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CHAPTER 1

Introduction

1.1 Functions on partitions and the q-bracket

A partition of an integer n is way of writing n as a sum of positive integers, where
the order does not matter. For example, the partitions of 5 are given by

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1,

which one can depict graphically by their Young diagrams as

.

For each integer n the partition function p(n) gives the number of partitions of n.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p(n) 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135

Table 1.1: The initial values of the partition function.

Its generating series, often the best way of studying a sequence of integers, goes back
to Euler who proved that

∞∑

n=0

p(n) qn =

∞∏

m=1

1

1− qm (1.1)

as a formal power series in q. Let τ ∈ C with Im(τ) > 0. Write q = e2πiτ . Then, the
right-hand side of this equation is a holomorphic function of τ that equals q1/24η(τ)−1,
where the Dedekind eta function η is given by

η(τ) = q1/24
∞∏

m=1

(1− qm).

1
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This function is a holomorphic modular form (of half-integral weight), in particular,
it satisfies the functional equations

η(τ + 1) = e
2πi
24 η(τ), η

(
−1

τ

)
=
√
−iτ η(τ).

In this thesis we will be concerned with generalisations of Euler’s result. Namely,
instead of the generating series (1.1), we consider a weighted count of all partitions.
By this we mean the following. Let P be the set of all integer partitions and for
λ ∈ P , write |λ| for the integer where λ is a partition of. The q-bracket, which is
the analogue of the expectation value of an observable in statistical mechanics, is the
weighted average value of a function f on P , where the weight of λ ∈P is q|λ| for
some formal parameter q:

〈f〉q :=

∑
λ∈P f(λ) q|λ|∑

λ∈P q|λ|
∈ C[[q]]. (1.2)

Note that the denominator of the q-bracket equals Euler’s generating series (1.1).
We are particularly interested in functions f for which 〈f〉q is not only a formal

power series in C[[q]], but also a holomorphic function of τ , where again q = e2πiτ ,
with algebraic properties such as the functional equations satisfied by the η-function.
For example, let f(λ) = |λ|. Then

〈f〉q = q
∂

∂q
log

( ∑

λ∈P

q|λ|
)

=
1

24
+ G2,

where G2 is a pivotal player in this thesis: the quasimodular Eisenstein series given
in Equation (1.7) below. Stated very naively, the main question of this thesis is as
follows.

Question 1.1.1. For which functions f : P → C is 〈f〉q a nice function with good
algebraic properties?

A surprising answer to this question is given by Bloch and Okounkov [BO00].
Let Λ∗ = Q[Q2, Q3, . . .] be the graded algebra of shifted symmetric functions (to be
introduced in Section 1.3), containing for example the function Q2(λ) = |λ| − 1

24 of
weight 2 and a generator Qk of weight k for every integer k ≥ 2.

Theorem 1.1.2 (Bloch–Okounkov theorem). For all f ∈ Λ∗, the q-bracket of f is a
quasimodular form of the same weight as f .

We now first introduce quasimodular forms and the Bloch–Okounkov algebra Λ∗

of shifted symmetric functions, which will be the leading example through this thesis.
Then, after motivating everything from the viewpoint of enumerative geometry, we
will refine Question 1.1.1.
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1.2 The sl2-algebra of quasimodular forms

There is a saying attributed to Eichler saying “There are five elementary arithmetical
operations: addition, subtraction, multiplication, division, and. . . modular forms.”
The goal of this section is to show that all these five operations behave well with
respect to yet another operation: derivations.

Eisenstein’s method for constructing modular forms carries over to the simpler
case of trigonometric functions, which we explain first. Namely, in order to construct
a periodic function, consider

εk(x) =
∑

n∈Z
(x+ n)−k (k ≥ 1).

This series converges absolutely for k ≥ 2 and for k = 1 we apply Eisenstein
summation, i.e., we replace the sum by limN→∞

∑N
n=−N . In terms of well-known

trigonometric functions, the first three are given by

ε1(x) = π
cos(πx)

sin(πx)
, ε2(x) =

π2

sin2(πx)
, ε3(x) = π3 cos(πx)

sin3(πx)
.

Let T be the Q-algebra generated by these functions, i.e., T = Q[ε1, ε2, . . .]. All
f ∈ T are periodic with period 1 and all non-constant f ∈ T admit a pole at all
integer values of x. The algebra T is an example of the kind of algebras encountered
in this thesis, that is, we show that the algebra T (i) is a graded algebra, (ii) is finitely
and freely generated and (iii) is closed under differentiation.

To start with the latter, note that for all k ≥ 1

∂

∂x
εk(x) = −k εk+1(x). (1.3)

Next, one observes that
ε3(x) = ε1(x) ε2(x),

from which, after an (k − 3)-fold application of (1.3), it follows that

(k − 1) εk(x) =
k−1∑

i=1

εi(x) εk−i(x) (1.4)

for k ≥ 3. Indeed, T is finitely generated, namely T = Q[ε1, ε2]. Finally, note that
the analogue of (1.4) for k = 2 is given by

ε2(x) = ε1(x)2 + π2. (1.5)

Hence, T = Q[π2, ε1], from which it is clear that T is freely generated.
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Assign to εk weight k. By (1.4) and (1.5) this indeed defines a weight grading
on T , for which the weight of π2 is 2. We conclude that T is a finitely generated
graded differential algebra. In particular, given a weight k, the vector space Tk of
elements in T of weight k is finite dimensional. This property—which reduces the
question whether a given function is an element of Tk, to comparing finitely many
coefficients in the Fourier expansion—is an essential property of the “nice functions
with good algebraic properties” in Question 1.1.1.

Now, we are ready to introduce the algebra of quasimodular forms, satisfying this
property as well as the aforementioned three properties of the algebra T . Let H be
the upper half plane, i.e., the set of complex numbers τ for which Im(τ) > 0. The
group SL2(Z) acts on H by Möbius transformations. Given γ =

(
a b
c d

)
∈ SL2(Z),

τ ∈ H and k ∈ Z, we let γτ = aτ+b
cτ+d and define the slash operator in weight k by

(f |kγ)(τ) := (cτ + d)−kf(γτ).

Let Hol0(h) be the ring of holomorphic functions ϕ of moderate growth on H, i.e.,
for all C > 0, γ ∈ SL2(Z) and x ∈ R one has (ϕ|0γ)(x+ iy) = O(eCy) as y →∞.

In order to obtain modular forms—f ∈ Hol0(h) for which f |kγ = f for all
γ ∈ SL2(Z)—Eisenstein defined

ek(τ) =
∑

ω∈Zτ+Z
ω 6=0

1

ωk
(k ≥ 3).

The Eisenstein series ek are non-zero modular form of weight k whenever k is even.
In case k = 2, we write ω = mτ + n and we define e2 by replacing the sum over ω
by
∑

m

∑
n, where (m,n) 6= (0, 0). Then,

(e2|2γ)(τ) = e2 − 2πi
c

cτ + d
.

Hence, e2 is not a modular form. Note that both e2 and the trigonometric function ε1
are periodic functions corresponding to a series which is not absolutely convergent.
We proceed by defining quasimodular forms, which are functions satisfying a more
general modular transformation property than the Eisenstein series and of which e2

is the first non-modular example. Let Γ be a subgroup of SL2(Z) of finite index.

Definition 1.2.1. A quasimodular form of weight k and depth at most p for Γ is
a function ϕ ∈ Hol0(H) such that there exist ϕ0, . . . , ϕp ∈ Hol0(H) so that for
all τ ∈ H and all γ =

(
a b
c d

)
∈ Γ one has

(ϕ|kγ)(τ) = ϕ0(τ) + ϕ1(τ)
c

cτ + d
+ . . . + ϕp(τ)

( c

cτ + d

)p
. (1.6)
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Remark 1.2.2. Every quasimodular form has a Fourier expansion

ϕ(τ) =
∑

n≥0

an q
n
h (qh = e2πiτ/h)

with Fourier coefficients an ∈ C and h ∈ Z≥1 minimal such that
(

1 h
0 1

)
∈ Γ. 4

Definition 1.2.3. Write M̃ (≤p)
k (Γ) for the vector space of quasimodular forms of

weight k and depth at most p for Γ with Fourier coefficients an ∈ Q(ζN ) (with N
the level of Γ and ζN = e2πi/N ) and denote

M̃(Γ) =
⊕

k

M̃k(Γ), M̃k(Γ) =
⋃

p

M̃
(≤p)
k (Γ).

An element of M̃(Γ) is called a quasimodular form of mixed weight (as it is a linear
combination of quasimodular forms of different weight). Analogously, we useM(Γ)
to denote the space of modular forms for Γ.

Equation (1.6) is called the quasimodular transformation property. Note that if ϕ
is a quasimodular form, the functions ϕ0, . . . , ϕp are quasimodular forms uniquely
determined by ϕ (the function ϕr has weight k−2r and depth≤ p−r) [Zag08]. For
example, taking γ in (1.6) equal to the identity I ∈ Γ yields ϕ0 = ϕ. Quasimodular
forms of depth 0 are modular forms. Besides the constant functions, the simplest
examples are the Eisenstein series ek for positive even integers k. Often, we make
use of a slightly different normalisation:

Gk(τ) :=
(k − 1)!

2(2πi)k
ek = −Bk

2k
+
∞∑

r=1

∞∑

m=1

mk−1qmr, (1.7)

where Bk is the kth Bernoulli number and q = e2πiτ . The Eisenstein series G2 is a
quasimodular form of weight 2 and depth 1.

The differential operator

Dτ =
1

2πi

d

dτ
= q

d

dq
,

which we often abbreviate by D, preserves the space of quasimodular forms. In
fact, D : M̃

(≤p)
k (Γ) → M̃

(≤p+1)
k+2 (Γ). Besides D, an important differential op-

erator on quasimodular forms is the operator d : M̃
(≤p)
k (Γ) → M̃

(≤p−1)
k−2 (Γ) de-

fined by ϕ 7→ 2πiϕ1 (with ϕ1 defined by the quasimodular transformation prop-
erty (1.6)). For example dG2 = −1

2 and in fact this property together with the
fact that d annihilates modular forms defines d completely since d is a derivation
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and M̃(Γ) = M(Γ)[G2] (see [Zag08, Proposition 20] for this equality, which holds
for any congruence group Γ).

Let W be the weight operator, which multiplies a quasimodular form by its
weight. The triple (D,W, d) forms an sl2-triple with respect to the commutator
bracket [A,B] = AB −BA:

Definition 1.2.4. A triple (X,H, Y ) of operators is called an sl2-triple if

[H,X] = 2X, [H,Y ] = −2Y, [Y,X] = H.

In case the operators act on an algebra A by derivations, we call the algebra A,
together with the triple (X,H, Y ), an sl2-algebra.

As D,W and d are derivations, the algebra M̃(Γ) becomes an sl2-algebra. This
is a special case of the more general notion of g-algebra for any Lie algebra g that
will be mentioned in Section 5.7, namely, an algebra A together with a Lie algebra
homomorphism from g to the space Der(A) of derivations of A with Lie bracket
given by commutator.

Example 1.2.5. In case we specialise Γ to SL2(Z), the algebra M of modular forms
for SL2(Z) and the algebra M̃ of quasimodular forms for SL2(Z) can be represented
as a free polynomial algebra. Recall that by assumption the Fourier coefficients of
elements inM are rational. That is,M = Q[Q,R] and M̃ = Q[P,Q,R], where P =
−24G2, Q = 240G4, R = −504G6 are Ramanujan’s notation for the Eisenstein
series of weight 2, 4 and 6, respectively (normalised such that the constant term in
the Fourier expansion is 1).

In this representation, the derivations D and d are uniquely determined by

D(P ) =
P 2 −Q

12
, D(Q) =

PQ−R
3

, D(R) =
PR−Q2

2
, (1.8)

and
d(P ) = 12, d(Q) = 0, d(R) = 0.

It may happen that a polynomial in the derivatives of two modular forms f ∈
Mk(Γ) and g ∈Ml(Γ) is actually modular [Ran56]. This is the case for the Rankin–
Cohen brackets of f and g [Coh75], defined by

[f, g]n =
∑

r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)
Drf Dsg (n ≥ 0). (1.9)

That is, for n ≥ 0, the mapping M̃k(Γ)× M̃l(Γ)→ M̃k+l+2n(Γ) given by (f, g) 7→
[f, g]n restricts to a mapping Mk(Γ) × Ml(Γ) → Mk+l+2n(Γ). A proof of this
statement follows from the fact that M̃ is an sl2-algebra.
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1.3 Shifted symmetric functions and hook-length moments

The shifted symmetric functions and hook-length moments are functions on parti-
tions for which the q-bracket, defined by (1.2), is a quasimodular form; this is the
content of the Bloch–Okounkov theorem (Theorem 1.1.2). Before defining these
functions, note that it is not surprising at all that there are functions f : P → Q
whose q-bracket 〈f〉q is a quasimodular form, since it is easily seen that the q-bracket
from QP to Q[[q]] is surjective. What is surprising is that one can find subalge-
bras A of QP which (i) are ‘interesting’ in the sense that they have an interpretation
in combinatorics, enumerative geometry or others fields of mathematics, (ii) have
the property that 〈f〉q ∈ M̃ for all f ∈ A and (iii) are closed under multiplication.
Observe that for such an algebra the q-bracket is not an algebra homomorphism, as
the q-bracket is not multiplicative.

We think of a partition λ in the following ways:

• A finite non-increasing sequence (λ1, λ2, . . . , λ`) of positive integers, where
` = `(λ) is the length of λ;

• An infinite non-increasing sequence (λ1, λ2, . . .) of integers stabilising to 0;

• A Young diagram Yλ ;

• A multiset of integers m, where rm(λ) denotes the multiplicity of m in the
multiset;

• A finite set of modified Frobenius coordinates

Cλ = {−b1, . . . ,−br, ar, . . . , a1},

where r is the number of boxes on the main diagonal in the Young diagram Yλ ,
ai = λi − i+ 1

2 is the number of boxes to the right of the diagonal in row i
(including 1

2 for the box in row i and column i, see Fig. 1.1 below) and bi =
λ′i − i + 1

2 is the number of boxes below the diagonal in column i. Here, λ′

denotes the conjugate of λ corresponding to transposing Yλ .

λ

a1

a2

a3

b1 b2 b3

λ′ a′1

a′2

a′3

b′1 b′2 b′3

Figure 1.1: The modified Frobenius coordinates of λ = (6, 4, 4, 3, 1) and λ′.
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Definition 1.3.1. Let λ ∈ P . Define the shifted symmetric polynomials Qk by
Q0(λ) = 1 and for k ≥ 1

Qk(λ) = βk +
1

(k − 1)!

∞∑

i=1

(
(λi − i+ 1

2)k−1 − (−i+ 1
2)k−1

)
(1.10)

with βk defined by
∞∑

k=0

βk z
k−1 :=

1

2 sinh(z/2)
.

The first three shifted symmetric polynomials Qi are given by

Q0(λ) = 1, Q1(λ) = 0, Q2(λ) = |λ| − 1
24 .

In terms of the modified Frobenius coordinates of a partition,Qk turns out to be given
by

Qk(λ) = βk +
1

(k − 1)!

∑

c∈Cλ
sgn(c) ck−1.

Since Cλ = −Cλ′ , the shifted symmetric functions are invariant (up to a sign) under
the conjugation λ 7→ λ′, that is,

Qk(λ
′) = (−1)kQk(λ). (1.11)

The algebra of shifted symmetric functions Λ∗, which is sometimes called the
Bloch–Okounkov algebra, is the algebra generated by the Qk for k ≥ 2, i.e.

Λ∗ = Q[Q2, Q3, . . .].

This algebra Λ∗ (i) admits a weight grading by assigning weight k to Qk and (ii) is
freely generated by the Qk. Hence, Λ∗ is not finitely generated, although the sub-
space of a certain weight k has a finite basis. In Chapter 2 we discuss certain differen-
tial operators on Λ∗ so that Λ∗ becomes a differential algebra, or rather an sl2-algebra.
We will see that these operators are more naturally defined on R = Q[Q1, Q2, . . .]
(here we distinguish Qk, which is now thought of as an independent abstract vari-
able, from its image in QP ). For example, the operator ∂ can now be defined on R
by ∂(Qk) = Qk−1 for k ≥ 1 and ∂(Q0) = 0, which would not make sense on Λ∗.

Remark 1.3.2. Shifted symmetric polynomials were originally introduced by
Okounkov and Olshanski as the following analogue of symmetric polynomials
[OO97]. Given m ≥ 0, write Sm for the symmetric group on m letters and
let Λ∗(m) be the space of rational polynomials in m variables x1, . . . , xm which
are shifted symmetric, i.e. invariant under the action of all σ ∈ Sm given by
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xi 7→ xσ(i) + i− σ(i) (or more symmetrically xi − i 7→ xσ(i) − σ(i)). Note
that Λ∗(m) is filtered by the total degree of the polynomials. We have forgetful
maps Λ∗(m) → Λ∗(m− 1) given by xm 7→ 0, so that we can define the space of
shifted symmetric polynomials Λ∗ as the inverse limit

Λ∗ = lim←−
m

Λ∗(m)

in the category of filtered algebras. Considering a partition λ as a non-increasing
sequence (λ1, λ2, . . .) of non-negative integers λi, we can interpret Λ∗ as being a
subspace of all functions P → Q. 4

A different, though (as we will see in a moment) closely related, family of func-
tions on partitions is given by the hook-length moments. For a cell ξ = (i, j) in the
Young diagram Yλ (here 1 ≤ i ≤ `(λ) and 1 ≤ j ≤ λi) we denote by

h(ξ) = (λi − i) + (λ′j − j) + 1

the hook-length of ξ, i.e., the number of boxes to the right and below this box plus 1
for the box itself. Then, for k ≥ 2 the hook-length moments are given by

Hk(λ) = −Bk
2k

+
∑

ξ∈Yλ
h(ξ)k−2. (1.12)

From [CMZ18] (Theorem 13.5, recalled below), it follows that the even hook-
length moments are shifted symmetric functions. Write e(x) = e2πix. Then, this
result can be expressed in terms of the generating series Vλ(z) of hook-length mo-
ments and the generating series Wλ(z) of shifted symmetric functions:

Vλ(z) :=
1

(2πiz)2
+ 2

∑

k≥2
even

Hk(λ)
(2πiz)k−2

(k − 2)!

Wλ(z) :=

∞∑

k=0

Qk(λ) (2πiz)k−1 =

∞∑

i=1

e((λi − i+ 1
2)z), (1.13)

where the first sum in (1.13) can be thought of as either a formal Laurent series in z
or a convergent power series for z near 0, but the second sum has to be interpreted as
a convergent sum (and hence holomorphic function) in the lower half-plane.

Theorem 1.3.3. For all λ ∈P

Vλ(z) = −Wλ(z)Wλ(−z),
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that is, for all positive even k one has

Hk(λ)

(k − 2)!
=

1

2

k∑

i=0

(−1)iQi(λ)Qk−i(λ).

It follows that the algebra of even hook-length moments is a subalgebra of Λ∗

and hence that 〈f〉q ∈ M̃ for all f in this algebra.

Definition 1.3.4. We say that an algebra A of functions on partitions is maximal
quasimodular if 〈f〉q ∈ M̃ for all f ∈ A and A is maximal with this property.

It is believed that Λ∗ is maximal quasimodular. In contrast, the algebra of even
hook-length moments is not maximal quasimodular, as all shifted symmetric func-
tions of odd weight are not contained in this algebra.

1.4 The Jacobi theta series and the Bloch–Okounov theorem

The Bloch–Okounkov theorem as stated by Theorem 1.1.2 does not determine which
quasimodular form corresponds to some element of Λ∗. We recall a result by Zagier,
as well as the original statement of Bloch and Okounkov, by which the q-bracket of
f ∈ Λ∗ can be expressed as an explicit quasimodular form. This quasimodular form
is given in terms of the Taylor coefficients of the Jacobi theta series θ, given by

θ(τ, z) =
∑

ν∈F
(−1)bνc eνz qν

2/2 (F = Z + 1
2 , q = e2πiτ ). (1.14)

Often, we omit the dependence on τ and simply write θ(z) for θ(τ, z).
By [Zag16, Theorem 1] one has the following identity, which determines the

q-bracket recursively for all shifted symmetric functions.

Theorem 1.4.1. For f ∈ Q[Q2, Q3, . . .]

〈θ(∂)f〉q = 0,

where the q-bracket is extended to a map C[[q]]P → C[[q]] by linearity and ∂ is
defined on p. 8.

Given integers k1, . . . , kn , the shifted symmetric function Qk1 · · ·Qkn occurs
(up to a constant) in W (z1) · · ·W (zn) as the coefficient of zk1−1

1 · · · zkn−1
n (re-

call Wλ is the generating series of the shifted symmetric functions; see (1.13)). The
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second result expresses the q-bracket of this n-fold product in terms of the Jacobi
theta function and its derivatives

θ(r)(τ, z) := θ(r)(z) :=
∂r

∂zr
θ(z) (r ≥ 0),

in the following way ([BO00, p. 30], with a sign corrected as in [Zag16, Section 6]).

Definition 1.4.2. For all n ≥ 1, let Sn be the symmetric group on n letters and
define the Bloch–Okounkov n-point functions by

Fn(τ, z1, . . . , zn) =
∑

σ∈Sn
Vn(τ, zσ(1), . . . , zσ(n)),

where the functions Vn are defined recursively by V0(τ) = 1 and

n∑

m=0

(−1)n−m

(n−m)!
θ(n−m)(τ, 2πi(z1 + . . .+ zm)) Vm(τ, z1, . . . , zm) = 0. (1.15)

Theorem 1.4.3. With W as in (1.13) and Fn as in Definition 1.4.2, for all n ≥ 1

〈W (z1) · · ·W (zn)〉q = Fn(τ, z1, . . . , zn).

1.5 Motivation from enumerative geometry

Elliptic curves and (quasi)modular forms are connected in various ways. A first
connection is made by the Weierstrass ℘-function, given by

℘(τ, z) :=
1

z2
+

∑

ω∈Zτ+Z
ω 6=0

(
1

(z + ω)2
− 1

ω2

)
(τ ∈ h, z ∈ C).

On the one hand, the Weierstrass ℘-function parametrises elliptic curves over C; on
the other hand, the coefficients in its Laurent series are modular forms:

℘(τ, z) =
1

z2
+
∑

k≥3

(k − 1) ek z
k−2.

A much deeper connection between elliptic curves and modular forms is made by
the modularity theorem, by which every elliptic curve over Q can be parametrised by
modular functions.

In this section we motivate the results in this thesis by a third connection: various
counting problems on elliptic curves give rise to shifted symmetric functions and
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quasimodular forms. This is in fact the beginning of a whole story: Dijkgraaf had
given a physical argument, which was proven by Kaneko and Zagier, that the problem
of counting certain coverings of a torus led to quasimodular forms, and the Bloch-
Okounkov theorem was found as a generalisation of this [Dij95, KZ95, BO00]. Some
results in this direction will be described in the rest of this section; more recent results
can, e.g., be found in [BKY18, CMSZ20, GM20].

Hurwitz theory

Let E be an elliptic curve over C (i.e., E is a complex torus). The Hurwitz theory
of E is concerned with the enumeration of covering maps

π : X → E

of a fixed degree d and fixed ramification profile (a tuple of partitions determining the
ramification at the ramification points). Here, X is a Riemann surface whose genus
is uniquely determined by this degree and profile. Hurwitz numbers are defined as a
certain weighted count of the number of such mappings up to isomorphism, defined
by Definition 3.2.1. For example, the aformentioned result of [Dij95, KZ95] are on
generating series of simple Hurwitz numbers over an elliptic curve, i.e., correspond-
ing to mappings π for which the preimage of a point in E consists of at least d − 1
points (see the example below).

This result was generalized in the following way. For any ramification profile the
Hurwitz numbers can naturally be expressed in terms of shifted symmetric functions.
From this it follows that the generating series of all ramified coverings of E by a
Riemann surface of genus g > 1 and a fixed ramification profile is a quasimodular
form of mixed weight≤ 6g−6 for SL2(Z) [EO01, Och01] (see Chapter 3 for a proof
and a generalisation of this result).

Example 1.5.1. Suppose all ramification is simple, i.e., the preimage of a point in E
consists of at least d− 1 points. Then, the Hurwitz number corresponding to degree d
coverings of E by a Riemann surface X of genus g is given by

∑

|λ|=d
Q3(λ)2g−2.

For example, for g = 2 one finds

〈Q2
3〉q =

1

1440
(DQ+ 10D2P ),

from which it follows that there are 1
6d(σ3(d)−dσ(d)) simple degree d coverings of

a Riemann surface of genus 2 to E.
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There is a second enumerative theory of mappings from curves to curves, namely
Gromov–Witten theory. In fact, the stationary sector of Gromov–Witten theory and
Hurwitz theory are equivalent [OP06]. Moreover, the corresponding generating se-
ries of Gromov–Witten invariants are actual quasimodular forms of weight 6g − 6
(and not merely quasimodular forms of mixed weights).

Flat surfaces

A flat surface X is a Riemann surface with a flat metric, where we allow a finite
number of singular points. For example, given a ramified covering π : X → E
as in the previous section, pulling back the (flat) metric on the torus yields a flat
metric on X , with singularities at the ramification points. The number of closed
geodesics of bounded length on such a surface is determined by a weighted version
of the Hurwitz numbers. The generating series of pth weighted Hurwitz number can
be expressed by inserting a hook-length moment Hp+1 in the formula for ordinary
Hurwitz numbers. In particular, these generating series are quasimodular forms of
mixed weight [CMZ18, Theorem 6.4].

Example 1.5.2. Consider flat surfaces with only simple singularities. The corre-
sponding generating series of p-weighted Hurwitz numbers is given by

〈Q2g−2
3 Hp+1〉q ,

which is a quasimodular form of weight 6g−6+p+1. The key fact for the application
to flat surfaces is that this conclusion even holds for p = −1, whereas H0 6∈ Λ∗;
hence, note that this does not follow from a direct application of the Bloch–Okounkov
theorem.
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1.6 Main questions and results

In this thesis, our aim is to study graded algebras of functions on partitions such that
all homogeneous elements of the algebra have quasimodular forms as q-brackets.
That is, we now refine Question 1.1.1 to the following three main questions discussed
in this thesis:

(1) Are there graded algebras A 6⊆ Λ∗ such that for all homogeneous f ∈ A
the q-bracket 〈f〉q is quasimodular for SL2(Z)?

(2) Given a congruence subgroup Γ ≤ SL2(Z), is there an (even larger) algebra of
functions for which the q-bracket is a quasimodular form for Γ?

(3) What is the class of functions for which the q-bracket is not only a quasimod-
ular form, but even a modular form?

These questions are discussed and answered in the three parts of this thesis. In
Part I we motivate these three questions by answering Question (3) for the Bloch–
Okounkov algebra and expanding on the motivation from enumerative geometry.
Question (1) is answered affirmatively in Part II. Finally, in Part III we explain how to
answer Questions (2) and (3) by studying a different question of independent interest
(motivated by the results in Section 1.4):

(4) What is the modular or quasimodular behaviour of the Taylor coefficients of a
meromorphic quasi-Jacobi form?

We now state our main results (Theorem A-H below), without presenting the
most technical version of these results.

Results on the Bloch–Okounkov theorem

In Chapter 2 we answer Question (3) for the Bloch–Okounkov algebra. By [Zag16]
there is a second order differential operator ∆ such that the diagram

Λ∗ ∆−−−−→ Λ∗
y〈 〉q

y〈 〉q

M̃
d−−−−→ M̃

commutes. From this diagram, we see that the q-brackets of elements in the space
H := ker ∆ are in the kernel of d, i.e., they are modular forms. The following
theorem gives the converse statement. This result motivates the study of the sl2-
action on quasimodular forms, as well as on functions of partitions.
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Theorem A (Theorem 2.1.3, Theorem 2.1.4 and Theorem 2.1.6). The space Λ∗ has
a direct sum decomposition as

Λ∗ = H⊕Q2Λ∗, (1.16)

given by an explicitly computable projection π : Λ∗ → H with kernel Q2Λ∗, and

M ∩ 〈Q2Λ∗〉q = {0}.

The projection π is computable by formulas for the canonical basis {hλ} of H
via hλ = π(Qλ1 · · ·Qλn), where λ runs over all partitions with all parts at least 3.

In particular, by using (1.16) inductively, each f ∈ Λ∗ can uniquely be written as
a polynomial in Q2 with coefficients hi ∈ H, i.e.,

f =
∑

i≥0

hiQ
i
2 .

As 〈g〉q = 0 if and only if 〈Q2 g〉q = 0 for g ∈ Λ∗, the following are equivalent:

(i) 〈f〉q is modular;

(ii) 〈f〉q = 〈h0〉q ;

(iii) 〈hi〉q = 0 for all i > 0.

We will prove this theorem in Chapter 2 by an explicit construction of the pro-
jection map inspired by the well-known projection map from polynomials to their
harmonic parts; a second proof will also follow from the results of Chapter 5 on
quasi-Jacobi forms, described below.

Next, we motivative Question (1) by applying the Bloch–Okounkov theorem to a
counting problem originating from tropical geometry. More precisely, we study the
generating series of so-called triply mixed Hurwitz numbers, which can be expressed
in terms of the representation theory of the symmetric group. In this result, the
(multiplicative) algebra structure of the Bloch–Okounkov algebra is essential.

Theorem B ( = Theorem 3.4.4). For every type of triply mixed Hurwitz numbers hd
of degree d over an elliptic curve, the corresponding generating series

∑∞
d=1 hd q

d

is a quasimodular form of mixed weight.
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A symmetric Bloch–Okounkov theorem

In Chapter 4 we give an affirmative answer to Question (1). For positive k define the
(part) moment functions Sk by

Sk(λ) = −Bk
2k

+
∑

i=1

λk−1
i = −Bk

2k
+

∞∑

m=1

mk−1 rm(λ),

where rm(λ) denotes the number of parts of sizem in λ. Let S be the graded algebra
generated by the moment functions Sk for even k. We will show that 〈f〉q ∈ M̃
for all f ∈ S, even though S is not contained in Λ∗. However, S is not maximal
quasimodular in the sense of Definition 1.3.4, since we will construct a larger graded
algebra T generated by certain functions Tk,l. These functions Tk,l are defined as a
sum over m of a polynomial in m and rm(λ) (see (4.2)). In particular, Tk,1 = Sk+1.

Theorem C ( = Theorem 4.1.2). For all homogeneous f ∈ T the q-bracket 〈f〉q is a
quasimodular form of the same weight as f .

The key idea in this construction, and in most of the proofs in Chapter 4, is the
principle to establish all identities in QP or T before taking the q-bracket, instead of
doing these computations in Q[[q]] or the space of quasimodular forms M̃ . By doing
so, we discover the algebraic structure of T . For example, this principle is applied in
the following situations:

previous definitions and results new definitions and results

multiplication in Q[[q]] induced product � on QP

q-bracket: QP → Q[[q]] u-bracket: QP → Q[[u1, u2, . . .]]

derivative q d
dq on Q[[q]] derivative on QP

sl2-action on M̃ sl2-action on T
Rankin–Cohen brackets on M̃ Rankin–Cohen brackets on T .
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Quasi-Jacobi forms and applications

Recall that the q-bracket of W (z1) · · ·W (zn) equals Fn(z1, . . . , zn), which can be
expressed in terms of the Jacobi theta function. (See Theorem 1.4.3.) In fact, Fn is an
example of a quasi-Jacobi form, a concept we introduce in Chapter 5. Quasi-Jacobi
forms transform comparable to quasimodular forms (see Equation 1.6), as we explain
now. There is a slash action on all functions ϕ : h× Cn → C for all γ ∈ SL2(Z)
and for all X ∈ M2,n(Q) (so actually for the action of their semidirect product
SL2(Z) n M2,n(Q)). In case ϕ is a quasi-Jacobi form of weight k and index M ,
there exist quasi-Jacobi forms ϕi,j , indexed by a finite subset of Z≥0 × Zn≥0 , such
that for all γ =

(
a b
c d

)
and X =

(
λ
µ

)
∈M2,n(Z) one has

(ϕ|k,Mγ)(τ, z1, . . . , zn) =
∑

i,j

ϕi,j(τ, z1, . . . , zn)
( c

cτ + d

)i+|j|
zj11 · · · zjnn , (1.17)

(ϕ|MX)(τ, z1, . . . , zn) =
∑

j

ϕ0,j(τ, z1, . . . , zn) (−λ1)j1 · · · (−λn)jn , (1.18)

together with similar formulas for each ϕi,j |k,Mγ and ϕi,j |MX . Jacobi forms are
quasi-Jacobi forms for which the right-hand side in both equations above equals ϕ.

The quasi-Jacobi forms ϕ we study are strictly meromorphic, i.e., meromorphic
such that if z ∈ Rnτ + Rn is a pole of ϕ(τ, ·) for some τ ∈ h, it is a pole for
almost all τ ∈ h (see Section 5.6). The Weierstrass ℘-function is an example of a
strictly meromorphic Jacobi form, but its multiplicative inverse is not. In case n = 1,
this condition is equivalent to the statement that all poles of ϕ are torsion points
z ∈ Qτ + Q. This is crucial in order to obtain mock modular forms as Fourier
coefficients of meromorphic Jacobi forms (see [Zwe02, DMZ14]). For n > 1 the
Jacobi transformation properties of ϕ imply a more complicated restriction on the
positions of the poles:

Theorem D ( = Theorem 5.4.2). Let ϕ be a strictly meromorphic quasi-Jacobi form
and τ ∈ h. Then, all poles z of ϕ(τ, ·) lie in finite union of rational hyperplanes

s1z1 + . . .+ snzn ∈ pτ + q

with s1, . . . , sn ∈ Z and p, q ∈ Q/Z.

We give a detailed description of the Taylor coefficients (or rather Laurent coeffi-
cients in case we are expanding around a pole) of a strictly meromorphic quasi-Jacobi
form. This is the technical result we need in order to answer Question (2) and (3).
For simplicity, we assume that s in the result above is always a standard basis vector,
e.g., we allow ℘(z1)℘(z2 + 1

2), but we do not allow ℘(z1 − z2).
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Given X ∈ M2,n(Q), the congruence subgroup ΓX ≤ SL2(Z) is defined by
Equation (5.17) in such a way that

ϕ|MX|k,Mγ = ϕ|MX (γ ∈ ΓX)

for Jacobi forms ϕ of weight k and index M .

Theorem E ( = Theorem 5.9.10). Let ϕ be a strictly meromorphic quasi-Jacobi form
of weight k and index Q whose poles z lie on a finite collection of hyperplanes of the
form zs ∈ pτ + q with s ∈ {1, . . . , n} and p, q ∈ Q/Z. Then

(i) for all X ∈ M2,n(Q) and ` ∈ Zn the ‘Taylor coefficients’ gX` (ϕ), defined by
Definition 5.9.2, are quasimodular forms of weight k + |`| for the group ΓX
and satisfy the functional equations (5.20) and (5.21).

(ii) for all X ∈M2,n(Q) andm ∈ Zn the combinations ξXm(ϕ) of the derivatives
of gX` (ϕ), defined by (5.19), are modular forms of weight k + |m| for ΓX and
satisfy the functional equation (5.20).

Definition 5.9.2 and Equation (5.19) use the functions ϕi,j in (1.17) and (1.18),
which are uniquely determined by the quasi-Jacobi form ϕ. The results of Chapter 5
also show that the four collections of functions {ϕ}, {ϕi,j}, {gX` } and {ξXm} deter-
mine each other in a computable way, and give explicit conditions on the collections
{ϕi,j}, {gX` } and {ξXm} that imply that they arise from a quasi-Jacobi form.

Applying property (i) in Theorem E to suitable strictly meromorphic quasi-Jacobi
forms yields an answer to Question (2). For example, given a ∈ Q, k ≥ 1 and
λ ∈P , let Qk(λ, a) be given by

βk(a) +
1

(k − 1)!

