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Chapter 1

Introduction

In 1933, D. H. Lehmer wrote a paper [12] in which he describes a method of manufacturing
large primes (‘large’ in a time when computers were not as well developed as now). Starting

with a monic polynomial f with roots & € C such that

n

F@) =1]¢-¢),
i=1
he defines for k € N

n

Ax(f) =TI = 0.

=1

For example, if we take f(z) =z — 2 we find the Mersenne numbers
Ap(f)=2"-1.
Since 1992, all largest known prime numbers are Mersenne numbers. At the time of writing

257885161 -1

is the largest known prime.
On the other hand, Lehmer used f(z) = 2® — 2 — 1 and showed that

Aq3(f) = 63,088,004,325,217 and  Aqer(f) = 3,233,514, 251,032, 733

are primes. Lehmer found that Ag(f) is more likely to be a prime number if the ratio of

St
Ak(f)

is small. It can easily be shown that if all roots & of f satisfy |&;| # 1 it holds that

successive terms

Apy1(f)
Ax(f)

lim
k—o0

‘ = [ [ max(1, &)
=1

The right hand side of this equation is the quantity we are interested in in this thesis. It appears

in different branches of mathematics, for example in the so-called Weil height in algebraic



number theory and in the topological entropy in algebraic dynamical systems. Moreover, it is
generalised to polynomials in multiple variables and elliptic curves.

In this thesis, all these appearances of what we will later call the Mahler measure will not
come up. We will study this quantity itself by investigating the relation between symmetries
in polynomials and a lower bound of the Mahler measure. The starting point for this is a
paper by Zagier which gives an elementary proof for an inequality by Zhang [19]. Dresden
extended these ideas by proving another inequality involving the Mahler measure and some
group. He ends his paper by asking whether his results can be generalised to other groups.
Such a generalization is what I did and the results of this generalization will be covered in
Chapter 6.

CONTENTS In the second chapter we will introduce Mahler’s measure. Together with the
third chapter this is the required knowledge to understand the fifth chapter about the two
papers of Zagier and Dresden. In Chapter 4, we will introduce Mobius transformations (the
symmetries of polynomials) and search for finite groups of Mobius transformations. In some
chapters, there is an intermezzo where basic mathematical knowledge which is not covered
during the bachelor mathematics in Utrecht, is explained. The last chapter consists of my own
generalizations of these two papers.

ACKNOWLEDGEMENT I would like to thank Thijs van der Gugten, Lois van der Meijden,
Merlijn Staps and Rik Voorhaar for reading my thesis and giving me a lot of useful comments.
Also, for providing me with the subject of this thesis and giving me helpful suggestions how to

proceed during our biweekly meetings, I thank my supervisor prof. dr. Gunther Cornelissen.



Chapter 2

Mahler’s Measure

2.1 Mahler’s Papers

In 1960 and 1962 Kurt Mahler published two papers [13] [14] in which he described a way
to assign a real number to a polynomial. For a given polynomial he called this real number
the measure of that polynomial. Other known ways to assign a real number to a polynomial
are called the height and length. He defined this measure to give a new proof of the so-
called Gelfond inequality [7] which establishes a lower bound for the height of a product of
polynomials in terms of the heights of the factors. This inequality is frequently used in the
theory of transcendental numbers. He also compared this measure with the height and length,
as we will see in Section 2.4.

Intuitively we can interpret this measure, height and length as different ways to attach a
‘size’ to a polynomial. Following the ideas of his two papers we will introduce this so-called
Mahler measure in this section. Although Mahler defined his measure for polynomials in many

variables, for the sake of simplicity we will only study measures of polynomials in one variable.
Definition 2.1.1. Let f(z) = 2"+ an_ 12" . Hag = Z?:o a;%* be a non-zero polynomial
in C[z]. Define the Mahler measure of f to be
1
M(f) = eXp/ log | f(e*™)| do.
0
Also, define
1
m(f) =log M(f) = [ log| F(e*")] a0
0
as the logarithmic Mahler measure.

Remark. The Mahler measure should not be confused with the measure in the sense of set-
theory. However, the logarithmic Mahler measure does satisfy comparable properties to a
measure in measure theory. Recall (see, for example, page 22 of [17]) that for a o-algebra A a

measure p is a map p : A — R satisfying

o 1(X)>0forall X € A;

e u(®) =0



o i (UJEN A]) = en H(A;) for any countable family of pairwise disjoint sets (4;)jen C A.
In comparison, for the logarithmic Mahler measure of a non-zero polynomial f in C[z] we have

e m(f) > 0 if for the leading coefficient a,, we have that |a,| > 1, which is the case when

we for example have f € Z|z];
o m(l) =0;
o m (H;V:1 fj> = Zjvzl m(f;) for polynomials fi,..., fx in Clz].

These three properties are a consequence of Theorem 2.1.3 below, which we will deduce later

in this chapter.

Example 2.1.2. The Mahler measure of a constant polynomial f(z) = ag # 0 is given by

1
M(f) = exp / log |ao| d0 = |ao| and  m(f) = log M(f) = log |a|-

Before we calculate the measure of non-constant polynomials, it is worth observing that if
there exists a zp in C such that f(z9) = 0, then log|f(z)| has a singularity at z5. Therefore,
using a theorem similar to Cauchy’s residue theorem we will find that this measure depends on
the zeros of f. In fact, Mahler observed that the measure equals the leading coefficient times

the zeros of f outside the unit circle.

Theorem 2.1.3 (Mabhler). For any f € Clz] with leading coefficient a, # 0 and zeros
&1,..., &, we have .
M(f) = lan| - [ ] max(1,1&1).
i=1
Note that an empty product is considered to be 1, so for a non-zero constant polynomial
f(2) = ag the right-hand side equals |ag| in accordance with Example 2.1.2. This theorem is a
consequence of Jensen’s formula [8]. Therefore, before proving Mahler’s theorem we will state

and prove Jensen’s formula.

2.2 Intermezzo: Jensen’s Formula

Let f be a meromorphic complex function, that is f is analytic on C except at a discrete set
of points S which are poles. Jensen’s formula relates fol log | f(e?™)| df to the zeros and poles
of f. We will follow chapter XII, section 1 of Lang’s book on complex analysis [11] combined
with lemma 1.9 of [6] where part of the proof is formulated more elegantly. Recall that ord, f,
the order of a function f in a, equals [ if a is a zero with multiplicity [ and equals —m if f has

a pole of order m in a. Otherwise, ord, f is zero.

Lemma 2.2.1 (Jensen’s formula). Let f be a meromorphic function which is not constant on

the closed disc Dg of radius R and with power series expansion at 0 written as:

f(2) =cmz™ + ey 2™ 4+



for some m € Z. Then

1
. 1
/ log | f(Re*™%)| df + E ord,(f)log la] + ordg(f) log = =log |cpm|.
. R R
e

Proof. We start by proving Jensen’s formula in a few specific cases. Assume first of all that
f has no zeros or poles in Dg. Because in particular f(0) # 0 we have that ¢, = co = f(0).
Moreover, log f(z) is analytic on this disc (see page 123 of [11]), so

211 z

log ¢ = log f(0) = —— / g /(2) 4, / log(f(Re¥™)) do
ODRr 0

by Cauchy’s formula. This case is proven by taking the real part of the equality.

Secondly, suppose f(z) = z. Then log|f(Re* )| = log(R), ordg f = 1 and ord, f = 0
for a # 0. Hence, the left-hand side of Jensen’s formula equals log(R) + log(+) = 0 and the
right-hand side equals log|c;,,| = log |¢1| = 0, which proves the formula in this case.

Next, let f(2) = z—¢ for € € DR\{0}. Let 3 = %, then |8] = |%| < 1. Because log(1 — 8z)
is analytic with radius of convergence ﬁ > 1, by Cauchy’s theorem it follows that if |3] < 1

then )
/ log(1 — e*™?3) df = / log(1 = B2) dz = 0.
0 |z|=1

z

Taking the real part and substituting 8 — —f we can rewrite this as

1
/ log |1 — e 23| dg = 0.
0

Multiplying with log [€2™%| = 1 yields

1
/ log |€2™ — 3| df = 0.

0
Adding log R we get that

1
/ log |Re?™ — ¢| df = log R.
0

Because f(z) = z — ¢ implies that ordg f = 1, ord, f = 0 for all other a # £ and ¢y = —¢, we
find that Jensen’s formula holds in this case, namely

1
/ log |Re?™ — ¢| df + log % =log| —¢|.
0
Next, assume |3] = 1. As in the case when |§| < 1, we want to calculate fol log|l —

e2™ 3| df. This integral now becomes singular, so define

1
i 1 log |1 —

/ log|1—,862’”9|d9:11m—./ Mdz

0 e—0 271 T(8.¢) P

if this limit exists. In this equation I'(§, €) is the contour indicated in Figure 2.1.

log |[1—2zp|
z

Now is analytic on the closed unit disk except for z = =1, So, if 4(8,¢) is the

circle of radius € around S, it follows from Cauchy’s theorem that

1 log |1 — Bz| 1 log |1 — 2|
— ——dz = — —— dz.
i Jrpe 2 27 Jo(s.e) z



I(B,¢)

Figure 2.1: The contour T'(3, ).

Parametrize v(3,¢) by z = 7! 4+ £e2™ for § € [0,1). Then

o 1 276 )
1 / IOg |1 ﬂZ| dz = 10g(66 ) . 8627”6 de.
v(B,¢)

2mi z Jo B+ ee?mif
Because )
8627”9 c
—| <
B—l + 6627”0 — B—l — ¢

is bounded for £ small enough, the absolute value of the integral is bounded by Ce|log(e)| for
some constant C. Hence, for £ — 0 the integral vanishes. Similarly to the case where |§| < 1,
we can rewrite fol log |1 — Be2™| d§ = 0 to get Jensen’s formula. So, also for f(z) = z — ¢
Jensen’s equation is valid.

To deduce the general case of Jensen’s formula, let
hz) = ) T (- a)omted
a€DR

Because we multiply f by a function which by definition cancels all poles and zeros in D, we

conclude A has no poles or zeros in Dg. Furthermore we can rewrite f as

Fz) =h(z) ] (= —a)yres.

aEER

Notice that because h is analytic on Dy, Jensen’s formula holds for h. In addition, we can go
from h to f just by multiplication and division of factors for which we have proved Jensen’s
formula. Therefore, it is sufficient to prove that if Jensen’s formula is valid for functions ¢ and
1), then it is also valid for ¢ and ¢~!. Let ¢, ¢, and ¢y the leading coefficient of ¢, 1,

respectively ¢i and assume ¢ and v satisfy Jensen’s formula. Because we have that

log [¢y| = log || + log |¢/],
Orda(¢¢) = Orda(¢) + Orda(¢)7

Cmn = CmCn SO that log|cmn| = log |em| + log |enl,

the product ¢ satisfies Jensen’s formula as well.



Now, let ¢, and c,, be the leading coefficient of ¢~! respectively ¢, and assume ¢ satisfies

Jensen’s formula. Then

log [¢7"] = —log|¢],
ordy (¢ 1) = —ord, (),

Cmr = ;! s0 that log || = —log |epm].

So ¢! satisfies Jensen’s formula as well. Hence, by multiplying and dividing h successively
by factors of the form z — £ we reach f. We conclude that Jensen’s formula is valid for every

meromorphic function. O

2.3 Mahler’s Theorem

Using Jensen’s formula we can now mimic Mahler’s proof of Theorem 2.1.3.

Proof of Theorem 2.1.3. We can assume without loss of generality that the zeros of f have

been numbered so that

0=&=&=...=&u,
0<|pmt1] <...<[En| <1< |ény1| <... <&l

By putting R = 1 in Jensen’s formula we find that

1 .
M(f) = exp / log | £(e27)] o

N
1

= exp Z log Tl + log|eml
J=M+1 J

_ Cm ‘
Em+1éarta €N |

Expanding the product in f(z) = a, H]Nil(z —¢&;) yields ¢y = *agp+1€m42 -+ €n. So this

formula may also be written as

M(f) = |lanén+1€n+2 - &l

= || T max(L. &)

proving Theorem 2.1.3. =t O

Remark. As a consequence of this theorem we find that M (f) > |a,|, so M(f) > 1if f is monic.
We also find that M (1) = 1 and M(fg) = M(f)M(g). This shows that the properties of the
logarithmic Mahler measure are comparable to a measure in measure theory as mentioned in
Section 2.1.

