b(b + 1) · · · (b + n − 1)

c(c + 1) · · · (c + n − 1)

xn

n!
.
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The solutions are given by the Weierstrass ℘ function

Weierstrass ℘ function

℘(τ, z) =
1

z2
+
∑

m,n∈Z

∗
(

1

(z + mτ + n)2
− 1

(mτ + n)2

)
.

For all k ∈ Z one has

fk = Resz=0

(
℘′(τ, z)

−2

)−(k+1)/3

.

or, by Lagrange inversion, in terms of generating series

x =
∑
k≥0

fk
yk+1

k + 1
⇐⇒ y =

(
℘′(x)

−2

)−1/3

.
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A differential equation for quasi-Jacobi forms

The study of Gromov–Witten invariants of K3 surfaces leads for all

m ∈ Z to the differential equation

D2
τϕm = m2Bϕm,

where

B =
1

Θ
D2
τΘ, Θ =

(
p1/2 − p−1/2

)∏
n≥1

(1− pqn)(1− p−1qn)

(1− qn)2
,

with p = e2πiz , q = e2πiτ .

Compare to the Kaneko–Zagier equation where

E4

144
=

1

η
D2
τη, η = q1/24

∏
n≥1

(1− qn).
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The solutions are given by a ratio of Jacobi theta functions

Analogue for Jacobi forms:

D2
τϕm = m2Bϕm.

Theorem (Oberdieck–Pixton–vI) For all m ≥ 0 we have

ϕm = Resx=0

(
Θ(x + z)

Θ(x)

)m

.

In terms of generating series

x =
∞∑

m=1

ϕm
ym

m
⇐⇒ y =

Θ(x)

Θ(x + z)
.

In order to understand the functions ϕm we have to understand the

meromorphic Jacobi form Θ(x+z)
Θ(x) (to be continued).
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A recurring theme: residues of Jacobi forms

Situation: f meromorphic of weight −1, and a differential equation

D2
τϕm = m2 D

2
τ f

f
ϕm.

with solutions for m ≥ 0 given by

ϕm = Resx=0F
m.

Examples
f F

Kaneko–Zagier η2
(
− 1

2℘
′)−1/3

=
(
− 1

2D
3
z log Θ

)−1/3

Oberdieck–Pixton–vI Θ Θ(x)
Θ(x+z)

Tomoaki Nakaya η(τ)η(2τ)
(
−Dz

Θ(2τ,2z)
2Θ(τ,z)2

)−1/2

Question Is it possible to formulate this observation as a theorem?
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Proof sketch of such a result

How does one proof that

D2
τϕm = m2 D

2
τ f

f
ϕm is solved by ϕm = Resx=0F

m?

Proof sketch. Observe

D2
τG =

D2
τ f

f
D2

yG , where G =
∞∑

m=1

ϕm
ym

m
and Dy = y

∂

∂y

Applying

y =
1

H(x)
⇐⇒ x = G (y)

yields

Dx(H)2 D2
τ (H) − 2Dx(H)DxDτ (H)Dτ (H) + D2

x (H)Dτ (H)2 =

D2
τ f

f
D2

x log(H)H3.

‘Simply’ checking that F = H solves this differential equation suffices!

=⇒ We have to understand the space of derivatives of Jacobi forms.
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Intermezzo: transformation of some special functions

Let A = Dz log Θ. Write e(x) = e2πix .

Elliptic transformation For all m, n ∈ Z

℘(τ, z + mτ + n) = ℘(τ, z)

e( 1
2 (m2τ + 2mz + m2 + n2)) Θ(τ, z + mτ + n) = Θ(τ, z)

A(τ, z + mτ + n) = A(τ, z)−m.

Modular transformation For all
(
a b
c d

)
∈ SL2(Z)

(cτ + d)−2 ℘

(
aτ + b

cτ + d
,

z

cτ + d

)
= ℘(τ, z)

(cτ + d) e

(
1

2

c2

cτ + d

)
Θ

(
aτ + b

cτ + d
,

z

cτ + d

)
= Θ(τ, z)

(cτ + d)−1 A

(
aτ + b

cτ + d
,

z

cτ + d

)
= A(τ, z) +

cz

cτ + d

(cτ + d)−2 E2

(
aτ + b

cτ + d

)
= E2(τ) +

12

2πi

c

cτ + d
.
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Quasi-Jacobi forms

Definition

A quasi-Jacobi form is a polynomial in A and E2 with Jacobi forms as

coefficients.

Proposition

The space of meromorphic quasi-Jacobi forms is

• finite dimensional after fixing a weight, index and discrete set of

allowed poles z = aτ + b;

• closed under the differential operators Dτ and Dz .

Corollary

It is a finite computation to check whether F = H solves a differential

equation as

Dx(H)2 D2
τ (H) − 2Dx(H)DxDτ (H)Dτ (H) + D2

x (H)Dτ (H)2 =

D2
τ f

f
D2

x log(H)H3.
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The solutions ϕm as quasi-Jacobi forms

Theorem (Oberdieck–Pixtion–vI) For m ≥ 0, the functions

ϕm = Resx=0

(
Θ(x + z)

Θ(x)

)m

are quasi-Jacobi forms of weight −1 and index m/2, satisfying

∂

∂E2
ϕm = 0

∂

∂A
ϕm =

1

2

∑
i+j=m
i,j≥1

m2

ij
ϕiϕj .

Moreover, the Taylor coefficients of ϕm are quasimodular forms,
depending polynomially on m:

ϕm = mz − G2m
3z3 +

((
1

3
G2

2 −
1

72
G4

)
m5 +

(
1

6
G2

2 −
5

72
G4

)
m3

)
z5+

+

((
−

1

18
G3

2 +
1

180
G2G4 −

1

43200
G6

)
m7 +

(
−

1

9
G3

2 +
1

18
G2G4 −

7

8640
G6

)
m5+

+

(
1

45
G2G4 −

7

3600
G6

)
m3

)
z7 + . . .
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Thank you!
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