∞∑

i=1

(
e(a)λi−i (λi − i+ 1

2)k−1 − e(a)−i (−i+ 1
2)k−1

)
, (1.19)

where
∑

k∈Z βk(a) (2πiz)k−1 = e(z/2)
e(z+a)−1 and e(x) = e2πix. The main properties

satisfied by these functions are a consequence of the fact that
∑

k≥0

Qk(λ, a) (2πiz)k−1 = e(−1
2a)Wλ(z + a)

and that Fn(z1, . . . , zn) = 〈W (z1) · · ·W (zn)〉q is a quasi-Jacobi form. It is by
applying Theorem E (i) to this function that we deduce the following result on the
quasimodularity of the q-bracket of polynomials in the functions Qk(·, a).

Let the algebra Λ∗(N) ⊆ QP be given by

Λ∗(N) := Q[Qk(·, a) | k ≥ 1, a ∈ {0, 1
N , . . . ,

N−1
N }]

and graded by assigning weight k to Qk(·, a).
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Theorem F ( = Theorem 6.1.1). Let k ∈ Z, N ≥ 1 odd. Then, for f ∈ Λ∗(N) of
weight k the function 〈f〉q , after rescaling τ by a factor of N , is a quasimodular
form of weight k and level N .

In Chapter 6 we state and prove the above result in a more general setting, which
has applications to the hook-length moments and moment functions.

As the n-point functions Fn corresponding to the Bloch–Okounkov algebra Λ∗

are quasi-Jacobi forms, by Theorem E (ii) we find an infinite family of modular
forms. Finding a suitable inverse under the q-bracket for these functions recovers the
answer to Question (3) given in Theorem A. We generalise this statement to other
algebras for which the corresponding n-point functions are quasi-Jacobi forms:

Theorem G ( = Theorem 7.2.3). For any algebraF of functions on partitions satisfy-
ing the conditions in Section 7.2, there exists a subspaceM ofF such that Theorem A
holds after replacing Λ∗ by F andH byM.

In particular, since F = Λ∗ satisfies the conditions in question, by proving The-
orem G we obtain a second proof of Theorem A. In Chapter 7 we explain how this
result answers the question “when is the q-bracket modular?”, not only for the shifted
symmetric functions, but also for their generalisation to congruence subgroups and
for the moment functions.

As a final application of the study of quasi-Jacobi forms, motivated by the study
of the Gromov–Witten theory of K3 surfaces, for m ∈ Z we study the following
differential equation:

D2
τ (ϕm) = m2 F ϕm ,

where F (τ, z) := Θ(τ, z)−1D2
τΘ(τ, z). This is a generalisation of the Kaneko–

Zagier equation (see (8.1)) that they found in connection with the study of supersin-
gular j-invariants in finite characteristic, as recalled in Section 8.1. We also study the
second order differential equation

Dτϕm,n = mnϕm ϕn F + (Dτϕm) (Dτϕn)

for m,n ∈ Z. If the constant term in the Fourier expansion is fixed appropriately, the
unique solutions are quasi-Jacobi forms.

Theorem H (Theorem 8.1.2 and Theorem 8.1.5). The solutions ϕm and ϕm,n of the
two differential equations are quasi-Jacobi forms. In fact,

ϕm = Resx=0

(Θ(x+ z)

Θ(x)

)m
.

Besides proving this result, in Chapter 8 we describe the transformation be-
haviour of the functions ϕm and ϕm,n under the Jacobi group.





Part I

Results on the
Bloch–Okounkov algebra
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CHAPTER 2

When is the Bloch–Okounkov q-bracket modular?

2.1 Introduction

Given a family of quasimodular forms, the question which of its members are mod-
ular often has an interesting answer. For example, consider the family of theta series

θP (τ) =
∑

x∈Zr
P (x) qx

2
1+...+x2r (q = e2πiτ )

given by all homogeneous polynomials P ∈ Z[x1, . . . , xr]. Then, θP is a quasimod-
ular form which is modular if and only if P is harmonic (i.e., P ∈ ker

∑r
i=1 ∂

2/∂x2
i )

[Sch39]1. Also, for every two modular forms f, g one can consider the linear combi-
nation of products of derivatives of f and g given by

n∑

r=0

arD
r
τf D

n−r
τ g (ar ∈ C).

This linear combination is a quasimodular form which is modular precisely if it is
a multiple of the Rankin-Cohen bracket [f, g]n , given by (1.9). In this chapter, we
provide a condition to decide which member of the family of quasimodular forms
provided by the Bloch–Okounkov theorem is modular.

Recall that a quasimodular form f is modular precisely if df = 0, where the
operator d is part of the sl2-triple by which M̃ becomes an sl2-algebra. The re-
sults in [Zag16] allow us to extend this operator d to an operator ∆∗ acting on the
shifted symmetric algebra Λ∗, and more generally to extend the sl2-triple acting on
quasimodular forms to an sl2-triple acting on Λ∗. This operator ∆∗ is not a deriva-
tion, hence this triple does not make Λ∗ into an sl2-algebra (in the sense of Defini-
tion 1.2.4).

This chapter is based on [I20].
1As quasimodular forms were not yet defined in 1939, Schoeneberg only showed that θP is modular

if P is harmonic. However, for every polynomial P it follows that θP is quasimodular by decompos-
ing P as in Formula (2.1) below.
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Proposition 2.1.1. There exists actions of the Lie algebra sl2 on both the algebra of
shifted symmetric polynomials Λ∗ and the algebra of quasimodular forms M̃ such
that the q-bracket 〈·〉q : Λ∗ → M̃ is sl2-equivariant.

The answer to the question in the title of this chapter is provided by the opera-
tor ∆∗. Namely, letting H = ker ∆∗ and I = ker〈 〉q ∩ Λ∗, we prove the following
theorem (it is believed that the right-hand side M ∩ 〈Λ∗〉q below simply equals M ).

Theorem 2.1.2. The q-bracket yields an isomorphism

(H+ I)/I 'M ∩ 〈Λ∗〉q ,
i.e., for f ∈ Λ∗ the q-bracket 〈f〉q is modular if and only if f = h + i with h ∈ H
and i ∈ I .

The last section of this chapter is devoted to describing the graded algebra H.
We call H the space of shifted symmetric harmonic polynomials, as the description
of this space turns out to be very similar to the space of classical harmonic polyno-
mials. Let P(m)

d be the space of homogeneous polynomials of degree d in m vari-
ables x1, . . . , xm, let ‖x‖2 =

∑
i x

2
i and recall that the space H

(m)
d of degree d ho-

mogeneous harmonic polynomials is given by ker
∑m

i=1 ∂
2/∂x2

i . The main theorem
about harmonic polynomials states that every polynomial P ∈ P(m)

d can uniquely be
written in the form

P (x) =
∑

0≤i≤d/2
hi ‖x‖2i (2.1)

with hi ∈ Hd−2i. Here, h0 is the canoncial projection of P onto the space of har-
monic polynomials. Define K(m), the Kelvin transform, and Dα for α an m-tuple of
non-negative integers by

f(x) 7→ ‖x‖2−mf
(

x

‖x‖2
)

and Dα =
m∏

i=1

∂αi
∂xαii

.

An explicit basis for H
(m)
d if m ≥ 3 is given by

{K(m)DαK(m)(1) | α ∈ {0, 1} × Zm−1
≥0 ,

∑
i αi = d}; (2.2)

see, for example, [ABR01]. We prove the following analogous results for the space
of shifted symmetric polynomials.

Theorem 2.1.3. Every f ∈ Λ∗n has a unique expansion

f =
∑

0≤i≤n/2
hiQ

i
2 , (2.3)

where hi ∈ Hn−2i .
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Theorem 2.1.4. The set

{prK ∆λK(1) | λ ∈P(n), all parts are at least 3}

is a vector space basis of Hn , where pr,K and ∆λ are defined by Equation (2.4),
Definition 2.3.6 and Definition 2.3.10, respectively.

Remark 2.1.5. If λ is a partition with some part equal to 2, the element ∆λK(1)
vanishes as ∆2 = ∆ vanishes on harmonic functions. The reason we excluded
m = 2 in the basis (2.2) is different: K(2) is trivial. 4

Now, note that the first part of Theorem A follows from the above two results,
as follows: the decomposition is given by Theorem 2.1.3, the projection map π :
Λ∗ → H is given by f 7→ h0 and is computable using Theorem 2.1.4 (a table of all
basis elements of weight at most 10 can be found in Appendix A.1). The last part of
Theorem A is implied by the following result.

Theorem 2.1.6. Write f ∈ Λ∗ as in (2.3). Then, the following are equivalent:

(i) 〈f〉q is modular;

(ii) 〈f〉q = 〈h0〉q ;

(iii) 〈hi〉q = 0 for all i > 0.

In particular, it follows that f ∈ I if and only if 〈hi〉q = 0 for all i.

Remark 2.1.7. The action of sl2 given by Proposition 2.1.1 makes Λ∗ into an infinite-
dimensional sl2-representation for which the elements of H are the lowest weight
vectors. Theorem 2.1.3 is equivalent to the statement that Λ∗ is a direct sum of the
(not necessarily irreducible) lowest weight modules

Vn =
∞⊕

m=0

Qm2 Hn (n ∈ Z). 4

2.2 An sl2-equivariant Bloch–Okounkov theorem

We study differential operators on the algebra of shifted symmetric functions Λ∗. By
doing so, at the end of this section we prove the sl2-equivariant Bloch–Okounkov
theorem (Proposition 2.1.1).

In order to define these differential operators, we let R = Q[Q1, Q2, . . .] with
the Qk formal variables. This algebra has a representation on Λ∗ by sending the
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independent variable Qk to the function Qk, where we hope that the use of the same
letter will not create confusion. The spaceR has the following interpretation.

Observe that a non-increasing sequence (λ1, λ2, . . .) of integers corresponds to a
partition precisely if it converges to 0. If, however, it converges to an integer n, the
equation

∞∑

k=0

Qk(λ) zk−1 :=
∞∑

i=1

e(λi−i+ 1
2 )z

still defines Qk(λ). In fact, in this case

Qk(λ) = (en∂)Qk(λ− n)

by [Zag16, Proposition 1] where ∂Q0 = 0, ∂Qk = Qk−1 for k ≥ 1 and λ − n =
(λ1 − n, λ2 − n, . . .) corresponds to a partition (i.e. converges to 0). In particular
Q1(λ) = n equals the number the sequence λ converges to. The space R now has a
faithful representation on the space of functions from non-increasing eventually con-
stant sequences of integers to Q, and by abuse of notations we will often identify R
with its image under this latter map.

It is convenient to work withR instead of Λ∗ to define the differential operators ∆
and more generally ∆λ later. Both on Λ∗ and R we define a weight grading by
assigning to Qi weight i. Denote the inclusion and projection maps by

ι : Λ∗ → R, pr : R → Λ∗. (2.4)

We extend 〈·〉q toR via this projection map.
The operator E =

∑∞
m=0Qm

∂
∂Qm

on R multiplies an element of R by its
weight. Moreover, we consider the differential operators ∂ and D onR given by

∂ =

∞∑

m=0

Qm
∂

∂Qm+1
and D =

∑

k,`≥0

(
k + `

k

)
Qk+`

∂2

∂Qk+1∂Q`+1
.

Let ∆ = 1
2(D − ∂2), i.e.

2∆ =
∑

k,`≥0

((
k + `

k

)
Qk+` −QkQ`

)
∂2

∂Qk+1∂Q`+1
−
∑

k≥0

Qk
∂

∂Qk+2
.

The operator ∆ acts on R. This action does not restrict to Q[Q2, Q3, . . .], which is
isomorphic to Λ∗, as, e.g., ∆(Q3) = −1

2Q1. However, ∆∗, defined by pr ∆ ι, acts
on Λ∗.



An sl2-equivariant Bloch–Okounkov theorem 27

In the following (antisymmetric) table the entry in the row of operatorA and col-
umn of operatorB denotes the commutator [A,B]; for proofs see [Zag16, Lemma 3].

∆ ∂ E Q1 Q2

∆ 0 0 2∆ 0 E −Q1∂ − 1
2

∂ 0 0 ∂ 1 Q1

E −2∆ −∂ 0 Q1 2Q2

Q1 0 −1 −Q1 0 0

Q2 −E +Q1∂ + 1
2 −Q1 −2Q2 0 0

Let Q̂2 := Q2− 1
2Q

2
1 and Ê := E−Q1∂− 1

2 . In terms of these operators, the above
table simplifies as follows.

∆ ∂ Ê Q1 Q̂2

∆ 0 0 2∆ 0 Ê

∂ 0 0 0 1 0

Ê −2∆ 0 0 0 2Q̂2

Q1 0 −1 0 0 0

Q̂2 −Ê 0 −2Q̂2 0 0

Hence, we have proven the following result.

Proposition 2.2.1. The operators (Q̂2, Ê,∆) form an sl2-triple.

For later reference we compute [∆, Qn2 ]. This could be done inductively by not-
ing that [∆, Qn2 ] = Qn−1

2 [∆, Q2]+[∆, Qn−1
2 ]Q2 and using the commutation relations

in above table. The proof below is a direct computation from the definition of ∆.

Lemma 2.2.2. For all n ∈ N the following relation holds

[∆, Qn2 ] = −n(n− 1)

2
Q2

1Q
n−2
2 − nQ1Q

n−1
2 ∂ + nQn−1

2 (E + n− 3
2).

Proof. Let f ∈ Q[Q1, Q2], g ∈ R and n ∈ N. Then

∆(fg) = ∆(f) g +
∂f

∂Q2
(Eg −Q1∂g) + f ∆(g), (2.5)

∆(Qn2 ) = n(n− 3
2)Qn−1

2 − n(n− 1)

2
Qn−2

2 Q2
1. (2.6)

By (2.5) and (2.6) we find

∆(Qn2g) =
(
n(n− 3

2)Qn−1
2 −1

2n(n− 1)Q2
1Q

n−2
2

)
g+

+nQn−1
2 (Eg −Q1∂g) + Qn2 ∆(g).
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Now, we turn our attention to the differential operators on quasimodular forms.
Recall P,Q and R are Ramanujan’s notation for the Eisenstein series of weight 2, 4
and 6, respectively; see Example 1.2.5. In the context of the Bloch–Okounkov the-
orem, it is more natural to adapt the sl2-triple of operators acting on quasimodular
forms in the following way. Let D̂ := D − P

24 , so that for all f ∈ Λ∗ one has
〈Q2f〉q = D̂〈f〉q . Moreover, D̂ has the property that it increases the depth of a
quasimodular form by 1, in contrast to D for which D(1) = 0 does not have depth 1:

Lemma 2.2.3. Let f ∈ M̃ be of depth r. Then D̂f is of depth r + 1.

Proof. Consider a monomial P aQbRc with a, b, c ∈ Z≥0. By the Ramanujan identi-
ties (1.8) we find

D(P aQbRc) =

(
a

12
+
b

3
+
c

2

)
P a+1QbRc + O(P a),

where O(P a) denotes a quasimodular form of depth at most a. The lemma follows
by noting that a

12 + b
3 + c

2 − 1
24 is non-zero for a, b, c ∈ Z.

Two important ideals in Λ∗ are I = ker〈·〉q ∩ Λ∗ and (Q2) = Q2Λ∗, related by:

Corollary 2.2.4. Let f ∈ Λ∗. Then f ∈ I if and only if Q2f ∈ I .

Proof. If 〈f〉q = 0, then 〈Q2f〉q = D̂(0) = 0. If 〈f〉q 6= 0, then 〈f〉q is quasimodu-
lar of some depth r and 〈Q2f〉q is of some depth r + 1, in particular non-zero.

Moreover, letting Ŵ = W − 1
2 , the triple (D̂, Ŵ , d) forms an sl2-triple as well.

With respect to these operators the q-bracket becomes sl2-equivariant. The following
proposition is a detailed version of Proposition 2.1.1:

Proposition 2.2.5 (The sl2-equivariant Bloch–Okounkov theorem). The mapping
〈·〉q : R → M̃ is sl2-equivariant with respect to the sl2-triple (Q̂2, Ê,∆) on R
and the sl2-triple (D̂, Ŵ , d) on M̃ , i.e. for all f ∈ R one has

D̂〈f〉q = 〈Q̂2f〉q , Ŵ 〈f〉q = 〈Êf〉q , d〈f〉q = 〈∆f〉q .

Proof. This follows directly from [Zag16, Equation (37)] and the fact that for all
f ∈ R one has 〈Q1f〉q = 0.
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2.3 Describing the space of shifted symmetric harmonic polynomials

In this section we study the kernel of ∆. As [∆, Q1] = 0, we restrict ourselves
without loss of generality to Λ∗ instead ofR. Recall that ∆∗ = pr ∆ ι acts on Λ∗.

Definition 2.3.1. Let

H = {f ∈ Λ∗ | ∆ιf ∈ Q1R} = ker ∆∗,

be the space of shifted symmetric harmonic polynomials.

Proposition 2.3.2. We have a direct sum decomposition

Λ∗ = H ⊕ (Q2) ((Q2) = Q2Λ∗).

Proof. First we show thatH∩(Q2) is trivial. Let f be an element of this intersection
and write f = Qn2f

′ with n ≥ 1, f ′ ∈ Λ∗ and f ′ 6∈ (Q2). Then

∆∗(f) = Qn−1
2 (n(n+ k − 3

2)f ′ +Q2∆∗f ′)

by Lemma 2.2.2. As f ′ is not divisible by Q2, it follows that ∆∗(f) = 0 precisely if
f ′ = 0. Hence, f = 0 as desired.

In particular, the linear map T : Λ∗ → Λ∗, given by f 7→ ∆∗(Q2f), is injective.
Since T also preserves the degree and each graded component Λ∗n of Λ∗ is finite-
dimensional, T is in fact an isomorphism. Hence, given f ∈ Λ∗ let g ∈ Λ∗ be such
that T (g) = ∆∗(f) ∈ Λ∗. Let h = f − Q2g. As f = Q2g + h, it suffices to show
that h ∈ H. That holds true because ∆∗(h) = ∆∗(f)−∆∗(Q2g) = 0.

Proposition 2.3.2 implies Theorem 2.1.3 and the following corollary. Recall p(n)
denotes the number of partitions of n.

Corollary 2.3.3. The dimension of Hn equals the number of partitions of n into at
least 3 parts, i.e.

dimHn = p(n)− p(n− 1)− p(n− 2) + p(n− 3).

Proof. Observe that dim Λ∗n equals the number of partitions of n in at least 2 parts.
Hence, dim Λ∗n = p(n)−p(n−1) and the Corollary follows from Proposition 2.3.2.

Proof of Theorem 2.1.6. Suppose 〈f〉q is modular. Then 〈∆f〉q = d〈f〉q = 0. Write
f =

∑
r≥0 hrQ

r
2 as in Theorem 2.1.3. Then by Lemma 2.2.2 it follows that ∆∗f =∑

r≥0 r(n− r − 3
2)Qr−1

2 hr. Hence,
∑

r>0

r
(
n− r − 3

2

)
D̂r−1〈hr〉q = 0. (2.7)
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As 〈hr〉q is modular, either it is equal to 0 or it has depth 0. Suppose the maximumm
of all r ≥ 1 such that 〈hr〉q is non-zero exists. Then, by Lemma 2.2.3 it follows that
the left-hand side of (2.7) has depth m − 1, in particular is not equal to 0. So,
h1, . . . , hn′ ∈ ker〈·〉q , which is the second condition.

By Corollary 2.2.4 the second implication implies the third, and the third the
first.

Proof of Theorem 2.1.2. Suppose 〈f〉q is modular. By Theorem 2.1.6 it follows di-
rectly that f = h + k (namely h = h0 and k = f − h) with h ∈ H and k ∈ I . The
converse of Theorem 2.1.2 follows directly as d〈h+k〉q = d〈h〉q = 〈∆∗h〉q = 0.

Another corollary of Proposition 2.3.2 is the notion of depth of shifted symmetric
polynomials which corresponds to the depth of quasimodular forms:

Definition 2.3.4. The space Λ
∗(≤p)
k of shifted symmetric polynomials of depth ≤ p

is the space of f ∈ Λ∗k such that one can write

f =

p∑

r=0

Qr2 hr

with hr ∈ Hk−2r.

Theorem 2.3.5. If f ∈ Λ
∗(≤p)
k , then 〈f〉q ∈ M̃ (≤p)

k .

Proof. Expanding f as in Definition 2.3.4 we find

〈f〉q =

p∑

k=0

〈Qk2 hk〉q =

p∑

k=0

D̂k〈hk〉q .

By Lemma 2.2.3, we find that the depth of 〈f〉q is at most p.

Next, we set up notation to determine the basis ofH given by Theorem 2.1.4. Let
R̃ = R[Q

−1/2
2 ] and Λ̃ = Λ∗[Q−1/2

2 ] be the formal polynomial algebras graded by
assigning to Qk weight k (note that the weights are—possibly negative—integers).
Extend ∆ to Λ̃ and observe that ∆(Λ̃) ⊂ Λ̃. Also extendH by setting

H̃ = {f ∈ Λ̃ | ∆ιf ∈ Q1R̃}.

Definition 2.3.6. Define the partition-Kelvin transform K : Λ̃n → Λ̃3−n by

K(f) = Q
3/2−n
2 f.
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Note that K is an involution. Moreover, f is harmonic if and only if K(f) is
harmonic, which follows directly from the computation

∆K(f) = Q
3/2−n
2 ∆f − (3

2 − n)Q1Q
1
2−n
2 ∂f − 1

2(3
2 − n)(1

2 − n)Q2
1Q
−1

2−n
2 f.

Example 2.3.7. As K(1) = Q
3/2
2 , it follows that Q3/2

2 ∈ H̃.

Definition 2.3.8. Given i ∈ Zn≥0, let

|i| = i1 + i2 + . . .+ in, ∂i =
∂n

∂Qi1+1 ∂Qi2+1 · · · ∂Qin+1
.

Define the nth order differential operators Dn on R̃ by

Dn =
∑

i∈Zn≥0

( |i|
i1, i2, . . . , in

)
Q|i| ∂i ,

where the coefficient is a multinomial coefficient.

This definition generalises the operators ∂ and D to higher weights: D1 = ∂,
D2 = D and Dn reduces the weight by n.

Lemma 2.3.9. The operators {Dn}n∈N commute pairwise.

Proof. Set I = |i| and J = |j|. Let ak̂ = (a1, . . . , ak−1, ak+1, . . . , an). Then

[(
I

i1, i2, . . . , in

)
QI ∂i,

(
J

j1, j2, . . . , jm

)
QJ ∂j

]

=

n∑

k=1

δik,J−1 J

(
I

i1, i2, . . . , îk, . . . , in, j1, j2, . . . , jm

)
QI ∂ik̂ ∂j +

−
m∑

l=1

δjl,I−1 I

(
J

i1, i2, . . . , in, j1, j2, . . . , ĵl, . . . , jm

)
QJ ∂i ∂j l̂ .

Hence, [Dn,Dm] is a linear combination of terms of the form Q|a|+1
∂n+m−1

∂Qa
, where

a ∈ Zn+m−1
≥0 . We collect all terms for different vectors a which consists of the same

parts (i.e. we group all vectors a which correspond to the same partition). Then, the
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coefficient of such a term equals

n∑

k=1

∑

σ∈Sm+n−1

(aσ(1) + . . .+ aσ(m))

( |a|+ 1

a1, a2, . . . , an+m−1

)
+

−
m∑

l=1

∑

σ∈Sm+n−1

(aσ(1) + . . .+ aσ(n))

( |a|+ 1

a1, a2, . . . , an+m−1

)

= (mn−mn)
∑

σ∈Sm+n−1

aσ(1)

( |a|+ 1

a1, a2, . . . , an+m−1

)
= 0.

Hence, [Dn,Dm] = 0.

It does not hold true that [Dn, Q1] = 0 for all n ∈ N. Therefore, we introduce
the following operators:

Definition 2.3.10. Let

∆n =
n∑

i=0

(−1)i
(
n

i

)
Dn−i ∂i.

For λ ∈P let

∆λ =

( |λ|
λ1, . . . , λ`(λ)

) ∞∏

i=1

∆λi .

(Note that ∆0 = D0 = 1, so this is in fact a finite product.)

Remark 2.3.11. By Möbius inversion

Dn =

n∑

i=0

(
n

i

)
∆n−i ∂i. 4

The first three operators are given by

∆0 = 1, ∆1 = 0, ∆2 = D − ∂2 = 2∆.

Proposition 2.3.12. The operators ∆λ satisfy the following properties: for all par-
titions λ, λ′

(a) the order of ∆|λ| is |λ|;
(b) [∆λ,∆λ′ ] = 0;

(c) [∆λ, Q1] = 0.
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Proof. Property (a) follows by construction and property (b) is a direct consequence
of Lemma 2.3.9. For property (c), let f ∈ Λ̃ be given. Then

∆n(Q1f) =
n∑

i=0

(−1)i
(
n

i

)
Dn−i∂i(Q1f)

=

n∑

i=0

(−1)i
(
n

i

)(
(n− i)Dn−i−1∂

if +Q1Dn−i∂if + iDn−i∂i−1f
)

= Q1∆n(f) +
n∑

i=0

(−1)i
(
n

i

)(
(n− i)Dn−i−1∂

if + iDn−i∂i−1f
)
.

Observe that by the identity

(n− i)
(
n

i

)
= (i+ 1)

(
n

i+ 1

)

the sum in the last line is a telescoping sum, equal to zero. Hence ∆n(Q1f) =
Q1∆n(f) as desired.

In particular, above proposition yields [∆λ,∆] = 0 and [∆λ, pr] = 0.
Denote by (x)−n the falling factorial power (x)−n =

∏n−1
i=0 (x−i) and for λ ∈Pn

define Qλ =
∏∞
i=1Qλi . Let

hλ = prK∆λK(1). (2.8)

Observe that hλ is harmonic, as pr ∆ commutes with pr and ∆λ.

Remark 2.3.13. In Theorem 7.3.4 we find a different expression for hλ. 4
Proposition 2.3.14. For all λ ∈Pn there exists an f ∈ Λ∗n−2 such that

hλ = (3
2)−n n!Qλ + Q2f.

Proof. Note that the left-hand side is an element of Λ∗ of which the monomials divis-
ible by Qi2 correspond precisely to terms in ∆λ involving precisely n− i derivatives
of K(1) to Q2. Hence, as ∆λ has order n all terms not divisible by Q2 correspond
to terms in ∆λ which equal ∂

∂Qn−i2

up to a coefficient. There is only one such term

in ∆λ, with coefficient
( |λ|
λ1,...,λr

)
λ1! . . . λr!Qλ.

Proof of Theorem 2.1.4. Let Bn = {hλ | λ ∈ Pn all parts are ≥ 3}. First of all,
observe that by Corollary 2.3.3 the number of elements in Bn is precisely the di-
mension of Hn. Moreover, the weight of an element in Bn equals |λ| = n. By
Proposition 2.3.14 it follows that the elements of Bn are linearly independent har-
monic shifted symmetric polynomials.
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We embed R in End(R) via the algebra morphism ∨ uniquely determined by
Qi 7→ ∆i. Furthermore, for f ∈ Λ∗, we let f∨ be the operator where every occur-
rence of Qi in f is replaced by ∆i. We get the following unusual identity:

Corollary 2.3.15. If h ∈ Hn, then

h =
prKh∨K(1)

n! (3
2)−n

. (2.9)

Proof. By Proposition 2.3.14 we know that the statement holds true up to addingQ2f
to the right-hand side for some f ∈ Λ∗n−2. However, as both sides of (2.9) are har-
monic and the shifted symmetric polynomial Q2f is harmonic precisely if f = 0 by
Proposition 2.3.2, it follows that f = 0 and (2.9) holds true.



CHAPTER 3

Quasimodularity of Hurwitz numbers over elliptic
curves

3.1 Introduction

In Example 1.5.1 we saw that the simple Hurwitz numbers of genus g and degree d
over a curve of genus 1 are given by

∑

|λ|=d
Q3(λ)2g−2.

In this chapter we define Hurwitz numbers as well as triply mixed Hurwitz numbers,
a generalised version of Hurwitz numbers originating from tropical geometry. The
main technical result is that the above expression still holds, after replacing Q2g−2

3

by a different explicit shifted symmetric function.

Proposition 3.1.1. For every triple mixed Hurwitz number h of degree d over a curve
of genus 1 there exists an f ∈ Λ∗ such that

h =
∑

λ`d
f(λ),

where the sum is over all partitions of size d.

The connection between Hurwitz numbers and shifted symmetric functions is
made via central characters in the representation theory of the symmetric group,
which on the one hand occur naturally when counting Hurwitz numbers and on the
other hand are shifted symmetric functions themselves. By the Bloch–Okounkov
theorem, if follows directly from Proposition 3.1.1 that the corresponding generating
series of triply mixed Hurwitz numbers are quasimodular forms, which is Theorem B.

This chapter is based on [HIL19], joint work with Marvin A. Hahn and Felix Leid. In that paper
we also provide refined quasimodularity results, as well as results on topological recursion. We leave
these results out of this thesis, as they go beyond the topic of this chapter.

35
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3.2 Triply mixed Hurwitz numbers

We define classical Hurwitz numbers via a counting problem in the symmetric group.
This naturally leads to the generalisation to triply mixed Hurwitz numbers.

Given a permutation σ in the symmetric group Sd , denote by ptn(σ) the parti-
tion which corresponds to the cycle type of σ.

Definition 3.2.1. Let g′, g ≥ 0 be non-negative integers, d a positive integer and
µ = (µ1, . . . , µn) a tuple of partitions of d. In case

2g′ − 2 = d (2g − 2) +
n∑

j=1

(
|µj | − `(µj)

)
, (3.1)

we call (σ1, . . . , σn, α1, β1, . . . , αg, βg) a factorization of type (g, g′, d, µ) if the fol-
lowing conditions are satisfied for all i:

(1) σi, αi, βi ∈ Sd ;

(2) σ1 · · ·σn = [α1, β1] · · · [αg, βg];

(3) ptn(σi) = µi.

If additionally we have

(C) 〈σ1, . . . , σn, α1, β1, . . . , αg, βg〉 acts transitively on the set {1, 2, . . . , d}

we call the factorisation connected. Denote by F•(g, g′, d, µ) and F(g, g′, d, µ) the
sets of factorisations and connected factorisations of type (g, g′, d, µ), respectively.
The Hurwitz numbers and connected Hurwitz numbers are defined by

hg
′,d;•
g (µ1, . . . , µn) =

1

d!
|F•(g, g′, d, µ)| ,

hg
′,d
g (µ1, . . . , µn) =

1

d!
|F(g, g′, d, µ)| .

Remark 3.2.2. Hurwitz numbers were first defined as an enumerative problem count-
ing ramified morphisms between Riemann surfaces: For a fixed compact Riemann
surface S of genus g, Hurwitz numbers count holomorphic maps π : S′ → S (up to
isomorphism) of degree d, where S′ is a compact Riemann surface of genus g′, such
that

• π has ramification profile µ1, . . . , µn over n arbitrary, but fixed points on S;

• each map is weighted by |Aut(π)|−1.
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The connection to our definition, which is due to Hurwitz, is made by considering
the monodromy representations for the holomorphic maps involved (see [Hur1891,
Hur1901]). The condition (3.1) is the Riemann–Hurwitz formula, a necessary condi-
tion for the existence for the holomorphic maps π counted by the Hurwitz numbers.
Condition C is exactly the condition for the Riemann surface S′ to be connected. For
more details, see, e.g., [CM16]. 4

Often condition (3.1) is relaxed by allowing µ to be extended by an arbitrary
number of simple partitions, i.e., partitions of the form (2, 1, 1, . . . , 1). Triply mixed
Hurwitz numbers are Hurwitz numbers extended in this way, with an additional re-
quirement on the transpositions (corresponding to these simple partitions).

Definition 3.2.3. Let g′, g ≥ 0 be non-negative integers, d a positive integer and
µ = (µ1, . . . , µn) a tuple of partitions (not necessarily of the same integers). Fur-
thermore, let

b = b(g, g′, µ) = 2g′ − 2 − d (2g − 2) +
∑

i

(
`(µi)− |µi|

)
. (3.2)

For non-negative integers k, l, m such that k + l + m = b, we define a triply mixed
factorisation of type (g, d, µ, k, l,m) to be a tuple

(σ1, . . . , σn, τ1, . . . , τb, α1, β1, . . . , αg, βg) ∈ Sn+b+2g
d

such that for all i

(1) the τi are transpositions;

(2) σ1 · · ·σnτ1 · · · τb = [α1, β1] · · · [αg, βg];

(3) ptn(σi) and µi differ only in the amount of parts equal to 1;

(4) for τi = (si ti) with si < ti , we have

• ti ≤ ti+1 for i = k + 1, . . . , k + l − 1,

• ti < ti+1 for i = k + l + 1, . . . , k + l +m− 1.

If in addition, we have

(C) 〈σ1, . . . , σn, τ1, . . . , τb, α, β〉 acts transitively on {1, . . . , d},

we call the factorisation connected. We denote by M•(g, d, µ, k, l,m) the set of
triply mixed factorisations of type (g, d, µ, k, l,m) and by M(g, d, µ, k, l,m) the set
of connected triply mixed factorisations of type (g, d, µ, k, l,m). Then we define
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the triply mixed Hurwitz numbers and the connected triply mixed Hurwitz numbers,
respectively, by

hg
′,d;•
g;k,l,m(µ) =

1

d!
|M•(g, d, µ, k, l,m)| ,

hg
′,d
g;k,l,m(µ) =

1

d!
|M(g, d, µ, k, l,m)| .

Remark 3.2.4. By taking l = m = 0 we recover classical Hurwitz numbers, now ex-
tended with additional simple partitions. In case k = m = 0 we call the correspond-
ing triply mixed Hurwitz numbers monotone Hurwitz numbers and in case k = l = 0
we call them strictly monotone Hurwitz numbers. Strictly monotone Hurwitz num-
bers are also called Grothendieck dessins d’enfants Hurwitz numbers, as they are
equivalent to an enumeration of Grothendieck dessins d’enfants in tropical geometry,
as proved in [ALS16, section 4.3.2]. One way to think about triply mixed Hurwitz
numbers is as an interpolations between classical, monotone and strictly monotone
Hurwitz numbers. 4

3.3 Central characters of the symmetric group are shifted symmetric

We aim to express triply mixed Hurwitz numbers in terms of shifted symmetric func-
tions. This will be done via the central characters fν in the representation theory of
the symmetric group. In this section we define these central characters, as well as the
Jucys–Murphy elements occurring in these central characters.

Let d ≥ 0 and Zd be the center of the group algebra C[Sd] of the symmetric
group. Given a partition λ, denote by Cλ the sum of all elements in S|λ| of cycle
type λ. Let (ρλ, Vλ) be the irreducible representation of S|λ| corresponding to λ.
Note that a basis of Zd is given by Cλ for all partitions λ of d.

Definition 3.3.1. Given z ∈ Zd , the central character ωλ(z) is the constant by
which ρλ(z) acts on Vλ (recall that by Schur’s lemma ρλ(z) acts by a constant).

For example, the central character of the conjugacy class sums Cν is given by

fν(λ) := ωλ(Cν) = |Cν |
χλ(ν)

dimλ
, (3.3)

where (by abuse of notation) |Cν | denotes the size of the conjugacy class of elements
of cycle type ν in S|ν| , χλ denotes the character of ρλ and dimλ the dimension
of ρλ . We extend 3.3 to the case when |ν| 6= |λ| by

fν(λ) :=

(|λ|
|ν|

)
|Cν |

χλ(ν)

dimλ
,
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where fν(λ) = 0 whenever |λ| < |ν| and ν denotes the partition of size |λ| differing
from ν only in the amount of parts equal to 1. Observe that if ν is a partition with-
out parts equal to 1 the quantity

(|λ|
|ν|
)
|Cν | equals the size of the conjugacy class of

cycle type ν in S|λ| instead of in S|ν| . These central characters are in fact shifted
symmetric functions, as was proven in [KO94, Theorem 5].