Using this identity for the Mahler measure we have reduced the problem of calculating an
integral to the problem of finding the roots of a polynomial. So, if all roots of a polynomial
are given, we are able to calculate the Mahler measure. As a consequence, it is always possible
to calculate the Mahler measure for a given polynomial of degree at most four. This can be

done by using the formulae for the roots of linear, quadratic, cubic and quartic polynomials.



2.4 Inequalities Involving Other Measures

The Mahler measure is not the only useful real-valued function one can define on polynomials.
In fact, there are more intuitive functions called the height and length which are defined by the
coefficients of a polynomial. In his papers, Mahler compared the Mahler measure with these
measures [13] [14]. We will reproduce some of his results here. Without loss of continuity this

section can be skipped, as we will not use these results later.

Definition 2.4.1. For any polynomial f(z) =Y., a;2" in C[2], define

n

H(f) = max (la;]),  L(f) = > lail

0<i<
== i=0
as the height respectively the length of f.

Example 2.4.2. Consider the polynomial f(z) = (z —2)". Using Theorem 2.1.3 we find that
the Mahler measure equals M (f) = 2".
By Newton’s binomial theorem

f(z) = io (?) 2(=2)" "

So

n

LH=> (?) 2" = (14+2)" = 3",

=0

To calculate the height of f we have to find the coefficient that is maximal in absolute value.

First we consider the difference between the absolute value of two successive coefficients:

(?)271 - <z . 1) =t (i!(nni ) (i— 1)!2(7.111—! i+ 1)!)

_ gn—i nl-(n—i+1)  2-nl-d
N illn—i+1)  dl(n—i+1)
n—i . p)

S Am—irn D,

Note that this difference is positive if and only if 3¢ < n+1. So the maximum of the coefficients
is obtained for iy = VLTHJ Hence, the height of f is given by (1 " )2””“’“.

In order to compare the Mahler measure with these other measures in general, we need the

following lemma relating the coefficients of f to its Mahler measure.

Lemma 2.4.3. For any non-zero polynomial f(z) =Y. ,a;z" in C[z] we have

enl < () 2105)

for allm e {0,1,...,n}.

Proof. Number the zeros as in the proof of Theorem 2.1.3, such that én41,&n+2,...,&, are

the zeros outside the unit circle. Next let I = {i1,42,...,%,} be an arbitrary subset of D =



{1,2,...,n}, possibly empty or equal to D. From the numbering of the zeros it then follows
that
|an&i&is - - i

Note that each coefficient a,, of f equals, apart from a factor +1, the sum of (;’1) terms of the

<anéns1ény2 - &nl-

form a,&;, &, ... &,,. This can be seen be expanding f(z) = a, [[_,(z — &). Hence,

lam| < (;) lanén+1En+2 - &nl-

Using Theorem 2.1.3 we find that |a,,| < (7)M(f). O

n
m
Now we are ready to compare the Mahler measure with the height and length of a polyno-

mial. It turns out that for two polynomials of the same degree these measures are comparable

as follows.

Theorem 2.4.4. Let f € C[z] be a non-zero polynomial of degree n. Then

27"L(f) < M(f) < L(¥).

This inequality is best possible in the sense that equality on the left holds for example for

n

f(z) = (z=1)" and equality on the right holds for example for f(z) = z".

Proof. Summing the equation in Lemma 2.4.3 over m from 0 to n, it follows that

nn < 3 (1) =2

m=0
from which we deduce that 27" < M (f).
The other inequality with L(f) follows because |f(e?™®)| < L(f), hence

1 ) 1
M(f) = exp [ log|£(e)| b < exp / log L(f) 46 = L(f).

0
For f(z) = (z — 1)™ we have that

Because M(f) = 1, we conclude that 27" L(f) = M(f).
On the other hand, for f(z) = 2™ we have that L(f) = 1 = M(f), concluding the proof. = O

Theorem 2.4.5. Let f be a non-zero polynomial in C[z] of degree n. If n # 0, then
27HH(f) < M(f) < vVn+1 H(f)

Proof. We will prove by induction to n that (:1) <2 lforallm € Nwithm <n. Forn=1
we have () = (7) = 1 =2'"'. Assuming we have proven the inequality for n = k— 1, we have

0 1
k _ ki]‘ + ki]‘ <2k72+2k)72:2k71
m m m—1) — '

Hence, Lemma 2.4.3 implies that H(f) < 2" 1M (f), so 27" TLH(f) < M(f).
To prove the last inequality we use Jensen’s inequality below (see page 115 of [17] for a

proof), which should not to be confused with Jensen’s formula.



Lemma 2.4.6 (Jensen’s inequality applied to the Lebesgue measure). Let A : [0,00) — [0, 00)

be a concave function. For any Lebesgue-integrable function g : [a,b] — [0,00) we have

b i a /a A((b—a)g(z)) de < A (/a g(z) dx) . .

Let g(z) = |f(e®™*)|? and note that A(x) = log+/r is a concave function. Applying

Jensen’s inequality we obtain that

1
2

1 1
M) = e [ logl(e27) a0 < ( IR de)

Because the coefficients a; are the Fourier coefficients of f(e?™*?) we get by Parseval’s formula
(see vol I, page 37 of [21]) that

1 n
[y a0 =3 ool < (a4 D
0 i=0
Therefore we conclude that M (f) <+/n+ 1 H(f). O

Remark. These inequalities for the height are not sharp. On the left we can only have equality
if n <2, as (i) # 2371 = 4 for all m € N and hence by induction (:l) # 2" for n,m € N
with n > 3. If n equals 1 or 2 equality holds for example for!

H(z-1)=
27 H((z —1)%) =

:M(.’Ii—l),

On the right equality never holds for n > 0. Namely, equality holds in Jensen’s inequality if
A(z) is linear or g is constant. As log+/z is not linear, equality on the right can only hold for

constant polynomials.

1Mahler erroneously mentioned that equality can never hold on the left if the degree n exceeds 1.

10



Chapter 3

Integer Polynomials

3.1 Lehmer’s Problem

In the previous chapter all polynomials had complex coefficients. From now on we will re-
strict ourselves to integer polynomials, i.e. polynomials with integer coefficients, as Lehmer
did. About thirty years before Mahler, he already mentioned the Mahler measure in a paper
discussing techniques for discovering large primes [12]. Given a small € > 0, he wondered
whether there exists a polynomial f € Z[z] such that 1 < M(f) < 1+ e. Lehmer mentioned
that the polynomial

R R/ Ry gy |

had the smallest measure he could find for an integer polynomial. The logarithmic Mahler
measure of this polynomial is approximately 0.162358. Because it is easier to talk about
positive measure, from now on we will use the logarithmic Mahler measure.

Problem 3.1.1 (Lehmer). Does there exist a constant D > 0 such that for every non-zero
integer polynomial f
m(f)=0 or m(f)>D ?

Remark. It suffices to solve this problem in the affirmative for irreducible f. Assume that a
polynomial f with small non-zero logarithmic Mahler measure is reducible, that is f = g - h.
Because m(f) = m(g) + m(h) and m(f) > 0 for integer polynomials f as a consequence of
Theorem 2.1.3, we have that

0 < max(m(g),m(h)) < m(f).

Therefore we can assume without loss of generality that f is irreducible.
Notice that for f(z) = 2™ —2 we have m(f) = log(2), because f has as roots v/2- (},, where
Cn is a primitive nth rooth of unity. So, in our search for polynomials with small logarithmic

Mahler measure, we can assume that m(f) < log(2), that is

n
jan| - [ [ max(1, 1&1]) < 2.

i=1

11



So, we can assume that the leading coefficient of such a polynomial is smaller than 2, hence

we can assume it to be monic. Moreover, for a monic polynomial f we have that
n n
[T161 < [[max(1,1&) < 2.
i=1 i=1

As the lowest order non-zero coefficient of f equals the product of all non-zero roots of f, this
coefficient is £1.

Example 3.1.2. In this example we will calculate the quadratic integer polynomial with the
smallest Mahler measure greater than 1. From the remark above it follows that this polynomial

is of the form 22 + ax + b for a € Z and b = £1. The roots of this polynomial are given by

—a++va? —4b
—

If a® — 4b < 0 then the roots are complex conjugates of each other and therefore the complex
norm of these roots is the same. Because the product of the roots is £1, we find that M(f) =1
in this case.

Now, assume that a? — 4b > 0. Because the product of these roots is still &1 and a # 0, the
norm of one of the roots is greater than or equal to 1, while the norm of the other root is
smaller than or equal to 1 and hence does not contribute to the Mahler measure. So, if a > 0
we have that

M(f) =

—a —+Va? —4b
5 .

For a = 1, using a> —4b > 0 and b = +1, we find b = —1 and M(f) = Y5, If ¢ = 2, then

we have again b= —1 and M(f) = %. For a > 2 we have that M(f) > 3+2\/g, where b = 1.
For a < 0 we find that

—a+ Va2 —4b
2

M(f)—|

Similarly, we then find that M(f) > (1 4+ +/5)/2. So the smallest measure greater than 1 a
quadratic polynomial can have is the golden ratio (14 /5)/2 for f(z) = 22 + 2 — 1.

3.2 Intermezzo: Algebraic Integers

Before we move on to Lehmer’s problem we will study the roots of integer polynomials. These
roots are called algebraic numbers. Later we will require several results about algebraic num-
bers which we will prove in this section. We used the first chapter of the appendix of Everests

and Wards book on heights of polynomials [6] to write this section.

Definition 3.2.1. A complex number « is an algebraic number if there is a non-zero polynomial
f € Z[z] for which f(a) = 0. Moreover, « is an algebraic integer if there is a monic polynomial
f € Z[z] for which f(a) = 0. Denote with A the set of algebraic integers.

Definition 3.2.2. Let K be a field extension of Q of finite degree. The set K N A of algebraic
integers of K is denoted by Ok.

12



Example 3.2.3. If o = % € Q (assuming g > 1), then we can take f(z) = gz —p as a
polynomial such that f (%) = 0. Because every integer polynomial with % as one of its roots
contains a factor gz — p we find that % is an algebraic integer if and only if it is an integer.
Otherwise ¢ > 1 and the polynomial would not be monic. So, Og = Z. Hence, the algebraic

integers generalize the integers to finite degree field extensions of Q.

Example 3.2.4. We saw that the golden ratio 1+T‘/5 has 22 — 2 — 1 as its minimal polynomial,

hence it is an algebraic integer. So, for K = Q(v/5), 1+2\/g is in Ok and in fact O = Z[H'T‘/g]

Definition 3.2.5. An additive abelian group G is finitely generated if there exist finitely many
elements x1,...,xs € G such that every g € G can be witten as g = nyx1 + naxa + ... + nsxs

with integers ni,...,ns.
Lemma 3.2.6. A number o € C is an algebraic integer if and only if Z]a] is finitely generated.

Proof. Let a be an algebraic integer with monic polynomial f € Z[x] of degree d and with

coefficients a; such that f(a) = 0. Let G be the additive group generated by 1,a,...,a% %

Because f is monic we have that
ad—&—ad_lad*l +...4a90=0

So, a® € G. Moreover, assuming o € G for some k € Z with k > d we have that

aftl = —ad,lak — .= aoak+1_d

which belongs to G. So, by induction all powers of « lie in G. Hence, G = Z|[«], which is
finitely generated.

Conversely, assume that Z[«] is finitely generated, with generators aj,...,a,;,. Each a;
belongs to Z[a], so we can find polynomials f; € Z[z] such that a;; = f;(«). Now, let N > deg f;
forall i =1,2,...,m. We have that

m m
N =Y aja; = a;fi(a)
j=1 j=1

for a; € Z. Take
m
flx)=aV — Zajfj(x).
j=1
Clearly f € Z[z] and it is monic because N > deg f; for all i = 1,2,...,m. Finally, f(a) = 0,
from which we conclude that « is an algebraic integer. O
Theorem 3.2.7. The set A of algebraic integers forms a ring.

Proof. Let a and f be algebraic integers. By the previous lemma Z[a] and Z[f] are finitely
generated, thus so is Z[«, 8]. Since Zla + 8] and Z[af] are subgroups of Z|a, ], they are
finitely generated as well. Again by the previous lemma, we find that o + 8 and «f are

algebraic integers. O

Corollary 3.2.8. Ok forms a ring.

13



Proof. Ok is the intersection of the ring A and the field K. O

Lemma 3.2.9. Let f, g € Z[zx] be two non-zero polynomials of degree m, respectivelyn. Assume
f is monic and let &1, ..., &y be the roots of f. Then

m

b= Hg(fz’)

i=1

1§ an integer.

Proof. Every element o of the Galois group of f permutes the roots of f. Observe that p is

fixed under such a permutation, that is

[T o) =190

i=1
Hence, p lies in the fixed field of f, which is Q.
Moreover, each &; is an algebraic integer. Because algebraic integers form a ring, p is an
algebraic integer. We conclude that p € Og = Z. O

Observe that in the proof of this lemma we used algebraic integers, because f is monic.
However, later we want to use this lemma when f is not monic. In that case, the above
theory of algebraic integers will not help us. However, with the use of (elementary) symmetric

polynomials we can generalize Lemma 3.2.9.

Lemma 3.2.10. Let f,g € Z[z] be two non-zero polynomials of degree m, respectively n. Let
a be the leading coefficient of f and let &1, . ..,&y be the roots of f. Then

p=a"]]9(&)
i1

18 an integer.

Proof. Observe that p is a symmetric function of &1, ..., &y, that is, for every o € S,,, we have

m m

a" [J9&) =a" ] 9w

i=1 i=1
Hence, an element of the Galois group of f fixes p, so p € Q.
Moreover, by the Fundamental Theorem of Symmetric Polynomials (see, for example, page
140 of [16]) p is expressible as a polynomial of elementary symmetric functions in the roots
&;. Therefore, let p = a™ - q(s1,...,Sm) with s; the ith elementary symmetric function and
q € Z[z]. As g has degree n, ¢ has degree n as well. Note that the elementary functions are
- up to a sign and a factor a - the coefficients of f. Because of the factor a™ in front of ¢, we

conclude that p is a polynomial in the coefficients of f. Hence, p is an integer. O

3.3 Vanishing Measure

Lehmer’s problem is about small positive values of m(f). In this section we will consider the
situation when m(f) = 0, following Everest and Wards book [6]. This can be completely

understood using Kronecker’s lemma [10]. We first need the following definition.

14



Definition 3.3.1. Let a be an algebraic integer with minimal polynomial f. Denote the roots

of f by a1 = «, v, ..., . These roots (along with « itself) are the algebraic conjugates of a.

Lemma 3.3.2 (Kronecker). Suppose that o # 0 is an algebraic integer and the algebraic
conjugates a1 = ..., ap of a all lie inside or on the unit circle, that is |a;| < 1. Then « is

a root of unity.

Proof. For k € N, consider the polynomial
Fi(z) = [[(z = o).

Note that Fj is the minimal polynomial of . The coefficients of F} are symmetric functions
k

in the powers ;. Because the Galois group of F; permutes the roots of Fi, it follows that
the coefficients of F} lie in the fixed field of F}, which is Q. Because the algebraic integers
form a ring, these coeflicients are algebraic integers as well. Hence, the coefficients of Fj are
integers. Moreover, because |a;| < 1, each of the coefficients is uniformly bounded when we
vary k. Therefore the set {F}}ren must be finite. Hence there exist I, m € N with [ > m such
that F; = F,,,. So, the roots of F; and F,,, are the same, but they are possibly permuted. Let

7 in the permutation group S, be such that

1
ai == O(:n(z).
If 7 has order r in S, then
alr — azrf’
S0
ai"r (ozér*mr — 1) =0.
Since «; # 0, this shows that «; must be a root of unity. O

Recall that a polynomial in Z[z] is called primitive if the greatest common divisor of its

coefficients equals 1.

Theorem 3.3.3. Let f be a polynomial in Z[x] with f(0) # 0. Then m(f) =0 if and only if

f is primitive and all the roots of f are roots of unity.

Proof. Assume f is primitive and all of its roots are roots of unity. Then the leading coefficient
of f should be £1 since f divides 2% — 1 for some N > 1. So, m(f) = 0.

Conversely, if m(f) = 0 then the leading coefficient of f is +1, hence f is primitive. From this
also follows that all the roots are algebraic integers and because m(f) = 0 they must lie inside
or on the unit circle. By Kronecker’s lemma it follows that all roots are roots of unity. O

Definition 3.3.4. A polynomial is cyclotomic if all zeros are roots of unity.

Remark. Many authors (see, for example page 293 of [5]) define for a positive integer n the

n-th cyclotomic polynomial as

D, () = H (x - 62”%> )

1<k<n
ged(k,n)=1

15



which is the minimal polynomial of e2™*/". However, we will use the word cyclotomic for
primitive, possibly reducible, polynomials with all the zeros roots of unity. For example, we

will call the reducible polynomials
(x—1)(z%+1) and z'® -1

cyclotomic. With this definition we can restate the theorem by saying that for f € Z[z],

m(f) =0 if and only if f is a monomial times a primitive cyclotomic polynomial.
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Chapter 4

Mobius Transformations

4.1 Automorphisms of the Riemann Sphere

In this chapter we will study Mobius transformations, also known as fractional linear transfor-
mations, from the viewpoint of both complex analysis and group theory. These transformations
are of interest as in the next chapter we will apply them to study Lehmer’s problem. We will

follow Lang’s book on complex analysis [11].

Definition 4.1.1. A Mdébius transformation o : C — C is a function of the form

az+b
cz+d

o(z) =

where a,b,c,d € C and ad — bc # 0.

Example 4.1.2. The transformations o(z) = —z+1 = gZH and o(z) = 1 — 1 = =1 are
examples of Mobius transformations with coefficients in Q.
With Definition 4.1.1, Md&bius transformations are not defined for z = —% when ¢ # 0.

Therefore, we extend our definition to the Riemann sphere C, that is the one-point compacti-

fication of C obtained by adding the point co. Define
o(co) =aj/c and o(—d/c)=00 ifc#0
o(00) = o0 ifc=0

These definitions are natural in the sense that if we take the appropriate limits, these limits
coincide with our definitions. Hence o is a continuous function on the Riemann sphere.
Recall the following well-known theorems about Mdbius transformations. Proofs of these

theorems can be found in [11].

Theorem 4.1.3. Given any three distinct points z1, 22,23 on C and any three distinct points

w1, we,ws (also on @), there exist a unique Mébius transformation o such that

o(z) =w; fori=1,23.
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Theorem 4.1.4. A Mdébius transformation maps straight lines and circles onto straight lines

and circles.

Remark. A straight line on the Riemann sphere is an ordinary line on C together with co.
By adding oo to the line on C, it becomes a circle on the Riemann sphere. Therefore, if we
would have used another coordinate system on the sphere, we would not be able to distinguish
between a straight line and a circle on the Riemann sphere. Hence, Theorem 4.1.4 could be

reformulated as ‘A Mdobius transformation maps circles onto circles’.

Until now, it is unclear why we should be interested in specifically this kind of transforma-
tions and why they possess these kind of properties. In fact, Mobius transformations are the
automorphisms of the Riemann sphere. To prove this, we first need to extend the notion of

being meromorphic to the Riemann sphere.

Definition 4.1.5. Let f : C — C be a function on the Riemann sphere. Define g(z) = f(1/z)
for z # 0,00. Then f is meromorphic at infinity if g is meromorphic at 0. We say that f is

meromorphic on C if flc is meromorphic on C and f is also meromorphic at infinity.
For stating and proving the next lemma and theorem we use page 11 and 12 of [18].
Lemma 4.1.6. The meromorphic functions on C are precisely the rational functions.

Proof. Let f be a given meromorphic function on C. Let h be the polynomial which is zero
in all the poles of f counting multiplicity, that is, let h(z) = [],cc(z — a)™in(©.—orda(f))  The
polynomial h is well-defined because f has only finitely many poles. Consider the function
g(z) = f(2)h(z). This function is meromorphic because polynomials are meromorphic on C
and the product of two meromorphic functions is meromorphic. By construction, g has no
poles on C, hence it has a power series representation g(z) = >_7°a,2z" for all z € C. Since
g is meromorphic at oo, the sum can contain only finitely many terms. So g is a polynomial
and f = g/h is rational function. O

An automorphism of the Riemann sphere is a bijective meromorphic function on C.

Theorem 4.1.7. A function f : C — C is an automorphism of the Riemann sphere if and

only if it is a Mobius transformation.

Proof. First, assume that f is an automorphism of the Riemann sphere. By the previous
lemma, we can find polynomials g and h such that f = g/h. Without loss of generality,
assume that ¢ and h have no common roots. Because f(z) = 0 has a unique solution, the
degree of g is at most 1. Moreover, because f(z) = oo has a unique solution as well, the degree

of h is at most 1. Hence, we can write f in the form of a Mobius transformation:

az+b
cz+d

flz) =

If ad = be, then g and h have the same root, which we assumed not to be the case. If

7 dz—b . . . s
ad # bc then f = = T4 1s an inverse for f, hence f is an auAtomorphlsm. Conversely, Mobius
transformations are clearly meromorphic and invertible on C, hence they are automorphisms

of the Riemann sphere. O
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4.2 Projective Linear Group

The Mobius transformations form a group with composition as operation. Moreover, each two

by two matrix can be identified with a Mdbius transformation by the map

b a b }_)aerb
‘e d cz+d

Surprisingly, matrix multiplication corresponds exactly to the composition of transformations,

as can easily be checked. Let K be a field. Then, ¢ is a surjective homomorphism from the
general linear group GL(2, K), the group of all invertible 2 x 2 matrices. We will now find the

kernel of this map to deduce an isomorphism.

Definition 4.2.1. Let K be a field. The projective linear group PGL(n, K) is the quotient of

the general linear group GL(n, K) by its centre (which are the diagonal matrices).

Lemma 4.2.2. The group of all Mébius transformations on the Riemann sphere with coeffi-
cients in a field extension K of Q is isomorphic to PGL(2, K).

Proof. From our discussion at the beginning of the section it follows that the group of all
Mébius transformations on the Riemann sphere is isomorphic to the quotient of GL(2, K) by
the kernel of ¢. Note that

az+b =z forall zeC

cz+d
if and only if @ = d and b = ¢ = 0. So the kernel ¢ is given by all matrices of the form I
where A € K* and [ is the identity matrix. This is the center of GL(2, K). O

Remark. From now on we view the group of automorphisms of the Riemann sphere, the group
of Mébius transformations and PGL(2,C) as identical, not merely isomorphic. We will freely

use matrices to denote mappings and vice versa.

4.3 Finite Subgroups

In this section we are going to investigate the finite subgroups of PGL(2, K'), where K is one
of the fields Q,R and C. A well-known result is the following one.

Theorem 4.3.1. A finite subgroup of PGL(2,C) is isomorphic to a cyclic group, a dihedral

group or a rotational symmetry group of one of the regular solids.

We will omit the proof. However, the idea of the proof of this theorem is the following.
First, one shows that a finite subgroup of PGL(2,C) is conjugate to a finite rotation group
of C, which can be identified with SO(3,R). Thereafter one observes that a rotation which
is not the identity has exactly two fixed points, corresponding to the intersection of the axis

of rotation and the sphere. By applying (not) Burnside’s lemma' (see page 98 of [1]) for the

1As Neumann pointed out [15], ‘Burnside’s Lemma’ is not due to Burnside. Consequently, this lemma is
sometimes referred to as ‘the lemma that is not Burnside’s’ or ‘the not Burnside lemma’. This result was
already found, though with a rather unimportant restriction, in a paper by Cauchy in 1845. Without this
restriction it can be traced back to F. G. Frobenius in 1887.
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action of a finite group of rotations to the Riemann sphere, one can prove this theorem. This
proof is due to Felix Klein in his famous Lectures on the icosahedron [9] and rewritten in the
notation of modern mathematics by Shurman (see chapter 2 of [18]).

To find the finite subgroups of PGL(2, K) for the fields K = Q and K = R we follow

Dresden [4]. We start with the following two lemmas.

Lemma 4.3.2. A linear transformation o(z) = az + b has order n in PGL(2,C) if and only

if a is a primitive nth root of unity.
Proof. This follows directly from the observation that
o"(2) =a"z+b(a" 4 a" %+ 1), O

Lemma 4.3.3. Suppose o € PGL(2,Q) has finite order. Then o has order 1,2,3,4 or 6 and

in the last three cases, o(z) is conjugate to

-1 z-1 2z -1
— ——, Tesp. .
z+1 2z+1 z+1
Remark. The order-2 maps are not all conjugate in PGL(2,Q). In particular, o(z) = 7% is
not conjugate to 7(z) = —z + 1. Namely, in that case there would be a,b,c,d, A € Q with

A # 0 such that

CO0 D0 D0

After matrix multiplication we find among other things that bd + 2ac = —\ and d? = 2¢2%.
The second equation is known to have to no solution in natural numbers, because 2 is not a
square. Hence, the only rational solutions are d = ¢ = 0. This is in contradiction with the first
equation.