Lemma 3.3.2. The central character fν is a shifted symmetric function of mixed
weight at most |ν|+ `(ν).

Let Ξd = (J1, J2, . . . , Jd, 0, 0, . . .) be the sequence of Jucys–Murphy elements
given by Jk =

∑k−1
i=1 (i k) ∈ C[Sd]. Although the Jucys–Murphy elements do not

belong to Zd , symmetric polynomials in Ξd are elements of Zd . More precisely,
every element ofZd can be written as a symmetric polynomial in Ξd [Juc74, Mur81].
Remarkably, the central character of a symmetric polynomial f evaluated at Ξd has
the following simple expression.

Denote by contλ the set of all contents of the partition λ, i.e.,

contλ = {j − i | (i, j) ∈ Yλ}. (3.4)

Proposition 3.3.3. Let f be a symmetric polynomial of degree n. Then

(i) ωλ(f(Ξd)) = f(contλ), where λ is a partition of size d.

(ii) As a function of λ, the central character ωλ(f(Ξd)) is a shifted symmetric
function of mixed weight at most 3n.

(iii) If f is the complete homogeneous symmetric polynomial hn or the elementary
symmetric polynomial en of degree n, then

ωλ(f(Ξd))−
1

2n−1
Q3(λ)n

is shifted symmetric of mixed weight at most 3n− 1.

Proof. The first statement follows directly from [Juc74].
Next, let k ≥ 0 and (x)k = x(x − 1) · · · (x − k + 1). Then, for the symmetric

polynomial p
k
(x1, . . . , xm) :=

∑m
i=1(xi)k it is known that [KO94, Theorem 4]

kp
k−1

(contλ) =
∞∑

i=1

(
(λi − i+ 1)k − (−i+ 1)k

)
(k ≥ 1) (3.5)

where the right-hand side is a shifted symmetric polynomial of mixed degree≤ k+1.
Given a symmetric polynomial g of degree n with constant term equal to zero,

one can write g as a polynomial in the p
k

for k ≥ 1. Assign to p
k

weight k + 2 in
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accordance with (3.5), i.e., p
k
(contλ) is a shifted symmetric polynomial of mixed

weight k + 2. Observe that the monomial pn
1

is the unique monomial of degree n
containing a non-trivial term of weight 3n. Hence, the central character ωλ(f(Ξd))
of g is a shifted symmetric function of mixed weight at most 3n with top-degree part
up to a multiplicative constant equal to Q3(λ)n. Specializing g to hn and en the
result follows by observing that in this case the coefficient of pn

1
equals 21−n.

The commutator sum K =
∑

α,β∈Sd [β, α] also is an element of Zd . Its central
character equals [CM16, Eq. 9.14]

ωλ(K) =
( d!

dimλ

)2
. (3.6)

3.4 Quasimodularity of triply mixed Hurwitz numbers

Fix g′ ≥ 2. The generating series
∑

d≥1

hg
′,d;•
k,0,0 (µ) qd

of ordinary Hurwitz numbers with g = 1 is known to be a quasimodular form.
This was observed by Dijkgraaf in the simplest case (µ = ()), rigorously proved
in that case by Kaneko and Zagier, and follows in full generality from the Bloch–
Okounkov theorem as noted by Eskin and Okounkov, and independently by Ochiai
[Dij95, KZ95, EO01, Och01]. In this section we extend this result to the generating
series of triply mixed Hurwitz numbers with g = 1. We begin by expressing triply
mixed Hurwitz numbers in terms of shifted symmetric functions.

Let hn be the complete homogeneous symmetric polynomial and en the ele-
mentary symmetric polynomial of degree n, respectively. Proposition 3.1.1 in the
introduction is implied by the following result.

Proposition 3.4.1. Let g, g′ ≥ 0, let µ be a tuple of partitions and take k, l,m ≥ 0
with k + l +m = b, where b = b(g, g′, µ) is given by (3.2). Then, we have

hg
′,d;•
g;k,l,m(µ) =

∑

λ`d

(dimλ

d!

)2−2g
fµ(λ) f(2)(λ)k hl(contλ) em(contλ), (3.7)

where the sum is over all partitions of size d.

Proof. First, we rewrite the triply mixed Hurwitz number in terms of the center Zd
of the group algebra Sd . Given a partition λ of d recall the elements Cλ in Zd
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are defined as the sum of all permutations of cycle type λ. In case λ is a partition
of size smaller than d, we extend λ with additional parts equal to 1. Observe that
[Ce]Cµ1 · · ·Cµn , where [Ce] denotes the coefficient of Ce = e in the basis of Zd
given by the Cλ , counts the number of σ1, . . . , σn where the cycle type of σi is µi

(up to parts equal to 1) and for which σ1 · · ·σn = e.
Next, note that

hk(Ξd) =
∑

2≤t1≤...≤tk≤d
si<ti

(s1 t1) · · · (sk tk)

and
ek(Ξd) =

∑

2≤t1<...<tk≤d
si<ti

(s1 t1) · · · (sk tk).

Hence, [Ce]C
k
(2) hl(Ξd) em(Ξd) counts the number of transpositions τ1, . . . , τb sat-

isfying conditions (1) and (4) in the definition of a triply mixed factorisations (Defi-
nition 3.2.3). Hence, equivalently a triply mixed Hurwitz number is given by

hg
′,d;•
g;k,l,m(µ) =

1

d!
[Ce]K

g Cµ1 · · ·Cµn Ck(2) hl(Ξd) em(Ξd).

Note that χλ(Cν) = χλ(e)ωλ(Cν) for all partitions ν of size d. Hence, the Schur
orthogonality relation can be written in the unusual form

∑
λ`d χ

λ(e)2ωλ(Cν) =
δeν |Sd|, where δ denotes the Kronecker delta. Recall χλ(e) = dimλ and |Sd| = d! .
Hence, writing z ∈ Zd in the basis given by the Cλ we find

[Ce] z =
1

d!

∑

λ`d
(dimλ)2 ωλ(z).

Therefore,

hg
′,d;•
g;k,l,m(µ) =

∑

λ`d

(dimλ

d!

)2
ωλ
(
Kg Cµ1 · · ·Cµn Ck(2) hl(Ξd) em(Ξd)

)

=
∑

λ`d

(dimλ

d!

)2−2g
fµ(λ) f(2)(λ)k hl(contλ) em(contλ),

where in the second equality we used that ωλ is a group homomorphism, as well
as (3.6), (3.3) and Proposition 3.3.3.

Definition 3.4.2. Let tµ =
∏
i,j ti,µij

be a formal variable. Define the Hurwitz poten-
tial by

H• =
∑

hg
′,d;•
k,l,m(µ) tµ

uk

k!
vl wm qd,
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where the sum is over all k, l,m, d, µ for which hg
′,d;•
k,l,m(µ) is defined. Note that we

set g = 1. Analogously define the connected Hurwitz potential H.

Remark 3.4.3. By a standard argument (see e.g. [CM16, Thm. 10.2.1]) the Hurwitz
potential and the connected Hurwitz potential are related by

expH = 1 + H•. 4

Theorem 3.4.4 ( = Theorem B). Let g′ ≥ 2. Then
∞∑

d=1

hg
′,d
k,l,m(µ) qd (3.8)

is a quasimodular form of mixed weight≤ 6g′−6+
∑

i

(
4`(µi)− 2|µi|

)
. Moreover,

for fixed b = k + l +m the top weight parts of

2l+m+δl,0+δm,0−2
∞∑

d=1

hg
′,d
k,l,m(µ) qd

ranging over all k, l,m ≥ 0 are equal.

Proof. Observe that fµ(λ) f(2)(λ)k hl(contλ) em(contλ) is shifted symmetric in λ
of mixed weight at most

∑
i

(
|µi|+`(µi)

)
+ 3(k+l+m) by the results in Section 3.3.

By (3.2) this weight equals

6g′ − 6 +
∑

i

(
4`(µi)− 2|µi|

)
. (3.9)

Observe that evaluating fµ, hl(cont) or em(cont) at the empty partition yields 0
unless µ is empty, l = 0 or m = 0, respectively. In other words, using (3.7) to define
Hurwitz numbers for d = 0, one obtains hg

′,0
k,l,m(µ) = 1 if µ = () and k = l = m = 0

and 0 else. Hence, Proposition 3.4.1 and Remark 3.4.3 imply that

H = log
(
q1/24η(τ)−1

∑〈
fµ f

k
(2) hl(cont) em(cont)

〉
q
tµ
uk

k!
vl wm

)
,

where the sum is over all partitions µ and k, l,m ≥ 0. The constant q1/24η(τ)−1

cancels the denominator of the q-bracket. By the Bloch–Okounkov theorem the q-
bracket 〈fµ fk(2) hl(cont) em(cont)〉q is a quasimodular form of weight at most given
by Equation (3.9). Also, for µ the empty partition and k = l = m = 0, this q-bracket
equals 1. Write

∑′
for the sum is over all partitions µ and k, l,m ≥ 0 excluding this

trivial case. Then, all Taylor coefficients of

H = − log(q−1/24η(τ)) + log
(

1+
∑′〈

fµ f
k
(2) hl(cont) em(cont)

〉
q
tµ
uk

k!
vl wm

)
,
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except the constant coefficient − log(q−1/24η(τ)), are quasimodular. As this con-
stant term corresponds to g′ = 1, quasimodularity of (3.8) follows for all g′ ≥ 2.
The second part of the statement follows directly from Proposition 3.3.3(iii).

Remark 3.4.5. In fact, the above proofs shows that in case g′ = 1 the series in (3.8)
equals − log(q−1/24η(τ)). This is not a quasimodular form, but it is a primitive of
a quasimodular form. Namely, its derivative equals up to a constant the Eisenstein
series of weight 2. By the Nekrasov–Okounkov formula [NO06] this function also
occurs as 〈H0〉q in [CMZ18] (see also the discussion in [Zag16, p. 365]). 4





Part II

A symmetric
Bloch–Okounkov theorem
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CHAPTER 4

New quasimodular algebras

4.1 Introduction

The aim of this chapter is to introduce new quasimodular algebras, in the following
sense.

Definition 4.1.1. A graded algebra of functions on partitions is called a quasimod-
ular algebra if the q-bracket of a homogeneous function f ∈ A is quasimodular of
the same weight as f .

Previously, the Bloch–Okounkov algebra Λ∗ and some generalisations to higher
levels (see e.g. [EO06, Eng17]), were the only known quasimodular algebras. How-
ever, there are many examples of functions on partitions admitting a quasimodular q-
bracket (and in general not belonging to Λ∗) [Zag16, section 9], for example the
Möller transformation of functions with quasimodular q-bracket (defined by [Zag16,
Eqn 45] and recalled in Section 4.12), invariants AP for every even polynomial de-
fined in terms of the arm- and leg-lengths of a partition and the moment functions

Sk(λ) = −Bk
2k

+
∞∑

i=1

λk−1
i (k even, Bk = kth Bernoulli number) (4.1)

that also occur in the study of so-called spin Hurwitz numbers in the algebra of su-
persymmetric polynomials [EOP08] (in that reference, these functions are only eval-
uated at strict partitions — partitions without repeated parts — and quasimodularity
is shown for a correspondingly adapted q-bracket).

In this chapter, we prove the stronger result that the algebra S generated by
these moment functions Sk is quasimodular. Moreover, besides the pointwise prod-
uct of functions on partitions we define a second associative product �, called the
induced product as it is inherited from the product of power series. The vector
space Sym�(S) generated by the elements in S under the induced product is strictly

This chapter is based on [I21a].
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bigger than S, is a quasimodular algebra for either of the two products, and has a par-
ticularly nice description in terms of functions Tk,l depending not only on the parts
of a partition, but also on their multiplicities. Here, the multiplicity rm(λ) of parts of
size m in a partition λ is defined as the number of parts of λ of size m. More pre-
cisely, let Fl be the Seki–Bernoulli polynomial of positive integer degree l, defined
by Fl(n) =

∑n
i=1 i

l−1 for all n ∈ Z>0. Then, Tk,l is given by

Tk,l(λ) = Ck,l +

∞∑

m=1

mkFl(rm(λ)) (k ≥ 0, l ≥ 1, k + l even) (4.2)

with Ck,l a constant equal to − Bk+l
2(k+l) if k = 0 or l = 1 and 0 else. Let T be the

algebra generated by all these Tk,l under the pointwise product.
We show that Sym�(S) and T are algebras for the pointwise product as well as

for the induced product. In fact, the expression of elements of Sym�(S) in terms
of the Tk,l implies that Sym�(S) is a strict subalgebra of T (with respect to both
products). Our main result is the following:

Theorem 4.1.2 ( = Theorem C). The algebras Sym�(S) and T are quasimodular
algebras with respect to the induced product.

With respect to the pointwise product, these algebras are not quasimodular be-
cause of the following subtlety: the q-bracket of a homogeneous function f in T
(with respect to the pointwise product) often is of mixed weight (i.e., a linear com-
bination of quasimodular forms of weights bounded by the weight of f ). By making
use of the induced product, one can explain these lower weight quasimodular forms,
as we do in Section 4.11. For example,

〈T 2
0,2〉q = G2

2 +
5

6
G4 +

1

6
G2 +

1

288

is explained by the fact that

T 2
0,2 = T0,2 � T0,2 +

5

6
T0,4 +

1

6
T0,2 +

1

288

is a linear combination of elements of T of different weights with respect to the
induced product.

A main theme throughout this chapter is the principle to establish all identities
in QP or T before taking the q-bracket, instead of doing these computations in Q[[q]]

or the space of quasimodular forms M̃ . By doing so, we discover the algebraic
structure of T . Without having the induced product at one’s disposal, for example
when studying the shifted symmetric algebra Λ∗, this seems impossible. See the
following table for an overview of situations where the principle is applied:
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previous definitions and results new definitions and results §§

multiplication in Q[[q]] induced product � on QP 4.4

q-bracket: QP → Q[[q]] u-bracket: QP → Q[[u1, u2, . . .]] 4.4

connected q-bracket: connected product: 4.4

Sym⊗(QP)→ Q[[q]] Sym⊗(QP)→ QP

derivative q d
dq on Q[[q]] derivative on QP 4.9

sl2-action on M̃ sl2-action on T 4.10

Rankin–Cohen brackets on M̃ Rankin–Cohen brackets on T 4.10

formula for 〈Hpf〉q in formula for Tk,lf 4.11

[CMZ18, Eqn 152]

A further main result of this chapter is the following:

Theorem 4.1.3. The q-bracket is an equivariant mapping T → M̃ with respect
to sl2-actions by derivations on both spaces.

Motivated by the fact that many functions in invariants of partitions are elements
of Λ∗, in Section 4.12 we describe many functions on partitions which are elements
of T or are closely related. Among those are the border strip moments, general-
izing the hook-length moments, which are defined in terms of the representation
theory of the symmetric group. The corresponding space X of border strip mo-
ments is the image of a space U under the aforementioned Möller transform M,

H Λ∗

X M̃

U C

T M̃

〈 〉q
〈 〉q

〈 〉q

〈 〉q

M

〈 〉q

1

where U is generated by the double moment functions
Tk,l ∈ T as well as the odd double moments functions
(those for which k + l is odd). The q-brackets of these
functions are contained in the space C of so-called combi-
natorial Eisenstein series, having the space of quasimod-
ular forms as a subspace. Moreover, the space of hook-
length moments H is contained in both Λ∗ and X—this
contrasts the situation for T , which by Remark 4.8.6 has
a trivial intersection with Λ∗. See the commutative dia-
gram on the right for an overview of the spaces related
to T with their corresponding mappings.

We hope that the results in this chapter—besides advocating the notion of a
‘quasimodular algebra’ by giving a new example of such an algebra and studying its
algebraic structure—may serve as a tool for enumerative geometers trying to show
that generating series are quasimodular forms.
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Contents

The contents of this chapter are as follows. In Section 4.2 we recall notions (known
to the experts) related to quasimodular forms, partitions and special families of poly-
nomials. Next, in Sections 4.3 and Section 4.4 we motivate and introduce both the
induced and connected product. The quasimodularity of the algebra S is proven
in Section 4.5 and in Section 4.6 we strengthen this result by observing that the q-
bracket restricted to S is surjective on all quasimodular forms. In Section 4.7 we
compute the induced product of two moments functions. We study the symmetric
algebra T in Section 4.8, where we also prove our main theorem using the afore-
mentioned computation. The sl2-action by differential operators, the proof of The-
orem 4.1.3, and Rankin–Cohen brackets are the content of Section 4.9 and 4.10. In
Section 4.11 further results are given that arise from comparing the two different
products on T . Finally, in Section 4.12, we provide many examples of functions in
or closely related to T .

4.2 Preliminaries

Partitions as a partially ordered set

Given n ∈ Z≥0, let Π(n) be the set of all partitions of the set [n] := {1, 2, . . . , n}.
For α ∈ Π(n) we write `(α) for the cardinality of α.

Recall that for λ ∈P we have |λ| = ∑∞
i=1 λi, that the length `(λ) is the largest

index k such that λk > 0 and that rm(λ) denotes the number of parts of λ equal tom,
i.e., rm(λ) = #{i | λi = m}. We call a partition λ strict if there are no repeated
parts, i.e., rm(λ) ∈ {0, 1} for all m. For two partitions κ, λ we write κ ∪ λ for the
union of κ and λ as multisets, i.e., rm(κ ∪ λ) = rm(κ) + rm(λ) for all m ∈ N.

Both P and Π(n) form a locally finite partially ordered set, i.e., a partially or-
dered set P for which for all x, z ∈ P there exists finitely many y ∈ P such that
x ≤ y ≤ z. Namely, on P we define a partial order by κ ≤ λ if rm(κ) ≤ rm(λ)
for all m ≥ 1. The ordering on Π(n) is given by α ≤ β if for all A ∈ α there exists
a B ∈ β such that A ⊆ B. For instance, we have α ≤ 1n for all α ∈ Π(n), where
1n = {[n]}.

Recall that the Möbius function µ : P 2 → Z of a locally finite partially ordered
set P is defined recursively by (see for example [Rot64]):

µ(x, z) =





−∑x≤y<z µ(x, y) x < z

1 x = z

0 else.
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For the above partial order on P the value of µ(κ, λ) depends on whether the differ-
ence of κ and λ considered as multisets, denoted by λ− κ, is a strict partition. That
is,

µ(κ, λ) =

{
(−1)`(λ)−`(κ) λ− κ is a strict partition
0 else.

(4.3)

The Möbius function µ(α, β) of two elements α, β ∈ Π(n) is given by

µ(α, β) =
∏

B∈β
(−1)`(αB)−1(`(αB)− 1)! ,

where αB for B ⊂ [n] is the partition on B induced by α. A Möbius function
satisfies the following two properties:

Theorem 4.2.1. Let f, g be functions on a partially ordered set P . Then

(i)
∑

α≤γ≤β
µ(α, γ) = δα,β =

∑

α≤γ≤β
µ(γ, β) for all α, β ∈ P ;

(ii) f(α) =
∑

γ≤α
g(γ) ∀α ∈ P ⇐⇒ g(β) =

∑

γ≤β
µ(γ, β) f(γ) ∀β ∈ P.

The connected q-bracket

The q-bracket is a map QP → Q[[q]] (or CP → C[[q]], but we prefer the former).
In this section we define the connected q-bracket following [CMZ18, Chapter 11],
which naturally arises in enumerative geometry when counting connected coverings.
In our setting, the connected q-bracket turns out to be easier to compute than the
usual q-bracket.

For A ⊂ [n] we denote fA =
∏
a∈A fa.

Definition 4.2.2. Given an integer n ≥ 1, the connected q-bracket is defined as the
multilinear map

〈 〉q : QP ⊗ · · · ⊗QP

︸ ︷︷ ︸
n

→ Q[[q]]

extending the q-bracket such that for all f, f1, . . . , fn ∈ QP any of the following
two equivalent conditions hold:

(i) 〈f1 ⊗ · · · ⊗ fn〉q =
∑

α∈Π(n)

µ(α,1n)
∏

A∈α
〈fA〉q ;

(ii) 〈f1 ⊗ · · · ⊗ fn〉q is the coefficient of x1 · · ·xn in log〈exp(
∑n

i=1 xifi)〉q .
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By invoking the Möbius inversion formula (Theorem 4.2.1(ii)) condition (i) in
Definition 4.2.2 implies that

∏

B∈β
〈⊗b∈Bfb〉q =

∑

α≤β
µ(α, β)

∏

A∈α
〈fA〉q,

∏

A∈α
〈fA〉q =

∑

β≤α

∏

B∈β
〈⊗b∈Bfb〉q .

For example,

〈f ⊗ g〉q = 〈fg〉q − 〈f〉q〈g〉q ,
〈f ⊗ g ⊗ h〉q = 〈fgh〉q − 〈f〉q〈gh〉q − 〈g〉q〈fh〉q − 〈h〉q〈fg〉q + 2〈f〉q〈g〉q〈h〉q ,

and

〈fg〉q = 〈f ⊗ g〉q + 〈f〉q〈g〉q ,
〈fgh〉q = 〈f ⊗ g ⊗ h〉q + 〈f〉q〈g ⊗ h〉q + 〈g〉q〈f ⊗ h〉q+

〈h〉q〈f ⊗ g〉q + 〈f〉q〈g〉q〈h〉q .

We often make use of the fact that the connected q-bracket of functions f1, . . . , fn
vanishes if one of the fi is constant.

Lemma 4.2.3. For all f1, . . . , fn ∈ QP one has

〈1⊗ f1 ⊗ · · · ⊗ fn〉q = 0.

Proof. Write fn+1 = 1. Observe that
∏
A∈α〈fA〉q takes the same value for all

α ∈ Π(n+ 1) which agree on [n] (but differ in the subset A of α containing n+ 1).
Then, summing µ(α,1n) over all such α yields

a · (−1)a−1(a− 1)! + (−1)aa! = 0,

as there are a choices for α for which {n + 1} is not a subset of α, where a is the
length of such an α, and there is only one choice for α for which {n+ 1} is a subset.
By Definition 4.2.2(i) the result follows.

We will use the second condition in Definition 4.2.2 in our proof that S is a
quasimodular algebra.
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The discrete convolution product and Seki–Bernoulli polynomials

Let N denote the set of strictly positive integers. Given f, g : N → Q we denote
by f · g or fg the pointwise product of f and g. We define the discrete convolution
product of f and g by

(f ∗ g)(n) =

n−1∑

i=1

f(i) g(n− i)

and denote the convolution product of functions f1, . . . , fn by
n∗
i=1

fi = f1 ∗ · · · ∗ fn. (4.4)

Let the discrete derivative ∂ of f : N→ Q be defined by ∂f(n) = f(n)− f(n− 1)
for n ≥ 2 and ∂f(1) = f(1) and denote by id the identity function N → N ⊂ Q.
Observe that

∂(f ∗ g) = (∂f) ∗ g = f ∗ (∂g), (4.5)

∂(fg) = ∂(f) g + f ∂(g)− ∂(f) ∂(g), (4.6)

id · (f ∗ g) = (id · f) ∗ g + f ∗ (id · g), (4.7)

∂2(f ∗ id) = f − ∂f. (4.8)

The Seki–Bernoulli polynomials1 Fl for l ≥ 1 are defined as the unique polynomials
with vanishing constant term satisfying ∂Fl(n) = nl−1 for all n ∈ N, or equivalently
by Fl(n) =

∑n
i=1 i

l−1. The first four are given by F1(x) = x and

F2(x) =
x(x+ 1)

2
, F3(x) =

x(x+ 1)(2x+ 1)

6
, F4(x) =

x2(x+ 1)2

4
.

Note that these polynomials are related to the Bernoulli polynomials Bn(x), the
unique family of polynomials satisfying

∫ x+1
x Bn(u) du = xn, by the formula

lFl(x) = Bl(x+ 1)−Bl.
Hence, the Seki–Bernoulli polynomials admit the symmetry

Fl(x) = (−1)lFl(−x− 1) (l ≥ 2), (4.9)

which can also be deduced directly from the definition. The generating series F(n)
of the Seki–Bernoulli polynomials equals

F(n) :=

∞∑

l=1

Fl(n)
zl−1

(l − 1)!
= ez

1− enz
1− ez . (4.10)

1These polynomials are usually called Faulhaber polynomials. As often in mathematics, this name
does not reflect the correct history; see [AIK14, p. 3].
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4.3 Three proofs of the quasimodularity of the moment functions

The q-bracket of the moment function Sk defined in (4.1) equals the Eisenstein se-
ries Gk. To motivate the results in the rest of this chapter, we provide three dif-
ferent proofs—and three generalisations—of this statement using three different ap-
proaches. In the first approach we motivate the definition of the Tk,l (see (4.2)), the
second approach gives an interpretation for these functions, and the last approach
gives an example of our main principle of establishing all identities before taking
the q-bracket.

First approach

The key observation in this first proof is that Sk can be rewritten as

Sk(λ) = −Bk
2k

+

∞∑

m=1

mk−1rm(λ).

More generally, for k > 0 and f : N→ Q we set f(0) = 0 and we let

Sk,f (λ) = − Bk+1

2(k + 1)
δf,id +

∞∑

m=1

mkf(rm(λ)). (4.11)

In case when f is the identity, Sk,f = Sk+1. Our first method of proof gives the
following more general statement:

Proposition 4.3.1. Let f be a polynomial of degree l without constant term and k a
positive integer satisfying k ≡ l mod 2. Then,

(i) if f equals a Seki–Bernoulli polynomial Fl, then 〈Sk,f 〉q equals

− Bk+1

2(k + 1)
δl,1 +

∑

m,r≥1

mkrl−1qmr =

{
Dl−1Gk−l+2 k − l ≥ 0

DkGl−k k − l ≤ 2;

(ii) if 〈Sk,f 〉q is a quasimodular form, then f is a multiple of the Seki–Bernoulli
polynomial Fl.

Proof. Let |x| ≤ 1 and m ≥ 1. We compute

〈xrm〉q =

∑
λ∈P xrm(λ)q|λ|∑

λ∈P q|λ|
. (4.12)



Three proofs of the quasimodularity of the moment functions 55

Observe that the multiplicities r1(λ), r2(λ), . . . uniquely determine the partition λ.
Hence, for |q| < 1 we have that

∑

λ∈P

xrm(λ)q|λ| =
∑

r1,r2,...≥0

xrmqr1+2r2+...+mrm+...

=

( ∞∑

rm=0

xrmqmrm

)∏

i 6=m

( ∞∑

ri=0

qiri

)

=
1

1− xqm
∏

i 6=m

1

1− qi .

Substituting this result in the numerator of (4.12), we obtain

〈xrm〉q =
1− qm

1− xqm .

Hence,
〈

x
1−x(1− xrm)

〉
q

=
xqm

1− xqm . (4.13)

Observe that applying x ∂
∂x to the right-hand side of (4.13) has the same effect as

applying 1
mD. After setting x = ez , we find that x

1−x(1 − xrm) equals F(rm)

(see (4.10)). Hence, by taking l − 1 derivatives x ∂
∂x = ∂

∂z and setting z = 0, it
follows that

〈Sk,Fl〉q +
Bk+1

2(k + 1)
δl,1 =

∑

m≥0

mk〈Fl(rm)〉q

=
∑

m≥0

mk

(
x
∂

∂x

)l−1 xqm

1− xqm
∣∣∣
x=1

=
∑

m≥0

mk

(
1

m
D

)l−1 qm

1− qm

=
∑

m,r≥1

mkrl−1qmr.

Part (ii) of the statement follows by writing f as a linear combination of Seki–
Bernoulli polynomials.



56 New quasimodular algebras

Second approach

The double moment functions Tk,l (see (4.2)) are by definition equal to Sk,Fl if k > 0.
Given a partition λ, let ci(λ) = #{j ≤ i | λi = λj}. Then, one has

Tk,l(λ) = − Bk+l

2(k + l)
(δl,1 + δk,0) +

∞∑

i=1

λki ci(λ)l−1.

In this section we give a direct proof for the quasimodularity of the q-brackets of Tk,l:

Proposition 4.3.2. For all k ≥ 0, l ≥ 1 and k + l even one has

〈Tk,l〉q =

{
Dl−1Gk−l+2 if k − l ≥ 0

DkGl−k if k − l ≤ 2.

Proof. Denote by T 0
k,l(λ) =

∑∞
i=1 λ

k
i ci(λ)l−1. The generating series of T 0

k,l is given
by

W (X,Y )(λ) =
∞∑

i=1

XλiY ci(λ),

that is, T 0
k,l(λ) is the coefficient of xkyl−1

k!(l−1)! in W (ex, ey)(λ). Consider

∑

λ∈P

W (X,Y )(λ) q|λ| =
∑

λ∈P

∞∑

i=1

XλiY ci(λ)q|λ|. (4.14)

Given a, b, n ∈ Z≥0, denote by Ca,b(n) the coefficient in front of XaY bqn in (4.14),
that is

∑

λ∈P

∞∑

i=1

XλiY ci(λ)q|λ| =:
∑

a,b,n≥0

Ca,b(n)XaY bqn.

Recall p(n) denotes the number of partitions of n. The coefficient Ca,b(n) equals the
number of partitions of n with at least b parts of size a, i.e., Ca,b(n) = p(n − ab).
Hence, writing m = n− ab we obtain

∑

λ∈P

∞∑

i=1

XλiY ci(λ)q|λ| =

( ∞∑

m=0

p(m)qm

)
∑

a,b≥0

XaY bqab


 .

In other words,
〈W (X,Y )〉q =

∑

a,b≥0

XaY bqab,



Three proofs of the quasimodularity of the moment functions 57

so that expanding this equation for X = ex and Y = ey yields

〈T 0
k,l〉q =

∑

a,b≥0

akbl−1qab.

As Tk,l(λ) = − Bk+l
(k+l)(δl,1 + δk,0) + T 0

k,l(λ) we obtain the desired result.

Third approach

In this last proof we start with the observation that one can rewrite the q-bracket as

〈f〉q =

∑
λ∈P f(λ)uλ1uλ2 · · ·∑

λ∈P uλ1uλ2 · · ·
∣∣∣
ui=qi

. (4.15)

In contrast to the previous two proofs, it is only in the last step of this proof that
we take the q-bracket: first we rewrite (4.15) considering u1, u2, . . . to be formal
variables, and in the last step we let ui = qi. We start with the denominator, where
we encounter the Möbius function on partitions going back to Alladi; see [Sch17,
p. 5].

Proposition 4.3.3. There exists a function µ : P → {−1, 0, 1} defined by any one
of the following three equivalent definitions:

(i) µ(λ) is given by the Möbius function µ(∅, λ) on the partial order on the set of
partitions in (4.3);

(ii) µ(λ) =

{
(−1)`(λ) λ is a strict partition
0 else;

(iii)
1∑

λ∈P uλ1uλ2 · · ·
=
∑

λ∈P

µ(λ)uλ1uλ2 · · · .

Proof. The first two definitions clearly coincide using (4.3). For the latter, it suffices
to show that ∑

α∪β=λ

µ(α) = δλ,∅ .

Let f(λ) = 1 and g(λ) = δλ,∅ for λ ∈P . Then, f(α) =
∑

γ≤α g(γ) for all α ∈P ,
so that by Möbius inversion and by using µ(γ, β) = µ(∅, β− γ) the last definition is
equivalent.

The fact that 〈Sk〉q = Gk follows directly from the following proposition:
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Proposition 4.3.4. For all m ≥ 1 and f : N→ Q extended by f(0) = 0 one has
∑

λ∈P f(rm(λ))uλ1uλ2 · · ·∑
λ∈P uλ1uλ2 · · ·

=

∞∑

r=1

∂f(r)urm.

Proof. Fix m ≥ 1. Write uλ = uλ1uλ2 · · · . By the previous proposition, we have
∑

λ∈P f(rm(λ))uλ∑
λ∈P uλ

=

(∑

λ∈P

f(rm(λ))uλ

)(∑

λ∈P

µ(λ)uλ

)
.

Denote by C(λ) the coefficient of uλ after expanding the right-hand side of above
equation. Observe that

C(λ) =
∑

α∪β=λ

(−1)`(β)f(rm(α)),

where α∪β denotes the union of α and β considered as multisets and it is understood
that β is a strict partition. Suppose λ admits a part equal to m′ 6= m. Then, define an
involution ω on all pairs (α, β) satisfying that α ∪ β = λ and β is strict by

ω(α, β) =

{
(α\{m′}, β ∪ {m′}) if rm′(β) = 0

(α ∪ {m′}, β\{m′}) if rm′(β) = 1.

As ω changes the sign of (−1)`(β)f(rm(α)), it follows that C(λ) = 0.
Observe that C(∅) = 0 and that in case λ = (m,m, . . .) consists of a strictly

positive number of parts all equal to m one has

C(λ) = f(rm(λ))− f(rm(λ)− 1) = ∂f(rm(λ)).

Therefore, the desired result follows.

4.4 The induced and connected product

Motivated by the last of the three approaches in the previous section, we define the u-
bracket of a function f ∈ QP by

〈f〉u =

∑
λ∈P f(λ)uλ∑

λ∈P uλ
(uλ = uλ1uλ2 · · · ).

Then, for all f ∈ QP one has 〈f〉q = 〈f〉(q,q2,q3,...). Observe that the u-bracket
defines an isomorphism of vector spaces

QP ∼−→ Q[[u1, u2, u3, . . .]], f 7→ 〈f〉u .
We now use the algebra structure of Q[[u1, u2, u3, . . .]] to define a product on QP .
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Definition 4.4.1. Given f, g ∈ QP we define their induced product f � g by

〈f � g〉u = 〈f〉u〈g〉u ,

where the product of 〈f〉u and 〈g〉u is the usual product of power series.

Remark 4.4.2. Observe that QP is a commutative algebra with the constant func-
tion 1 as the identity for both the pointwise and the induced product. This observation
should be compared with the q-bracket arithmetic in [Sch17]. 4

The following proposition gives an alternative definition for the induced product.

Proposition 4.4.3. For all λ ∈P one has

(f � g)(λ) =
∑

α∪β∪γ=λ

f(α) g(β)µ(γ).

Proof. By definition

∑

λ∈P

(f � g)(λ)uλ =

(∑
λ∈P f(λ)uλ

) (∑
λ∈P g(λ)uλ

)
∑

λ∈P uλ
.

By Proposition 4.3.3 this equals
(∑

λ∈P

f(λ)uλ

)(∑

λ∈P

g(λ)uλ

)(∑

λ∈P

µ(λ)uλ

)
.

The result follows by expanding the products.

Analogous to the connected q-bracket, we define the connected product. For a
set S and functions fs ∈ QP for all s ∈ S, we denote fS =

∏
s∈S fs .

Definition 4.4.4. For f1, . . . , fn ∈ QP , define the connected product f1 | . . . |fn to
be the following function P → Q:

f1 | . . . | fn :=
∑

α∈Π(n)

µ(α,1)
⊙

A∈α
fA . (4.16)

For example, for f, g, h ∈ QP one has

f | g = fg − f � g,
f | g |h = fgh− f � gh− g � fh− h� fg + 2f � g � h.

The induced and connected product allow us to establish many identities before
taking the q-bracket, as follows from the following result.
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Proposition 4.4.5. For all f1, . . . , fn ∈ QP one has

• 〈f1 � f2 � · · · � fn〉q = 〈f1〉q〈f2〉q · · · 〈fn〉q ;

• 〈f1 | . . . | fn〉q = 〈f1 ⊗ · · · ⊗ fn〉q .