In PGL(2, C) however, the order-2 maps are conjugate. It would be an interesting question
to determine all order-2 maps in PGL(2,Q) up to conjugacy. Still there is a simple way to

characterize order-2 maps. By matrix multiplication we find that

2
o= b yields o% = a”+be bla+d) .
¢ d cla+d) be+d?
If c=0we find 0(2) =a/d- 2+ b/d. Ouly if d = —a we find a map of order 2, namely
o(z)=—z—-"b/a

If ¢ # 0 we can scale our coefficients such that ¢ = 1. Moreover, because the component of the
matrix o2 in the bottom left should be 0 we find that d = —a. So,

az+b
z—a

o(z) =
and one can easily check this indeed gives a M&bius transformation of order 2.

Proof of Lemma 4.3.3. One can easily verify that the three given maps in Lemma 4.3.3 have
indeed order 3, 4, respectively 6. The map o(z) = —z+1 has order 2 and of course the identity

map has order 1.
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Now we show that 1,2, 3,4 and 6 are the only possible orders. Let o(z) = fzzis € PGL(2,Q)
with finite order n. If ¢ = 0 we can write o(z) = a/d - z + b/d. Because the only rational roots
of unity are +1, by the previous lemma we find that ¢ has order 1 or 2.

If ¢ # 0 we find at least one complex fixed point of ¢ by solving the equation

ac +b
=«
ca+d

for a. Because we have to solve a quadratic equation, this fixed point « has degree of at most
2 over Q. Now, we will conjugate o(z) with

1

Z—

s(2) =

to get 6(z) = sooos71(2). Since s(a) = 0o, we have s71(00) = «, and because o fixes a we
find that 6(c0) = oco. From this it follows that & is linear, thus there are A, B € Q(«) such
that 6(z) = Az + B. Because ¢ has the same order as o, by the previous lemma we find that
A is a primitive nth root of unity. Note that Q(«) is at most quadratic over Q and A € Q(«).
The only roots of unity for which the minimal polynomial over Q is at most quadratic are
+1,4i and £1/2 +iv/3/2. Therefore, these are the only possibilities for A. So the order of o
is 1,2,3,4 or 6.

Finally, assume that n = 3,4 or 6. We will show that o(z) is conjugate to one of the
transformations above. Because ¢ has only a finite number of fixed points, there are three
distinct numbers P,@Q and R such that ¢ : P — @Q — R. Let s(z) be the unique Mdobius
transformation such that s(P) =0, s(Q) = —1 and s(R) = oo, which exists by Theorem 4.1.3,
and note that s has rational coefficients. Then, for 6(2) = so o o s 1(z), we have that
0 : 0+ —1+ oco. Therefore we have that

az —1

U(Z):TH7

where @ = 6(00). By calculating 6™(z) for n equals 3,4 and 6, one can show that n = 3,4, or
6 forces a to be 0,1, respectively 2. O

Theorem 4.3.4. All finite subgroups of PGL(2,R) are isomorphic to a cyclic or a dihedral
group.

Proof. Observe that PGL(2,R) is a subgroup of PGL(2,C). Hence, by Theorem 4.3.1 we need
only to show that the rotational symmetry groups of the regular solids are not subgroups of
PGL(2,R). The rotational symmetry groups of the regular solids are the alternating groups
Ay and As and the permutation group Sy (see chapter 8 of [1]). Since A4 C Sy C As, it is
enough to show that A, cannot be realized in PGL(2,R). We will use the fact that all the
products of elements of order 3 and 2 in A4 are of order 3, which can easily be checked by
considering products as (abc) with (ab)(cd) or writing down the multiplication table of Ay.
Assume that G is a finite subgroup of PGL(2,R) which is isomorphic to A4. After an
appropriate conjugation we can by Lemma 4.3.3 assume that an element of order 3 in G is

given by
-1

z+1°
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However, every element of order 2 in PGL(2,R) is by the remark below Lemma 4.3.3 of the
form —z+ b or (az +b)/(z —a). Now, —1/(z + 1) composed with —z + b is

1
z—b—1"

This has order 3 only for b= —1+4. And —1/(z + 1) composed with (az +b)/(z — a) is

—z+a
(a+1)z+ (b—a)

This has order 3 only if b = 2(1 + 2a + v/—4a? — 4a — 3), which is a complex number for all
real values of a. This is a contradiction, so Ay is not a subgroup of PGL(2,R). O

Now, we have enough information to determine all finite subgroups of PGL(2,Q). Let D,
be the dihedral group of order 2n with two non-commuting generators: one of order n and one

of order 2.

Theorem 4.3.5. A finite subgroup of PGL(2,Q) is isomorphic to a cyclic group Z, or a
dihedral group D,, where n equals 1,2,3,4, or 6. Moreover, for these values of n there indeed
exists a subgroup of PGL(2,Q) isomorphic to Z,, respectively D,,.

Proof. Because Q C R, by the previous theorem if follows that we only have to consider cyclic
and dihedral groups. By Lemma 4.3.3 we can only have elements of order 1,2,3,4 and 6,
hence a finite subgroups of PGL(2,Q) is isomorphic to a cyclic group Z,, or a dihedral group
D,, where n equals 1,2, 3,4, or 6.

The existence of subgroups of PGL(2, Q) isomorphic to a cyclic group for nis 1,2, 3,4 and 6
follows directly from the existence of elements in PGL(2, Q) of these orders n in Lemma 4.3.3.

The following groups are finite dihedral subgroups of PGL(2,Q)

1 1 ’ 0 1 ~ D,
1 -1 1 0
0 1 ’ 0 1 ~ D,
-1 1 1 0
1 1

) 01 ~ D47
-1 1 1 0
2 1

) 01 =~ D67
-1 1 1 0

concluding the theorem. O
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Chapter 5

Theorems of Zhang and Dresden

5.1 Zhang’s Theorem

Lehmer’s problem is still unsolved. However, there is a Lehmer-like statement for the sum of
the Mahler measure of f(z) and f(—z+ 1). Namely, letting n be the degree of f, Zhang found
a constant D > 0, such that for o(z) = —z + 1 [20]

m(f)+m(foo)=0 or m(f)+m(foo)>nD
for all non-zero f € Z[x]. In particular, if f is a non-constant polynomial we have that
m(f)+m(foo)=0 or m(f)+m(foo)>D.

This theorem was proven in the context of Mahler measure-like functions on algebraic integers.
Namely, using the usual and so-called p-adic absolute values on an algebraic integer one can
define a positive real-valued function h on every algebraic integer «, called the height of «. If
the minimal polynomial f of « has degree n, then we have that

h(a) = = m(f).

n

We will follow a more elementary proof of Zhang’s theorem by Zagier [19], although phrased
in terms of the Mahler measure (instead of the height of algebraic integers) as in [6]. Dresden
has proven a similar result by using the transformation o(z) =1 — % instead of o(z) = —z+ 1.
Both are examples of sums of the Mahler measure under Mobius transformations. We will
study these two examples before we present a general theorem of sums of Mahler measures

under Mobius transformations.

Theorem 5.1.1 (Zhang, Zagier). Let w = % + %z\/g be a primitive 6th root of unity and let
o(z) =1—z. Suppose f € Z[z] has degree n and 0,1 and w are not roots of f. Then

1++5
2

m(f) +m(f o) > 2 log (
and equality holds if and only if f or foo is a power of (22 —2z+1)2+2(2—1)? = 22 —234+22 —2+1.
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Remark. If we would not impose the condition that 0, 1 and w are not roots of f, then 27,
(1 —2)" or (22 — 2+ 1)" could divide f(z) for every n € N. Hence (1 — 2)", 2™, respectively
(1-2)2—(1—2)+1)" = (22— 2+1)" would divide f(1—z2). The logarithmic Mahler measure of
these polynomials then vanishes, because all roots are on the unit circle. Hence, by repeatedly
multiplying f with one of these three polynomials, the right-hand side of Theorem 5.1.1 could

be made arbitrary large, while the left-hand side remains unchanged.

This theorem will follow from Lemma 5.1.2 below. However, to prove this lemma we need
to generalize the maximum modulus principle to so-called harmonic functions, which we will

do in the next section. We denote log™ (z) = log max(z, 1).

Lemma 5.1.2. For all z € C\{0,1,w,&} we have

V-1
2v/5

1

2v/5

log |22 — 2| +

1
log|2? — z + 1] —log™ |z| —logT [1 — 2| < —§log (

145
2

with equality precisely if z or 1 — z equals a root of 2* — 23 + 22 — z + 1.

5.2 Intermezzo: Harmonic Functions

In this section, we will follow chapter VIII on harmonic functions of Lang’s book on complex
analysis [11]. In the next section we will apply the tools developed in this section to the
+ | .

functions log | - | and log™ | - | to prove Lemma 5.1.2. We write z € C as z + iy for x,y € R.

Definition 5.2.1. A function f : C — R is called harmonic if it has continuous partial
derivatives of order one and two and satisfies

2 2
#i 1,
ox? = 0y?

Lemma 5.2.2. The real part of an analytic function is harmonic.

Proof. Let f be an analytic function. Its real and imaginary parts u(z,y) and v(z,y) are

smooth. By the Cauchy-Riemann equations we have that

ou Ov ou ov

%—@ an Fy——%

Taking the partial derivative of these equations to = respectively y and using that %28?/ = %2(%

for smooth functions we find that
0%u  O%u
425 =0.
0x2 = Oy?

We conclude that « is harmonic. O

Example 5.2.3. For a given determination of the logarithm on C minus a half-line we have
that log |z| = R(log(z)), the real part of log(z). By choosing two different branches of the
logarithm we see that log |z| is harmonic on C*.

Moreover, log™ |z| is the real part of the zero function on the unit disk D; and equals log |z|
outside Dy. So log™ |z| is harmonic on C outside the unit circle |z| = 1.

24



The converse of Lemma 5.2.2 is also true and useful to deduce a maximum modulus theorem
for harmonic functions below.

Lemma 5.2.4. Let u be a harmonic function on a simply connected open set U. Then there

exists an analytic function f on U such that u = Rf.

Proof. Consider

ou ou
h=— —i—.
ar y
Because
0%u 0%u 0%u 0%u

PR d =

Oz? Oy? M B Oy Oy Oz
it follows from the Cauchy-Riemann equations that h is analytic. As U is simply connected, h
has a primitive f on U. Let v = Rf. Then

v v
) .
h(z) = f'(z) = . Z@y’
So the partial derivatives of v and v are the same. Now, let ¢ = w — v. Then
dg Ou Ov
dr  dr dr Rhz) = Rh(z) = 0.

Analogously, we find that g—z =

Now let zg € U and v : I — U be a path from zy to a point z in U. This path exists because
U is connected. By the chain rule it follows that

d Og 0x  0g Oy

- )= 22 4 227

7?00 =505 Ty

Therefore g(vy(t)) is constant, so g(z9) = g(z). Hence, g is constant. So u = v+ C with C € C.
From this it follows that f — C' is the desired analytic function on U with real part u. O

Theorem 5.2.5. Let u be a harmonic function on a connected open set U. If u has a maximum

at a point zg € U, then u is constant.

Proof. Let D C U be an open disk containing xy. Because a disk is simply connected, by
Lemma 5.2.4 there is an analytic function f on D such that u = R f. Because the composition

of analytic functions is analytic we also have that e/(*) is an analytic function and moreover

)] = RFE) = i),

Since the real exponent function is strictly increasing, the maximum zg for u is also a maximum
for e* and hence a maximum of |ef |. By the maximum modulus principle for analytic functions,
it follows that ef is constant on the disk D, hence e is constant on D and finally v is constant
on D.

We will now prove that u is not only constant on D, but also on U. Let S be the set of
points z € U such that  is constant in an open neighbourhood of z with value u(zy). We give
an open-closed argument to show that S = U. First of all .S is not empty, because zy € S.
Secondly, by definition S is open. We will now show that S is closed in U. Let z; be in the

closure of S in U. Because u is continuous and every neighbourhood of z; contains points of
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S, we have that u(z1) = u(zp). So u has a maximum at z; and by the first part of the proof
we find that u is locally constant near z;. Hence, z; € S, from which it follows that S is
closed. So, S is a non-empty connected component of U. Because U is connected, we find that
U=2-5. O

Corollary 5.2.6. Let u be a harmonic function on a connected open set U and continuous on

its closure U. If u is not constant on U, then any mazimum of uw on U occurs on the boundary

ou.

Proof. This follows immediately from Theorem 5.2.5, because this theorem implies that u does

not have a maximum on U. O

5.3 Proof of Zhang’s Theorem

Proof of Lemma 5.1.2 by Zagier. Let L(z) be the left hand side of the proposed inequality,
that is

V5 —
2V5

For |z| > 2 we can rewrite this as

log |22 — 2z + 1| —log™ |z| — log™ |1 — z|.