Proof. Both statements follow directly from the definitions. For the first, note that
for all f, g ∈ QP one has

〈f � g〉q = 〈f〉u〈g〉u|ui=qi = 〈f〉u|ui=qi〈g〉u|ui=qi = 〈f〉q〈g〉q,

so that the statement follows inductively. The second follows from the first, as

〈f1 | . . . | fn〉q =
∑

α∈Π(n)

µ(α,1)
∏

A∈α
〈fA〉q = 〈f1 ⊗ · · · ⊗ fn〉q .

Remark 4.4.6. Let R be the space of functions having a quasimodular form as q-
bracket, i.e. R = 〈 · 〉−1

q (M̃). Then, R is a graded algebra with multiplication given
by the induced product. Namely, if f ∈ R and 〈f〉q ∈ M̃k, we define the weight of f
to be equal to k. Note that if f, g ∈ R and 〈f〉q and 〈g〉q are quasimodular forms
of weight k and l, respectively, then 〈f � g〉q = 〈f〉q〈g〉q is a quasimodular form of
weight k + l. 4

When establishing identities on the level of functions on partitions (before taking
the q-bracket), it turns out to be very useful to express the connected product of
pointwise products of elements of QP in terms of connected and induced products.
This can be done recursively using the following result.

Proposition 4.4.7. For all f1, . . . fn ∈ QP one has

f1f2 | f3 | f4 | . . . | fn = f1 | f2 | . . . | fn + (4.17)
∑

AtB={3,...,n}
(f1 | fA1 | fA2 | . . .)� (f2 | fB1 | fB2 | . . .),

where A1, A2, . . . enumerate the elements of A (and similarly for B).

Proof. Observe that both sides of the equation in the statement are a linear combina-
tion of terms of the form

⊙
C∈γ fC over γ ∈ Π(n). We determine the coefficient of

such a term on both sides of the equation.
First of all, assume γ is such that {1, 2} ⊂ C for some C ∈ γ. Then, on

the right-hand side such a term only occurs in f1 | . . . | fn with coefficient µ(γ,1).
Moreover, let γ̃ ∈ Π(n−1) be given by γ∩{2, . . . , n} subject to replacing i by i−1
for all i = 2, . . . , n. Note that the coefficient on the left-hand side equals µ(γ̃,1).
As `(γ̃) = `(γ), the coefficients on both sides agree.
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Next, assume C1, C2 ∈ γ with 1 ∈ C1 and 2 ∈ C2 . Then, the coefficient
of
⊙

C∈γ fC on right-hand side of (4.17) equals

µ(γ,1) +
∑

µ(γ|A,1)µ(γ|B,1), (4.18)

where the sum is over all I ⊂ {2, 3, . . . , `(γ)} and A and B are given by A =
C1 ∪

⋃
i∈I Ci and B = C2 ∪

⋃
i∈Ic Ci. Letting i be the number of elements of I , we

find that (4.18) equals

µ(γ,1) +

`(γ)−2∑

i=0

(
`(γ)− 2

i

)
· (−1)ii! · (−1)`(γ)−i−2(`(γ)− i− 2)!

= µ(γ,1) +

`(γ)−2∑

i=0

(`(γ)− 2)!(−1)`(γ)−2

= µ(γ,1)− µ(γ,1) = 0.

Correspondingly, the coefficient of
⊙

C∈γ fC on the left-hand side of (4.17) vanishes
if there are C1, C2 ∈ γ with 1 ∈ C1 and 2 ∈ C2 .

4.5 Quasimodularity of pointwise products of moment functions

Not only do the moment functions Sk admit quasimodular q-brackets, but also the
homogeneous polynomials in the moment functions admit quasimodular q-brackets;
here, each moment function Sk has weight k in accordance with the fact that 〈Sk〉q
has weight k. Given a tuple k = (k1, ..., kn) of even integers, we write Sk =
Sk1 · · ·Skn . Note that, as a vector space, S is spanned by these functions Sk. We
provide two approaches to proving the quasimodularity of the q-brackets of the Sk.
First, we give a direct proof of the statement in Theorem 4.5.1, after which, in ac-
cordance with our main principle of establishing all identities before taking the q-
bracket, we prove a more general result which will be used frequently in the next
section.

Theorem 4.5.1. The algebra S is a quasimodular algebra. More precisely, for k ∈
(2N)n one has

〈Sk〉q =
∑

α∈Π(n)

∏

A∈α
D`(A)−1G|kA|−2`(A)+2 . (4.19)

Proof. Observe that it suffices to show that
〈⊗

k∈k
Sk

〉
q

= Dn−1G|k|−2n+2 (4.20)
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as (4.19) follows from (4.20) by Möbius inversion. Recall that 〈f1 ⊗ · · · ⊗ fn〉q is
the coefficient of x1 · · ·xn in log〈exp(

∑n
i=1 xifi)〉q (see Definition 4.2.2(ii)). Con-

sider S0
k(λ) =

∑∞
i=1 λ

k−1
i for all positive even k. Euler’s formula for the generating

series of partitions (1.1) follows from writing |λ| =
∑

m≥1mrm(λ) and summing
over all possible values of r1(λ), r2(λ), . . .. By the same idea, we find

∑

λ∈P

exp
(∑

k
S0
k(λ)xk

)
q|λ| =

∞∏

m=1

(
1− exp

(∑
k
mk−1xk

)
qm
)−1

. (4.21)

The logarithm of this expression equals

∞∑

m,r=1

exp
(
r
∑

k
mk−1xk

) qmr
r
. (4.22)

Now, assume all parts of k are distinct. In the expansion of (4.22) the coefficient
of xk1 · · ·xkn equals

∞∑

m,r=1

m|k|−nrn−1qmr = Dn−1G|k|−2n+2 .

Hence, 〈⊗
k∈k

S0
k

〉
q

= Dn−1G|k|−2n+2.

By introducing distinct variables in Eq. (4.21) for each repeated part of k we obtain
the same result if not all parts of k are distinct.

Note that if n ≥ 2, by Lemma 4.2.3 both sides of the equation do not change if
one replaces S0

k by Sk. In case n = 1 we have established (4.20) in Proposition 4.3.1
or in Proposition 4.3.2. Hence, (4.20) holds and (4.19) is then implied by Möbius
inversion.

Denote

pk(z) =

{
zk−2

(k−2)! k ≥ 0
z−2

2 k = 0

and set S0(λ) ≡ 1. In terms of the generating series corresponding to the Eisenstein
series, called the propagator, and given by

P (τ, z) :=
1

z2
+ 2

∞∑

k=2

Gk
zk−2

(k − 2)!
(4.23)

one has the following expression for the generating series of the q-bracket of the
generators of S:
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Corollary 4.5.2.
∑

k1,...,kn≥0

〈Sk1 · · ·Skn〉q pk1(z1) · · · pkn(zn) =
∑

α∈Π(n)

∏

A∈α
D|A|−1P

even(τ ; zA)

2
,

where zA =
∑

a∈A za and

P even(τ ; z1, . . . , zn) =
1

2n

∑

s∈{−1,1}n
P (τ, s1z1 + . . .+ snzn)

is the totally even part of the propagator in (4.23).

Remark 4.5.3. The propagator is closely related to the Weiserstrass ℘-function by

P (z) =
1

2πi
℘( z

2πi , τ) + 2G2 .

In fact, P equals the meromorphic Jacobi form E2, introduced in Chapter 5, up to a
constant. 4

4.6 Intermezzo: surjectivity of the q-bracket

We deduce from Theorem 4.5.1 the surjectivity of the q-bracket: every quasimodular
form is the q-bracket of some f ∈ S.

Theorem 4.6.1. The q-bracket 〈 · 〉q : S → M̃ is surjective.

Note that this is not obvious since the q-bracket is not an algebra homomorphism.
Denote by ϑk : Mk →Mk+2 the Serre derivative, given by ϑk = D+ 2kG2. Extend
this notation by letting ϑx : M̃ → M̃ for x ∈ Q be given by ϑx = D + 2xG2.

Proposition 4.6.2. Let x ∈ Q\2Z≥0. Then,

M̃
(≤p)
k =

p⊕

r=0

ϑrxMk−2r .

Proof. Let f ∈ Mk with f 6= 0. Observe that ϑxf is modular precisely if k =
x. By our assumption on x, this is not the case. Hence, ϑx increases the depth
strictly by one. The result follows by induction on p by the same argument as in
[Zag08, Proposition 20]. Namely, if ϕ ∈ M̃≤pk , then the last coefficient ϕp in the
quasimodular transformation (1.6) is a modular form of weight k − 2p. Hence, ϕ
is a linear combination of ϑpxϕp and a quasimodular form of depth strictly smaller
than p.
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Proof of Theorem 4.6.1. First observe that (D + G2)〈f〉q = 〈S2f〉q . As D + G2

is not a Serre derivative, by Proposition 4.6.2 it follows that it suffices to show that
the q-bracket is surjective on modular forms. Every modular form can be written as
a polynomial of degree at most 2 in Eisenstein series, see [Zag77, Section 5]. Hence,
we show that the q-bracket is surjective on polynomials of degree at most 2 in all
Eisenstein series, possibly involving the quasimodular Eisenstein series G2.

Eisenstein series are in the image of the q-bracket by Theorem 4.5.1. Note
that DGk can be written a polynomial of degree 2 in Eisenstein series, explicitly:

DGk =
k + 3

2(k + 1)
Gk+2 −

∑

0<j<k
j≡1 (2)

(
k

j

)
Gj+1Gk+1−j .

Also, we have an explicit formula for the q-bracket of SkSl:

〈SkSl〉q = GkGl +DGk+l−2 , (4.24)

so that this q-bracket is expressible as a polynomial of degree at most 2 in the Eisen-
stein series.

Now fix an integer m ≥ 4. We consider the equations (4.24) for all k + l = m.
It suffices to show that we can invert these equations, i.e., write GkGl as a linear
combination of q-brackets of products of at most two Si. A direct computation shows
that the determinant of the matrix corresponding to the equations above equals

1−
∑

0<j<m
j≡1 (2)

(
m

j

)
= 1− 2m−3 < 0.

Hence, the q-bracket is surjective.

Remark 4.6.3. Only the last step of above proof uses the explicit formula (4.24) for
the derivative of Eisenstein series. The author expects one could conclude the proof
by an abstract argument, but he is not aware of such an argument. 4

4.7 The connected product of moment functions

In the second approach we compute the connected product Sk1 | . . . |Skn , which by
Proposition 4.4.5 yields the left-hand side of (4.19) after taking the q-bracket. The
result is formulated in Theorem 4.7.4 below and depends on two technical lemma’s
which we state first.
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In order to do so, we start by introducing the following notation. For a parti-
tion λ and a subset A of N, we write λ|A for the partition where a part of size m
occurs rm(λ) times if m ∈ A and does not occur if m 6∈ A. For example,

(5, 4, 3, 3, 1, 1, 1)|{4,1} = (4, 1, 1, 1).

Definition 4.7.1. We say f : P → Q is supported on A if f(λ) = f(λ|A) for all
partitions λ.

The first lemma expresses the induced product of two functions F and G sup-
ported on disjoint sets as the pointwise product of these functions, and of two func-
tions F and G supported on the same singleton set as a convolution product of func-
tions.

Lemma 4.7.2. Suppose X and Y are subsets of N and F, F ′, G,G′ : P → Q are
supported on X,X, Y and Y , respectively. Then

(i) F � F ′ is supported on X;

(ii) If X and Y are disjoint, then

FG� F ′G′ = (F � F ′)(G�G′), in particular F �G = FG;

(iii) If X = Y = {m}, then

(F �G)(λ) = ∂(f ∗ g)(rm(λ)),

where f and g are such that F (λ) = f(rm(λ)), G(λ) = g(rm(λ)).

Proof. By Proposition 4.4.3, we have

(F � F ′)(λ) =
∑

α∪β∪γ=λ

(−1)`(γ) F (α)F ′(β),

where it is understood that γ is a strict partition. We have that

(F � F ′)(λ) =
( ∑

α∪β∪γ=λ|X
(−1)`(γ) F (α)F ′(β)

)( ∑

α∪β∪γ=λ|Xc
(−1)`(γ)

)

= (F � F ′)(λ|X) · (1� 1)(λ|Xc).

Recall f � 1 = f for all functions f , hence (F � F ′)(λ) = (F � F ′)(λ|X), which
is the first statement.
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Next, we have that

(FG� F ′G′)(λ) =
∑

α∪β∪γ=λ

(−1)`(γ) (FG)(α) (F ′G′)(β),

where again it is understood that γ is a strict partition. Using the fact that F, F ′, G
and G′ are supported on X,X, Y and Y , respectively, we find that (FG� F ′G′)(λ)
equals

∑

α∪β∪γ=λ

(−1)`(γ|X)+`(γ|Y )+`(γ|Z) F (α|X)G(α|Y )F ′(β|X)G′(β|Y ), (4.25)

where Z denotes the complement of X ∪ Y in N. We factor the right-hand side
of (4.25) as
( ∑

α∪β∪γ=λ|X
(−1)`(γ) F (α)F ′(β)

)( ∑

α∪β∪γ=λ|Y
(−1)`(γ)G(α)G′(β)

)
·

( ∑

α∪β∪γ=λ|Z
(−1)`(γ)

)
.

By definition of the product �, we conclude

(FG� F ′G′)(λ) = (F � F ′)(λ|X) (G�G′)(λ|Y ) (1� 1)(λ|Z)

= (F � F ′)(λ) (G�G′)(λ).

By taking F ′ andG to be the constant function 1 (which is supported on everyX
and Y ), we see that F �G′ = FG′ is implied by FG�F ′G′ = (F �F ′)(G�G′).

Next, for (iii) we have

(F �G)(λ) =
∑

α∪β∪γ=λ

(−1)`(γ)f(rm(α)) g(rm(β))

=
∑

α∪β∪γ=λ|{m}

(−1)`(γ)f(rm(α)) g(rm(β))

Letting i = rm(α) and j = rm(β), we have

(F �G)(λ) =
∑

i+j=rm(λ)

f(i) g(j)−
∑

i+j+1=rm(λ)

f(i) g(j)

= (f ∗ g)(rm(λ))− (f ∗ g)(rm(λ)− 1)

= ∂(f ∗ g)(rm(λ)).
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The second lemma is concerned with the vanishing of certain sums of the Möbius
functions of set partitions. Given α ∈ Π(n) and a subset Z of [n], we let

α|Z = {A ∩ Z | A ∈ α s.t. A ∩ Z 6= ∅} ∈ Π(Z),

where Π(Z) denotes the set of all partitions of the set Z. Observe that

`(α) = `(α|Z) + |{A ∈ α | A ∩ Z = ∅}|,

in particular `(α|Z) ≤ `(α). Given Z ⊂ [n], define an equivalence relation on Π(n)
by writing α ∼ β if

α|Z = β|Z and α|Zc = β|Zc . (4.26)

Lemma 4.7.3. Let Z ⊆ [n]. If Z 6= ∅ and Z 6= [n], then for all β ∈ Π(n) we have

∑

α∼β
µ(α,1) = 0.

Proof. Observe that α ∼ β precisely if for allA ∈ α we have (A∩Z = ∅ orA∩Z ∈
β|Z) and similarly we have (A ∩ Zc = ∅ or A ∩ Zc ∈ β|Zc). Hence, every A ∈ α
is the union of some A1 ∈ α|Z ∪ {∅} and A2 ∈ α|Zc ∪ {∅} with not both A1 = ∅
and A2 = ∅. Write a = `(β|Z), b = `(β|Zc), and assume without loss of generality
that a ≤ b. Write k for the number of A ∈ α for which both A1 6= ∅ and A2 6= ∅.
Now, `(α) = a+ b− k. Moreover, given k, Z and β, there are

(
a

k

)(
b

k

)
k!

ways to choose α ∼ β with `(α) = a+ b− k. Hence, we find

∑

α∼β
µ(α,1) =

a∑

k=0

(−1)a+b−k−1(a+ b− k − 1)!

(
a

k

)(
b

k

)
k!

= (−1)a+b−1(a+ b− 1)!

a∑

k=0

(−a)k(−b)k
(−a− b+ 1)k(1)k

,

where (d)k =
∏k−1
i=0 (d+i) is the rising Pochhammer symbol. This expression equals

up to the constant (−1)a+b−1(a + b − 1)! the special value 2F1(−a,−b,−a − b +
1; 1) of the hypergeometric function 2F1(−a,−b,−a− b+ 1; z), which vanishes by
Gauss’s theorem subject to a, b > 0. As Z 6= ∅, we have a > 0. Also, b > 0 as
Z 6= [n].
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The following result not only computes the connected product of the moment
functions Sk, but also is one of the main technical results needed to prove Theo-
rem 4.1.2.

Theorem 4.7.4. Let ki, fi for i = 1, . . . , n be such that (4.11) defines Ski,fi . Then

(i) There exists a function g : N→ Q such that

Sk1,f1 | . . . |Skn,fn = S|k|,g.

In fact,
g =

∑

α∈Π(n)

µ(α,1) ∂`(α)−1 ∗
A∈α

fA,

where fA =
∏
a∈A fa and∗ denotes the convolution product (4.4).

(ii) If f1(x) = x, then ∂g = f1 ∂g̃ with g̃ given by Sk2,f2 | . . . |Skn,fn = S|k|,g̃.

Remark 4.7.5. We extend g by g(0) = 0. Here and later in this chapter, we usually
omit the dependence of g on f1, . . . , fn in the notation. 4

Proof. For the first part, we letmkA fA ◦rm denote
∏
im

kAi
i ·fAi ◦rmi , where rmi

is considered as a function P → Q. In case n = 1 the result (i) is trivially true,
so we assume n ≥ 2. By definition of the connected product and Sk,f (see (4.16)
and (4.11), respectively), we have

Sk1,f1 | . . . |Skn,fn =
∑

α∈Π(n)

µ(α,1)
⊙

A∈α

( ∑

m∈N`(A)

mkA fA ◦ rm
)

=
∑

m∈Nn

∑

α∈Π(n)

µ(α,1)
⊙

A∈α
mkA
A fA ◦ rm . (4.27)

For allm ≥ 0, the function rm : P → Q is supported on {m}. Having Lemma 4.7.2
in mind, we aim to factor the functions in (4.27) as a product of functions supported
on a singleton set. Given m ∈ Nn, we start by all functions supported on {m1},
that is, we let Z(m) = {i | mi = m1} ⊂ [n]. Note that Z(m) determines all i
for which the support of rmi contains m1. Denote by E(m) the set of equivalence
classes of Π(n) for this choice of Z = Z(m). We split the sum over α ∈ Π(n)
in (4.27) as a sum over the elements of E(m), i.e.,

Sk1,f1 | . . . |Skn,fn =
∑

m∈Nn

∑

[β]∈E(m)

∑

α∈[β]

µ(α,1)
⊙

A∈α
mkA
A fA ◦ rmA

. (4.28)
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Givenm ∈ Nn, Z = Z(m) and A ∈ α|Z , the function λ 7→mkA
A fA(rmA

(λ))
is supported on {m1}, whereas for A ∈ α|Zc the same function is supported on the
set N\{m1}. Hence, by Lemma 4.7.2(ii) we find that (4.28) equals

∑

m∈Nn

∑

[β]∈E(m)

∑

α∈[β]

µ(α,1)

( ⊙

A∈α|Z
mkA
A fA ◦ rmA

)( ⊙

A∈α|Zc
mkA
A fA ◦ rmA

)
.

(4.29)

Instead of writing the second factor as a product of functions which are all sup-
ported on a singleton set, we make the following observation. As α|Z = β|Z
and α|Zc = β|Zc , the only dependence on α in the above equation is in µ(α,1). By
construction Z(m) is non-empty. Hence, by Lemma 4.7.3 we have that if Z 6= [n]
then for all β ∈ E(m) we have

∑
α∈[β] µ(α,1) = 0. This implies that we can restrict

the first sum in (4.29) tom ∈ Nn for which mi = mj for all i, j, that is

Sk1,f1 | . . . |Skn,fn =
∑

m∈N

∑

α∈Π(n)

µ(α,1)
⊙

A∈α

∏

a∈A
mka · fa ◦ rm .

Applying Lemma 4.7.2(iii) `(α) − 1 times and using (4.5), we obtain the desired
result.

For the second part, let Z = {1} and consider an equivalence class [β] for the
equivalence relation (4.26) determined by Z. We split the sum

∂g =
∑

α∈Π(n)

µ(α,1) ∂`(α) ∗
A∈α

fA

over all conjugacy classes. Write A1 for the element of α for which 1 ∈ A1. De-
note Â1 = A1\{1} and γ = β|{2,...,n}. In case A1 = {1} one has by (4.8) that

µ(α,1) ∂`(α) ∗
A∈α

fA = −`(γ)µ(γ,1) ∂`(γ)−1(1− ∂)∗
A∈γ

fA . (4.30)

In case A1 6= {1} (i.e., |A1| ≥ 2), one finds by (4.6) that

µ(α,1) ∂`(α) ∗
A∈α

fA = µ(γ,1) ∂`(γ)−1(f1 ∂fÂ1
+(1−∂)fÂ1

) ∗ ∗
A∈γ\Â1

fA . (4.31)

As [β] contains one element for which (4.30) holds and `(γ) different elements for
which (4.31) holds, one finds

∑

α∈[β]

µ(α,1)∂`(α) ∗
A∈α

fA = µ(γ,1) ∂`(γ)−1
∑

C∈γ

(
f1 ∂fC ∗ ∗

A∈γ\C
fA

)
.
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By (4.5) and (4.7) this equals

µ(γ,1)
∑

C∈γ

(
f1 ∂fC ∗ ∗

A∈γ\C
∂fA

)
= µ(γ,1) f1 ∂

`(γ) ∗
A∈γ

fA .

Hence, summing over all conjugacy classes, we obtain

∂g = f1

∑

γ∈Π(n−1)

µ(γ,1) ∂`(γ) ∗
A∈γ

fA = f1 ∂g̃.

The case when f1(x) = . . . = fn(x) = x is the easiest example (for arbitrary
n ∈ N) of the above result. In this case one generalises Theorem 4.5.1 by a result
which, in accordance with our main principle of establishing identities before the q-
bracket, yields this theorem after taking the q-bracket.

Corollary 4.7.6. For all positive even k1, . . . , kn, one has

Sk1 | . . . |Skn = S|k|−n,Fn .

Proof. Recall Sk = Sk−1,id and apply Theorem 4.7.4(ii) n− 1 times.

Later we will use Theorem 4.5.1 when the fi are Seki–Bernoulli polynomials.
This is the situation in which we prove the main result of this chapter, in which case
the following lemma is useful.

Lemma 4.7.7. If f1, . . . , fn are Seki–Bernoulli polynomials of degrees d1, . . . , dn,
respectively, and g : N→ Q is as in Theorem 4.7.4, then there exists a polynomial p
such that ∂g(m) = p(m) for all m ∈ N. Moreover, p is strictly of degree |d| − 1, is
even or odd and p(0) = 0.

Proof. By Theorem 4.7.4(ii) we can assume w.l.o.g. that none of the degrees di
equals 1. Now, consider a monomial ∂`(α)∗A∈α fA in ∂g. Note that both ∗ and ∂
are operators on the space of polynomials, more precisely:

∗ : Q[x]≤k ×Q[x]≤l → Q[x]≤k+l+1 and ∂ : Q[x]≤k → Q[x]≤k−1

as

xk ∗xl =
k!l!

(k + l + 1)!
xk+l+1 +O(xk+l) and ∂(xk) = kxk−1 +O(xk−2).

Hence the degree of such a monomial is |d| − 1. Now observe that by the symme-
try (4.9) one has

∂fA(x) = fA(x)− fA(x− 1) = fA(x)− (−1)|A|fA(−x).
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Therefore, we see that ∂fA is even or odd and as the convolution product preserves
this property, every monomial is even or odd. By the same arguments ∂fA(0) = 0
and hence the constant term of every monomial vanishes. Therefore, every mono-
mial ∂`(α)−1∗A∈α fA in g satisfies the desired properties, so that it remains to show
that the leading coefficient does not vanish.

As Fl = 1
l x
l +O(xl−1), the leading coefficient of a monomial as above equals

|d|∏
i di

∏n
i=1 dAi !

|d|! ,

where for a set B we have set dB =
∑

b∈B db. Hence, the leading coefficient of ∂g
equals

|d|∏
i di
·
∑

α∈Π(n)

µ(α,1)

( |d|
dA1 , . . . , dAr

)−1

, (4.32)

where α = {A1, . . . , Ar}. Note that this number has the following combinatorial
interpretation. Let n balls be given which are coloured such that d1 balls are coloured
in the first color, d2 in the second color, etc. Suppose we use the same multiset of
colors to additionally mark each ball with a dot (possibly of the same color), that
is, d1 balls are marked with a dot of the first color, d2 with a dot of the second color,
etc. Given a subset C of the set of all colors, it may happen that if we consider all
balls coloured by the colors of C, all the dots on these balls are coloured by the same
set of colors C. We then say that the balls are well-coloured with respect to C. For
example, both the empty set of colors and the set of all possible colors give rise to
a well-colouring of balls. If we independently at random color and mark the balls
as above, the probability that the balls coloured by a subset C are well-coloured
is
(|d|
dC

)−1
. Hence, by applying Möbius inversion the number

∑

α∈Π(n)

µ(α,1)

( |d|
dA1 , . . . , dAr

)−1

equals the probability that if we independently at random color and mark the balls as
above, there does not exist a proper non-empty subset C of the colors such that the
balls coloured by C are well-coloured. If we mark at least one ball of every color i
with color i + 1 (modulo n), such a set C cannot exist. Hence, the number (4.32) is
positive, so the polynomial p is strictly of degree |d| − 1.
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4.8 Three quasimodular algebras

Introduction

Given integers k, l with k ≥ 0 and l ≥ 1 recall the definition of the double moment
functions in (4.2) by

Tk,l(λ) = − Bk+l

2(k + l)
(δl,1 + δk,0) +

∞∑

m=1

mkFl(rm(λ)).

Unless stated explicitly, we always assume that

k ∈ Z≥0, l ∈ Z≥1, k + l ∈ 2Z. (4.33)

Moreover, it turns out to be useful to define T0,0 ≡ T−1,1 ≡ −1 and Tk,l ≡ 0 for
other pairs (k, l) with k < 0 or l < 1.

Remark 4.8.1. The double moment functions specialise to the moment functions
studied in the previous section whenever l = 1, i.e., Tk,1 = Sk+1. Also, as Fl(1) = 1,
for a strict partition λ one has Tk,l(λ) = Sk(λ). Hence, our functions Tk,l can be
seen as an extension of the algebra of supersymmetric polynomials, mentioned in the
introduction, to functions on all partitions (and not only on strict partitions). 4
Remark 4.8.2. In case k + l is odd, the q-bracket of Tk,l does not vanish—in con-
trast to the shifted symmetric functions for which the q-bracket vanishes for all odd
weights. However, the q-bracket of a polynomial involving the double moment func-
tions in both even and odd weights also is a polynomial in the so-called combinatorial
Eisenstein series, defined in Definition 4.12.6. 4

These double moment functions give rise to three different graded algebras,
which turn out to be quasimodular (see Definition 4.1.1).

Definition 4.8.3. Define the Q-algebras S,Sym�(S) and T by the condition that

• S is generated by the moment functions Sk under the pointwise product;

• Sym�(S) is generated by the elements of S under the induced product;

• T is generated by the double moment functions under the pointwise product.

Our main result Theorem 4.1.2 is slightly refined by the following statement.

Theorem 4.8.4. Let X be any of the algebras S,Sym�(S) and T . Then, X is

• quasimodular;

• closed under the pointwise product;



Three quasimodular algebras 73

• closed under the induced product if X 6= S .

Moreover, the three algebras are related by S ( Sym�(S) ( T .

Remark 4.8.5. Observe that being closed under the pointwise product is not implied
by being quasimodular. For example, the algebra R = 〈 · 〉−1

q (M̃) in Remark 4.4.6
is quasimodular, closed under the induced product and T ⊂ R, but R is not closed
under the pointwise product [Zag16, Section 9]. 4

In the next section we provide different bases for these algebras: in this way we
obtain many examples of functions with a quasimodular q-bracket, and moreover,
the study of these bases leads to a proof of Theorem 4.8.4.

Remark 4.8.6. The algebras T and Λ∗ are different algebras, as follows from the
observation that f(λ) = (−1)kf(λ′) for all f ∈ Λ∗k (see (1.11)). This does not hold
for all f ∈ T , as can easily be checked numerically. On the other hand, it is not true
that f(λ) 6= ±f(λ′) for all f ∈ T , as Q2 = T1,1. More precisely, one has

T ∩ Λ∗ = Q[Q2].

Namely, if f ∈ T ∩ Λ∗, consider a strict partition λ (i.e., a partition for which
rm(λ) ≤ 1 for all m). Then, we have that f(λ) is symmetric polynomial in the
parts λ1, λ2, . . .. On the other hand, as f ∈ Λ∗, it follows that f(λ) is a shifted
symmetric polynomial in the parts λ1, λ2, . . .. The only polynomials of degree d in
the variables xi that are both symmetric and shifted symmetric are up to a constant
given by (

∑
i xi)

d, hence f ∈ Q[Q2]. 4

The basis given by double moment functions

We show that T is closed under the induced product. Moreover, we show that S
and Sym�(S) are subalgebras of T . In the next section, we use these results to
define a weight grading on T . Observe that as a vector space T is spanned by the
functions Tk,l, defined by Tk,l =

∏
i Tki,li , for all k, l ∈ Zn satisfying the condi-

tions (4.33) for all pairs (k, l) = (ki, li).

Theorem 4.8.7. The algebra T is closed under the induced product.

Proof. Observe that

Tk,l � Tk′,l′ = Tk,lTk′,l′ − Tk,l |Tk′,l′ .

Hence, it suffices to show that Tk,l |Tk′,l′ can be expressed in terms of elements of T .
By Theorem 4.7.4 and Lemma 4.7.7, we have that an expression of the form

Tk1,l1 | · · · |Tkn,ln
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as an element of T . Proposition 4.4.7 implies that f1f2 | f3 | f4 | . . . | fn equals

(f1 | f2 | . . . | fn) +
∑

AtB={3,...,n}

(
(f1 | fA1 | fA2 | . . .) · (f2 | fB1 | fB2 | . . .)

− (f1 | fA1 | fA2 | . . .)
∣∣ (f2 | fB1 | fB2 | . . .)

)
.

Hence, by using this proposition recursively, we can replace the pointwise products
in Tk,l |Tk′,l′ by a linear combination of connected products of double moment func-
tions Tk,l, showing that Tk,l |Tk′,l′ is an element of T .

Now, we determine a basis for the three algebras. Let T mon be the set of all
monomials for the pointwise product in T . Two elements of T mon are considered to
be the same if one can reorder the products so that they agree, for example T1,1T3,5

and T3,5T1,1 are the same function. In other words: every elements of T mon can be
written as Tk,l in a unique way up to commutativity of the (pointwise) product.

Theorem 4.8.8. We have

S ( Sym�(S) ( T . (4.34)

Moreover, a basis for

• T is given by T mon;

• Sym�(S) is given by all Tk,l ∈ T mon satisfying ki ≥ li for all i;

• S is given by all Tk,l ∈ T mon satisfying li = 1 for all i.

Proof. It suffices to prove the second part, as from the stated bases statement (4.34)
follows immediately.

By definition the elements of T mon generate T as a vector space. Hence, it
suffices to show that they are linearly independent, i.e., that if

∑

α∈I
cαTα(λ) = 0 (4.35)

for all λ ∈ P , where I is the set of all pairs (k, l) up to simultaneous reordering
and cα ∈ Q, we have that cα = 0 for all α.

First of all, let λ = (N1, N2) and consider (4.35) as N1 →∞. Note that Tk,l(λ)
grows as

N
|k|
1 +Nkmin

2 N
|k\kmin|
1

plus lower-order terms, where kmin is the smallest of the ki in k. Hence, |k| should
be constant among all Tα in (4.35). Moreover, we conclude that kmin should be con-
stant among all Tα in (4.35). Continuing by considering the lower-order terms, we
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conclude that k is constant among all Tα. Similarly, by instead considering parti-
tions consisting of N1 times the part 1 and N2 times the part 2, we conclude that l
is constant among all Tα. Hence, there is at most one α with nonzero coefficient cα.
We conclude that cα = 0 for all α ∈ I .

For Sym�(S) we show, first of all, that indeed Tk,l ∈ Sym�(S) if ki ≥ li for
all i. Let k ≥ l of the same parity be given. By Corollary 4.7.6 we find that

T1,1 |T1,1 | . . . |T1,1︸ ︷︷ ︸
l−1

|Tk−l+1,1 = S2 |S2 | . . . |S2︸ ︷︷ ︸
l−1

|Sk−l+2 = Tk,l .

Therefore, Tk,l ∈ Sym�(S) for all k ≥ l. Moreover, by applying Möbius inversion
on Equation (4.16), which defines the connected product, we find

Tk,l =
∑

α∈Π(n)

⊙

A∈α
(TkA1

,lA1
|TkA2

,lA1
| . . .). (4.36)

As we already showed that Tk,l ∈ Sym�(S) if k ≥ l, we find Tk,l ∈ Sym�(S)
if ki ≥ li for all i.

Next, we show that all elements in Sym�(S) are a linear combination of the Tk,l
satisfying ki ≥ li. As S clearly is contained in the space generated by the Tk,l for
which ki ≥ li, it suffices to show that the latter space is closed under �. For this we
follow the proof of Theorem 4.8.7 observing that in each step ki ≥ li, so that indeed
the Tk,l for which ki ≥ li form a generating set for Sym�(S).

As we already showed that the Tk,l are linearly independent, we conclude that
the Tk,l ∈ T mon satisfying ki ≥ li for all i form a basis for Sym�(S).

The last part of the statement follows directly, as by definition all Tk,l ∈ T mon

satisfying li = 1 for all i generate S, and by the above they are linearly independent.

The basis defining the weight grading

By definition, the double moment functions generate T under the pointwise product.
In this section we show that we can replace the pointwise product in the latter state-
ment by the induced product. Again we will consider every reordering of the factors
in Tk1,l1 � · · · � Tkn,ln due to commutativity of the products to be the same element.
Then, we have:

Theorem 4.8.9. The elements Tk1,l1 � · · · � Tkn,ln form a basis for T . A basis for
the subspace Sym�(S) is given by the subset of elements for which ki ≥ li for all i.

Proof. Assign to Tk,l weight k + l. This defines a weight filtering on T with respect
to the pointwise product. Consider the subspace of elements of weight at most w
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in T . The number of basis elements in the basis given by the pointwise product in the
previous section equals the number of induced products of the Tk,l. Hence, it suffice
that the induced products of the Tk,l generate T . For this we proceed by induction
first on the weight and then on the depth. Here, by depth we mean the unique filtering
under the pointwise product for which every Tk,l has depth 1, usually called the total
depth.

Trivially, every element of weight 0 or depth 0 is generated by (empty) induced
products of the Tk,l. Next, consider Tk,l ∈ T and assume all elements of lower
weight and of the same weight and lower depth are generated by induced product
of the Tk,l. Let Tk,l ∈ T of weight w be given and write k′, l′ for k, l after omitting
the last (nth) entry. Then,

Tk,l = Tk′,l′ � Tkn,ln − Tk′,l′ |Tkn,ln .

Note that Tk′,l′ is of weight strictly less than w, hence is generated by induced
products of the Tk,l. Moreover, by Proposition 4.4.7 and Theorem 4.7.4 it follows
that the depth of Tk′,l′ |Tkn,ln is at most n− 1. Hence, by our induction hypothesis,
it is generated by induced products of the Tk,l. We conclude that Tk,l is generated by
induced products of the Tk,l, which proves the first part of the theorem.

The second part follows by the same proof, everywhere restricting to those Tk,l
for which k ≥ l.

By the above theorem, we can define a weight grading on T .

Definition 4.8.10. Define a weight grading on T by assigning to Tk,l weight k + l
and extending under the induced product.