L(z) =

log|z —z|+ —=

2\f

5—1+1 1
L(z)\[%/glog|222|+2\[log 1+ ‘ log |z] — log|1 — |
:—710g|z —z|+ \flog1+ PR

From this it is clear that L(z) — —oo as |z| = oo. The function L is not defined for the points
0,1,w,w, because these are the roots of 22 — z and 22 — z + 1. However, in the limit where z
goes to one of these points, L(z) — —oo. Moreover, L is continuous away from these points.
So L attains a maximum.

Now, note that away from the circles |z| = 1 and |1 — z| = 1 the function L is harmonic, as
we have seen in Example 5.2.3. By Corollary 5.2.6 the maximum of L on one of the connected
components of {z € C | |z| # 1 and |1 — z| # 1} must be attained on these circles. Hence, L is
maximized on one of these circles. Since L is symmetric under z — 1 — z and z — Z, we may

assume z = e for 0 < 6 < 7. Let
_ 2 if —i0 w28
=lz—=1"= (" = 1)(e”"” — 1) = 4sin” 3,
and note that
|22 — 24+ 12 = (2 — e +1)(e? —e ™ +1) = (1 —4sin® §)* = (1 - )%

We distinguish two cases. First, let 0 < 6 < %, so that 0 < S < 1. Note that ¢ =0 and § = 3

correspond to z = 0 respectively z = w, which we excluded. Then

L(z) = ff log S + 2\[ log(1 —95).
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Differentiating with respect to S yields that the only extremum found for S € (0,1) is L =
1 145 _ 35 _x

—5 log (T) for § = =5 and 0 = .

Similarly, for % < 6 <1 andhence 1 < S <4 we have that

L(z) = *Z\f[l log S +

2\[ log(1 —S5).

The only extremum of L is found for S = 3,27\/5 where L = —3 log (H‘f) and 0 = ‘%’T
We conclude that L(z) < —1log (H‘[) for all z € C\{0,1,w,w}. Note that equality holds if

™. 3 . . . .

z=e5'orz=e5"' after applying z — 1 — z and/or z — Z to z. Hence, we have equality if
37\' 37r.

zorl—zequalse 5 oref 5l As 2t — 28422 — 241 has e 5 and e © as its roots, we

have equality if z or 1 — z is a root of 2% — 23 + 22 — 2 + 1. O

Proof of Theorem 5.1.1. Assume f has leading coefficient a. Let & be the zeros of f and for

z = &;, sum the inequality of Lemma 5.1.2 over all i to obtain

V5 — 1

2\[ (52 &)+

NG H(&?—&H)
i s 1++5
=D logT[&| =) log" |1 - & < —glog ( +2f> :

=1 =1

Note that m(f) = log|a| + >_i, log™" |&|. Writing

log +

1 1
log |a|* + —= log |a|* + log |al,

V5
2v/5 2v/5

add and subtract 2log |a| to the left hand side of this inequality to obtain

V5 —1
———log |a

2v/5

2log |a| =

_|_

(3

3 [GRE))
=1

[ -6+
=1

1
+——1o
2v/5 &

—m(f) —m(foo)+loglal < —glog <1 +2\/5> .

Now, let Gal(f) be the Galois group of f. An element of Gal(f) permutes the roots of f, so

[ -¢) and [ -&+1)

i=1 i=1

lie in the fixed field of f, which is Q. Moreover,

Tle-e) = aH &) - Hl—@) — 1 0) /()]
and n n n
o [I€ -&+ | =|e][w-&) a][@-&)| = If@)f@).

Now, note that 0,1, w and @ are algebraic integers. Because the algebraic integers form a ring

as we saw in Theorem 3.2.7, these products are algebraic integers. Equivalently, we could have
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used lemma 3.2.9 to prove that these product are algebraic integers. Because 0,1 and w are
not roots of f, these product are positive integers. Therefore the logarithm of these product

is greater than zero. We also have that |a| > 1, hence log|a| > 0. So

—m(f) —m(foo) < -glog (1 *f) .

We conclude that

m(f) +m(f o7) > 2o (1 *f) |

Equality holds precisely if for all the roots of f equality holds in Lemma 5.1.2 and f is monic.
Hence, equality holds if and only if f or f o ¢ is a power of (22 — 2z + 1)2 + 2(z — 1)? =
A4z 1 O

5.4 Dresden’s Theorem

Dresden has done something similar to Zhang’s theorem using the permutation o(z) = 1 —
instead of o(z) =1 — 2z [3]. For z € C\{0,1} we have for Dresden’s permutation that

1
z

1 1
2 3
0(2)21—17%:172 and o°(z)

1
= =2
1-1+1

We will prove his theorem in this section following his ideas, although phrased in terms of
Mahler measures instead of heights.

A problem in this case is that do not have that f oo € Z[z] for all f € Z[x]. For example,
for f(z) = x — 2 we have that

foa(x)z—%—l.

However, we can still consider the polynomial with as its roots the image of the roots of f
under o. That is, if £; are roots of f, then we let f, be the primitive polynomial with as roots
o(&;). In Lemma 6.1.2 we will prove that f € Z[z] and that if f is an irreducible polynomial,

then f, is irreducible.

Theorem 5.4.1 (Dresden). Letw = % + 2iV3 and 0(z) =1 — 1. Let f € Z[z] with degree n

be given such that 0,1 and w are not roots of f. Let a be the unique oot of
g(2) = (22 —2+1)2 = (22 —2)? = 2% = 32° + 52 =522 4522 - 32 +1
with the greatest absolute value and positive imaginary part. Then
m(f) +m(fs) +m(fs2) = nlog|al.

Equality holds if f, f, or fs2 is power of g(2).

The proof of this theorem resembles the proof of Zhang’s theorem. Similarly, we first need

an inequality involving the permutations of z under o.
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Lemma 5.4.2. There exists a B € R with 0 < B < % such that for all z € C\{0,1,w,w} we
have

(22 —2z+1)3

Blog = 2)

’ —log™ |z| — log™

1
1= 1) oyt
z

L | < log]qf
o — — 10 Q.
1—2z|— &

Equality holds for all roots of g(z) = 2% — 32° + 52* — 523 + 522 — 32 + 1.

We follow Dresden’s proof of this lemma and describe how the value of B can be constructed.
By doing this we gain more insight into the general case, whereas in the proof Zhang’s lemma

‘f\/_gl and ﬁ were already given.

Proof of Lemma 5.4.2. Let L(z) be the left hand side of the inequality. For z # 0,1 we have
that

the constants

(22 —2z+4+1)3
EERE

Now, note that for |z] — co we have that

(22—2+1)3

= log |2%| + log (22

log

2 13 1
uﬁl, 1— -1 and
22(2%2 — 2)? z 1—z

Hence,
2B | _

lim L(z) = leiinoolog|z log | z].

|z =00 |

Because B < % it follows that L — —oo for |z| — co. Similarly we have that L goes to —oo
for z near 0,1,w and @.

We wish to find the maximum value of L, since such a maximum will give precisely the
inequality necessarily to prove the lemma. By the same argument as in the proof of Zhang’s
theorem the function L attains its maximum on one of the curves |z| = 1,]1 — 1| = 1 and
|i| = 1 by the maximum principle for harmonic functions. Because L is symmetric under
o it is enough to consider only one of these three curves. Hence, consider the straight line
1 — %| = 1 which is parametrized by z = % + iy. Because L is symmetric under complex

conjugation we only consider y > 0. Let S = |1 +iy|? = y? + 1. Then we have that

(Z-z+1°| _(G-9¢")° _(S+1)°
ZQ(Zz_z)2 (3/24‘%)2 92
and
’ 1 _‘§+z‘y 1 ‘1 1_‘—1+y2—iy B
1—z| |Tyy2| VS z Ity

We now distinguish two cases. When 0 < y < @ and hence % < § < 1 we have that

L =3Blog(1—S)+ (3 —2B)logs.

—4B+1
551 BY

computing the second derivative test, we conclude that this is indeed a maximum for B < i.

By differentiating with respect to S we find that L attains its maximum for S =

Substituting this value for S in L yields

L =1((6B)log(6B) + (1 — 4B)log(1 — 4B) — (1 — 2B)log(1 — 2B)).

1
2

29



Minimizing this for B yields that B is the single real root of 18422 + 6z — 1. Let —D be the

value of L for this value of S and B.

In the second case, when @ < y and hence 1 < S, we find that

L =3Blog(S — 1) — (3 +2B)log(9)

4B+1
—2B+1"

which is maximal for S = For the same B as in the first case we find that L is now

bounded above by
1 ((6B)log(6B) — (1 —4B)log(1 — 4B) + (1 — 2B) log(1 — 2B))..
It can be checked that this value is smaller than —D. Thus, the maximum value of g is —D.
To deduce when equality is holding, note that this maximum is attained at
—4B +1 S—1
= 1_'_7;3, or equivalently B = 51
By expressing B in terms of S and because B is a root of 18423 + 62 — 1 one can show that S
satisfies
5% —25%4+35—-1=0.

Recalling that S = y2 + i and z = %Jriy we see that S is attained for a root of the polynomial
g(2) = 2% —32° +52% — 523 + 522 — 32+ 1.

The other five roots of this polynomial are also maxima of g. These roots reflect the symmetry
of the inequality: they can be found by complex conjugation and applying ¢ to the root a.
We thus find that D = log |« O

Proof of Theorem 5.4.1. Assume f, f, and f,2 have leading coefficient a, b, respectively ¢. Sum
the inequality of Lemma 5.4.2 over all zeros &; of f and add nB log |(abc)?| — log |a| — log |b] —
log |c| to the left-hand side. Because B < 1/2 and a,b, ¢ € Z this is smaller than or equal to 0.
We then obtain

2 4 3
(abc)2 H (51 67, + 1)

Bl
s @ =gy

- m(f) - m(fa) - m(faz) < —n10g|a\.

Now, let ¢g(z) = 22 — z + 1 be the sixth cyclotomic polynomial. The following identity holds

22—z 3
((22_1_)21) = ¢6(2) - ¢6(0(2)) - d6(°(2)).

Hence,

T -&+1)?
(abe)* | | o=
e E (& —&)?

= ‘(abC)2 H%(&) - d6(0(&:)) - d6(0% (&)
= [f(W)f@) - fo(w)[o(@) - foz(w)fo2 (W)].

Because this product is symmetric in the roots &;, it lies in the fixed field of the Galois group of

f- As w and @ are algebraic integers, these products are non-negative integers. Equivalently,
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the fact that these product are integers, can be shown by using Lemma 3.2.9. Since w and @
are not roots of f, these products are positive integers. So, the logarithm of this product is

greater than zero. Hence, we can estimate our inequality by

_m(f) - m(fa) - m(fcrz) < —nlog |a|

from which we conclude the theorem. Equality holds precisely if for all the roots of f equality
holds in Lemma 5.4.2 and f is monic. Hence, equality holds if and only if f, f oo or f,2 is a
power of g(z). O
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Chapter 6

Mahler’s Measure and Mobius

Transformations

6.1 Mobius Transformations Acting on Polynomials

In this chapter, we will expand on the work done by Zagier and Dresden by giving a general

procedure to find bounds of the sum of the Mahler measure of a polynomial under a Md&bius

transformation. To the best of my knowledge, this procedure cannot be found elsewhere.
First, we will define the action of a Md&bius transformation on a polynomial. We already

did this before stating Dresden’s theorem, but now we will do it more rigorously.

Definition 6.1.1. For ¢ € PGL(2,Q) and an irreducible polynomial f € Z[z] with « as one

of its roots and o(«) # oo, define f, , as the minimal polynomial of o(«).

The following lemma implies that o is not needed in the notation fy o, that is, f, ., does

not depend on the particular root « chosen.

Lemma 6.1.2. Let f € Z[x] be irreducible with roots &1,&a,...,&,. Let o € PGL(2,Q) and
assume (&) # 0o. Then the roots of fo e, are o(&1),0(&2),...,0(&n).

Proof. Let g € C[z] be the monic polynomial with o(&1),0(€2),...,0(&,) as its roots, that is

n

9(2) = ] [(@ = o(&)).
i=1
We will show that beside a multiplicative factor g equals fo¢,. First, we show that g is well-
defined, that is that all the roots of g are non-infinite. If & € @Q, then it has no algebraic
conjugates and because o(&1) # 00, g is well-defined. If £ ¢ Q all its conjugates are irrational
numbers as well. As by definition a Moébius transformation can only be infinite for rational
numbers, also in this case o(§;) # oo for all ¢, so g is well-defined. Note that the coeflicients of
g are symmetric fractions in the roots ;, so these coefficients lie in the fixed field of Gal(f),
which is Q. Hence for some positive integer k, §(z) = k- g(x) is a primitive polynomial in Z[z].

Now, suppose § is reducible in Z[z], that is there exist integer polynomials & and j such that
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g = h-j. Because f is irreducible, it is separable over Q. As o is a bijection on the Riemann
sphere, it follows that § is separable as well. So, for every i we have that o(&;) is a root of
exactly one of the polynomials h and j. Take S C {1,2,...n} such that o(&;) is a root of h
for all i € S and o(&;) is a root of j for all 4 € {1,2,...,n}\S. Similarly to the construction of
g, we can show that there are primitive polynomials in Z[z] with o =to(&;) = &; as their roots
for i € S respectively for i € {1,2,...,n}\S. Because f is the product of these polynomials,
f should be reducible. This is a contradiction, so § is irreducible. Hence § is the minimal

polynomial of o(a), 50 § = fr - O
With this lemma, we can now define f, for all f € Z[x].

Definition 6.1.3. For 0 € PGL(2,Q) and an irreducible polynomial f € Z[z] with « as one
of its roots and o(a) # o0, let f, = foo be the minimal polynomial of o(a). If f € Z[z] is
reducible, write it as a product of irreducible factors g; with 7 in some finite index set I. Define

fo as the product of (g;), over all i € I.

Example 6.1.4. Let
f)=a® 322 +2+2=(x—-2)(2®> —2 —1)

and let
2243

22— 17

o(z)

We note that

0(2)25 and a<1+2\/5>:5+54\/5.

The corresponding minimal polynomials are 3z — 7 and 522 — 10z — 11, so
fo(z) = (32 — 7)(52% — 10z — 11) = 152> — 652 4 37z + 77.

Note that

2 -9

U(l—ﬁ) 5-4v5

is the other root of the polynomial 522 — 10z — 11.

Remark. A more direct approach to define f, would be to use the biholomorphism between
the Riemann sphere C and the complex projective line CP', that is a bijective holomorphic
function C — CP! such that the inverse is also holomorphic (see page 12 of [2]). A Mébius

transformation on CP' can be written in homogeneous coordinates as

az+b_
cz+d’

1} =laz+b:cz+d].
A polynomial f(z) =7 ;a;z" corresponds to the homogeneous polynomial

9(X.Y)=> a; X'y
=0
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such that f(z) = g(z,1). In these coordinates it would be natural to define f, as corresponding

to
n

g(aX +bY,cX +dY) =Y a;(aX +bY) (X +dY)"".
1=0

In our former coordinates it then follows that

az+b
cz+d

o) = s 0" (250) = (e 7 flo)

Note that the roots of f, are given by o~ 1(¢;), where & are the roots of f. However, f,(z) is

not necessarily primitive. For example, for o(z) = ;ﬂ and f(z) = z+ 1 we find that

Fol2) = (2 — 1) (j+1+1):z+1+z—1:2z.

However, if we divide f, by its content ¢(f,), we have that f,/c(f,) is a primitive polynomial
with the same roots as f,-1. So,

fd/c(fo) = fo-1.

In what follows, we will always be interested in sets like {|f,(2)| : 0 € G} for some group
G C PGL(2,Q). Hence, in what follows it does not matter which of the two definitions is used.

6.2 A Lehmer-like Problem

Definition 6.2.1. Let f € Z[z] and let G be a finite subgroup of PGL(2,Q). If f, is well-
defined for all o € G, define the logarithmic Mahler measure of f under G as

ma(f) =Y m(fs)
ceG

Extend the definition to include mg(f) = oo if f, is not defined for some o € G, that is
o(€) = oo for some root of f. In inequalities we use that co is greater than all real numbers.

By this convention we can omit the condition that f, is well-defined.

Example 6.2.2. In Zhang’s theorem we had G = (—z + 1) = Z5 and found that

ma(f) > glog (1 +2\@> ,

except when f equals z, —2 + 1 or 22 — 2z + 1, where mg(f) vanished. In Dresden’s theorem
we had G = (1 — 1) = Z; and found that in this case for log |a| ~ 0.42180 we have

ma(f) = nloglal,
with a vanishing logarithmic Mahler measure under G' when f equals 22 — z + 1.

We will now generalize these two examples. The problem we will consider is the following.
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Problem 6.2.3. Let a finite subgroup G of PGL(2,Q) be given. Does there exist a lower bound
D > 0 such that for all polynomials f in Z[zx] of degree n we have that

ma(f) =0 or mg(f) >nD ¥

If so, can we explicitely find an optimal value of D, that is, a D > 0 such that there exist a
polynomial f for which mg(f) =nD?

The answer to this question depends on which of the following categories G belongs to:
Lemma 6.2.4. For a finite subgroup G of PGL(2,Q) ezxactly one of the following three holds:
(1) ma(f) =0 for all cyclotomic polynomials f.

(ii) ma(f) =0 for at least one and at most three irreducible polynomials. These irreducible

polynomials are of the form z, z+1, 2z —1, 22 +1, 224+ 2+1 or 22 — 2z + 1.
(ili) There is no polynomial f such that ma(f) = 0.

Proof. Assume first that all ¢ € G map the unit circle onto itself. For a cyclotomic polynomial
f and 0 € G we then have that f, has all its roots on the unit circle. Moreover, because f,
is a minimal polynomial, it is primitive. Therefore, by Theorem 3.3.3 we find that m(f,) = 0,
from which it follows that mg(f) = 0. Hence, if all 0 € G map the unit circle to itself, we are
in case (i).

Now, note that a circle in the complex plane is uniquely determined by three points lying
on it. So, by Theorem 4.1.4, which states that a Mobius transformation maps circles on the
Riemann sphere to circles on the Riemann sphere, if three roots of unity are mapped to other
roots of unity the whole circle is mapped into itself. So, if there is a ¢ € G which does not map
the unit circle into itself, it sends at most two roots of unity to other roots of unity. Therefore,
the roots of a cyclotomic polynomial f of degree three or higher are not all mapped to other
roots of unity by o. For such a polynomial, f, is not cyclotomic. Assuming that mg(f) =0
and f(0) # 0 and using Theorem 3.3.3 again implies that f is a cyclotomic polynomial of
degree at most two.

Because monomials also have a vanishing Mahler measure and ¢(0) € Q, o might fix 0, in
which case {0} is an orbit of o acting on C. Other possible orbits containing 0 are {0, —1}, {0,1}
and {0,—1,1}. So, at most four polynomials satisfy mg(f) = 0, namely the zero polynomial,
the minimal polynomial of —1 and 1 if these roots are fixed on the unit circle or mapped to 0
and a cyclotomic polynomial of degree two whose roots are fixed on the unit circle. Observe
that if both the minimal polynomial of 1 and —1 satisfies mg(f) = 0, then at least one of these
roots is fixed, and because all other roots of unity are of degree two or higher, there could not
be an additional cyclotomic polynomial. We conclude that if there is a ¢ € G which does not
map the unit circle into itself and there is a polynomial f with ma(f) = 0 that at most three
of the polynomials z, z+1, 2 — 1, 22 +1, 22 + 2z + 1 and 2% — 2 + 1 satisfy mg(f) = 0. This is
case (ii).

Finally, it is possible that there is a ¢ € G which does not map the unit circle into itself

such that for no polynomial f the measure mq(f) vanishes. That is case (iii). O
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We will use the short-hand notation wy 4+ = :l:% + %2\/5, which are the roots of 22 + z+1
and 22 — z + 1. In this notation, the set of roots of the six polynomials of case (ii) is given by
S = {0, il, ii,wi,i}.

Notice that the two examples considered in chapter 5 satisfy condition (ii). For each of
the conditions we will now examine for which groups it holds. In fact, there are only a few
possibilities for finite subgroups G which satisfy condition (i) or (ii). Namely, we will use that
if for 0 € PGL(2,C) there is a polynomial f € Z[z] such that m(f,) = 0, we already have
some information about the orbits the roots of f under o.

6.3 Case (i): Unit Circle Preserving Groups

We will call a subgroup of PGL(2,Q) unit circle preserving if it satisfies condition (i) in
Lemma 6.2.4, which is equivalent to saying that for all o € PGL(2, Q) the unit circle is mapped
to itself. Moreover, o € PGL(2, Q) is called unit circle preserving if (o) is unit circle preserving.
For unit circle preserving groups we have that mg(f) = 0 for all cyclotomic polynomials.

G = {e} is a unit circle preserving group. Problem 6.2.3 with G = {e} is like Lehmer’s
problem, the only difference is the factor n on the right side of the proposed inequality. For
other finite unit circle preserving groups G this question seems to be slightly easier, because
we have more information: if mqg(f) = 0, we do not only have that m(f) = 0, but also that
m(fy) = 0 for all o € G. Nevertheless, like Lehmer’s problem, it is unknown what to answer
is to Problem 6.2.3 is for unit circle preserving groups. In the rest of this section we will
characterize all unit circle preserving groups, although we are not able to solve Problem 6.2.3

for these groups.

Lemma 6.3.1. The only unit circle preserving o € PGL(2,Q) are the identity e and transfor-

1 1
Ay = ? and By = 0
g -1 +1 0

Proof. Let 0 € PGL(2,Q) be of finite order and sending the unit circle to itself. Because
o(£1) € Q it follows that either o(1) =1 and o(—1) = =1, or 6(1) = =1 and o(-1) = 1. In
the first case, by writing o as

a b

c d

we find that a = d and b = ¢ by solving two linear equations. If a = d = 0 we have that o

mations of the form

for g € Q with q # +1.

equals By. Otherwise, we can divide by a and for ¢ = g we find that o equals

1)

If o is of finite order, by Lemma 4.3.3 the order of ¢ is a divisor of 4 or 6. Solving o* = 0 and
0% =0 for ¢ € Q yields ¢ = 0 as the only solution. Hence, we find the identity transformation.

The second case can be done similarly. We find that b = —cand a = —d. If a = —d =0,
we obtain B_. Else, we find A, which is of order 2 for all ¢ € Q\{—1,1}.
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Finally, note that for z = ¢ with § € [0,27) we have that

B ¢>+1—2qcosb B
- ¢24+1—2gcosf

[Aq(2)] (as ¢ # +1)

as well as |e(z)| = 1 and |By(z)| = 1 = 1. Hence, transformations of the form e, A, or By are
indeed unit circle preserving. We conclude that all unit circle preserving transformations are
of the form e, A, or B. O

Corollary 6.3.2. All non-trivial unit circle preserving subgroups of PGL(2, Q) are isomorphic

to Zs or the Klein four-group Ds.

Proof. All transformations A, and By are of order 2. All the elements of the groups Z,, and D),
in the classification of all finite subgroups of PGL(2,Q) are of order 2 if and only if n =2. 0O

Example 6.3.3. For all ¢ € Q\{—1,0,1} the group

e )G 2 00)

is a finite unit circle preserving subgroup of PGL(2,Q) isomorphic to the Klein four-group.

6.4 Case (ii)

The second case of Lemma 6.2.4 is the most interesting one. In this case the answer to
Problem 6.2.3 is ‘yes’. With a procedure similar to the proofs of Zhang’s theorem by Zagier,
and Dresden’s theorem for cyclic groups, we can find the constant D Problem 6.2.3 is asking
for. Recall that in case (ii) we have that G C PGL(2,Q) permutes at least one of the special
roots in S = {0,£1,+4,wy +}. First of all, we will characterize all finite transformations of
case (ii).

To find these, we will consider all possible cases of orbits of the roots of the six polynomials
in (ii) under o, similarly to the proof of Lemma 6.3.1. For example, consider the polynomial
f(z) = z. As f is not cyclotomic with m(f) = 0, this polynomial is by assumption excluded in
Theorem 3.3.3 which characterizes all polynomials with a vanishing Mahler measure. We have

the following result.

Lemma 6.4.1. Let f(z) = z and 0 € PGL(2,Q) of finite order. If m,(f) = 0, then o is
either the identity e or of the form

GO o ()

Proof. This proof is not clarifying, but only consists of simple number theoretic and linear

for some r € Q.

algebra calculations. The details can be filled in by the reader.
Let 0 = %is. Because m(f,) = 0 and o(0) is rational, ¢ should map 0 to —1,0 or 1.
Because o is of order 1,2, 3,4 or 6 we have that o* or ¢® is the identity.
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If 0(0) = 0 we have that b = 0. Assuming o* equals the identity, it follows that ¢ = 0 or
a = —d. The first case implies that a = £d, so 0(z) = £z and o is either the identity or of the
form of the first matrix of this lemma with » = 0. In the second case it follows from ad —bc # 0
that a # 0. After division by —a we find that o is of the form of the the first matrix. If o©
equals the identity, we find the same transformations.