Note that both the grading on T and the grading on S correspond to the grading
on quasimodular forms after taking the q-bracket. Hence, the grading on S is the
restriction of the grading on T .

The weight grading defines a weight operator. In Section 4.10 we extend this
weight operator to an sl2-triple acting on T , so that T becomes an sl2-algebra.

The n-point functions

As induced products of the Tk,l form a basis for T , knowing 〈f〉q for all f ∈ T
is equivalent to knowing the generating function Gn(u1, . . . un, v1, . . . vn), called
the n-point function and given by

∑

k,l

〈Tk1,l1 � · · · � Tkn,ln〉q
uk11 · · ·uknn vl1−1

1 · · · vln−1
n

k1! · · · kn!(l1 − 1)! · · · (ln − 1)!
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for all n ≥ 0. Here the sum is over all ki, li such that ki+li is even andm! is consider
to be 1 for m < 0. As the q-bracket is a homomorphism with respect to the induced
product, we directly conclude that

Gn(u,v) =

n∏

i=1

G1(ui, vi). (4.37)

We also define the partition function by

Φ(t) =

∞∑

n=0

1

n!

∑

k,l

〈Tk1,l1 � · · · � Tkn,ln〉q tk1,l1 · · · tkn,ln .

The following result (together with (4.37)) expresses these functions in terms of
the Jacobi theta series (1.14).

Theorem 4.8.11. For all n ≥ 0 one has

G1(u, v) = −1

2

θ′(0)θ(u+ v)

θ(u)θ(v)
,

Φ(t) = exp
(

[x0y0]G1

(
∂

∂x
,
∂

∂y

)∑

k,l

tk,lx
kyl
)
,

where [x0y0] denotes taking the constant coefficient.

Proof. We have that

G1(u, v) =

n∏

i=1

(
− 1

2u
− 1

2v
+

(∑

k,l

Dl−1Gk−l+2 +
∑

k,l

DkGl−k

)
ukvl−1

k!(l − 1)!

)
,

where in the sum it is understood that k + l is even, k ≥ 0, l ≥ 1. The expression
for G1(u, v) in the statement now follows from [Zag91, §§3]. The expression for Φ
follows immediately from this result.

4.9 The derivative of a function on partitions

Note that for all f ∈ QP one has

D〈f〉q = 〈S2f〉q − 〈S2〉q〈f〉q . (4.38)

Hence, by letting Df := S2 | f = S2f −S2� f for f ∈ QP , we have that D〈f〉q =
〈Df〉q . Moreover, D acts as a derivation.
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Proposition 4.9.1. The map D : QP → QP is an equivariant derivation, i.e., D is
linear, satisfies the Leibniz rule and

D〈f〉q = 〈Df〉q .

In fact, for all k ≥ 1, the mapping f 7→ Sk | f is a derivation. Recall the definition
of the Möbius function µ defined in Proposition 4.3.3 and denote S0

k = Sk − Sk(∅).

Lemma 4.9.2. For all even m ≥ 2 one has

(i) S0
m � µ = −S0

m µ;

(ii) The mapping (QP ,�) → (QP ,�), f 7→ Sm | f is a derivation, uniquely
determined on T by

Sm |Tk,l = Tk+m−1,l+1 .

Remark 4.9.3. In case m ≥ 4, the derivation f 7→ Sm | f does not correspond to a
derivation on M̃ , i.e., a derivation dm such that dm〈f〉q = 〈Sm | f〉q for all f ∈ T .
For instance, although the q-brackets of Tm,m and Tm−1,m+1 are the same, the q-
brackets of Sm |Tm,m = T2m−1,m+1 and Sm |Tm−1,m+1 = T2m−2,m+2 are differ-
ent. 4

Proof. First of all, by Proposition 4.3.4, one has
( ∑

λ∈P

uλ

)
〈S0
k � µ〉u =

( ∑

m,r≥1

mk−1urm

)( ∑

λ∈P

µ(λ)uλ

)
. (4.39)

Let Sm be the set of strict partitions not containing m as a part. Then, we can
rewrite (4.39) as

∑

m

∑

λ∈Sm

mk−1µ(λ)umuλ = −
∑

λ∈P

S0
k(λ)µ(λ)uλ ,

since µ(λ ∪ (m)) = −µ(λ) for λ ∈ Sm, so that for r ≥ 2 the coefficient of urmuλ
cancels in pairs. We conclude that S0

k � µ = −S0
k µ.

For the second part, note that (i) implies that

Sk � µ = −
(
Sk +

Bk
k

)
µ.

Let f, g ∈ QP be given. Then

Sk | (f � g) = Sk(f � g)− Sk � f � g.
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If α ∪ β ∪ γ = λ then Sk(λ) = Sk(α) + Sk(β) + Sk(γ) + Bk
k , hence

Sk(λ) (f � g)(λ)

=
∑

α∪β∪γ=λ

(
Sk(α) + Sk(β) + Sk(γ) +

Bk
k

)
f(α) g(β)µ(γ)

= (Skf)� g + f � (Skg) +
∑

α∪β∪γ=λ

(
Sk(γ) +

Bk
k

)
f(α) g(β)µ(γ)

= (Skf)� g + f � (Skg) −
∑

α∪β∪γ=λ

(Sk � µ)(γ) f(α) g(β)

= (Skf)� g + f � (Skg) − Sk � f � g.

Therefore,

Sk | (f �g) = (Skf)�g+f � (Skg)−2Sk�f �g = (Sk | f)�g+f � (Sk | g),

i.e., the mapping f 7→ Sk | f is a derivation. The formula Sm |Tk,l = Tk+m−1,l+1

follows directly from Theorem 4.7.4.

Proof of Proposition 4.9.1. As S2 | f = S2f − S2 � f is derivation by the above
lemma, the results follows directly from (4.38).

4.10 The equivariant q-bracket and Rankin–Cohen brackets

In this section we extend the action by the sl2-triple (D,W, d) on quasimodular forms
to T . As the derivation d does not act on all power series in q, but only on quasimodu-
lar forms, we cannot hope to define d on all functions on partitions as we did with D.
On the algebra T , however, this is possible. We define an sl2-action on this space
and we show that the q-bracket restricted to T is an equivariant map of sl2-algebras.

Note that the following definition agrees with the definition of D in the previous
section:

Definition 4.10.1. Define the derivations D,W, d on T by

DTk,l = Tk+1,l+1 ,

W Tk,l = (k + l)Tk,l ,

dTk,l = k(l − 1)Tk−1,l−1 − 1
2δk+l−2 .

One immediately checks that D,W and d satisfy the commutation relation of
an sl2-triple on T . The corresponding acting of sl2 on T makes the q-bracket equiv-
ariant, so that a refined version of Theorem 4.1.3 is:
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Theorem 4.10.2 (The sl2-equivariant symmetric Bloch–Okounkov theorem). The
algebra T is an sl2-algebra with respect to the above action of sl2 on T . Moreover,
the q-bracket becomes an equivariant map of sl2-algebras, i.e., for f ∈ T one has

D〈f〉q = 〈Df〉q, W 〈f〉q = 〈Wf〉q, d〈f〉q = 〈df〉q .
Proof. We already observed that the first of the three equality holds and the second
is the homogeneity statement. Hence, it suffices to prove the last statement. Observe
that by the commutation relations for d and D, for all n ≥ 1 one has

[d, Dn] = n(W − n+ 1)Dn−1. (4.40)

Using (4.40) we find that for a ≥ 0, b ≥ 2 one has

d(DaGb) = a(a+ b− 1)Da−1Gb − 1
2δa+b−2.

Hence,
d〈Tk,l〉q = k(l − 1)〈Tk−1,l−1〉q − δk+l−2 = 〈dTk,l〉q

and the last statement follows from the Leibniz rule.

The sl2-action allows us to define Rankin–Cohen brackets on T .

Definition 4.10.3. For two elements f, g ∈ T and n ≥ 0 the nth Rankin–Cohen
bracket is given by

[f, g]n =
∑

r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)
Drf �Dsg. (4.41)

Note that the formula (4.41) would have defined the Rankin–Cohen brackets
on M̃ if D acts by q ∂∂q and the induced product is replaced by the usual product,
whereas in this line D acts on T as explained in the previous sections.

If f, g ∈ ker d, then 〈f〉q and 〈g〉q are modular forms. The Rankin–Cohen
bracket of two modular forms is a modular form; analogously, we have:

Proposition 4.10.4. If f, g ∈ ker d, then [f, g]n ∈ ker d.

Proof. Using (4.40), we find that

d[f, g]n =
∑

r,s≥0
r+s=n

(−1)r
(k + n− 1)!

s!(k + r − 2)!

(l + n− 1)!

(r − 1)!(k + s− 1)!
Dr−1f �Dsg+

(−1)r
(k + n− 1)!

(s− 1)!(k + r − 1)!

(l + n− 1)!

r!(l + s− 2)!
Drf �Ds−1g,

where 1
(−1)! should taken to be 0. This is a telescoping sum, vanishing identically.
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Remark 4.10.5. The above bracket makes the algebra T into a Rankin–Cohen al-
gebra, meaning the following. Let A∗ = ⊕k≥0Ak be a graded K-vector space
with A0 = K and dimAk < ∞ (for us A = T ). We say A is a Rankin–Cohen
algebra if there are bilinear operations [ , ]n : Ak ⊗ Al → Ak+l+2n (k, l, n > 0)
which satisfy all the algebraic identities satisfied by the Rankin–Cohen brackets
on M̃ [Zag94]. 4

A restricted sl2-action

Theorem 4.10.2 does not make S into an sl2-algebra. Namely,D does not preserve S.
However, if we allow ourselves to deform the sl2-triple (D,W, d) as in Section 2.2,
we can define an sl2-action on S. This action, however, does not make S into an sl2-
algebra, as the deformed operators are not derivations.

The operator taking the role of d is the operator s : Sk → Sk−2 defined by

s =
1

2

∑

k,l≥0

(k + l)Sk+l
∂2

∂Sk+1 ∂Sl+1
− 1

2

∂

∂S2
.

The operator D is replaced by multiplication with S2.

Lemma 4.10.6. The triple (S2,W − 1
2 , s) forms an sl2-triple of operators acting

on S.

Proof. Observe that

[s, S2]f =
∑

k

(k + 1)Sk+1
∂

∂Sk+1
f − 1

2f = (W − 1
2)f.

As s and S2 decrease, respectively, increase the weight by 2, the claim follows.

Theorem 4.10.7. The q-bracket 〈 · 〉q : S → M̃ is an equivariant mapping with
respect to the sl2-triple (S2,W − 1

2 , s) on S and the sl2-triple (D +G2,W − 1
2 , d)

on M̃ , i.e., for all f ∈ S one has

(D+G2)〈f〉q = 〈S2f〉q, (W− 1
2)〈f〉q = 〈(E− 1

2)f〉q, d〈f〉q = 〈sf〉q . (4.42)

Proof. The first of the three equalities in (4.42) follows from the definition of the q-
bracket; the second is the homogeneity statement of Theorem 4.10.2. Hence, it re-
mains to prove the last equation d〈f〉q = 〈sf〉q .

Given k ∈ Nn, let ki ∈ Nn−1 be given by ki := (k1, . . . , ki−1, ki+1, . . . , kn)
omitting ki. Similarly, define ki,j ∈ Nn−2 by omitting ki and kj . Then

sSk =
∑

i 6=j
(ki + kj − 2)Ski+kj−2Ski,j −

1

2

∑

i: ki=2

Ski .
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By Theorem 4.5.1, one finds

〈
Ski+kj−2Ski,j

〉
q

=
∑

β∈Π(n)
∃I∈β: {i,j}⊂I

D`(I)−2G|kI |−2`(I)+2

∏

B 6=I
D`(A)−1G|kB |−2`(A)+2 .

For I ∈ β and l ∈ NI , let

C(I, l) :=
∑

i,j∈I,i 6=j
(li + lj − 2) = (`(I)− 1)(|l| − `(I)).

It follows that
∑

i 6=j(ki + kj − 2)
〈
Ski+kj−2Ski,j

〉
q

equals

∑

β∈Π(n)

∑

I∈β
2C(I,k)D`(I)−2G|kI |−2`(I)+2

∏

B 6=I
D`(B)−1G|kB |−2`(B)+2 .

On the other hand, observe that if f is of weight |l| − 2`(I) + 2, Equation (4.40)
yields

[d, D`(I)−1]f = C(I, l)D`(I)−2f.

Hence, using dGk = −1
2δk,2, we obtain

[d, D`(I)−1]G|kI |−2`(I)+2 = C(B,kI)D
`(I)−2G|kI |−2`(I)+2 −

1

2
δkI ,(2) .

Therefore,

d〈Sk〉q =
∑

β∈Π(n)

∑

I∈β
C(I,kI)D

`(I)−2G|kI |−2`(I)+2

∏

B 6=I
D`(B)−1G|kB |−2`(B)+2+

− 1

2

∑

i: ki=2

∑

β∈Π([n]\{i})

∏

B∈β
D`(B)−1G|kB |−2`(B)+2 ,

which by the above reasoning is exactly equal to 〈sSk〉q .

4.11 The structure constants: from the pointwise to the induced product

The structure constants

In Theorem 4.7.4, we deduced that Tk1,f1 | . . . |Tkn,fn = T|k|,g with

g(f1, . . . , fn) =
∑

α∈Π(n)

µ(α,1)∂`(α)−1 ∗
A∈α

fA.
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In the particular case that f1 = . . . = fn is the identity function, we saw in Corol-
lary 4.7.6 that g = Fn. If f1, . . . , fn are Seki–Bernoulli polynomials, the func-
tion g is not necessarily equal Seki–Bernoulli polynomial on all m ∈ N, but, by
Lemma 4.7.7, ∂g equals some polynomial. Also, using g is uniquely determined
by ∂g, the function g equals some polynomial. We expand g as a linear combination
of Seki–Bernoulli polynomials.

Definition 4.11.1. Given integers l1, . . . , ln, we define the structure constants Cli by

g(Fl1 , . . . ,Fln) =

|l|−1∑

i=0

Cli F|l|−i .

Observe that Cli = 0 for odd i, as ∂g is even or odd. Corollary 4.7.6 is the
statement

C
(1,...,1)
i =

{
1 i = 0

0 else.

More generally, by Theorem 4.7.4(ii) one has C1,l
i = Cli , so that w.l.o.g. we can

assume li > 1. In this section, we give an explicit, but involved, formula for these
coefficients in terms of Bernoulli numbers and binomial coefficients. In order to do
so, for l1, l2 ≥ 1 and i ∈ Z≥0, we introduce the following numbers:

B l1,l2i :=





(l1−1)!(l2−1)!
(l1+l2−1)! i = 0,

ζ(1− i)
(

(−1)l2
(
l1−1
i−l2
)

+ (−1)l1
(
l2−1
i−l1
))

i > 0,

which by [AIK14, Proposition A.10] satisfy

l1+l2−2∑

i=0

B l1,l2i

Bl1+l2−i
l1 + l2 − i

= (−1)l1l2
Bl1+l2 −Bl1Bl2

l1l2
.

Note that ζ(1 − i) = (−1)i+1Bi
i for i ≥ 1. The following polynomials can be

expressed in terms of these coefficients:

Lemma 4.11.2. For all l1, l2, . . . , lr ≥ 2 one has the following identities:

(i) Fl1(x) =
∞∑

i=0

B l1,1i xl1−i;

(ii) (∂Fl1 ∗ ∂Fl2)(x) =
∞∑

i=0

B l1,l2i xl1+l2−i−1;
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(iii) ∂(Fl1 · · ·Flr)(x) = 2
∑

|i|≡1 (2)

B l1,1i1
· · ·B lr,1ir

x|l|−|i|.

Proof. The first two equations, of which the former is the well-known expansion of
the Seki–Bernoulli polynomials, follow by considering the corresponding generating
series. In order to prove (ii), we let n ∈ N and consider

G(n) :=
∞∑

l1,l2=1

(∂Fl1 ∗ ∂Fl2)(n)
zl1−1

1

(l1 − 1)!

zl2−1
2

(l2 − 1)!

=
∑

m1+m2=n

em1z1+m2z2

=
enz1

ez1−z2 − 1
+

enz2

ez2−z1 − 1
.

As the generating series of the Bernoulli numbers
∑∞

j=0Bj
zj

j! = z(ez−1)−1 implies
that

1

ez1−z2 − 1
=

1

z1 − z2
+

∞∑

j=1

j−1∑

i=0

Bj
j

(−1)i
zj−i−1

1 zi2
(j − 1− i)!i! ,

we find

G(n) =

∞∑

l1,l2=1

∞∑

i=0

(−1)iB l1,l2i

zl1−1
1

(l1 − 1)!

zl2−1
2

(l2 − 1)!
nl1+l2−i−1.

Since B l1,l2i vanishes for odd i if l1, l2 > 1, this proves the second equation. The
third equation follows from the first by noting that

∂(Fl1 · · ·Flr)(x) = (Fl1 · · ·Flr)(x)− (−1)|l|(Fl1 · · ·Flr)(−x).

Using these identities, one obtains

C li = B1,1
i = δi,0, C l1,l2i = B l1,1i + B l2,1i − B l1,l2i .

These easy expressions for small n are misleading, as 6C l1,l2,l3i equals

1

4
δi,2 + 3

∑

i1,i2≡0 (2)
i1+i2=i

B l1,1i1
B l2,1i2

−
∑

i1≡1 (2),j1
i1+j1=i

B l1,1i1
B l1,l2+l3−i1
j1

+

+ 2
∑

j1+j2=i

B l1,l2j1
B l1+l2−j1,l3
j2
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up to full symmetrisation, i.e., summing over all σ ∈ S3 with li replaced by lσ(i).
In general, given α ∈ Π(n), write α = {A1, . . . , Ar} and denote Aj = ∪ji=1Aj .
Also, for a vector k and a set B we let kB =

∑
b∈B kb. Then, the above observations

allows us to write down the following formula, which is very amenable to computer
calculation:

Proposition 4.11.3. Let l1, . . . , ln > 1. Then, Cli is given by

∑

α∈Π(n)

2rµ(α,1)
∑

i1,...,in
|iA|≡1 (2)

(
n∏

k=1

B lk,1ik

)



∑

j1,...,j`(α)−1

|i|+|j|=i+r

r−1∏

s=1

B
lAs−js−1,lAs+1

−iAs+1
+1

js




.

Here, j0 := lA0 − iA0 .

Note that the latter formula is written in an asymmetric way, but (by associativity
of the convolution product) is symmetric in the li.

From the pointwise product to the induced product

Suppose an element of T is given, written in the basis with respect to the pointwise
product. How do we determine its (possibly mixed) weight and its representation in
terms of the basis with respect to the � product? A first answer is given by applying
Möbius inversion to Equation (4.16), as given by Equation (4.36), i.e.,

Tk,l =
∑

α∈Π(n)

⊙

A∈α
(TkA1

,lA1
|TkA2

,lA2
| . . .). (4.43)

However, as every factor TkA1
,lA1
|TkA2

,lA2
| . . . in the above equation is a linear

combination of generators of different weights, it is useful to have a recursive version
of this result. For this, we write ∂

∂Tk,l
for the derivative of f ∈ T in the former basis

(with respect to the pointwise product) and ∂
∂Tk,l

for
∏
i

∂
∂Tki,li

.

Proposition 4.11.4. Let k, l ≥ 1. There exist differential operators si,j for all i, j ∈
Z such that si,j = 0 if j < 0 and for all f ∈ T one has

Tk,lf =
∑

i≥0

∑

j≥−l+1

Tk+i,l+j � si,j(f).

Explicitly,

si,j =
∑

|a|=i
ta,j , ta,j =

∑

b

C l,b|b|−j
∂

∂Ta,b
,



86 New quasimodular algebras

where a and b are vectors of integers of the same length and with |a| = i, the
structure constants C l,b|b|−j are as in Proposition 4.11.3 and l, b denotes the vector
(l, b1, b2, . . .).

Proof. By linearity, it suffices to prove the statement for monomials Tk,l. Hence,
assume f = Tk,l. Applying (4.43), extracting the factor containing Tk,l and apply-
ing (4.43) again, yields

Tk,lf =
∑

A⊂[n]

(Tk,l |TkA1
,lA1
|TkA2

,lA2
| . . .)� Tk[n]\A,l[n]\A

=
∑

a,b

(Tk,l |Ta1,b1 |Ta2,b2 | . . .)�
∂

∂Ta,b
f.

By Definition 4.11.1 this equals

Tk,lf =
∑

a,b

∑

j∈Z
C l,bj T|a|+k,|b|+l−j �

∂

∂Ta,b
f

Replacing j by −j + |b| and writing i = |a|, one obtains

Tk,lf =
∑

i≥0

∑

j∈Z
Tk+i,l+j �

∑

|a|=i

∑

b

C l,b|b|−j
∂

∂Ta,b
f,

as desired.

Corollary 4.11.5. For all k, l ≥ 1 and f ∈ T one has

〈Tk,lf〉q =
∑

a≥0

∑

b≥2

DaGb〈Ta,bk,lf〉q ,

where Ta,bk,l = sa−l+1,a+b−k−1 + sa+b−l,a−k.

Proof. Distinguishing two cases in the previous result yields

〈Tk,lf〉q =
∑

j<k+i−l
Dl+j−1Gk+i−l−j+2 � si,j(f) +

+
∑

i≥0

∑

j≥k+i−l
Dk+iGl+j−k−i � si,j(f)

=
∑

a≥0

∑

b≥2

DaGb〈(sa+b−k−1,a−l+1 + sa−k,a+b−l)(f)〉q .
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4.12 Border strip moments and moments of other partition invariants

We apply our results to interesting functions on partitions. First, we study the Möller
transformation (defined in [Zag16, Eqn (45)] and recalled below) of elements in T .
In order to do so, let us first recall four equivalent definition of the hook-length mo-
ments, among which as the Möller transformations of the elements in S.

Hook-length moments

Denote zν = n!
|Cν | with |Cν | the size of the conjugacy class corresponding to ν. Recall

that

zν =
∞∏

m=1

mrm(ν)rm(ν)! . (4.44)

Definition 4.12.1. Given f ∈ QP , the Möller transform of f at a partition λ ∈P(n)
is given by

M(f)(λ) =
∑

ν`n
z−1
ν χλ(ν)2 f(ν),

where the sum ν ` n is over all partitions of size n and χλ(ρ) denotes the the charac-
ter of the representation corresponding to the partition λ evaluated at the conjugacy
class corresponding to ρ.

Then 〈M(f)〉q is a quasimodular form if and only if 〈f〉q is a quasimodular
form (which follows directly by the column orthogonality relations for the symmetric
group). Now, an alternative expression for Hk is

Hk =M(Sk).

A second expression for Hk makes use of certain constructions related to the
Young diagram. Given partitions λ, ν with νi ≤ λi for all i, we define the skew Young
diagram λ/ν by removing the cells of Yν from Yλ. Denote by |λ/ν| = |λ| − |ν| the
number of cells of this diagram. We call λ/ν a border strip of λ if it is connected
(through edges, not only through vertices) and contains no 2 × 2-block. If γ = λ/ν
we write λ \ γ for ν. The height of a border strip γ is defined to be one less than
the number of columns and denoted by ht(γ). Given m ∈ Ns, we let a border strip
tableau γ of type m be a sequence γ1, . . . , γs such that γi is a border strip of λ r
γ1r · · ·rγi−1 and |γi| = mi. Write Yγ for the skew Young diagram consisting of all
boxes of all the γi and write ht(γ) = ht(γ1) + . . .+ ht(γs). Denote by BST(λ,m)
and BST(λ/ν,m) the set of all border strip tableau of type m within λ and λ/ν,
respectively.
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γ1

γ2

γ3

γ3 γ1

γ2

γ2

γ3

γ1

γ3

γ2

γ1

Figure 4.1: The Young diagrams corresponding to the border strip tableaux of
type (2, 1, 2) within λ = (4, 2, 1, 1).

The Murnaghan–Nakayama rule (recursively) expresses the characters of the
symmetric groups in terms the heights of border strip tableau. Namely, if ρ′ ⊆ ρ
(both ρ′ and ρ considered as multisets)

χλ(ρ) =
∑

γ∈BST(λ,ρ′)

(−1)ht(γ)χλ\γ(ρ− ρ′),

where ρ − ρ′ denotes the difference of (multi)sets. Of particular interest are the
cases ρ′ = ρ and ρ′ = (ρ1), yielding a direct or recursive combinatorial formula
for χλ(ρ), respectively:

χλ(ρ) =
∑

γ∈BST(λ,ρ)

(−1)ht(γ) and χλ(ρ) =
∑

|γ|=ρ1
(−1)ht(γ) χλ\γ(ρ2, ρ3, . . .),

where the latter sum is over all borders strips γ of λ of length ρ1. The skew charac-
ter χλ/ν(ρ′) is defined by (|λ/ν| = |ρ′|)

χλ/ν(ρ′) =
∑

γ∈BST(λ/ν,ρ′)

(−1)ht(γ),

so that
χλ(ρ) =

∑

|ν|=|ρ′|
χλ/ν(ρ′)χν(ρ− ρ′).

Now, we have the following definitions of the hook-length moments.

Definition 4.12.2. The hook-length moments Hk (k ≥ 2 even) are defined by either
of the following equivalent definitions [CMZ18, Section 13]:

(i) Hk(λ) = −Bk
2k

+
∑

ξ∈Yλ
h(ξ)k−2 ;

(ii) Hk(λ) = −Bk
2k

+

∞∑

m=1

|BST(λ,m)|mk−2 ;
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(iii) Hk =
1

2
(k − 1)!

k∑

i=0

(−1)iQiQk−i ;

(iv) Hk = M(Sk).

The Möller transform of double moment functions

We express elements of T in terms of functions Uk,l for which the induced product
and Möller transformation are easy to compute. However, these function do not admit
the property that the q-bracket is quasimodular if ki + li is even for all i: each Uk,l
lies in the space generated by all the Tk,l (possibly with ki + li odd).

Given a vector of integers l, let

N(l) = {(m1, . . . ,m1︸ ︷︷ ︸
l1

,m2, . . . ,m2︸ ︷︷ ︸
l2

, . . .) | mi ≥ 1}

the set of tuples of n := |l| positive integers, where the first l1, the second l2, etc.
integers agree. For k ∈ Zn≥0, define

Uk,l =
∑

m∈N(l)

mk
∞∏

a=1

(
ra(λ)

ra(m)

)
.

Observe that this product converges since ra(m) = 0 for all but finitely many val-
ues of a. Let U be the algebra generated by the Uk,l. Generalise the hook-length
moments in Definition 4.12.2(ii) by the following notion:

Definition 4.12.3. The border strip moments are given by

Xk,l(λ) =
∑

m∈N(l)

∑

γ∈BST(λ,m)

χγ(m)2

zm
mk.

Let X be the vector space spanned by all the Xk,l. Define a filtration on X by
assigning to Xk,l degree |k|+ |l|.

Remark 4.12.4. Observe that for n = 1 and l = 1, the sum restricts to a sum over all
border strips γ of λ and for such a border strip γ the factor χγ(m)2

zm
equals 1 and zm

equals m. As the set of hook-lengths is in bijection with the set of all border strip
lengths, one has that −Bk

2k +Xk,1 = Hk+1. 4
Denote by

{
n
j

}
the Stirling numbers of the second kind (i.e., the number of ele-

ments in Π(n) of length j).
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Proposition 4.12.5. For all k ≥ 0, l ≥ 1,k,k′ ∈ Zn≥0, and integer vectors l, l′ with
|l| = |l′| = n, one has

(i) Tk,l = − Bk+l

2(k + l)
(δl,1 + δk,0) +

l∑

j=1

{
l

j

}
(j − 1)!Uk,j ;

(ii) Uk,l � Uk′,l′ = Uk∪k′,l∪l′ ;

(iii) M(Uk,l) = Xk,l .

Proof. For the first property, we use the known identity

xl−1 =
l∑

j=1

{
l

j

}
(j − 1)!

(
x− 1

j − 1

)
.

As Fl(x) and
(
x
j

)
are the unique polynomials with constant term equal to zero and

such that ∂Fl(x) = xl−1 and ∂
(
x
j

)
=
(
x−1
j−1

)
, respectively, we find

Fl(x) =
l∑

j=1

{
l

j

}
(j − 1)!

(
x

j

)
,

which yields property (i).
Next, we show that for all i, j ≥ 0 one has

∂

(
x

i

)
∗
(
x

j

)
=

(
x

i+ j

)
.

Both (
x

i

)
∗
(
x

j

)
=

x∑

m=0

(
m

i

)(
x−m
j

)
and

(
x+ 1

i+ j + 1

)

are polynomials of degree at most i+j+1 taking the value 0 for x = 0, 1, . . . , i+j−1
and the value 1 for x = i+ j; hence, they are equal. Therefore,

∂

(
x

i

)
∗
(
x

j

)
= ∂

(
x+ 1

i+ j + 1

)
=

(
x

i+ j

)
.

By Lemma 4.7.2 property (ii) follows.
Finally, we have that

M(Uk,l)(λ) =
∑

m∈N(l)

mk
∑

ν`n
z−1
ν χλ(ν)2

∞∏

a=1

(
ra(ν)

ra(m)

)
.



Border strip moments and moments of other partition invariants 91

Observe that givenm and ν the term

z−1
ν χλ(ν)2

∞∏

a=1

(
ra(ν)

ra(m)

)
(4.45)

vanishes unless ra(ν) ≥ ra(m) for all positive a. Let ν ′ be the partition obtained
from ν by removing ra(m) parts of size a from ν for all positive a. Denote by n′ =
n− |m| the size of ν ′. By the Murnaghan–Nakayama rule one has

χλ(ν) =
∑

ξ∈BS(λ,m)

χξ(m)χλ\ξ(ν ′).

One has

z−1
ν

∞∏

a=1

(
ra(ν)

ra(m)

)
=

∞∏

a=1

1

ara(ν)ra(m)! (ra(ν)− ra(m))!
=

1

zν′zm
.

Hence, (4.45) equals

∑

ξ∈BS(λ,m)

∑

ρ∈BS(λ,m)

χξ(m)χρ(m)

zm

∑

ν′`n′
zν′χ

λ\ξ(ν ′)χλ\ρ(ν ′).

The orthogonality relation for the symmetric group is the statement
∑

ν′`n′
zν′ χ

λ\ξ(ν ′)χλ\ρ(ν ′) = δλ\ξ,λ\ρ .

Hence, we obtain the desired result.

The q-bracket of an element in X is not necesarily a quasimodular form. How-
ever, it always lies in the following space of q-analogues of zeta values, see [GKZ06].

Definition 4.12.6. Let C≤` be the Q-vector space consisting of all polynomials in the
combinatorial Eisenstein series

Gk(τ) = −Bk
2k

+

∞∑

r=1

∞∑

m=1

mk−1qmr, (k ≥ 1, not necesarily even)

and their derivatives of weight ≤ `, where to DrGk we assign the weight k + 2r.

Now, Proposition 4.12.5 implies the following result:

Theorem 4.12.7. For all f ∈ X≤k, one has 〈f〉q ∈ C≤k.
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Proof. By Proposition 4.12.5, f equals the Möller transform of some polynomial in
the Tk,l with respect to the product�. Here, however, it may happen that k+ l is odd.
Mutatis mutandis in either of three approaches in §§4.3, we find that the q-bracket
of Tk,l lies in Ck+l, which proves the result.

Theorem 4.12.8. For all weights k one hasM(Tk) ⊂ X≤k. More precisely,

M(Tk1,l1 � · · · � Tkn,ln)

(l1 − 1)! · · · (ln − 1)!
= Xk,l + elements in X of lower degree. (4.46)

Proof. Observe that Proposition 4.12.5 implies thatM(Tk) ⊂ X≤k. Equation (4.46)
follows from this proposition after noting that the Möller transformation of Tk,l −
(l − 1)!Uk,l has degree strictly smaller than k + l.

Example 4.12.9. The following two equations provide examples of linear combina-
tions of elements ofX with a quasimodular q-bracket whenever k + l and ki are even
integers.

M(Tk,l) = − Bk+l

2(k + l)
(δk,1 + δl,0) +

l∑

j=1

{
l

j

}
(j − 1)!Xk,j ,

M(Sk1 � Sk2 � · · · � Skn) =
∑

A⊂[n]


∏

i 6∈A

Bki
2ki


XkA,(1,1,...,1) .

See Appendix A.3 for a table of elements in X with quasimodular q-bracket and of
small degree.

Remark 4.12.10. In many examples the Xk,l are not shifted symmetric functions
or generated by shifted symmetric functions under the induced product. For exam-
ple, M(T0,2) 6= M(S2) and besides Q2 = M(S2) = S2 there are no other non-
trivial functions generated by Λ∗ under the pointwise product. It remains an open
question whether the elements of X are in some sense related to shifted symmetric
functions. 4

Moments of other partition invariants

So far we provided many examples of functions on partitions in Λ∗ and T related
to the representation theory of the symmetric group. Now, we see that many purely
combinatorial notions lead to different bases for S. We compare these bases to cor-
responding bases of Λ∗. Most of these bases take the following form. Suppose an
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index set I and a sequence {si}∞i∈I of elements of QP are given. Then, we define
the kth moment of s by (whenever this sum converges)

Mk(s)(λ) =
∑

i∈I

(
si(λ)k − si(∅)k

)
.

For example, let the functions p, q for the index set N be given by

pi(λ) = λi , qi(λ) = λi − i.

Then, by definition,

Sk = Sk(∅) +Mk−1(p), Qk = Qk(∅) +Mk−1(q).

Note that by definition Mk(s)(∅) = 0. As the functions below will not respect the
weight grading anyway, we will not include a constant term.

The sequences a, c,h,x of functions on partitions are of further interest. Define
these sequence, indexed by ξ = (i, j) ∈ Z2

≥0, by 0 if ξ 6∈ Yλ and

aξ(λ) : arm length of ξ hξ(λ) : hook-length of ξ

xξ(λ) = i cξ(λ) : content of ξ, i.e., i− j

if ξ ∈ Yλ (for the content, see also (3.4)). For h and c it is known that the corre-
sponding moment functions are shifted symmetric, for the latter see [KO94, Theorem
4]. The moment functions corresponding to a and x turn out to be equal and to be
elements of S.

Theorem 4.12.11.

S = Q[Mk(a) | k ≥ 0 even] = Q[Mk(x) | k ≥ 0 even].

Proof. As the Seki–Bernoulli polynomials Fk with k odd form a basis for the space
of all odd polynomials, the functions

∞∑

i=1

Fk(λi) =
∞∑

i=1

λi∑

a=1

ak−1

generate S , which corresponds to the first equality in the statement. By interchanging
the sums one obtains

∞∑

i=1

Fk(λi) =

∞∑

a=1

ak−1
∞∑

m=a

rm(λ) =
∑

(i,j)∈Yλ
ik−1. (4.47)

Hence, the result is also true for s = x.
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Remark 4.12.12. Note that for a given i the number of (i, j) ∈ Yλ equals λ′i, where λ′

is the conjugate partition of λ. Hence, (4.47) can be written as

∞∑

i=1

ik−1λ′i

and consequently these functions for k odd generate S. Note that these functions
are different from the Sk(λ′). In fact, the algebra generated by the Sk(λ′) is distinct
from the algebra S, in contrast to the algebra of shifted symmetric functions, for
which Qk(λ′) = (−1)kQk(λ). 4
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CHAPTER 5

Taylor coefficients of quasi-Jacobi forms

5.1 Introduction

Let τ ∈ h, the complex upper half plane and z ∈ C. Write e(x) = e2πix and
q = e(τ). Consider the Jacobi theta function θ, defined in (1.14), its derivatives and
the Kronecker–Eisenstein series Ek, for k ≥ 2 given by

Ek(τ, z) =
∑

m,n∈Z

1

(z +mτ + n)k
, (5.1)

and the Bloch–Okounkov n-point functions Fn (see Definition 1.4.2). Do these func-
tions have a common property? To answer this question, observe that the first two
functions can be interpreted as generating functions of the Eisenstein series ek .
Namely,

Θ(τ, z) :=
θ(τ, z)

θ′(τ, 0)
= 2πiz exp

(
−
∑

m≥1

e2m(τ)

2m
z2m

)
, (5.2)

Ek(τ, z) =
1

zk
+ (−1)k

∑

m≥k/2

(
2m− 1

k − 1

)
e2m(τ) z2m−k.