If 0(0) = 1 we have that b = d. Because m(f,2) = 0 as well, we know that 1 is sent to
—1,0,1. Because 0 is mapped to 1, it is not possible that 1 is mapped to 1. If 1 is sent to 0,
we find that a = —b. Then, o2 is the identity and o is of the form of the second matrix with a
minus sign. If 1 is sent to —1, still assuming that o(0) = 1, we have that a+b+c+d = 0. If o*
equals the identity, then b = 0, a = —b or @ = 3b. None of these cases result in a 0 € PGL(2,Q)
such that my(f) = 0. By calculating 0% in this case, we find that b =0, a = b, a = —b or
a = 5b. Only if a = b we have that my(f) = 0, in which case ¢ is of the form of the third
matrix.

If 0(0) = —1, then we similarly find that o is of the form of the second matrix with a plus
sign or of the form of the fourth matrix.

Finally, note that by construction all the transformations ¢ in this lemma have the orbit
of 0 under (o) contained in {0,—1,1}. Hence, we indeed have that m(f) = 0. O

Actually, not all transformations of the previous lemma are transformations of case (ii).
For example, taking » = 0 in the first transformation of the above lemma, we find

b2

which is a unit circle preserving transformation. However, neglecting the transformation we
found in Lemma 6.3.1, we have now characterized all finite order transformations of case (ii) for

which mg(z) = 0. We can generalize this lemma to find all finite order case (ii) transformations.

Theorem 6.4.2. Let 0 € PGL(2,Q). Then o is a case (ii) transformation if and only if o is

in the cyclic group generated by some matriz in the first column of Table 6.1.

Proof sketch. For all six polynomials in condition (ii) (or equivalently: for all elements of S)
we do the same calculations as in the proof of Lemma 6.4.1. Just as 0 had to be sent to 1 or
-1, we have that 7 should be sent to £¢ and w4 4 should be sent to w4 4 or wy . Hence, we

only have a finite number of cases to consider. O

Some transformations can be found in more than one cell of the first column of Table 6.1.

()

corresponds to the first row for p/¢ = 1 and to the seventh row for p/qg = 0. All these

For example, the transformation

transformations can be found in Table 6.3.
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Theorem 6.4.3. For all case (ii) finite cyclic subgroups (o) of PGL(2,Q) there exists a D € R
with D > 0, such that
mey(f) =0 or m(f) >nD

for all f € Z[x]. Moreover, the value for D found in Table 6.1 or 6.3 is optimal in the sense
that equality holds for powers of the minimal polynomial of the root in the corresponding cell

in the column ‘Equality’ in these tables.

Proof for one case. For all groups (o) the proofs are similar. Note that the eighth row in
Table 6.1 and the third row in Table 6.3 correspond to Dresden’s respectively Zhang’s theorem,
which we already proved in the previous chapter. Therefore, we will prove only one more
instance, namely the inequality corresponding to the first row of Table 6.1.

For 0 = we have to prove the inequality

oz
p/qz—1
2

‘ —log™ |z| — log™

z
log’ ‘S—max ol —4ql,lq]).
T (1pl -l la)

bz —q
We will assume that p/q does not equal 0,£1 or +2, because these cases are considered in

Table 6.3. Consider

22 z
pz — plg-z—1
for 0 < B < 1. The reason for this factor B is that we now have that L(z) tends to —oo if
z tends to oo, 0 or ¢/p. Next, we use the maximum modulus principle. As L(z) is harmonic

L(z) = Blog ’ ‘ —log™ |z| — log™ )
q

except for the circles |z| = 1 and |o(2)| = 1, it attains its maximum on these circles. Because
L(z) is symmetric under o, its maximum can be found on the unit circle. Assume first that
Ip/q-e®® — 1|71 < 1. Then we have that

L(e") = —1 Blog(p® + ¢* — 2pq cos 0).

This is maximized for cosf = 1 if p/q > 0 and for cosd = —1 if p/q < 0. For p/q > 0 we find
as maximum —B log |p — g|, while for p/q < 0 we get —Blog |p+ ¢|. In both cases, this equals
—Blog|lp| —ql.
Next, assume that |p/q - e — 1|71 > 1. In this case we have
L(ew) = %(1 — B) log(p2 + ¢% — 2pq cos 0) —log |q|

which is maximized by (1 — B)log||p| + ¢| — log|g|. So, in any case, we have that

L(z) < max(Blog||p| - q|, (B — 1) log||p| + q| —log|ql)
with equality for z = 1 or z = —1. By calculating L(1) and L(—1) we get the stronger
inequality

L(z) < min(Blog||p| — g, (B — 1) log ||p| + q| — log|q]).
As L(z) is continuous for all z € C except for z = ¢/p and (non-strict) inequalities are preserved

under limits, it follows that for z # ¢/p
2

élgll L(z) =log

‘ —log™ |z| — log™

z
pz—q p/q-z—l'

< —max(log |[p| — g, log|q]).
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Because
—log|p| if [p/q| >1

lim L(z) = .
Sl —loglq| if [p/q] <1
we deduce that for all z € C
2
\ ~log* || ~ log* \ < — max(log |p| — gl, o q)).
Pz —q plg-z—1

Let f € Z[x] be a polynomial with roots & and leading coefficient a. By adding 2log|a| —
log |a| — log |a|] and summing the inequality over all i for z = £; we obtain

n

a* [ &o(&)

i=1

As log|a® [T, fio(fi)’ =log|f(0)f(c(0))| > 0 we conclude that

log —m(f) = m(fs) < —nmax(log||p| — g|,log q])-

m(f) +m(f,) > nmax(log||p| — ql,log|ql).

Equality holds for f = z + 1 (depending on the sign of p/q). Namely, we have that

1

&) =2 1= " o F g

with m(f,) = logmax(|p ¥ q|, |q|)- =

Remark. Although it is not clear from the proof, there is a general way to find ¢ for a finite
group G C PGL(2,Q). Recall that for every case (ii) transformation there is an orbit contained
in S. Let g be the minimal polynomial of some element of this orbit with degree m. Then we
define )
6(2) = 2 ] o(o(2))
oceG
where E is the content of the numerator of ¢(z) when ¢(z) is written in the form p(z)/q(z)
for relatively prime integer polynomials p and ¢. Because ¢ is symmetric under o, it does not

matter which element we have chosen to define g. Now, write

a2z + by

o) = Coz + dy

for rational numbers a,, by, ¢, and d,. Rewrite ¢ as

6(z2) = 1 I1 (coz +do)"g(0(2))

ceG (CUZ + da)m

By the alternative definition of g, we have g,-1(z) = Eia(c[,z + dys)™g(0(z)) where E, is a
constant such that g,-1 is primitive. Hence,
1 Eq-go-1(2
b(2) = = H o Jom1\=)

E oeG (CUZ + dO’)m .

Assume

[1 5 9o-1(z) and ] (com+do)™

ceG ceG
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do

have a common root, then —%= is a root of g, for some 0,7 € G. As J(*d

o3
Co

) = oo it follows
that g, (0c0) = 0. This is a contradiction with the fact that g,, is a polynomial. Hence,

]2 9o 1(2) and [J (coz+do)"
ceG ceG

are relatively prime polynomials over Q[z]. By scaling the coefficients a,, b,, ¢, and d, we can
assume that the latter is primitive in Z[z]. Then, [[ .- E, = E and

oceG o
- (2)
P(z) = gim
0611; (coz +dy)

When there is more than one orbit contained in S, as is the case in Table 6.3, one can
define ¢ for every orbit with the above construction.

Remark. The above proof does not explain how the constant B is obtained as well. In fact,
for a finite Mdbius transformation o there is no known general procedure for computing the
constant B or By and Bs.

One way to find B or By and Bs is by minimizing the maximum of

k—1 k—1
Blog|(z)| = Y log"|o'(z)| or Bilogléi(z)| + Balog|ga(z)| = Y log™lo'(z)|  (*)
=0 =0

for B respectively B; and By. Sometimes, as in the proof of Dresden’s theorem, this can be
done with the standard techniques of (complex) analysis for finding extrema. However, the
equations involved are sometimes impossible or at least too difficult to solve algebraically.

A trick for solving these equations is by guessing the polynomial f for which m(f) is
minimal yet greater than 0. A good guess is a cyclotomic polynomial of low degree. Another
good guess is the numerator of ¢(z) plus or minus the denominator of ¢(z). If the guess is
correct, the roots of this polynomial might maximize (*), which can be used to simplify the
equations found by minimizing. This way the constant in the last row of Table 6.1 is found.

As the white space in Table 6.3 shows, I did not succeed in finding these constants in all cases.

Example 6.4.4. For non-cyclic groups the same procedure works, provided that one can find
a suitable constant B. Table 6.4 shows two examples of dihedral groups for which the constant
D of Problem 6.2.3 is found.

Generators of G G~ OrbitinS ¢ B exp(D) Equality
1 -1 1 1 22—z+1)* 1
o —1)'\a 1 Dy {wiq,wi} W 1 2 -1
1 -1\ (1 0 o D) (et 1))? ,
, Ds  {-1,0,1} % 1 25 i

3 1 0 -1

Table 6.4: Two finite dihedral subgroups of PGL(2,Q) for which property (ii) holds. The
column ‘Orbits in S’ shows all orbits of G which are contained in S = {0, £1,+i,w+ +}. The
inequality Blog|¢(z)| — Z log™ |o(2)| < —D implies that mg(f) =0 or mg(f) > nD for

ceG
all f € Z[z]. For powers of the minimal polynomial of the root in the last column equality

holds in mg(f) > nD.
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6.5 Case (iii)

For finite groups satisfying case (iii) the answer to Problem 6.2.3 is ‘yes’: there exists a D > 0
such that mg(f) > nD for all f € Z[zx]. Notice that in this case this inequality holds for all

integer polynomials. There are no exceptions.

Lemma 6.5.1. For a finite cyclic subgroup G = (o) of PGL(2,Q) of case (iii) one of the
following holds:

(a) Every orbit of the action of G on C contains an element z with |z| # 1.

(b) There exist an o € C with |a| = 1 such that the only orbits of the action of G on @ for

which |z| =1 for all z in the orbit, are {a} and {a*}, or {a, a*}.

Proof. Assume first that there are at least three elements on the unit circle which are mapped
by o to other elements on the unit circle. As Mdbius transformations send circles to circles,
and circles are uniquely determined by three points, it follows that G is unit circle preserving.
This contradicts the assumption that (o) satisfies case (iii). Hence, there are at most two
elements on the unit circle which are mapped to other element on the unit circle.

Now, assume that we are not in case (a). Let a € C with || = 1 be an element of an orbit
contained in the unit circle. If o(a) = a, it follows by complex conjugation that o(a*) = a*.
Note that if « = £1, mg(z£1) = 0 and o is of case (i) or (ii). Hence, a # a*, so {a} and {a*}
are two different orbits of 0. As there are at most two elements on the unit circle which are
mapped to other elements on the unit circle, it follows that all other orbits contain an element
z with |z] # 1.

Next, assume o(«) = § with 8 # « and |8] = |a| = 1. As there are at most two elements on
the unit circle which are mapped to other element on the unit circle, it follows that o(5) = a.
Moreover, o(a*) = 8*, from which it follows that o = 8*. So, {«, a*} is an orbit of the action

of G on C and all other orbits contain an element z with |z| # 1. O

Theorem 6.5.2. Let G be a finite subgroup of PGL(2,Q) and assume that every orbit of the
action from G on C contains an element z with |z| # 1. Then,

S (loglo(2)] — log* [o(2))

ceG
attains a mazimum —D < 0. Let f € Z[x] with degree n and z t f, for all o € G. Then, we

have that
ma(f) > nD.

Proof. Note that

Llog|z if 2] <1

Llogle] —log™ |+ = { 28171 ITIF =
—Lloglz| if |2] > 1.

Therefore, 1 log|z| —log™ |z| < 0 with equality if and only if || = 1. Because every orbit of

the action from G on C contains an element which does not lie on the unit circle, for every

z € C there exist a 0 € G such that |o(z)] # 1. Hence,

Z (3log|o(z)| —log* |o(z)|) < 0.

ceG
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for all z € C. Let —D be the maximum of the left-hand side, that is for all z € C we have

> (3loglo(z)| —log™ [ (2)]) < —D.
oceG
This maximum exists and is attained on one of the circles |o(z)| = 1 for o € G, because the
left-hand side is a bounded harmonic function. Moreover, D > 0.
Next, let f € Z[x] be a polynomial of degree n and with roots & for i« € {1,...,n}. Let a,
be the leading coefficient of f,. By summing the inequality for z = &; over all ¢ € {1,...,n}

and adding
> (3loglag| —loglas|) <0,
oeG
we obtain
n
Z 5 log aUHU(fi) —mg(f) < —nD.
oeG i=1
Hence,
3" Llog|f(0) — me(f) < —nD.
oceG
Since z 1 f, for all o € G by assumption, we have that > 3 log|f-(0)] > 0. We conclude
that mg(f) > nD. O

Example 6.5.3. Let

=)

be a Mébius transformation of order 2. For z = ¢ with § € R we have that

10+ 6cos @

2_
o ()" = 82 — 18cosf’

As cosf < 1 we find that |o(z)| < 3. Hence, if O is some orbit of o acting on C and O contains
an element on the unit circle, say of the form ¥, it also contains an element which does not
lie on the unit circle. So, motivated by Theorem 6.5.2 we want to maximize

3log|z| + 3 loglo(2)] —log™ |2| —log™ |o(2)].

over C. As this is a harmonic function except on the circles |z| = 1 and |o(z)| = 1, symmetric

under z — o(z), the maximum is attained for z on the unit circle. Setting z = e? we have to

1 10 + 6 cos @
19\ 89 " 18cosh )

The maximum is found for # = 0 and equals —3 log(2). Hence,

maximize the following function

Mgy = %log(?)

for all f € Z[z] with f(0) and f,(0) different from 0 and of degree n. As o(0) = —3 we have
that myy(z) = log(3) > % log(2). Hence, we can conclude that

msy > 5 log(2)
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for all f € Z[x]. Notice that for —z + 1, the minimal polynomial of 1 = €% we have that
m sy = log(2) because (1) = % So, we do not have a strict inequality. However, if we would

have instead chosen to maximize
log |z] + log|o(2)| — log™ |z| — log™ lo(2)],

we would have found that
mq)(f) =2 nlog(2)
for all f € Z[z]. Equality then holds if and only if f or f, is a power of —z + 1.

We conclude this chapter with the theorem below. This theorem applies not only to groups
of case (iii), but also to groups of case (ii). We only have to assume that the action of G on C
has a finite number of orbits X with the property that all non-zero elements of X lie on the
unit circle. For transformations of case (i) this is not the case as all orbits are finite and there
is an infinite number of elements on the unit circle. Hence, there is an infinite number of orbits
X for which all the non-zero elements lie on the unit circle. Unfortunately, the theorem does
not give the optimal value of D, that is, a value such that equality holds in mq(f) > nD for

some polynomial f. It only asserts that such a D exists.

Theorem 6.5.4. Let G be a finite subgroup of PGL(2,Q). Let O = {O; | i € I} be the set of
all the orbits of G for which every non-zero element lies on the unit circle. Assume O is finite

and non-empty. Let p; be the minimal polynomial of an element in O;. Let
2) = [ pie(2)
ceG
Then, there exists a constant A > 0 such that if 0 < B; < A for all i € I, we have that
" Bilogoi(2)] + Y (3 loglo(z)] ~ log* o ()
el oceG

attains a mazimum —D < 0, where D depends on the values of B;. Let f € Z[z] be of degree
n such that p; 1 fo and z1 f,(2) for alli € I and o € G. Then

ma(f) > nD.

Proof. Let B = {B;|i € I'}. Write ¢; as a fraction of relative prime polynomials. Let k; be
the degree of the numerator of ¢; minus the degree of the denominator of ¢;. Let k be the
maximum of the k;, which exists because O is finite. Assuming A < 577 and 0 < B < A we
have for |z| approaching oo that the quantity

=Y Bilog|éi(2)| + D (3 log|o(2)| —log™ |a(2)])
i€l ceG

goes to —oo by similar arguments as in Zagier’s en Dresden’s proof. Also, by taking the limit
to y for all y € C with o(y) = co we find that Lp approaches —oco. Hence Lp is bounded and
because Lpg is a harmonic function, it attains a maximum.

By the proof of the previous theorem we know that

> (3loglo(z)| —log™ |o(2)]) < 0.

ceG
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for all z € C. Equality holds if and only if z is an element o whose whole orbit is contained
in the unit circle. We have that ¢;(or) = 0 for some ¢ € I, as there is a ¢ € G such that
p; is the minimal polynomial of o(a). Hence Lp(z) — —oo for z — « and B; > 0. As
#\II such that for all
sets B with 0 < B < A we have Lp(z) < 0. By maximizing L we can find a D > 0 such that
Lp(z) < —D for all z € C.

Now, let f € Z[x] be a polynomial with degree n and roots & for i € {1,...,n}. Assume
that p; 1 fr and z 1 fo(2) for all i € I and 0 € G. Let a, be the leading coefficient of f,.
Note that .,
j€{l,...,n} and adding

Z ((Z kB; + é) log |ag| — 10g|aa|> <0,

ceG el

limp_0 Lp(z) < 0 and L is continuous in B, we can find an 0 < A <

kB; + 3 < 1. By summing the inequality Lg(z) < —D for z = §; over all

we obtain
ZBZ- log H ak . H(bi(fj) + Z 1log|as Ha(gj) —mg(f) < —nD.
il oeqd j=1 oceq j=1
Per definition of ¢ we then get
1T ab-T1¢&) = I (o - TIpi(e(&))
ceG Jj=1 ceG j=1

By Lemma 3.2.10 we know that a H;—;l pi(c(¢;)) and a, H;-L:l o(§;) are integers. They are

non-zero, because p{ f, and z 1 f,(z) for all 0 € G. Hence,
ZBi log H ak . H i (&) + Z 1log|as H a(&) ] >0.
i€l ceG j=1 ceG j=1
We conclude that ma(f) > nD. O

Theorem 6.5.5. Let G be a finite subgroup of PGL(2,Q) of case (ii) or (iii). There exists a
lower bound D > 0 such that for all polynomials f in Z[x] of degree n we have that

ma(f) =0 or mg(f)>nD.

Proof. As G is of case (ii) or (iii) we have that O has at most three elements, so O is finite. If
O is empty, we use Theorem 6.5.2 and else Theorem 6.5.4. These theorems imply there exists
a D > 0 such that

ma(f) = nD

for all f of degree n except when f is divisible by z or p; for all ¢ in some finite set I. As
mea(f - g) = ma(f) + ma(g) for f,g € Z[z], it is enough to prove inequalities on mg(f) for

irreducible polynomials. Observe that the inequality

ma(f) > nD

47



holds for all irreducible f except when f equals one of a finite number of polynomials. As for
one of these polynomials f with degree n we have that mg(f)/n is minimal yet greater than

0, we conclude that there is a constant D’ > 0, possibly smaller than D, such that
ma(f) =0 or mg(f) >nD’,

concluding this theorem. O
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Chapter 7

Concluding Remarks

In this thesis we started with Mahler’s measure on polynomials with complex coefficients.
Next, we saw Lehmer’s unsolved problem for the Mahler measure for polynomials with integer
coefficients. As a consequence of Kronecker’s lemma, it was possible to determine when the
Mahler measure vanished. After that, we found all finite groups of M&bius transformations
and we saw Zhang’s and Dresden’s theorem involving Mahler’s measure and two such finite
groups of Mobius transformations. In the sixth chapter we generalised Mahler’s measure and
Lehmer’s problem. In Lemma 6.2.4 three cases for this generalised problem are described and
for case (ii) and (iii) Problem 6.2.3 is solved in Theorem 6.5.5. Moreover, all transformations
of case (i) and (ii) are classified.

Besides the fact that Problem 6.2.3 is still unsolved for G of case (i), there are a few other
things to wonder about. Theorem 6.5.5 does not indicate how the optimal value of D, that
is a value such that there is a polynomial f € Z[z] of degree n such that mg(f) = nD, can
be found. In Section 6.4 we found optimal values of D for nearly all cyclic groups of case (ii).
However, it would be interesting as well to find more values of D for non-cyclic groups and
groups of case (iii). Furthermore it would be interesting to determine a general lower bound
for D.

Another interesting thing to do is to replace Q in PGL(2,Q) by Q, the algebraic closure of

Q. The transformation
oo 1L V3
W31

is then another transformation of case (ii). Does in this case Theorem 6.5.5 still hold?
Finally, as suggested by Merlijn Staps, the results for meg(f) might be useful to approach
Lehmer’s problem. Namely, if we combine lower bounds of mg(f) with other results on m(f),

for example upper bounds on m(f), it might be possible to solve Lehmer’s problem.

49



Bibliography

[1]

[12]

[13]

Mark Anthony Armstrong. Groups and symmetry. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, 1988.

Werner Ballmann. Lectures on Kdhler manifolds. ESI Lectures in Mathematics and
Physics. European Mathematical Society (EMS), Ziirich, 2006.

Gregory Dresden. Orbits of algebraic numbers with low heights. Math. Comp.,
67(222):815-820, 1998.

Gregory Dresden. There Are Only Nine Finite Groups of Fractional Linear Transforma-
tions with Integer Coefficients. Math. Mag., 77(3):211-218, 2004.

Gertrude Ehrlich. Fundamental Concepts of Abstract Algebra. Dover Publications, Inc.,
Mineola, N.Y., 2011.

Graham Everest and Thomas Ward. Heights of polynomials and entropy in algebraic
dynamics. Universitext. Springer-Verlag London, Ltd., London, 1999.

Aleksandr Osipovi¢ Gel'fond. Transcendentnye i algebraiceskie cisla. Gosudarstv. Izdat.
Tehn.-Teor. Lit., Moscow, 1952.

Johan Jensen. Sur un nouvel et important théoreme de la théorie des fonctions. Acta
Math., 22(1):359-364, 1899.

Felix Klein. Lectures on the icosahedron and the solution of equations of the fifth degree.
Dover Publications, Inc., New York, N.Y., revised edition, 1956. Translated into English
by George Gavin Morrice.

Leopold Kronecker. Zwei Satze iiber Gleichungen mit ganzzahligen Coefficienten. J. Reine
Angew. Math., 53:173-175, 1857.

Serge Lang. Complex analysis, volume 103 of Graduate Texts in Mathematics. Springer-
Verlag, New York, fourth edition, 1999.

Derrick Henry Lehmer. Factorization of certain cyclotomic functions. Ann. of Math. (2),
34(3):461-479, 1933.

Kurt Mahler. An application of Jensen’s formula to polynomials. Mathematika, 7:98-100,
1960.

50



[14]

[18]

[19]

[20]

Kurt Mahler. On some inequalities for polynomials in several variables. J. London Math.
Soc., 37:341-344, 1962.

Peter M. Neumann. A lemma that is not Burnside’s. Math. Sci., 4(2):133-141, 1979.

Joseph Rotman. Galois theory. Universitext. Springer-Verlag, New York, second edition,
1998.

René L. Schilling. Measures, integrals and martingales. Cambridge University Press, New
York, 2005.

Jerry Shurman. Geometry of the quintic. A Wiley-Interscience Publication. John Wiley
& Sons, Inc., New York, 1997.

Don Zagier. Algebraic numbers close to both 0 and 1. Math. Comp., 61(203):485-491,
1993.

Shouwu Zhang. Positive line bundles on arithmetic surfaces. Ann. of Math. (2),
136(3):569-587, 1992.

Antoni Zygmund. Trigonometric series. Vol. I, II. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, third edition, 2002. With a foreword by Robert
A. Fefferman.

51



	Introduction
	Mahler's Measure
	Mahler's Papers
	Intermezzo: Jensen's Formula
	Mahler's Theorem
	Inequalities Involving Other Measures

	Integer Polynomials
	Lehmer's Problem
	Intermezzo: Algebraic Integers
	Vanishing Measure

	Möbius Transformations
	Automorphisms of the Riemann Sphere
	Projective Linear Group
	Finite Subgroups

	Theorems of Zhang and Dresden
	Zhang's Theorem
	Intermezzo: Harmonic Functions
	Proof of Zhang's Theorem
	Dresden's Theorem

	Mahler's Measure and Möbius Transformations
	Möbius Transformations Acting on Polynomials
	A Lehmer-like Problem
	Case (i): Unit Circle Preserving Groups
	Case (ii)
	Case (iii)

	Concluding Remarks