In particular, the Taylor (or Laurent) coefficients around z = 0 of these functions
are polynomials in Eisenstein series, hence quasimodular forms—a property which
is shared by the stronger notion of a Jacobi form. Just as e2 transforms as a quasi-
modular form, so do θ(r) and Fn transform as quasi-Jacobi forms. Our answer to the
question is that all these functions are quasi-Jacobi forms, introduced in Section 5.6.

In this chapter we determine conditions on the Taylor coefficients of a meromor-
phic function ϕ : h×Cn → C for it to be a (quasi-)Jacobi form. In one direction, by
the work of Eichler and Zagier [EZ85], it is known that for a Jacobi form the Taylor

This chapter, as well as the next two chapters, are based on [I21b].

97
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coefficients around rational lattice points are quasimodular, or equivalently that cer-
tain linear combinations ξX` of derivatives of these Taylor coefficients are modular.
For example, Θ is a weak Jacobi form, hence it satisfies

(Θ|X|γ)(τ, z) ∝ (Θ|γX)(τ, z)

for all X =
(
λ
µ

)
∈ M2,1(Q) and γ ∈ SL2(Z), where the slash action is being

recalled in Definition 5.2.2 and the implicit multiplicative constant is a root of unity
depending on X and γ. Hence, it follows that the Taylor coefficients of Θ around
z = λτ + µ (after multiplying with a certain power of q) are quasimodular for some
subgroup ΓX of SL2(Z) consisting of γ for which γX −X ∈M1,2(Z) (see (5.17)).
In contrast, the weak quasi-Jacobi form Θ′(τ, z) = θ′(τ,z)

θ′(τ,0) transforms as

(Θ′|X|γ)(τ, z) ∝ (Θ′|γX)(τ, z) +
cz

cτ + d
(Θ|γX)(τ, z) + (5.3)

+ λ (Θ|γX)(τ, z) − λ

cτ + d
(Θ|γX)(τ, z).

Therefore, the Taylor coefficients of Θ′ + λΘ around z = λτ + µ, rather than of Θ′,
give rise to quasimodular forms for ΓX . The main result on Taylor coefficients of
quasi-Jacobi forms is given by Theorem 5.9.10 and summarised in Theorem E.

Part of the proof of this result consist in defining the ‘Taylor coefficients’ gX` (ϕ)
corresponding to a quasi-Jacobi form ϕ (see Definition 5.9.2). These ‘Taylor coef-
ficients’ are defined in terms of the actual Taylor coefficients of a family of func-
tions ϕi,j (here i ∈ Z≥0, j ∈ (Z≥0)n) appearing in the transformation of ϕ. For
example, the quasimodularity of the Taylor coefficients of Θ′ cannot be understood
without referring to Θ, which occurs in (5.3). The functions ξXm(ϕ) will be defined
in terms of derivatives of these coefficients gX` (ϕ).

In the statement of Theorem E we assumed that all poles lie on specific hyper-
planes. This is to assure that the multivariate Taylor expansion exists, which is for
example the case for the n-point functions Fn. We introduce the notion of a (multi-
variate) strictly meromorphic Jacobi form and show that its zeros always lie on a finite
union of rational hyperplanes. Strictly meromorphic Jacobi forms are meromorphic
functions ϕ : h × Cn → C, transforming as Jacobi forms, and with the following
assumption on the location of the poles: if z ∈ Rnτ + Rn is a pole of ϕ(τ, ·) for
some τ ∈ h, it is a pole for almost all τ ∈ h. Note that, in contrast to many authors,
we do not assume that all poles lie at torsion points or at rational hyperplanes. It is by
studying the orbits of the action of SL2(Z) onM2,n(R) that we prove Theorem 5.4.2,
which was summarised in Theorem D. In case n = 1, Theorem D implies that all
poles of a strictly meromorphic Jacobi form are torsion points z ∈ Qτ + Q, which
is crucial in order to show that Fourier coefficients of meromorphic Jacobi forms are
mock modular forms (see [Zwe02, DMZ14]).
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Contents

The definition of Jacobi forms in [EZ85] has been generalised in many ways. We pro-
vide a generalisation that incorporates several elliptic variables, characters, certain
meromorphic functions, and quasi-Jacobi forms [Lib11, Boy15, OP19]. In particu-
lar, the normalised Jacobi theta function Θ, the Kronecker–Eisenstein series Ek and
the Bloch–Okounkov n-point functions Fn from the introduction will be examples
throughout this chapter.

The results of this chapter will be applied in the subsequent chapters. The quasi-
modular transformation of the coefficients gX` (Fn) implies the results on the Bloch–
Okounkov theorem for congruence subgroups in Chapter 6. Moreover, in Chapter 7,
we see that pulling back the functions ξXm(Fn) under the q-bracket leads to the defi-
nition of the projection π.

Notation

For τ ∈ h, we write Lτ = Zτ + Z. As is customary, we often omit the dependence
on the modular variable τ in any type of Jacobi form, e.g. we write Θ(z) for Θ(τ, z).
We write a = (a1, . . . , an) for a vector of elements and we write |a| for a1+. . .+an.
For vectors a and b, we write ab to denote

∏
i a
bi
i . Also, given X ∈ M2,n(R), we

often write X =
(
λ
µ

)
with λ,µ ∈ Rn and for γ ∈ SL2(Z), we write γ =

(
a b
c d

)
,

γX =
(
λγ
µγ
)
. In accordance with the action of SL2(Z) on h, all actions of SL2(Z)

on other spaces are left actions.

5.2 Strictly meromorphic Jacobi forms

The definition of a strictly meromorphic Jacobi form ϕ is subtle, excluding many
meromorphic functions transforming as Jacobi forms. For example, the j-invariant,
the reciprocal of the e4 Eisenstein series or ℘/∆, where ℘ is the Weierstrass ℘-
function and ∆ the modular discriminant, are all non-examples of strictly meromor-
phic Jacobi forms. Namely, first of all, although a strictly meromorphic Jacobi form
is meromorphic we want its Taylor coefficients in the elliptic variables to be holo-
morphic (rather than weakly holomorphic or meromorphic) quasimodular forms. But
with this not everything has been said, the definition is even stricter: we require the
poles of ϕ to be “constant” in the modular variable τ . Consider, for example, the
Weierstrass ℘-function, which is an example of a strictly meromorphic Jacobi form.
For every fixed z ∈ C (e.g., z = i) the function ℘(τ, z) is a meromorphic function
of τ , as ϕ(τ, z) has a pole whenever τ is such that z ∈ Lτ (e.g., τ = z = i). How-
ever, for λ, µ ∈ R, the function ϕ(τ, λτ + µ) is holomorphic, unless both λ, µ ∈ Z.
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That is, all poles of ℘(τ, z) are given by z ∈ Lτ . To the contrary, we will see that
℘−1 is not a strictly meromorphic Jacobi form, as the poles of ℘−1 are not “constant”
in τ .

Before introducing strictly meromorphic Jacobi forms, we first recall the Jacobi
group and its action on (meromorphic) functions.

Definition 5.2.1. For all n ∈ N, the (discrete) Jacobi group ΓJn of rank n is defined
as the semi-direct product ΓJn = SL2(Z) nM2,n(Z) with respect to the left action
of SL2(Z) on M2,n(Z).

That is, an element of ΓJn is a pair (γ,X) with γ ∈ SL2(Z), X ∈ M2,n(Z) and
satisfies the group law (γ,X)(γ′, X ′) = (γγ′, γ′X +X ′).

Let M ∈ Mn(Q). We often make use of the associated quadratic form QM and
bilinear form BM , given by

QM (z) = zMzt, BM (z, z′) = zMz′t.

Definition 5.2.2. Given a meromorphic function ϕ : h × Cn → C, k ∈ Z and
M ∈Mn(Q), for all (γ,X) ∈ ΓJn write γ =

(
a b
c d

)
and X =

(
λ
µ

)
and let

(i) (ϕ|k,Mγ)(τ,z) := (cτ + d)−k e
(−cQM (z)

cτ + d

)
ϕ
(aτ + b

cτ + d
,

z

cτ + d

)
;

(ii) (ϕ|MX)(τ,z) := e(QM (λ+ µ)) e(BM (λ,λτ + 2z))ϕ(τ,z + λτ + µ).

Moreover, we let ϕ|k,M (γ,X) := (ϕ|k,Mγ)|MX , often omitting k and M from the
notation.

Remark 5.2.3. Given k ∈ Z and M ∈ Mn(Q), the slash operator defines an ac-
tion of ΓJn of weight k and index M on the space of all meromorphic functions
ϕ : h× Cn → C. 4

Given M ∈Mn(Q), for X,X ′ ∈M2,n(Q), we let

ρ(X) = e(QM (λ)−BM (λ,µ) +QM (µ)),

ζX,X′ = e(BM (λ′,µ)−BM (λ,µ′)),
(5.4)

where X =
(
λ
µ

)
and X ′ =

(
λ′

µ′
)
. By extending the slash action to the real Jacobi

group in Section 5.3, generalizing [EZ85, Theorem 1.4] to several variables and half-
integral index, we obtain the following functional equations.

Proposition 5.2.4. Given a meromorphic function ϕ : h × Cn → C, k ∈ Z and
M ∈Mn(Q), for all X,X ′ ∈M2,n(R) and γ ∈ SL2(Z) one has

ρ(−X)ϕ|X|γ = ρ(−γX)ϕ|γ|γX
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and

ρ(−X)ρ(−X ′)ϕ|X|X ′ = ρ(−X ′)ρ(−X)ϕ|X ′|X
= ρ(−X −X ′) ζX,X′ (ϕ|X +X ′).

We recall from p. 4 that classical modular forms were defined as the invariants for
a certain group action of the space Hol0(h) of holomorphic functions in h satisfying
a certain growth condition (that have at most polynomial growth near the boundary).
With the remarks at the beginning of this section in mind, we now define strictly
meromorphic Jacobi forms. A final subtlety in the definition below is coming from
the fact that a meromorphic function in two or more variables always has points of
indeterminacy (think of x/y near the origin, whose limiting value depends on the
angle of approach). Points of indeterminacy are not “generic”, and we exclude these
points when we say for instance, that a certain function ϕ(τ,z) has its poles precisely
on certain hyperplanes for all generic τ ∈ h.

Definition 5.2.5. Given n ≥ 0, denote by Mern the space of meromorphic functions
ϕ : h× Cn → C such that for all λ,µ ∈ Rn either z = λτ + µ is a pole of ϕ(τ, ·)
for all generic τ ∈ h or the function τ 7→ ϕ(τ,λτ + µ) belongs to Hol0(h). More-
over, given M ∈ Mn(Q), denote by MerMn the subspace of ϕ ∈ Mern for which
ϕ|MX ∈ Mer0 for all X ∈ M2,n(Q). Let Holn and HolMn be the subspace in Mern
and MerMn , respectively, of holomorphic functions.

Definition 5.2.6. Let k ∈ Z and M ∈ Mn(Q). A holomorphic, weak, or a strictly
meromorphic Jacobi form of weight k, indexM and rank n for the Jacobi group ΓJn is
a function ϕ in HolMn , Holn or MerMn , respectively, that is invariant under the action
of ΓJn of weight k and index M (i.e., ϕ|k,Mg = ϕ for all g ∈ ΓJn).

Remark 5.2.7. The space of Jacobi forms is trivial whenever 2QM is a non-integral
quadratic form, or, equivalently, when mij 6∈ 1

4Z or mii 6∈ 1
2Z for some i 6= j and

where M = (mij). Namely, let ϕ be a Jacobi form and τ ∈ h fixed. If ϕ is non-zero
of rank 1 it follows from the elliptic transformation law (Definition 5.2.2 (ii)) that
the number of zeros minus the number of poles of z 7→ ϕ(τ, z) in any fundamental
domain for the action of Lτ on C is exactly 2m, where M = (m) is the index
of ϕ. For Jacobi forms of higher rank the integrability of 2QM follows by noting
that for fixed µ2, . . . , µn ∈ C, functions of the form z 7→ ϕ(τ, z, µ2, µ3, . . . , µn) and
z 7→ ϕ(τ, z, z, µ3, . . . , µn) still satisfy the elliptic transformation law. 4

Letting M be the 0-dimensional matrix, a holomorphic Jacobi form (of rank 0)
is just a modular form. More interestingly, the Kronecker–Eisenstein series (5.1)
for k ≥ 3 are examples of a strictly meromorphic Jacobi form of index (0) with an
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expansion given by

Ek(τ, z) =
(−1)k

(k − 1)!
Dk−2
y

(∑

m∈Z

yqm

(1− yqm)2

)
,

where y = e(z) and Dy = y ∂
∂y .

Closely related are the Weierstrass ℘-function and its derivative, that is, ℘ =
E2 − e2 and ℘′ = −2E3 (here E2 is defined by (5.1) using the same summation
order as for e2). By [EZ85, Theorem 9.4] it follows that the space of weak Jacobi
forms is given by

Jweak = C[A,B,C, e4, e6]/(C2 − 4AB3 + 60e4A
3B + 140e6A

4),

where A,B and C are equal to Θ2, ℘Θ2 and ℘′Θ4 respectively. Note that the re-
lation C2 = 4AB3 − 60e4A

3B − 140e6A
4 is equivalent to the relation for the

Weierstrass ℘-function. The following result, yielding an algebraic proof and ex-
tending [Lib11, Proposition 2.8]1, gives all strictly meromorphic Jacobi forms with
only poles at the lattices points. The corresponding algebra is free, as the relation
between ℘ and ℘′ can be used to express e6 in terms of the generators. As usual, we
write m (instead of the matrix M = (m)) for the index of a Jacobi form of rank 1.

Proposition 5.2.8. Let ϕ be a strictly meromorphic Jacobi form of rank 1 and in-
dex m ∈ 1

2Z≥0 for which all poles (τ, z) satisfy z ∈ Lτ . Then,

ϕ ∈ C[℘, ℘′, e4] Θ2m.

Proof. First, we show that f = ϕΘ−2m is a strictly meromorphic Jacobi form of
index 0 with all poles (τ, z) satisfying z ∈ Lτ . This follows from the claim that Θ−1

is a strictly meromorphic Jacobi form of index −1/2, weight 1 and with all the poles
at the lattice points. In order to prove this claim, note that by the Jacobi triple product

Θ = (y1/2 − y−1/2)
∏

n≥1

(1− yqn)(1− y−1qn)

(1− qn)2
.

It follows that Θ is a weak Jacobi form with all zeros at the lattice points z ∈ Lτ .
Moreover, for all X ∈ M2,n(Q) the function Θ|X does not vanish at infinity, from
which the claim follows.

From now on, assume that ϕ is of index 0, i.e., that the function ϕ is an elliptic
function. Write ϕ = ϕ0 +ϕ1 with ϕ0 and ϕ1 the even and odd part of ϕ respectively.

1The author states the result for Jacobi forms, which obviously is not meant to be holomorphic
Jacobi forms. Although not stated explicitly, we assume he refers to strictly meromorphic Jacobi forms
with only poles at lattice points.
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For u, v ∈ Rτ + R, write u ∼ v if u ≡ v or u ≡ −v mod Lτ . Then, for i = 0, 1
one has

ϕi = (℘′)i
∏

j

(℘− ℘(uj(τ)))mj

where mj ∈ Z and uj(τ) are representatives with respect to the above equivalence
relation for the zeros and poles of ϕi outside Lτ . As both ϕ0 and ϕ1 do not admit
poles outside the lattice, it follows that mj > 0. Hence, ϕ is a polynomial in ℘
and ℘′ where the coefficients are polynomials in the functions ℘(uj(τ)). By the
modular transformation every such coefficient is a modular form for SL2(Z), hence
an element of C[℘, ℘′, e4].

Remark 5.2.9. Although the above result and many examples of strictly meromorphic
Jacobi forms in the literature have only poles at z ∈ Lτ , one easily constructs a
strictly meromorphic Jacobi forms with poles at different places. Namely, if ϕ is a
Jacobi form with all poles at z ∈ Lτ , then

ϕ(τ, z + 1
2) + ϕ(τ, z + 1

2τ) + ϕ(τ, z + 1
2τ + 1

2)

is a Jacobi form for the same group, but now with the poles at 1
2 ,

1
2 + 1

2τ and 1
2τ

modulo the lattice Lτ . 4

5.3 The action of the Jacobi group

In this section we prove Proposition 5.2.4, or, more precisely, we show that the real
Jacobi group acts on all meromorphic functions ϕ : h× Cn → C.

In order to define the real Jacobi group, we let

ω : M2,n(R)×M2,n(R)→ Symn(R)

(X,Y ) 7→ −1
2X

tJY + 1
2Y

tJX

and

ι : M2,n(R)×M2,n(R)→ Skewn(R)

(X,Y ) 7→ XtJY,

where J =
(

0 −1
1 0

)
and Symn and Skewn denote the space of symmetric and skew-

symmetric n× n-matrices, respectively. Then, we define Hn to be the central exten-
sion of M2,n(R) by Symn(R) corresponding to the 2-cocycle ω, so that

Hn = {(X,κ) : X ∈M2,n(R), κ+ 1
2 ι(X,X) ∈ Symn(R)}
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with multiplication

(X,κ)(X ′, κ′) = (X +X ′, κ+ κ′ − ι(X,X ′)).

Remark 5.3.1. Observe that if n = 1, this group H1 is isomorphic to the Heisenberg
group HR with underlying set R2 × R and product given by

(X,κ)(X ′, κ′) = (X +X ′, κ+ κ′ + det(X,X ′)). 4

Definition 5.3.2. The real Jacobi group is defined as GJn = SL2(R) n Hn with
respect to the action of SL2(R) on Hn given by γ(X,κ) = (γX, κ).

That is,

GJn =
{

(γ,X, κ) : γ ∈ SL2(R), X ∈M2,n(R), κ+ 1
2 ι(X,X) ∈ Symn(R)

}

with multiplication given by

(γ,X, κ)(γ′, X ′, κ′) = (γγ′, γ′X +X ′, κ+ κ′ − ι(γ′X,X ′)).

Under the natural inclusion, we can think of γ ∈ SL2(R), X ∈ M2,n(R) and
κ ∈ Mn(R) as elements of the real Jacobi group GJn. In order to avoid confusion
with Definition 5.2.2, we write o for this slash operation of GJn. After the definition
we explain why this action is well-defined.

Definition 5.3.3. Given an integer k and M ∈ Mn(Q), the real Jacobi group GJn
acts on the space of meromorphic functions ϕ : h × Cn → C, where the action for
(γ,X, κ) ∈ GJn is uniquely determined by

(i) (ϕ ok,M γ)(τ,z) := (cτ + d)−k e
(−cQM (z)

cτ + d

)
ϕ
(aτ + b

cτ + d
,

z

cτ + d

)
;

(ii) (ϕ oMX)(τ,z) := e(BM (λ, 2z + λτ + µ))ϕ(τ,z + λτ + µ);

(iii) (ϕ oM κ)(τ,z) := e(〈M,κ〉)ϕ(τ,z),

with γ =
(
a b
c d

)
, X =

(
λ
µ

)
and 〈M,κ〉 the Frobenius inner product of M and κ, i.e.

〈M,κ〉 =
∑

i,j

mi,j κi,j (M = (mi,j)).

Remark 5.3.4. The Frobenius inner product can easily be expressed in terms of the
bilinear form, in the following way. For all M ∈Mn(Q) and X,X ′ ∈M2,n(Q) one
has by a direct computation that

〈M, ι(X,X ′)〉 = BM (λ′,µ)−BM (λ,µ′), (5.5)

where X =
(
λ
µ

)
and X ′ =

(
λ′

µ′
)
. 4
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We now show that the above action of the real Jacobi group GJn on the space of
meromorphic functions ϕ : h× Cn → C by the above slash equation. It is clear that
the identity (1,0, 0) acts trivially. Hence, it suffices to prove the following identities
for all (γ,X, κ), (γ′, X ′, κ′) ∈ GJn (some of which are trivial):

1. ϕ oγ oγ′ = ϕ o (γγ′);

2. ϕ oX oX ′ = ϕ o (X +X ′) o−ι(X,X ′);

3. ϕ oκ oκ′ = ϕ o (κ+ κ′);

4. ϕ oX oγ = ϕ oγ o (γX);

5. ϕ oκ oγ = ϕ oγ oκ;

6. ϕ oκ oX = ϕ oX oκ.

The first identity follows by observing that the automorphic factor j(γ, z) = cτ + d
and the quasimodular factor w(γ, z) = c

cτ+d (where γ =
(
a b
c d

)
) satisfy

j(γγ′, τ) = j(γ′, τ) j(γ, γ′τ), w(γγ′, τ) = j(γ′, τ)−2w(γ, γ′τ) + w(γ′, τ).

The second identity follows from (5.5). The third follows by linearity of the inner
product. Writing X =

(
λ
µ

)
and γX =

(
λγ
µγ
)
, we find that the fourth equation is a

consequence of the identity

z o0X o0,0γ = z o0γ o0(γX)

and the fact that

− w(γ, τ)QM (z) + BM (λ,λ(γτ) + 2zj(γ, τ)−1 + µ)

equals

− w(γ, τ)QM (z + λγτ + µγ) + BM (λγ , 2z + λγτ + µγ)

for allM ∈Mn(Q). The last two equations follow directly as the slash action with κ
multiplies ϕ with a constant not depending on z and τ .

Let
CZ = {(1, 0, κ) | κ ∈ Symn(Z)}.

We fix the group homomorphism ι : ΓJn → GJn/CZ given by

(γ,X) 7→ (γ,X, 0).

Observe that CZ acts trivially by the above action in case QM is an integer quadratic
form. Hence, in this case we have an action of ΓJn on functions h × C → C. In
case QM is not an integer quadratic form we modify the slash action by a character
of GJn:
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Proposition 5.3.5. Given M ∈ Mn(Q), there exist a character ρ : GJn → C×
satisfying ρ(γ) = 1 for γ ∈ SL2(Z) and such that

(ϕ, g) 7→ ρ(g)ϕ o k,Mg
defines an action of ΓJn on the space of functions ϕ : h× Cn → C. Moreover, when
κ ∈ Symn(Z) the character ρ is given by

ρ(γ,X, κ) = e(QM (λ)−BM (λ,µ) +QM (µ) + 〈M,κ〉), (5.6)

where X =
(
λ
µ

)
.

Proof. To prove that ρ satisfies (5.6), we first show that ρ is uniquely determined
whenever κ ∈ Symn(Z). Note that ρ(κ) = e(〈M,κ〉) for all κ ∈ Symn(Z) as CZ
should act trivially. Because of the assumption ρ(γ) = 1, it suffices to show that ρ is
uniquely determined on M2,n(R). Now, note that for λ ∈ Rn one has

ρ(λ,0) = ρ(λ,0) ρ(( 1 1
0 1 )) = ρ(λ,λ) = ρ(λ,0) ρ(0,λ) ρ(−ι((λ,0), (0,λ))).

Hence,

ρ(λ,0) = ρ(λ,0) ρ(
(

0 1
−1 0

)
) = ρ(0,λ) = ρ(ι((λ,0), (0,λ))).

This shows ρ is uniquely determined on the generators of M2,n(R).
Next, we show that ρ as defined by (5.6) is a group homomorphism ΓJn → C×.

Observe that
ρ(κ)ϕ oκ = e(2〈M,κ〉)ϕ,

so ρ is constant on CZ. Hence, that ρ is a group homomorphism follows directly
if we show that ρ(X) = ρ(γX) and ρ(X) ρ(X ′) = ρ(X + X ′) ρ(−ι(X,X ′)) for
all γ ∈ SL2(Z) and X,X ′ ∈M2,n(Z).

For the first write γ =
(
a b
c d

)
. Then we find that ρ(γX) equals

e((a2+b2−ab)QM (λ) + (2ac+2bd−ad−bc)BM (λ,µ) + (c2+d2−cd)QM (µ)).

As not both a and b are even, it follows that a2 + b2− ab ≡ 1 mod 2. Similarly c2 +
d2 − cd ≡ 1 mod 2. Also 2ac+ 2bd− ac− bc ≡ 1 mod 2 as ad− bc = 1. Now, as
the bilinear form QM takes values in 1

2Z, it follows that ρ(γX) = ρ(X).
The second equation follows from (5.5), namely, using QM takes half-integral

values on integer vector, one has

ρ(X) ρ(X ′)

= e(QM (λ)−BM (λ,µ) +QM (µ) +QM (λ′)−BM (λ′,µ′) +QM (µ′))

= e(BM (λ+ λ′,λ+ λ′) + BM (µ+ µ′,µ+ µ′) − BM (λ+ λ′,µ+ µ′) +

+ BM (λ,µ′) +BM (λ′,µ))

= ρ(X +X ′) ρ(−ι(X,X ′)).
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Definition 5.3.6. Given M ∈ Mn(Q), we define the action of ΓJn on a function ϕ :
h× Cn → C by the above action

ϕ|k,Mg = ρ(g)ϕ ok,Mg

under the group homomorphism ι : ΓJn → GJn/CZ. Note that this definition coin-
cides with Definition 5.2.2.

Proof of Proposition 5.2.4. This follows directly from the slash action of the real
Jacobi group as the to be proven equalities are equivalent to

ϕ oX oγ = ϕ oγ oγX;

ϕ oX oX ′ = ϕ oX ′ oX = ζX,X′ (ϕ oX +X ′).

5.4 Poles of Jacobi forms

In contrast to the space of (weakly) holomorphic Jacobi forms, the space of strictly
meromorphic Jacobi forms of given index and weight is not finite dimensional. How-
ever, the latter space is not far from being finite dimensional. First of all, in contrast
to the space of all meromorphic functions, the space of strictly meromorphic Jacobi
forms is not a field. Moreover, the poles lie in a finite number of hyperplanes and
after fixing finitely many such hyperplanes to contain the poles, the vector space of
strictly meromorphic Jacobi forms of given index and weight is finite dimensional,
as we will explain in this section.

Given a meromorphic Jacobi form ϕ, we write

Pϕ = {(τ,z) ∈ h× Cn | ϕ is not holomorphic at (τ,z)}

for the set of poles as well as points of indeterminacy of ϕ. We identify two points
of Pϕ if they have same image under the projection h × Cn � M2,n(R) given by
(τ,λτ + µ) 7→

(
λ
µ

)
. That is, we define an equivalence relation on Pϕ by saying

that (τ,z) ∼ (τ ′, z′) whenever, after writing z = λτ + µ and z′ = λ′τ + µ′ with
λ,λ′,µ,µ′ ∈ Rn, one has λ = λ′ and µ = µ′. We identify the quotient set Qϕ with
a subset of M2,n(R) by identifying a point of Pϕ with its image under the projection.
From the definition of a strictly meromorphic Jacobi form we obtain the factorisation
h × Qϕ ' Pϕ of Pϕ, given by (τ,

(
λ
µ

)
) 7→ (τ,λτ + µ). Note that Qϕ is invariant

under translation by M2,n(Z).
As an example of how the definition works, we first prove a simple consequence:

Proposition 5.4.1. Let ϕ be a strictly meromorphic Jacobi form of weight k and
index 0. If 1

ϕ is also a strictly meromorphic Jacobi form, then ϕ is constant.
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Proof. Let X ∈ M2,n(R) be given with X 6∈ Qϕ and X 6∈ Q1/ϕ. Write z(τ) =

(τ, 1)X . Then both ϕ(τ,z(τ)) and 1
ϕ(τ,z(τ)) are holomorphic as a function of τ ∈ h.

Hence, as a function of τ ∈ h, both ϕ(τ,z(τ)) and 1
ϕ(τ,z(τ)) do not admit any zeros.

Similarly, it follows that both ϕ(τ,z(τ)) and 1
ϕ(τ,z(τ)) are holomorphic (as a function

of τ ∈ h) at the cusps, hence don’t admit any zero at the cusps. Hence, ϕ(τ,z(τ))
doesn’t admit any zeros and poles on a compact set, so ϕ(τ,z) is constant as a func-
tion of τ . As this holds for almost all X ∈ M2,n(R), we conclude that ϕ is globally
constant.

The following result, which is crucial for the sequel, tells us that the image ofQϕ
in the torus M2,n(R/Z) consists of finitely many hyperplanes given by linear equa-
tions with rational coefficients. In other words, the following result strengthens Theo-
rem D (the fact that the second conclusion is also true for quasi-Jacobi forms, follows
immediately after introducing such functions; see Corollary 5.6.4).

Theorem 5.4.2. Let ϕ be a strictly meromorphic Jacobi form of weight k, index M
and rank n, and let Pϕ ' h × Qϕ be the set of non-holomorphic points as above.
Then, we have:

(i) If X ∈ Qϕ, then γX ∈ Qϕ for all γ ∈ SL2(Z).

(ii) There exist finitely many hyperplanes of the form

s ·X ∈ (u, v)

with s ∈ Zn primitive (i.e., with coprime entries) and u, v ∈ Q/Z, such that
X ∈ Qϕ precisely if X lies on such a hyperplane.

Proof. (i): Let X ∈ Qϕ and γ =
(
a b
c d

)
∈ SL2(Z) be given. Write x(τ) = (τ, 1)X .

Then, by the modular transformation behaviour for γ−1, it follows that

ϕ
( dτ − c
−bτ + a

,
z

−cτ + a

)

has a pole at z = x(τ) for generic τ ∈ h. Now, let τ ′ = γ−1τ . Writing z(τ) =
λτ + µ, we find

z(γτ ′)
−cγτ ′ + a

=
λγτ ′ + µ
−cγτ ′ + a

= λ(aτ ′ + b) + µ(cτ ′ + d) = (τ ′, 1)γ
(
λ
µ

)
.

Hence, the function ϕ (τ,z) has a pole at z = (τ, 1) γX for generic τ ∈ h.
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(ii): Let X =
(
λ
µ

)
∈ Qϕ. The set Qϕ is closed and (n− 1)-dimensional, hence

there is an Y ∈M2,n(R) with Y 6∈ Qϕ and which is bounded away from γX .
First, we treat the case that the rank n is 1. Then, by Lemma 5.5.2, proven

in the next section, both λ and µ are rational. Therefore, we can take s = 1 and
(u, v) = (λ, µ) mod Z2.

Next, let n ≥ 2. By an approximation property proven in the next section, there
are non-trivial s ∈ Zn, t ∈ Z and α, β ∈ Z with s · (αλ + βµ) = t. Note that the
value of s, t, α, and β is a function of X , i.e., for all elements X ∈ Qϕ there exists
an element (s, t, (α, β)) ∈ Rel giving the relation, where

Rel = (Zn\{0})× Z× (Z2\{(0, 0)}).

Identify M2,n(R) with Cn via X 7→ x = (τ, 1)X . For almost all X ∈ Qϕ ,
the conditions of the implicit function theorem are satisfied. In this case there exist
an open set U ⊂ Cn−1 containing 0, an open neighbourhood V ⊂ Cn of x, and a
holomorphic function g : U → V , such that z ∈ V is a pole precisely if z lies in
the image of g. Let gi denote the component functions of g, which take values in
C ' Rτ + R. Denote this isomorphism by (πτ , ρτ ). For example, taking τ = i, we
find πi(gi) = Im(gi) and ρi(gi) = Re(gi). For every u ∈ U we find a relation of the
form

n∑

i=1

si (απτ (gi(u)) + β ρτ (gi(u))) = t, (5.7)

where (s, t, (α, β)) ∈ Rel, possibly depending on the choice of u. We now show
that we can choose (s, t, (α, β)) ∈ Rel such that (5.7) holds for all u ∈ U . Recall
that the set of zeros of a non-constant real-analytic function has measure 0. As πτ (gi)
and ρτ (gi) are real-analytic functions, either (5.7) holds for all u ∈ U , or it holds for
a real subspace of U of measure 0. Now, note that Rel is a countable set, whereas
countable many subspaces of measure 0 do not cover U . Hence, we find a rela-
tion (5.7) which holds for all u ∈ U . By the Cauchy–Riemann equations for the
holomorphic functions gi we can ‘upgrade’ this relation to the statement that s · z
takes a constant value uτ+v in Rτ+R for all z ∈ g(U) (possibly after multiplying s
by an integer). Without loss of generality we assume that gcd(s1, . . . , sn) = 1, if not
we scale s, u and v appropriately.

Now, by the Weierstrass preparation theorem, locally around x the set of poles is
given by k branches coming together, where each branch is an (n − 1)-dimensional
space given by the zeros of a holomorphic function and k equals the multiplicity of
the pole atx (see [CJ12, Lemma 6.1] for the same argument in a different setting). By
the previous we know that almost all (hence all) the elements in such a branch satisfy
s·x = uτ+v. Write T for (Rτ+R)/(Zτ+Z). By analytically extending such a local
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branch, we find that all solutions z ∈ T of s ·z = uτ + v are poles of ϕ(τ, ·) as long
as they are in the same connected component as x. Because gcd(s1, . . . , sn) = 1
the solution space of s · z = uτ + v in T is connected, so that all solutions z of
s · z ≡ uτ + v mod Lτ are poles of ϕ(τ, ·) for generic τ ∈ h.

Moreover, (u, v) ∈ Q2, as otherwise the solution space of s · z = uτ + v in T is
not (n− 1)-dimensional.

Note that z 7→ ϕ(z) Θ(s · z − uτ − v) has exactly the same poles as z 7→ ϕ(z)
except for the poles which are zeros of s ·z ≡ uτ +v mod Lτ . Hence, the statement
now follows inductively. By compactness of T it follows that one can restrict to only
finitely many linear functions.

Remark 5.4.3. Note that if s · X ∈ (u, v) is one of the equations determining Qϕ ,
then s · X = (u′, v′) is another equation whenever (u, v)γ = (u′, v′) for some
γ ∈ SL2(Z). 4
Corollary 5.4.4. The vector space of strictly meromorphic Jacobi forms of some
weight k, index Q and poles (τ,z) only in the hyperplanes of the form

s · z ∈ uτ + v + Lτ

with s ∈ Zn and u, v ∈ Q/Z is finite dimensional.

Proof. This follows directly from the finite dimensionality of the space of weak
Jacobi forms of fixed weight and index, together with the fact that the multiplic-
ity at a pole is bounded by the weight k. That is, writing siz ∈ uiτ − vi + Lτ
for the hyperplanes in the statement, indexed by i ∈ I , we find that the function
ϕ(z)

∏
i∈I Θ(si ·z−uiτ−vi)k is a weak Jacobi form with index and weight uniquely

determined by ϕ and the si.

5.5 An approximation lemma

In this section, we prove the approximation properties that were used in the proof
of Theorem 5.4.2(ii). That is, we prove a result indicating when given z, z′ ∈
Rnτ + Rn, there exist γ ∈ SL2(Z) such that γz lies arbitrarily close to z′. For
X ∈Mm,n(R), write ‖X‖ for the distance to the closest integer matrix, i.e.,

‖X‖ := max
i,j

min
`∈Z
|Xi,j − `|.

Problem 5.5.1. Given X,Y ∈M2,n(R), find a condition on X and Y such that

∀ε > 0 ∃γ ∈ SL2(Z) : ‖γX − Y ‖ < ε (5.8)
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holds. Suppose such a condition is satisfied, i.e. (5.8) is satisfied, we say Y is
SL2(Z)-approximable by X .

For example, in case n = 1 a necessary (but not sufficient) condition is given by
X 6∈M1,2(Q):

Lemma 5.5.2. Given X,Y ∈M2,1(R) and X 6∈M2,1(Q), then

∀ε > 0 ∃γ ∈ SL2(Z) : ‖γX − Y ‖ < ε.

Proof. Write X =
(
λ
µ

)
. First of all, if λ/µ is irrational, then the stronger statement

that the orbit of
(
λ
µ

)
under SL2(Z) lies dense in R2 holds (see, e.g., [LN12]). Also,

if µ = 0 the orbit of
(
λ
µ

)
lies dense in R2/Z2 whenever λ is irrational.

From now on, we assume both λ and µ are irrational, but with rational ratio.
Then, (

a b
c d

)(
λ
µ

)
= µ

(
aλµ + b

cλµ + d

)
.

Note that the matrix on the right-hand side parametrises N−1 (Z ∧ Z), where N is
the denominator of λ/µ and Z ∧ Z denotes the subset of Z2 consisting of coprime
integers. As µ is irrational, we conclude that the orbit of

(
λ
µ

)
under SL2(Z) lies dense

in R2/Z2. Hence, if not both λ and µ are rational, then SL2(Z)-approximability of Y
by X holds.

If we replace SL2(Z) by Mm,n(Z), it is well-known that Problem 5.5.1 has an
affirmative answer [Kro1884].

Theorem 5.5.3 (Kronecker’s theorem on Diophantine approximation). For X,Y ∈
Mm,n(R) it holds that

∀ε > 0 ∃γ ∈Mm(Z) : ‖γX − Y ‖ < ε

if and only if

s ∈ Zn with s ·Xt ∈ Zm implies s · Y t ∈ Zm. (5.9)

After identifying z with X ∈ M2,n(R), this is almost the result we are look-
ing for, except that we want to replace M2(Z) by SL2(Z). This question is being
touched upon in for example [Dan75, Gui10, LN12], although the focus in the sec-
ond and third work is a quantitative version in the size of γ whenever n = 1. The
second work already hints on the fact that the condition (5.9) should be altered if one
replaces M2(Z) by SL2(Z). Namely, if λ, µ are coprime integers, then γ

(
λ
µ

)
is a

vector of coprime integers for all γ ∈ SL2(Z). Hence, if X = (1
2 ,

1
3), then (0, 0) is
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not in the orbit of X for SL2(Z), although it is in the orbit of X for M2(Z). Observe
that in this case the smallest s ∈ Z≥1 for which s · (0, 0) ∈ Z2 does not equal the
smallest s ∈ Z≥1 for which s ·X ∈ Z2 (i.e., 1 6= 6), which is formalised in (5.11).

For almost all X =
(
λ
µ

)
∈ M2,n(R) we have that 1, λ1, . . . , λn, µ1, . . . , µn are

linearly independent over Q. In this case, and, more generally, for generic X defined
below, we show one has a Diophantine approximation theorem for SL2(Z).

Definition 5.5.4. Given X ∈ M2,n(R), we say X is generic when for all α, β ∈ Z
not both equal to 0, and for all s ∈ Zn with s 6= 0 one has

s · (αλ+ βµ) 6∈ Z.

For s ∈ Zn and X ∈M2,n(R) with s ·Xt ∈ Z2, we write

(s, s ·Xt) = max
{
N ∈ Z :

s

N
∈ Zn,

s ·Xt

N
∈ Z2

}

for the greatest common divisor of the entries of s and s ·Xt.

Proposition 5.5.5 (Partial result on Diophantine approximation for SL2(Z)).
Let X,Y ∈M2,n(R). Then, if X is generic one has

∀ε > 0 ∃γ ∈ SL2(Z) : ‖γX − Y ‖ < ε. (5.10)

Conversely, if (5.10) holds, then for all s ∈ Zn for which s ·Xt ∈ Z2 one has that
s · Y t ∈ Z2 and

(s, s ·Xt) = (s, s · Y t). (5.11)

Proof. Observe that if s · Xt ∈ Z2 (as in the second part of the statement), then
s · (γX)t ∈ Z2 for all γ ∈ SL2(Z). Hence, if s ∈ Zn such that s ·Xt ∈ Z2, then for
any γ ∈ SL2(Z) one has

‖γX − Y ‖ ≥ 1

n
‖s · (γX)t − s · Y t‖ =

1

n
‖s · Y t‖.

Therefore, if (5.10) holds, then for all s ∈ Zn with s ·Xt ∈ Z2 one has s · Y t ∈ Z2.
Next, suppose s ∈ Zn such that s · Xt, s · Y t ∈ Z2. Write N = (s, s · Y t)

and s′ = N−1s. Suppose s′ · (γX)t 6∈ Z2 for all γ ∈ SL2(Z), i.e., s′ · (γX)t ∈
(N−1Z2)\Z2. Then, for any γ ∈ SL2(Z) one has

‖γX − Y ‖ ≥ 1

n
‖s · (γX)t − s · Y t‖ =

1

n
‖s · (γX)t‖ ≥ 1

Nn
.
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Therefore, if (5.10) holds, we have that s′ · (γX)t ∈ Z2 for some γ ∈ SL2(Z).
This implies that s′ · Xt ∈ Z2. Together with the previous part, we conclude that
(s, s ·Xt) = (s, s · Y t).

Next, let X =
(
λ
µ

)
be generic and ε > 0. In three steps we construct a matrix

γ ∈ SL2(Z) for which ‖γX − Y ‖ < ε. First we construct a matrix γ1 ∈ M2(Z) for
which ‖γX − Y ‖ is small. Next, we find another γ2 ∈ M2(Z) with the additional
property that the entries in the first row are coprime. Finally, in the third step, we
modify γ2 and find γ3 ∈M2(Z) of determinant equal to 1, i.e., γ3 ∈ SL2(Z).

First step. As X is generic, there is no s ∈ Zn such that s · Xt ∈ Z2. Hence, by
Kronecker’s theorem we find γ1 =

(
a1 b1
c1 d1

)
∈M2(Z) such that ‖γ1X − Y ‖ < 1

3ε.

Second step. Let k ∈ Z be such that

‖(ka1 − b1 + 1)µ‖ < 1
3ε,

whose existence is guaranteed for generic X by Kronecker’s theorem. Then,

γ2 :=
(
a2 b2
c2 d2

)
:= γ1 +

(
0 ka1−b1+1
0 0

)

satisfies
‖γ2X − Y ‖ ≤ ‖γ1X − Y ‖+ ‖(ka1 − b1 + 1)µ‖ < 2

3ε.

As a2 = a1 and b2 = ka1 + 1, clearly (a2, b2) = 1.

Third step. Let c̃ and d̃ be given by the inverse Euclidean algorithm such that
a2d̃− b2c̃ = 1. We let ` ∈ Z be such that

‖(`a2 + c̃− c2)λ+ (`b2 + d̃− d2)µ‖ < 1
3ε,

whose existence is again a consequence of X being generic. Then, let

γ3 = γ2 +
(

0 0
`a2+c̃−c2 `b2+d̃−d2

)
.

Invoking the triangle inequality again, we conclude

‖γ3X − Y ‖ ≤ ε.

Moreover, det γ3 = a2(`b2 + d̃)− b2(`a2 + c̃) = 1, which concludes the proof.

Remark 5.5.6. Condition (5.11) is necessary for SL2(Z)-approximability of Y byX .
Whether this condition also suffices, or, if not, how it should be strengthened to a
necessary and sufficient condition remains an open problem. 4



114 Taylor coefficients of quasi-Jacobi forms

5.6 Quasi-Jacobi forms

We weaken the notion of a strictly meromorphic Jacobi form even further by intro-
ducing the real-analytic functions

ν(τ) =
1

2i Im(τ)
, ξ(τ, z) =

Im(z)

Im(τ)
,

which almost transform as a Jacobi form of index 0 and weight 1 and 2 respectively:

(ν|2,0γ)(τ) = ν(τ)− c

cτ + d
(ξ|1,0γ)(τ, z) = ξ(τ, z)− cz

cτ + d

(ν|0X)(τ) = ν(τ) (ξ|0X)(z) = ξ(z) + λ.

Definition 5.6.1. Let k ∈ Z, M ∈ Mn(Q). Denote by C a subspace of all strictly
meromorphic functions h × Cn → C. An almost Jacobi form Φ of analytic type C,
weight k, index Q and rank n satisfies:

(i) Φ ∈ C[ν(τ), ξ(τ, z1), . . . , ξ(τ, zn)];

(ii) Φ|g = Φ for all g ∈ ΓJn.

A quasi-Jacobi form ϕ is the constant term with respect to ν and ξ of an almost
Jacobi form. If C equals HolMn , Holn or MerMn , ϕ is a holomorphic, weak or strictly
meromorphic quasi-Jacobi form, respectively.

As a first example, quasimodular forms are quasi-Jacobi forms of rank n = 0.
More interestingly, the functions

E2(τ, z)− 2πi ν(τ), E1(τ, z) + 2πi ξ(τ, z),

with E1 and E2 defined by regularizing the sum (5.1) as in [Wei99], are almost
strictly meromorphic Jacobi forms of index 0 and weight 2 and 1 respectively, so
that E2 and E1 are strictly meromorphic quasi-Jacobi forms. Let Dz = 1

2πi
∂
∂z .

Observe that

E2(τ, z) = −DzE1(τ, z) E1(τ, z) = (2πi)Dz log Θ(τ, z),

which reminds one of
e2 = 8π2Dτ log η,

where η(τ) = q1/24
∏
n(1− qn) and Dτ = 1

2πi
∂
∂τ . The strictly meromorphic quasi-

Jacobi forms e2 and E1 play a central role as building blocks of quasi-Jacobi forms
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out of Jacobi forms. For convenience, we introduce the following alternative normal-
isations

e2 :=
1

4π2
e2 =

1

12
− 2

∑

m,r≥1

mqmr, A =
1

2πi
E1. (5.12)

Quasi-Jacobi forms are by construction strictly meromorphic, but they are not
invariant under the action of the Jacobi group. However, the fact that an almost Jacobi
form is a polynomial in ν and ξ implies that a quasi-Jacobi form transforms “up to
a polynomial correction” as a Jacobi form, or, equivalently, that it is a polynomial in
the strictly meromorphic quasi-Jacobi forms e2(τ) and A(τ, z) with Jacobi forms as
coefficients.

Recall that for vectors a ∈ Cn, b ∈ Zn we write ab =
∏
r a

br
r .

Proposition 5.6.2. Two equivalent definitions for a strictly meromorphic quasi-Jacobi
form are as follows: a strictly meromorphic quasi-Jacobi form is a meromorphic
function ϕ : h× Cn → C with ϕ ∈ MerMn for which there exist a finite number of

(1) functions ϕi,j ∈ MerMn satisfying

(ϕ|γ)(τ,z) =
∑

i,j

ϕi,j(τ,z)
( c

cτ + d

)i+|j|
zj ; (5.13)

(ϕ|X)(z) =
∑

j

ϕ0,j(z) (−λ)j . (5.14)

(2) strictly meromorphic Jacobi forms ψi,j satisfying

ϕ(z) =
∑

i,j

ψi,j(z) ei2A(z1)j1 · · ·A(zn)jn . (5.15)

Proof. The first part follows directly from the definition of quasi-Jacobi forms us-
ing the algebraic independence of ν and ξ over the field of meromorphic functions,
where ϕi,j are given by the meromorphic almost Jacobi form Φ corresponding to ϕ
by

Φ(τ,z) =
∑

i,j

ϕi,j(τ,z) ν(τ)i ξ(τ, z1)j1 · · · ξ(τ, zn)jn .

For the second part we define the coefficients ψi,j by the expansion of the almost
Jacobi form Φ corresponding to ϕ, i.e.,

Φ(τ,z) =
∑

i,j

ψi,j(τ,z)
(
e2(τ) +

ν(τ)

2πi

)i ∏

r

(A(τ, zr) + ξ(τ, zr))
jr .



116 Taylor coefficients of quasi-Jacobi forms

Note that e2(τ) + ν(τ)
2πi and A(τ, zr) + ξ(τ, zr) transform as Jacobi forms. More-

over, they are algebraically independent over the space of all meromorphic func-
tions. Hence, it follows that the coefficients ψi,j are strictly meromorphic Jacobi
forms. The constant term with respect to i and j, by definition equal to ϕ, is now
easily seen to equal to right-hand side of (5.15).

Remark 5.6.3. In fact, the proof implies that ϕi,j are quasi-Jacobi forms related to
the ψi,j by

(2πi)iϕi,j =
∑

i′,j′

ψi+i′,j+j′

(
i+ i′

i

)(
j + j′

j

)
e2(τ)i

′∏

r

A(τ, zr)
j′r ,

where (
j + j′

j

)
=
∏

r

(
jr + j′r
jr

)
.

Also, note that, given a representation for ϕ as in (5.15) one has

ϕ1,0 =
1

2πi

∂

∂e2
ϕ and ϕ0,ei(z) =

∂

∂A(zi)
ϕ(z). 4

By virtue of (5.15) quasi-Jacobi forms share the properties of Jacobi forms with
respect to the location of the poles:

Corollary 5.6.4. The statement of Theorem 5.4.2 also holds when ϕ is a strictly
meromorphic quasi-Jacobi form.

Another corollary of Proposition 5.2.8 is the following. Denoting by J0 and J̃0

the space of all strictly meromorphic Jacobi forms and strictly meromorphic quasi-
Jacobi forms, respectively, with all poles at the lattice points Lτ , we have the follow-
ing representations.

J0 = C[E2 − e2, E3, e4,Θ], J̃0 = C[E1, E2, E3, e2, e4,Θ]. (5.16)

In particular, given the weight and index, these spaces are finite dimensional.

Corollary 5.6.5. The space of all meromorphic quasi-Jacobi forms of weight k, in-
dex M , and with all poles in a finite union of rational hyperplanes as in Theorem D
is finite dimensional.

Proof. This follows directly from the previous proposition as by Corollary 5.4.4 the
number of linearly independent ψi,j is finite.
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5.7 Action of the Jacobi Lie algebra by derivations

The operators Dτ = 1
2πi

∂
∂τ and Dzi = 1

2πi
∂
∂zi

preserve the space of quasi-Jacobi
forms. These operators are part of a Lie algebra of operators acting on quasi-Jacobi
forms by derivations, as we explain now.

Following a suggestion by Zagier, we consider the notion of a g-algebra for any
Lie algebra g given by the following definition, which specializes to Definition 1.2.4
if g = sl2.

Definition 5.7.1. Given a Lie algebra g, a g-algebra is an algebra A together with
a Lie homomorphism g → Der(A), where Der(A) denotes the Lie algebra of all
derivations on A.

Denote by dτ and dzi the operators on the space of quasi-Jacobi forms given by
ϕ 7→ 2πiϕ1,0 and ϕ 7→ ϕ0,ei respectively (see Proposition 5.6.2 and Remark 5.6.3).
Then the functions ϕi,j are given by

ϕi,j =
diτ
i!

djz
j!
ϕ (djz = dj1z1 · · · djnzn , j! = j1! · · · jn!),

so that the transformation behaviour of ϕ is uniquely determined by the action of the
operators dτ and dzi . This observation is important to understand the next section,
where we investigate how the transformation behaviour of a quasi-Jacobi form de-
termines the transformation of its Taylor coefficients, and vice versa, by studying the
action of dτ on these Taylor coefficients.

Moreover, writing ϕ as in (5.15) yields

dτϕ =
∂

∂e2
ϕ, (dziϕ)(z) =

∂

∂A(zi)
ϕ(zi).

Denote byW and Iij the weight and index operators acting diagonally by multiplying
with the weight k and Q(ei, ej) respectively, where Q is the index. Let j the Lie
algebra of the Jacobi group. By [OP19, Eqn. (12)] the Lie algebra of the Jacobi
group acts by the beforementioned operators on the space of quasi-Jacobi forms.

Proposition 5.7.2. The algebra of quasi-Jacobi forms is a j-algebra, i.e., the algebra
of derivations Dτ , Dzi , dτ , dzi ,W and Iij is isomorphic to j and acts on the space of
quasi-Jacobi forms.

Remark 5.7.3. More concretely, the commutation relations of (i) the modular opera-
tors, (ii) the elliptic operators and (iii) their interactions are given by

(i) [dτ , Dτ ] = W , [W,Dτ ] = 2Dτ , [W, dτ ] = −2dτ ,

(ii) [dzi , Dzj ] = 2Ii,j , [Iij , Dzi ] = 0 , [Iij , dzi ] = 0 ,

(iii) [dzi , Dτ ] = Dzi , [dτ , Dzi ] = dzi , [W,Dzi ] = Dzi .
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The other commutators vanish. As the spaces of almost Jacobi forms and quasi-
Jacobi forms are isomorphic, the same result holds for almost Jacobi forms when
one replaces dτ by 2πi ∂∂ν and dz by ∂

∂ξ(z) . 4
There is yet another equivalent definition of quasi-Jacobi forms as derivatives of

Jacobi forms. This definition only applies in case the index is positive definite. As a
non-example, no power of the quasi-Jacobi form e2 (which is in fact a quasimodular
form) can be written in terms of derivatives of Jacobi forms.

Proposition 5.7.4. Let ϕ be a quasi-Jacobi form of weight k and positive definite
index M . Then, there exist unique Jacobi forms ψd with d ∈ Zn+1

≥0 of weight k −
2d0 − d1 − . . .− dn and index M such that

ϕ =
∑

d

Dd0
τ D

d1
z1 · · ·Ddn

znψd .

Proof. Choose an ordering on Zn+1 respecting the ordering on Z. Given a Jacobi
form ϕ, let (i, j) be maximal (with respect to this ordering) for which ϕi,j in Propo-
sition 5.6.2 exists and is non-zero. A direct check using the same proposition shows
that ϕ minus a multiple of Dj0

τ D
j1
zj1
· · ·Djn

zjnϕi,j is a quasi-Jacobi form for which
this maximal index is smaller. Here, by the positive definiteness of Q this multiple is
non-zero.

5.8 The double slash operator

A holomorphic Jacobi form has two important representations: the theta expansion
and the Taylor expansion. We generalise the Taylor expansion to strictly meromor-
phic quasi-Jacobi forms in such a way that the Taylor coefficients are quasimodular
forms. Moreover, we give criteria based on the coefficients in these representations
for a meromorphic function to be a quasi-Jacobi form.

Given a Jacobi form ϕ and X ∈ M2,n(Q), the Taylor coefficients of (ϕ|X)(z)
around z = 0 are quasimodular forms for the group

ΓX = {γ ∈ SL2(Z) | γX −X ∈M2,n(Z), ρ(X − γX) = ζX,γX−X}, (5.17)

where as usual X =
(
λ
µ

)
and γX =

(
λγ
µγ
)

and ρ and ζX,X′ are defined by (5.4).
In contrast to Jacobi forms, it is not true that the Taylor coefficients of quasi-Jacobi
forms are quasimodular. Namely, as stated in the introduction, for X =

(
λ
µ

)
∈

M2,n(Q) one has that (Θ′|X|γ)(τ, z) equals

(Θ′|γX)(τ, z) +
cz

cτ + d
(Θ|γX)(τ, z) + λ (Θ|γX)(τ, z)− λ

cτ + d
(Θ|γX)(τ, z),

(5.18)
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up to the multiplicative constant ρ(X)ρ(−γX), for all γ ∈ ΓX . All but the last
term − λ

cτ+d(Θ|X)(τ, z) of (5.18) depend polynomially on c
cτ+d , so that the Tay-

lor coefficients of (Θ′|X)(τ,z) at z = 0 are not transforming in accordance with
the quasimodular transformation formula. Note the this last term can be written
as −λ (Θ|X|0γ)(τ, z), where it should be noted that the weight 0 in the slash opera-
tor is unusual, corresponding to Θ′ rather than to Θ. In conclusion, the function

Θ′‖X := ρ(−X)
(
Θ′|X + λΘ|X

)

rather than Θ′|X transforms as a quasi-Jacobi form of weight 0, i.e., for γ ∈ ΓX one
has

(Θ′‖X|0γ)(τ, z) = (Θ′‖X)(τ, z) +
cz

cτ + d
(Θ|X)(τ, z).

Therefore, when we define the Taylor coefficients of a function ϕ atX ∈M2,n(Q) in
the next section, we in fact take the usual Taylor coefficients of (ϕ‖X)(τ,z), defined
in the definition below, around z = 0.

Definition 5.8.1. Given M ∈ Mn(Q) and a family of functions ϕ0,j : h× Cn → C
indexed by a finite subset of Zn≥0 (with ϕ := ϕ0,0), define the double slash operator
by

ϕ‖MX = ρ(−X)
∑

j

(ϕ0,j |MX)λj ,

where ρ is given by (5.4).

Convention 5.8.2. In case ϕ is a quasi-Jacobi form, in this definition we always take
the family ϕ0,j determined by the elliptic transformation (5.15).

Proposition 5.8.3. Given a family of functions ϕi,j : h×Cn → C indexed by a finite
subset of Z≥0 × Zn≥0 (with ϕ = ϕ0,0) and X ∈M2,n(R), one has

(i) If ϕ satisfies the quasimodular transformation (5.13) for Γ, then

(ϕ‖X|γ)(τ,z) =
∑

i,j

(ϕi,j‖γX)(τ,z)
( c

cτ + d

)i+|j|
zj

for all γ ∈ Γ.

(ii) If ϕ satisfies the quasi-elliptic transformation (5.14), then

ϕ‖X‖X ′ = ϕ‖X ′‖X = ρ(X ′)ϕ‖X, ϕ‖X +X ′ = ζX,X′ ϕ‖X‖X ′

for all X ′ ∈M2,n(Z), where the root of unity ζX,X′ is defined by (5.4).
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(iii) If ϕ is a quasi-Jacobi form for SL2(Z), then ϕ‖X is a quasi-Jacobi form
for ΓX , and

ϕ‖X +X ′ = ρ(X ′) ζX,X′ ϕ‖X

for all X ′ ∈M2,n(Z).

Proof. The transformation of ϕ‖X under γ and X follows by direct computations.
We often make use of

di
′
τ

i′!
dj

′
z

j′!
ϕi,j =

di
′
τ

i′!
dj

′
z

j′!

diτ
i!

djz
j!
ϕ =

(
i+ i′

i

)(
j + j′

j

)
ϕi+i′,j+j′ ,

where (
j + j′

j

)
=
∏

r

(
jr + j′r
jr

)
.

For the first property:

ϕ‖X|kγ = ρ(−X)
∑

`

(ϕ0,`|X|kγ)λ`

= ρ(−γX)
∑

`

(ϕ0,`|kγ|γX)λ`

= ρ(−γX)
∑

i,j

(ϕi,j |γX)
( c

cτ + d

)i (c(z + λγτ + µγ) + λ

cτ + d

)j

= ρ(−γX)
∑

i,j

(ϕi,j |γX)
( c

cτ + d

)i ( cz

cτ + d
+ λγ

)j

= ρ(−γX)
∑

i,j,`

(ϕi,j+`|γX)
( c

cτ + d

)i(j + `

j

)( cz

cτ + d

)j
(λγ)`

=
∑

i,j

(ϕi,j‖γX)
( c

cτ + d

)i ( cz

cτ + d

)j
.

For the second property, observe that

ϕ‖X‖X ′ = ρ(X ′)
∑

`

(ϕ0,`‖X|X ′) (λ′)`

= ρ(X)ρ(X ′)
∑

j,`

(ϕ0,j+`|X|X ′)
(
j + `

j

)
λj (λ′)`,
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from which it is clear that ϕ‖X‖X ′ = ϕ‖X ′‖X . Moreover, by using the elliptic
transformation, we find it equals

ρ(X)ρ(X ′)
∑

j,`,m

(ϕ0,j+`+m|X)

(
j + `+m

j, `,m

)
λj (λ′)` (−λ′)m =

ρ(X)ρ(X ′)
∑

j

(ϕ0,j |X)λj ,

where the right-hand equals ρ(X ′)ϕ‖X. by definition.
Next, one has

(ϕ‖X +X ′) = ρ(X +X ′)
∑

`

(ϕ0,`|X +X ′) (λ+ λ′)`

= ρ(X)ρ(X ′) ζX,X′
∑

`

(ϕ0,`|X|X ′) (λ+ λ′)`

= ρ(X)ρ(X ′) ζX,X′
∑

j,`

(ϕ0,j+`|X)

(
j + `

j

)
(−λ′)j(λ+ λ′)`

= ρ(X)ρ(X ′) ζX,X′
∑

j

(ϕ0,j |X)λj

= ρ(X ′) ζX,X′ ϕ‖X.

Finally, the fact that ϕ‖X is a quasi-Jacobi form follows directly from the defi-
nition of ΓX and the previous properties.

5.9 Taylor coefficients

Let X =
(
λ
µ

)
∈ M2,n(Q),M ∈ Mn(Q) and ϕ ∈ Mern. We now study the Taylor

coefficients of ϕ‖MX around z = 0. In case ϕ is a strictly meromorphic quasi-
Jacobi form, recall that all poles z lie on a hyperplane of the form s ·z ∈ uτ+v+Lτ
for some s ∈ Zn and u, v ∈ Q/Z by Theorem 5.4.2(ii). From now on we assume
that s = ei for some i, so that a Laurent series of ϕ‖X of the form

∑

`1≥L
· · ·
∑

`n≥L
a`1,...,`n(z1 − λ1τ − µ1)`1 · · · (zn − λnτ − µn)`n

for some L ∈ Z and a` ∈ C exists. For example, the poles of all the meromorphic
quasi-Jacobi forms we encounter in the applications lie on the coordinate axes.
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Definition 5.9.1. We call the poles of a meromorphic function ϕ : h × Cn → C
orthogonal if the set of poles of ϕ(τ, ·) is given by a union of special hyperplanes of
the form

zs ∈ uτ + v + Lτ

for some s ∈ {1, . . . , n} and u, v ∈ Q/Z.

Now that we introduced orthogonal poles, above, and the double slash action in
Definition 5.8.1, we defined the “Taylor coefficients” of a family of functions in the
following way. Recall that in case ϕ is a Jacobi form, there is a canonical choice for
the family of functions ϕ which is part of the data of these “Taylor coefficients” (see
Convention 5.8.2).

Definition 5.9.2. Let M ∈ Mn(Q) and ϕ = {ϕi,j}, where ϕi,j : h × Cn → C, be
a family of meromorphic functions indexed by a finite subset of Z≥0 × Zn≥0, with
ϕ := ϕ0,0 ∈ MerMn such that all poles of ϕ are orthogonal. Let g`(ϕ) as the `th
Laurent coefficient of ϕ:

(ϕ)(τ,z) =
∑

`

g`(ϕ)(τ) z`.

For all X ∈ M2,n(R), we define the “Taylor coefficient” gX` (ϕ) as g`(ϕ‖MX).
Also, denote

gX`,s(ϕ) = g`

(∑
i+|j|=s

(ϕi,j‖X)(z) zj
)

(s ∈ Z≥0).

Remark 5.9.3. One may be tempted to write

“ gX`,s(ϕ) =
∑

i+|j|=s
g`−j (ϕi,j‖X) ”.

However, we do not assume that the functions ϕi,j admit orthogonal poles, so the
Taylor expansion of ϕi,j may not exist. For example, taking ϕ = F2 (defined by
Definition 1.4.2), we will see later that ϕ0,e1(z1, z2) = 1

Θ(z1+z2) , which has a pole
whenever z1 + z2 = 0. Theorem 5.9.9 implicitly shows that the notation gX`,s(ϕ) is
well-defined for a quasi-Jacobi form ϕ with all poles orthogonal. 4

The data {gX` (ϕ)} uniquely determines ϕ as well as the family ϕ = {ϕi,j}.
Hence, it is natural to ask under which conditions on gX` (ϕ) the function ϕ is a mero-
morphic quasi-Jacobi form. Before we answer this question, we study the modular
properties of gX` (ϕ) given ϕ is a meromorphic quasi-Jacobi form. As a corollary of
the previous proposition on ϕ‖X , generalizing [EZ85, Theorem 1.3] to quasi-Jacobi
forms, we show that gX0 (ϕ) is a quasimodular form.



Taylor coefficients 123

Corollary 5.9.4. Let ϕ be a holomorphic quasi-Jacobi form of weight k and in-
dex M . For all X ∈ M2,n(Q), the function gX0 (ϕ) is a holomorphic quasimodular
form of weight k for the group ΓX (defined by (5.17)). Moreover,

dτg
X
0 (ϕ) = gX0 (dτϕ).

Proof. Let X ∈M2,n(Q) and γ ∈ ΓX . Then, by Proposition 5.8.3(iii) one finds

(gX0 (ϕ)|γ)(τ) = (ϕ‖X|γ)(τ,0) =
∑

i

gX0 (ϕi)
( c

cτ + d

)i
,

where ϕi denotes the family corresponding to ϕi,0. Hence, gX0 (ϕ) is a quasimodular

form for this group and drτg
X
0 (ϕ) =

gX0 (ϕr
r! = gX0 (drτϕ). Holomorphicity in h and at

infinity follows directly as ϕ is a holomorphic Jacobi form.

The quasimodularity of the other coefficients gX` (ϕ) can be understood in terms
of lower coefficients in two ways. First of all, certain linear combinations of deriva-
tives of these coefficients are modular. Secondly the action of diτ on gX` (ϕ) can be
expressed in terms of other coefficients.

We first show that these two ways are equivalent. Denote by (x)n the Pochham-
mer symbol (x)n = x(x+ 1) · · · (x+ n− 1).

Proposition 5.9.5. Let g = gk, gk−2 . . . , gk−2p be quasimodular forms of depth at
most p and weight k, k−2 . . . , k−2p respectively. Then the following are equivalent:

(i) diτg = gk−2i for i = 0, . . . , p;

(ii) The functions





∑

0≤m≤p−i
(−1)m

Dmgk−2i−2m

(k − 2i−m− 1)mm!
if k − 2p > 0 or i < p− 1

g2 − e2g0 if k − 2p = 0 and i = p− 1

for i = 0, . . . , p− 1 are modular forms of weight k − 2i;

(iii) The functions
∑

0≤m≤p−i
(−1)m

(D + e2)mgk−2i−2m

(k − 2i−m− 3
2)mm!

for i = 0, . . . , p− 1 are modular forms of weight k − 2i.
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Remark 5.9.6. Observe that as m ≤ p− i and i ≤ p− 1 one has that

k − 2i−m− 1 ≥ k − 2p.

Hence, the numerator (k − 2i − m − 1)m vanishes in case k − 2p = 0 and i =
p − 1 for m − 1. In this case gk−2i−2m is a modular form of weight 0, hence a
constant function. Therefore, also the numerator Dmgk−2i−2m vanishes in this case.
One can think of e2 as being the appropriate regularisation of this ill-defined ratio.
Alternatively, in the third equivalence, one can replaceD byD+e2 in which case the
numerator never vanishes. Finally, if one would replace D by e2, one would obtain
a generalisation of the functions ϕn of [Bri18, Proposition 3.1]. 4

Proof. Assume that diτg = gi. As g is of depth at most p, this implies that dτgi =
gi−2 for all i, where gi is taken to be zero when it is not defined. Hence, using
[dτ , Dτ ] = W (see Remark 5.7.3), it follows that applying dτ to a term in the sum
in (ii) yields

(−1)m
Dm
τ gk−2i−2m−2

(k − 2i−m− 1)mm!
− (−1)m−1 Dm−1

τ gk−2i−2m

(k − 2i− (m− 1)− 1)m−1(m− 1)!
,

where the second term is taken to be zero when m = 0. Also the first term vanishes
when m = p − i as fk−2p−2 is set to be zero. Hence, after applying dτ the sum
becomes a telescoping sum, equal to zero. Also dτ (g2 − e2g0) = g0 − g0 = 0. The
third statements follows by the same argument, mutatis mutandis.

The converse statement follows inductively by using that all but two terms in the
same sum equal to zero cancel, hence these terms are equal.

In order to express the derivatives with respect to dτ of the coefficients of ϕ, we
introduce the following notation describing how the index mixes the coefficients.

Definition 5.9.7. Given M ∈ Mn(Q), ϕ ∈ MerMn and a family ϕ as before, for
r, s ∈ Z≥0, ` ∈ Zn and X ∈M2,n(Q), we write QrgX`,s(ϕ) for

QrgX`,s(ϕ) = g`

(
QrM (z)

∑
i+|j|=s

(ϕi,j‖X)(z) zj
)
,

where the Laurent coefficients g` are given by Definition 5.9.2. Moreover, the func-
tions ξX` (ϕ)(τ) are defined by (again ` ∈ Zn, X ∈M2,n(Q))

ξX` (ϕ) :=





∑

r

∑

s≤r
(−1)r

Dr
τ (Qr−sgX`,s)(ϕ)

(k + |`| − s− 1)r(r − s)!
gX` (ϕ)− e2 ((QgX` )(ϕ) + (gX`,1)(ϕ)) k = 0, |`| = 2,

(5.19)

where (x)n = x(x+ 1) · · · (x+ n− 1) denotes the Pochhammer symbol. Abbrevi-
ate ξX` (ϕ) by ξ`(ϕ) if X is the zero matrix.
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Remark 5.9.8. We formulate all results below for ξX` (ϕ) as defined above, but by
Proposition 5.9.5 all results remain valid after replacing ξX` (ϕ) by

∑

r

(−1)r
∑

s

(Dτ + e2)r(Qr−sgX`,s)(ϕ)

(k + |`| − r − 3
2)r(r − s)!

.

Note that this equation, as well as Equation 5.19, can be inverted, expressing ξX` (ϕ)
as linear combination of derivatives of certain gXm(ϕ). 4

This allows to characterise invariance under the modular action by its Taylor
coefficients, generalizing [EZ85, Theorem 3.2]:

Theorem 5.9.9. Let Γ be a congruence subgroup, k ∈ Z and M ∈ Mn(Q). Let
ϕ = {ϕi,j} as before a family of meromorphic functions h × Cn → C with ϕ :=
ϕ0,0 ∈ MerMn and admitting a Laurent expansion around z = 0. Then the following
are equivalent:

(i) The function ϕ satisfies the quasimodular transformation (5.13)

(ϕ|k,Qγ)(τ, z) =
∑

i,j

ϕi,j(τ,z)
( c

cτ + d

)i+|j|
zj

for all γ ∈ Γ;

(ii) The coefficients g`(ϕ) are quasimodular forms of weight k + |`| uniquely de-
termined by the coefficients of the ϕi,j , i.e.,

drτg`(ϕ) =
∑

s

r!

(r − s)!Q
r−sg`,s(ϕ) ;

(iii) The functions ξ`(ϕ) are modular forms of weight k + |`| on Γ for all `.

Proof. Expanding (5.13) yields

∑

`

g`(ϕ)(γτ)

(cτ + d)k+2m+s
z` =

∑

`

∑

r,s

g`,s(ϕ)(τ)

r!

( c

cτ + d

)r+s
QM (z)rz`

Extracting on both sides the coefficient of z` yields

drτg`(ϕ) =
∑

s

r!

(r − d)!
Qr−sg`,s(ϕ) .

Also, the coefficient g`(ϕ) is holomorphic in h as well as at the cusps of Γ, because
of the analytic properties of the functions ϕi,j . The rest of the statement follows from
Proposition 5.9.5.
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Using this result, one can characterise a quasi-Jacobi form ϕ by its Taylor coef-
ficients in three ways, i.e., by considering gX` (ϕ) as a vector-valued quasimodular
form, by the modularity of the functions ξX` (ϕ), and finally by the action of dτ on
the quasimodular form gX` (ϕ). Write fX for gX` (ϕ) or ξX` (ϕ). Then, the ‘elliptic
transformation’ of the quasimodular form fX is given by

fX+X′ = ρ(X ′) ζX,X′ f
X for all X ′ ∈M2,n(Z) (5.20)

Recall that gX` (ϕ) and ξX` (ϕ) are only defined when the zeros of ϕ are orthogonal
(see Definition 5.9.1) and depend on a family of functions ϕi,j : h× Cn → C. In
case ϕ is a quasi-Jacobi form this family ϕ = {ϕi,j} determines the transformation
of ϕ; without the assumption that ϕ is as a quasi-Jacobi form we have the following
statement refining Theorem E.

Theorem 5.9.10 ( = Theorem E). Let k ∈ Z,M ∈Mn(Q) and ϕ ∈ MerMn such that
the set of poles of ϕ is orthogonal. Given a family ϕ = {ϕi,j}, indexed by (i, j) in
a finite subset of Z≥0 × Zn≥0, of meromorphic functions ϕi,j : h × Cn → C with
ϕ = ϕ0,0, the following are equivalent:

(i) The function ϕ is a meromorphic quasi-Jacobi form of weight k and index M
for which the functionsϕi,j determine its transformation behaviour as in (5.13)
and (5.14).

(ii) For allX =
(
λ
µ

)
∈M2,n(Q) with λτ +µ not a pole of ϕ, the function gX0 (ϕ)

is a vector valued quasimodular form satisfying (5.20) and transforming as

gX0 (ϕ)|kγ =
∑

s

gγX0,s (ϕ)
( c

cτ + d

)s
.

(ii)′ For all X ∈ M2,n(Q) the function gX` (ϕ) is a vector valued quasimodular
form satisfying (5.20) and transforming as

gX` (ϕ)|kγ =
∑

r

∑

s

1

(r − s)!Q
r−sgγX`,s (ϕ)

( c

cτ + d

)r
.

(iii) For all ` ∈ Zn the functions ξ`(ϕ) are modular forms of weight k + |`|
for SL2(Z) and for all X ∈M2,n(Q) the functions ξX0 (ϕ) satisfy (5.20).

(iii)′ For all X ∈ M2,n(Q) and ` ∈ Zn the functions ξX` (ϕ) in (5.19) are modular
forms of weight k + |`| for ΓX and satisfy (5.20).
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(iv) For all X ∈ M2,n(Q) and ` ∈ Zn the functions gX` (ϕ) are quasimodular
forms of weight k + |`| for ΓX , satisfying (5.20) and

drτg
X
` (ϕ) =

∑

s

r!

(r − s)! (Q
r−sgX`,s)(ϕ) . (5.21)

Proof. (i) implies (iv): Let X ∈ M2,n(Q) and γ ∈ ΓX be given. By Proposi-
tion 5.8.3 the function ϕ‖X satisfies the conditions of Theorem 5.9.9 for Γ = ΓX .
Moreover, by the same proposition the coefficients only depend on X mod M2,n(Z)
up to the factor ρ(X ′) ζX,X′ .

(iv) implies (iii)′: This follows directly from Theorem 5.9.9 for Γ = ΓX .
(iii)′ implies (iii): Observe that ΓX = SL2(Z) for X equal to the zero matrix.

Hence, we simply forget some of the properties of ξX` .
(iii) implies (ii)′: As ξ` is a modular form for SL2(Z) for all ` ∈ Zn, it follows by

Theorem 5.9.9 that ϕ satisfies the quasimodular transformation for all γ ∈ SL2(Z).
As by Proposition 5.8.3

ϕ‖X|kγ =
∑

i,j

(ϕi,j‖γX)
( c

cτ + d

)i ( cz

cτ + d

)j
,

the result follows by extracting the coefficients of z on both sides. Finally, note that
ξX0 = gX0 .

(ii)′ implies (ii): This follows directly by restricting to ` = 0.
(ii) implies (i): Suppose z = λτ + µ with X =

(
λ
µ

)
∈ M2,n(Q) not being

a pole of ϕ. Let ϕi be the family of functions corresponding to ϕi,0. Using (ii),
for γ ∈ SL2(Z) one has that (gX0 (ϕ))|kγ equals

∑

i

gγX0 (ϕi)(τ)
( c

cτ + d

)i

= ρ(−γX)
∑

i,`

(ϕi,`|γX)(τ, 0)
( c

cτ + d

)i
(λγ)`

= ρ(−γX)
∑

i,j,`

(ϕi,j+`|γX)(τ, 0)
( c

cτ + d

)i(j + `

j

)(c(λγτ + µγ)

cτ + d

)j
λ`.

On the other hand,

(gX0 (ϕ))|kγ = ρ(−X)
∑

`

(ϕ0,`|X|kγ)(τ, 0)λ`

= ρ(−γX)
∑

`

(ϕ0,`|kγ|γX)(τ, 0)λ`.
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Combining the identities yields
∑

`

(ϕ0,`|kγ|γX)(τ, 0)λ` =

∑

i,j,`

(ϕi,j+`|γX)(τ, 0)
( c

cτ + d

)i(j + `

j

)(c(λγτ + µγ)

cτ + d

)j
λ`.

As both sides equal ρ(γX) gX0 (ϕ), which is periodic with finite period as a function
of λ, the constant terms with respect to λ agree. Hence,

(ϕ|γ|X)(τ, 0) =
∑

i,j

(ϕi,j |X)(τ, 0)
( c

cτ + d

)i(c(λτ + µ)

cτ + d

)j

for all X =
(
λ
µ

)
∈ M2,n(Q) with X not corresponding to a pole. Therefore, ϕ

satisfies the quasimodular transformation for all z of the given form. As the set
(Qnτ × Q)n \ Pϕ, with Pϕ the set of poles of ϕ, lies dense in Cn for all τ ∈ h, the
function ϕ satisfies the quasimodular transformation equation.

For the elliptic transformation, we again assume z = λτ + µ with X =
(
λ
µ

)
∈

M2,n(Q) not being a pole. Given X ′ = (λ′,µ′) ∈M2,n(Z), we have

∑

`

(ϕ0,`|X)(τ, 0)λ` = ρ(X) gX0 (ϕ)

= ρ(X) ρ(−X ′) ζ−1
X+X′ g

X+X′

0 (ϕ)

= ρ(−X ′) ζ−1
X+X′

∑

`

(ϕ0,`|X ′|X)(τ, 0) (λ+ λ′)`.

The coefficients of λ agree, so

(ϕ|X ′)(τ,z) = ρ(X ′) ζX+X′
∑

j

ϕ0,j(τ, z) (−λ′)j

for all z of the given form. As before by continuity of ϕ the above equation holds
for all z.

Remark 5.9.11. The proof of the above result also applies to weak Jacobi forms, after
replacing ‘meromorphic Jacobi form’ and ‘(quasi)modular’ by ‘weak Jacobi form’
and ‘weakly holomorphic (quasi)modular’, respectively. 4

Specializing to holomorphic Jacobi forms (instead of meromorphic quasi-Jacobi
forms), we obtain the following result, generalizing the main results on Taylor coef-
ficients of Jacobi forms in [EZ85] to multivariable Jacobi forms.
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Corollary 5.9.12. Let k ∈ Z,M ∈ Mn(Q) and ϕ = {ϕ} with ϕ ∈ HolMn . Then,
the following are equivalent:

(i) The function ϕ is a holomorphic Jacobi form of weight k and index M .

(ii) For all X ∈ M2,n(Q) the function gX0 (ϕ) is a vector valued modular form
satisfying (5.20) and transforming as

gX0 (ϕ)|kγ = gγX0 (ϕ).

(ii′) For all X ∈ M2,n(Q) the function gX` (ϕ) is a vector valued quasimodular
form satisfying (5.20) and transforming as

gX` (ϕ)|kγ =
∑

r

1

r!
(QrgγX` )(ϕ)

( c

cτ + d

)r
.

(iii′) For all X ∈M2,n(Q) and ` ∈ Zn the functions ξX` (ϕ) given by

ξX` (ϕ) =
∑

r

(−1)r
Dr
τ (QrgX` )(ϕ)

(k + |`| − 1)rr!

are modular forms of weight k + |`| for SL2(Z) and satisfy (5.20).

(iv) For all X ∈ M2,n(Q) and ` ∈ Zn the functions gX` (ϕ) are quasimodular
forms of weight k + |`| for ΓX , satisfying (5.20) and

drτg
X
` (ϕ) = (QrgX` )(ϕ).





CHAPTER 6

The Bloch–Okounkov theorem for congruence
subgroups

6.1 Introduction

Given a ∈ Q, k ≥ 1 and λ ∈ P , in (1.19) we introduced the functions Qk(λ, a) as
generalisations of the shifted symmetric functions given by

βk(a) +
1

(k − 1)!

∞∑

i=1

(
e(a)λi−i (λi − i+ 1

2)k−1 − e(a)−i (−i+ 1
2)k−1

)
, (6.1)

where
∑

k∈Z βk(a) (2πiz)k−1 = e(z/2)
e(z+a)−1 and e(x) = e2πix. The main properties

satisfied by these functions are a consequence of the fact that
∑

k≥0

Qk(λ, a) (2πiz)k−1 = e(−1
2a)Wλ(z + a)

and that Fn(z1, . . . , zn) = 〈W (z1) · · ·W (zn)〉q is a quasi-Jacobi form. Up to a
constant, these functions Qk(a) have been considered before in [EO06] for a = 1

2
and in [Eng17] for all a ∈ Q. It was shown that a certain modified q-bracket of
any polynomial in these functions, excluding the function Q1(a), is quasimodular
for Γ1(N) for some N .

In this chapter we will not change the q-bracket, nor exclude any of the func-
tions (6.1), and nevertheless prove the following result for the graded algebra Λ∗(N),
contained in CP , given by

Λ∗(N) := Q
[
Qk(·, a) | k ≥ 1, a ∈ {0, 1

N , . . . ,
N−1
N }

]
, (6.2)

with the grading given by assigning weight k toQk(·, a). GivenN ≥ 1, write (2, N)
for gcd(2, N). Denote by wM the Fricke operator wM =

(
0 −1
M 0

)
.

This chapter, as well as the previous and next chapter, are based on [I21b].
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Theorem 6.1.1 ( = Theorem F). Let k ∈ Z, N ≥ 1 and M = (2, N)N . For
f ∈ Λ∗(N) of weight k, the q-bracket 〈f〉q is a quasimodular form of weight k
for w−1

M Γ(M)wM .

Remark 6.1.2. The occurrence of the group w−1
M Γ(M)wM in the theorem can be

interpreted in at least two ways. First of all, equivalently f as in the theorem has
the property that 〈f〉qM is a quasimodular form of level M , where qM := q1/M .
Secondly, as Γ1(M2) ≤ w−1

M Γ(M)wM , it follows that 〈f〉q is a quasimodular form
for Γ1(M2).

Moreover, the definition of M indicates that the behaviour of Qk(a) is different
when the numerator of a is divisible by 2. We will see that this can also by explained
by the n-point functions Fn: they are quasi-Jacobi forms of half-integral index. 4

The following theorem gives a refinement of Theorem 6.1.1 giving us q-brackets
(or quotients of q-brackets) that are on Γ1(N) rather than only on the much smaller
group w−1

M Γ(M)wM .

Theorem 6.1.3. Let N ≥ 1. Given ki ∈ Z, ai ∈ 1
NZ for i = 1, . . . , n, denote

a = a1 + . . .+ an and Qk(·,a) = Qk1(·, a1) · · ·Qkn(·, an). Then,

• If a ∈ Z, then 〈Qk(·,a)〉q is a quasimodular form for Γ1(N);

• If a 6∈ Z, then
〈Qk(·,a)〉q
〈Q1(·, a)〉q

is a quasimodular form for Γ1(N).

Remark 6.1.4. Let a ∈ Q. The function 〈Q1(·, a)〉−1
q , equal to Θ(a), is a so-called

Klein form; see, e.g., [KL81]. In particular, 〈Q1(·, a)〉q is ill-defined for a ∈ Z. 4
Theorem 6.1.1 should be compared with the results in [GJT16], where the au-

thors consider certain functions Q(p)
k (see (6.6), where we define Q

(m)
k also for

composite m) in the context of studying p-adic analogues of the shifted symmet-
ric functions (1.10). They show that the q-bracket of these functions is quasimodular
for Γ0(p2) and suggest that it is likely that products of these functions also have
quasimodular q-brackets for the same group. We will see that the functions Q(m)

k ,
as well as their products, are in fact elements of Λ∗(m). Therefore, for all odd m
Theorem 6.1.1 implies that q-brackets of products of these functions are quasimod-
ular for Γ1(m2). That these q-brackets are indeed quasimodular for the bigger
group Γ0(m2) is the content of the next theorem. Write Λ(N) for the Q-graded alge-
bra generated by the functions Q(m)

k for all m | N .

Theorem 6.1.5. Let N ≥ 1 and k ∈ Z. For all homogeneous f ∈ Λ(N) of weight k
the function 〈f〉q is a quasimodular form of weight k for Γ0(N2).
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It should be noted that the above theorems hold true in a greater generality. For
example, the so-called hook-length moments introduced in [CMZ18] and studied
in the context of harmonic Maass forms for a congruence subgroup in [BOW20],
also have natural generalisations obtained by studying their corresponding n-point
functions. Similarly, the moment functions and their generalisations in Chapter 4 can
equally well be generalised to congruence subgroups. Therefore, we will state and
prove the above results in Section 6.2 in a more general setting that allows application
to the hook-length moments and moment functions.

6.2 General set-up

We answer the question how to extend an algebra of functions on partitions for which
the q-bracket is a quasimodular form for SL2(Z) to one for a congruence subgroup Γ.
More precisely, we consider quasimodular algebras for Γ—a direct generalisation of
Definition 4.1.1.

Definition 6.2.1. A quasimodular algebra for a congruence subgroup Γ ≤ SL2(Z)
is a graded algebra of functions f on the set of partitions for which 〈f〉q is a quasi-
modular form for Γ of the same weight as f .

We now present a construction of a quasimodular algebra for a congruence sub-
group given a quasimodular algebra for SL2(Z). In order to do so, from now on we
assume that Φ : P × Cr → C is such that for all n ≥ 1 there exists a weight k ∈ Z
such that the function ϕΦ

n : h×Mn,r(C)→ C given by

ϕΦ
n (τ, Z) :=

〈 n∏

i=1

Φ(·, Zi)
〉
q
,

whereZi is the ith row ofZ, is a meromorphic quasi-Jacobi form of weight knwhich
admits a Laurent expansion around all Z ∈ Mn,r(Q) (after identifying Mn,r(C)
with Cnr). Here, Φ(λ, z) can be thought of a generalisation of the generating se-
ries Wλ(z) of the Bloch–Okounkov functions Qk, defined by (1.13).

Definition 6.2.2. Given such a Φ, for a ∈ Qr, we denote by fΦ
` (·,a) = f`(·,a) :

P → C the `th Taylor coefficient of Φ(z) around z = a, i.e.,

Φ(·, z) =
∑

`

f`(·,a) (z − a)`.

Define the graded Q-algebraFΦ(N) = F(N) as the algebra generated by the weight
k + |`| elements f`(·,a) for a ∈ 1

NZr, ` ∈ Zr.
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Remark 6.2.3. By Theorem 5.9.10, up to a sign fm(·,a) and fm(·, b) agree when-
ever a− b ∈ Zr. Hence, in the definition one can assume that a ∈ [0, 1)r. 4

For example, Q`+1(a) = e(−1
2a) fW` (a) (see (6.1)) and Λ∗(N) = FW (N).

Let L ∈ Mn,r(Z) and A ∈ Mn,r(Q). An arbitrary monomial fL in FΦ(N) is
given by

fL(A) := fL1(A1) · · · fLn(An) (6.3)

with Li and Ai the ith row of L and A, respectively. By construction of the Taylor
coefficients of Φ as well as of ϕΦ

n we find

〈fΦ
L (A)〉q = g

(0,A)
L (ϕΦ

n ),

where on the right-hand side we identified Mn,r(Z) and Mn,r(Q) with Znr and Qnr,
respectively, and as ϕΦ

n is a quasi-Jacobi form it uniquely determines the family of
functions in the definition of the “Taylor coefficients”1.

The following result is the general statement of Theorem 6.1.1.

Theorem 6.2.4. Given Φ as above and N ≥ 1, let M = (2, N)N . The alge-
bra FΦ(N) is a quasimodular algebra for w−1

M Γ(M)wM .

Proof. Consider a monomial element fL(A) of F(N) as in (6.3), for some L ∈
Mn,r(Z) and A ∈ Mn,r(Q). Write X = (0, A)t. Then, 〈fL(A)〉q = gXL (ϕn).
This Taylor coefficient is quasimodular for ΓX by Theorem 5.9.10. Therefore, it
suffices to show that the q-bracket respects the weight grading of F(N) and that ΓX
contains w−1

N Γ(N)wN .
For the first, observe that the weight of f is given by

∑n
i=1(k + |Li|), whereas

correspondingly the weight of gXm(ϕ) equals kn+ |L| (here |L| = ∑i,j Lij).
WriteM for the index of ϕΦ

n andQ = QM for the corresponding quadratic form.
Recall

ΓX = {γ ∈ SL2(Z) | γX −X ∈M2,n(Z), ρ(X − γX) = ζX,γX−X}.

Writing γ =
(
a b
c d

)
, we have

γX −X = (bA, (d− 1)A)t, ρ(γX −X) = e((b2 − b(d− 1) + (d− 1)2)Q(a))

and
ζX,γX−X = e(Q(0, (d− 1)a)−Q(ba,a)) = e(−bQ(a)).

1In fact, for X = (0, A) the double slash operator ‖X coincides with the slash operator |X , so that
the “Taylor coefficients” do not involve this family.
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Observe that 2N2Q(a) is integral. Hence, if γ ∈ SL2(Z) satisfies

b ≡ 0 mod N, d ≡ 1 mod N and b2 − b(d− 1) + (d− 1)2 ≡ b mod 2N2,
(6.4)

then γ ∈ ΓX .
Let N ′ ∈ Z>0. Then,

w−1
N ′Γ(N ′)wN ′ = {

(
a b
c d

)
∈ SL2(Z) | b ≡ 0 (N ′2), a ≡ d ≡ 1 (N ′)}.

In case 2 - N , the conditions (6.4) are satisfied for all γ ∈ w−1
N ′Γ(N ′)wN ′ when

N ′ = N , in case 2 | N for N ′ = 2N . Therefore, indeed, w−1
M Γ(M)wM ≤ ΓX .

For a monomial element fL(A) as in (6.3) with L ∈Mn,r(Z) andA ∈Mn,r(Q),
and γ ∈ Γ1(N) one has that

〈fL(A)〉q
∣∣γ = e((b2 − bd+ (d− 1)2)Q(a)) 〈fL(A)〉q , (6.5)

where Q is again the (quadratic form corresponding to the) index of ϕΦ
n . Hence, re-

stricting to A ∈Mn,r(Q) ' Qnr for which Q(A) ∈ 1
2Z we find the following result,

from which we are able to derive Theorem 6.1.3 using some additional properties of
the Bloch–Okounkov n-point functions.

Proposition 6.2.5. Given N ≥ 1, for all L ∈ Mn,r(Z) and A ∈ 1
NMn,r(Z) satisfy-

ing Q(A) ∈ 1
2Z + 1

NZ , one has that 〈fL(A)〉q is a quasimodular form for Γ1(N).

Proof. This follows from the observation (6.5) using the following two observations.
First of all, b2 − bd + (d − 1)2 ≡ 0 mod N when b ≡ 0, d ≡ 1 mod N . Secondly,
for integers b, d the integer b2 − bd + (d − 1)2 is always even whenever not both b
and d are even.

The functions Q(p)
k in [GJT16] are given by

Q
(p)
k (λ) = β

(p)
k +

∑

gcd(2λi−2i+1,p)=1

(
(λi − i+ 1

2)k−1 − (−i+ 1
2)k−1

)
,

where β(p)
k = βk(0)(1− 1

p). Observe that

Q
(p)
k (λ) = Qk(λ) − 1

p

p−1∑

a=0

e(a/p)Qk(2a/p)(λ). (6.6)

Outside of the context of p-adic modular forms, there is no need to restrict p to be a
prime, so (6.6) serves as the definition ofQ(m)

k for an integerm. Similarly, we define
functions fd` in terms of the Taylor coefficients f`(a), as follows.
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Definition 6.2.6. Let Φ be as above. Given d ∈ Zr>0, we let

U(d) =
{

0, 1
d1
, . . . , d1−1

d1

}
× · · · ×

{
0, 1

dr
, . . . , dr−1

dr

}

and for ` ∈ Zr define

fd,Φ` (λ) := fd` (λ) :=
∑

a∈U(d)

fΦ
` (λ, 2a) (λ ∈P).

Define the graded algebra F (N),Φ as the Q-algebra generated by the functions fd,Φ`
for all ` ∈ Zr and d ∈ Zr>0 for which di | N for all i.

Then, Theorem 6.1.5 follows directly from the following result.

Theorem 6.2.7. Let Φ be as above. Given N ≥ 1, the algebra F (N),Φ is a quasi-
modular algebra for the congruence subgroup Γ0(N2).

Proof. Consider the monomial elements fDL := fD1
L1
· · · fDnLn in F (N), where L,D ∈

Mnr(Z). Everywhere in this proof we identify Mn,r(Z) with Znr. Then,

fDL =
∑

A∈U(D)

fL(·, 2A).

Now, by part (ii)′ in Theorem 5.9.10, for all γ =
(
a b
c d

)
∈ SL2(Z) one has that

〈fL(·, 2A)〉q|γ =
∑

r

hr(2bA, 2dA)
( c

cτ + d

)r
,

where hr(λ,µ) =
∑

s
1

(r−s)!Qr−sgX`,s(ϕn) and X =
(
λ
µ

)
. If γ ∈ Γ0(N2), then

2bA ∈ 2NMn,r(Z). Hence, for X = (0, 2dA)t and X ′ = (2bA, 0)t one has
ρ(X ′)ζX,X′ = 1. Therefore,

hr(2bA, 2dA) = hr(0, 2dA) and hr(0, 2dA+B) = hr(0, 2dA)

for all B ∈ 2Mn,r(Z). As 2dA ranges over the same values modulo 2 as 2A does for
A ∈ U(D), one finds

〈fDL 〉q|γ =
∑

r

∑

A∈U(D)

hr(0, 2A)
( c

cτ + d

)r

for all γ ∈ Γ0(N2). Hence, indeed, 〈fDL 〉q is a quasimodular form for Γ0(N2).

The rest of this chapter is devoted to providing examples of quasimodular alge-
bras of higher level, using Theorem 6.2.7.
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6.3 First application: the Bloch–Okounkov theorem of higher level

The construction and results on the Bloch–Okounkov algebra, as stated in the in-
troduction, are proven in this section. In fact, this proof is an almost immediate
consequence of the results in the previous section using the properties of the Bloch–
Okounkov n-point functions.

Recall the Bloch–Okounkov n-point functions Fn defined in Definition 1.4.2 as
follows. For all n ≥ 0, let Sn be the symmetric group on n letters and let

Fn(τ, z1, . . . , zn) =
∑

σ∈Sn
Vn(τ, zσ(1), . . . , zσ(n)),

where the functions Vn are defined recursively by V0(τ) = 1 and

n∑

m=0

(−1)n−m

(n−m)!
θ(n−m)(τ, z1 + . . .+ zm) Vm(τ, z1, . . . , zm) = 0.

These n-point functions are quasi-Jacobi forms of which we determine the weight
and index (or rather the quadratic form uniquely determining a symmetric matrix
M ∈Mn(Q) which is the index).

Lemma 6.3.1. The n-point functions Fn are meromorphic quasi-Jacobi forms of
weight n and index Q(z) = −1

2(z1 + . . .+ zn)2.

Proof. We start with the observation that for all n ≥ 0 the function Θ(n)(z)
Θ(z) is a true

meromorphic Jacobi form (of weight n and index Q(z) = 0), in contrast to Θ(z)
itself which is weakly holomorphic. Namely, all poles are given by z ∈ Zτ + Z and
for z = a+ bτ with a, b ∈ Q, one has that

Θ(n)(aτ + b)

Θ(aτ + b)
=

∑
ν∈F ν

n e(νb) qν
2/2+aν

∑
ν∈F e(νb) qν2/2+aν

→ −a,

whenever τ2 →∞, or equivalently q → 0.
Next, observe that the product Θ(z1 + . . .+ zn)Vn(z1, . . . , zn) can be written as

a polynomial of weight n− 1 in Θ(i)(z1+...+zj)
Θ(z1+...+zj)

for i, j = 1, . . . , n; a fact which can
be proven inductively by its recursion (1.15). Hence, Θ(z1+. . .+zn)Vn(z1, . . . , zn)
is a meromorphic Jacobi form. As Θ(z)−1 is a meromorphic Jacobi form of weight 1
and index Q(z, z) = −1

2z
2, we conclude that Fn is a meromorphic quasi-Jacobi

form of weight n and index Q(z) = −1
2 |z|2.

Observe that Theorem 6.1.1 is a direct corollary of the previous lemma and The-
orem 6.2.4. Also, Theorem 6.1.5 follows directly from the previous lemma and The-
orem 6.2.7. So, we are only left with the following proof.
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Proof of Theorem 6.1.3. First of all, in case a ∈ Z, one has Q(a) = −1
2 |a|2 ∈ 1

2Z.
Hence, the result follows directly from Proposition 6.2.5.

In the second case, for both 〈Qk(a)〉q and 〈Q1(a)〉q the root of unity in (6.5) is
e(Q(a)) = e(Q(a)), so that again the subgroup of quasimodularity is Γ1(N).

For the holomorphicity in the second case, observe that 〈Q1(a)〉q equals Θ(a)−1

up to a constant. Also, 〈Qk(a)〉q can be written as a product of Taylor coefficients
of Θ(z1 + . . .+ zn + a)−1 and of Θ(z1 + . . .+ zn + a)Fn(z1 + a1, . . . , zn + an),
the latter Taylor coefficients being holomorphic quasimodular forms. Observe that
the Taylor coefficients of

Θ(a)

Θ(z1 + . . .+ zn + a)

around z1 = . . . = zn = 0 are all polynomials in the holomorphic quasimodular
forms Θ(i)(a)

Θ(a) . Therefore, 〈Qk(a)〉q
〈Q1(a)〉q is a holomorphic quasimodular form.

6.4 Second application: hook-length moments of higher level

As a second example, recall the hook-length moments, defined by (1.12). The results
in Section 6.2 specialise to the following statements.

(i). For a ∈ Q and k ∈ Z≥2, let

Hk(a) := α̃k(a) +
1

2

∑

ξ∈Yλ

(
e(a h(ξ)) + (−1)k e(−a h(ξ))

)
h(ξ)k−2,

where
∑

k α̃k(a) zk−2

(k−2)! = 1
8 sinh((z + 2πia)/2)−2 (here (−2)! = 1). Denote

by H(N) the graded algebra generated by the Hk(a) with k ≥ 2 and Na ∈ Z.
The algebraH(N) is graded by assigning to Hk(a) weight k. Let M = (2, N)N .

Corollary 6.4.1. The algebra H(N) is quasimodular of level M , after scaling τ
by M .

More concretely, for all homogeneous f ∈ H(N) of weight k, the rescaled q-
bracket 〈f〉qM , where qM = q1/M , is a quasimodular form of weight k for Γ(M).
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(ii). Given N ≥ 1, k ∈ Zn and a ∈ 1
NZn, write Hk(a) = Hk1(a1) · · ·Hkn(an).

Corollary 6.4.2. For a ∈ 1
NZn with |a| ∈ Z and k ∈ Zn≥2 the q-bracket 〈Hk(a)〉q

is a quasimodular form of weight |k| for Γ1(N).

(iii). For k, t ∈ Z6=0, let

Ht
k := −Bk

2k
tk +

∑

ξ∈Yλ
h(ξ)≡0 mod t

h(ξ)k−2,

which (up to a constant) also occurs in [BOW20]. Denote by H(N) the algebra
generated by the Ht

k for which k is even and t | N . This algebra is graded by
assigning weight k to Ht

k .

Corollary 6.4.3. The algebraH(N) is quasimodular for Γ0(N2).

More concretely, for all homogeneous f ∈ H(N) of weight k, the q-bracket 〈f〉q
is a quasimodular form of weight k for Γ0(N2).

6.5 Third application: moment functions of higher level

Next, we consider the moment functions Sk of Chapter 4. By Corollary 4.5.2, the
generating series S (z) = 1

2z2
+
∑

k≥2 Sk
zk−2

(k−2)! satisfies

〈S (z1) · · ·S (zn)〉q =
1

2n+1

∑

α∈Π(n)

∏

A∈α

∑

s∈{−1,1}|A|
D|A|−1
τ E2(s · zA), (6.7)

where Π(n) denotes the set of all set partitions of the set {1, . . . , n}, |A| the cardi-
nality of the set A, and zA = (za1 , . . . , zar) if A = {a1, . . . , ar}. Hence, the n-point
functions (6.7) are quasi-Jacobi forms of weight 2n and index zero. Because the in-
dex of the quasi-Jacobi forms (6.7) is zero, the root of unity in (6.5) vanishes for all
γ ∈ SL2(Z). Therefore, the results of Section 6.2 specialise to the following results
for the groups Γ1(N) and Γ0(N) (rather than Γ(N) and Γ0(N2), respectively).
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(i). For a ∈ Q and k ≥ 1, let

Sk(a) := αk(a) +
1

2

∞∑

i=1

(
e(aλi) + (−1)ke(−aλi)

)
λk−1
i ,

where
∑

k αk(a) (2πiz)k−1

(k−1)! = 1
2(e(z + a) − 1)−1 (here (−1)! = 1; for k ≥ 2, these

values agree with the constants α̃k in the previous example). Denote by S(N) the
algebra generated by the Sk(a) with Na ∈ Z. Assign to Sk(a) weight k.

Corollary 6.5.1. The algebra S(N) is quasimodular for Γ1(N).

More concretely, for all homogeneous f ∈ H(N) of weight k, the q-bracket 〈f〉q
is a quasimodular form of weight k for Γ1(N).

(ii). For k, t ∈ Z>0, let

Stk := −Bk
2k
tk +

∑

i≥0
λi≡0 mod t

λk−1
i .

Denote by S(N) the algebra generated by the Stk for which k is even and t | N .
Assign to Stk weight k.

Corollary 6.5.2. The algebra S(N) is quasimodular for Γ0(N).

More concretely, for all homogeneous f ∈ S(N) of weight k, the q-bracket 〈f〉q
is a quasimodular form of weight k for Γ0(N).

6.6 Fourth application: double moment functions of higher level

As a final example, consider the double moment functions Tk,l, defined by (4.2).
By Theorem 4.8.11, the generating series T (z) = − 1

2u − 1
2v +

∑
k,` Tk,l

ukv`−1

(k)!(`−1)!
satisfies

G1(u, v) := 〈T (u, v)〉q = −1

2

Θ(u+ v)

Θ(u)Θ(v)
.

Hence, the 1-point function G1 is a Jacobi form of weight 1 and index uv. This
example now deviates from the previous ones because 〈T (u1, v1) · · ·T (un, vn)〉q
is not a Jacobi form of some fixed weight (but of mixed weight). With respect to the
induced product �, defined by Definition 4.4.1, one finds

Gn(u,v) := 〈T (u1, v1)� · · · �T (un, vn)〉q =
n∏

i=1

(
−1

2

Θ(ui + vi)

Θ(ui)Θ(vi)

)
.
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Observing that in Section 6.2 one can replace the pointwise product on functions
of partitions by the induced product, we have the following generalisations of the
algebra T .

(i). For a, b ∈ Q, and k ≥ 0, ` ≥ 1, let Tk,`(a, b) be given by

Ck,`(a, b) +
∞∑

m=1

mk
(
e(am) F b

` (rm(λ)) + (−1)k+le(−am) F −b` (rm(λ))
)
,

where

Ck,`(a, b) =





αk(a) ` = 1

α`−1(b) k = 0

0 else,

with the constants αk are defined in the previous section. Also, F b
` is the polynomial

of degree ` − 1 (or of degree ` if b ∈ Z) given by F b
` (n) =

∑n
i=1 e(bi) il−1 for

all n ∈ Z>0. Let the Q-algebra T (N) be generated by the functions Tk,`(a, b),
where a, b ∈ 1

NZ, under the induced product. Assign to Tk,`(a, b) weight k + ` and
extend to a weight grading under the induced product. Let M = (2, N)N .

Corollary 6.6.1. The algebra T (N) is quasimodular of level M , after scaling τ
by M .

More concretely, for all homogeneous f ∈ T (N) of weight k, the rescaled q-
bracket 〈f〉qM , where qM = q1/M , is a quasimodular form of weight k for Γ(M).

(ii). Let k, ` ∈ Zn and a, b ∈ 1
NZn.

Corollary 6.6.2. Whenever a · b ∈ 1
2Z + 1

NZ, one has that

〈Tk1,`1(a1, b1)� · · · � Tkn,`n(an, bn)〉q

is a quasimodular form of weight |k|+ |`| for Γ1(N).

(iii). For k, `, s, t ∈ Z>0 let

T s,tk,`(λ) := Ck,` +
∑

m

mk F`
(⌊rms(λ)

t

⌋)
.

Denote by T (N) the algebra generated by the T s,tk,` , where k, ` are even and s, t | N ,
under the induced product. Assign to T s,tk,` weight k + ` and extend to a weight
grading under the induced product.
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Corollary 6.6.3. The algebra T (N) is quasimodular for Γ0(N2).

More concretely, for all homogeneous f ∈ H(N) of weight k, the q-bracket 〈f〉q
is a quasimodular form of weight k for Γ0(N2).

Remark 6.6.4. Combining this result with Corollary 6.6.2, by restricting to t = 1, we
find that any polynomial in T s,1k,` with respect to the induced product is quasimodular
for Γ0(N). A similar statement holds after restricting to s = 1. 4



CHAPTER 7

When is the q-bracket modular?

7.1 Introduction

For all k ≥ 0, let hk ∈ Λ∗ be given by

hk(λ) =

b k
2
c∑

r=0

Q2(λ)rQk−2r(λ)

2r (k − r − 3
2)r r!

((x)n = x(x+ 1) · · · (x+ n− 1)) .

We show that the function hk satisfies the following three properties:

(i) The q-bracket 〈hk〉q is a modular form (and not just a quasimodular form);

(ii) The difference hk −Qk is divisible by Q2;

(iii) For f ∈ Λ∗ with 〈f〉q modular and f −Qk divisible by Q2, we have

〈f〉q = 〈hk〉q .

Hence, one can think of the difference hk −Qk as a correction term for Qk with re-
spect to the property of being a modular form under the q-bracket. By the third prop-
erty this correction term is unique up to elements in the kernel of the q-bracket. More
generally, the question “when is the q-bracket of f ∈ Λ∗ modular?” is answered
by Theorem A. The functions hk above provide part of the data of the computable
projection π in this result. By exploring the definition of certain modular forms as-
sociated to the quasi-Jacobi forms Fn , we provide a different method to construct
the harmonic shifted symmetric functions hλ (of which hk is a special case), already
given in in Chapter 2, where λ is a partition. The method of proof in this chapter
(i.e., using the quasi-Jacobi forms Fn) now allows us to generalise the above result
to different settings.

This chapter, as well the previous two chapters, are based on [I21b].
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We first state and prove our answer to the question in the title of this chapter
in full generality, using the main result on the Taylor coefficients of quasi-Jacobi
forms (Theorem 5.9.10). Afterwards we provide many examples. In particular, we
prove the results on the ‘modular subspace’ of the Bloch–Okounkov algebra as stated
in the introduction, and state similar results for the Bloch–Okounkov algebra for
congruence subgroups as well as the algebra of double moment functions.

7.2 Construction of functions with modular q-bracket

Given a quasi-Jacobi form ϕ of weight k satisfying the conditions of Theorem 5.9.10,
the functions

ξ`(ϕ) =
∑

r

(−1)r
∑

s≤r

(Dτ + e2)rQr−sg`,s(ϕ)

(k + |`| − r − 3
2)r(r − s)!

,

where e2 is given by Equation 5.12, andQr−sg`,s(ϕ) in Definition 5.9.7, are modular
forms (see also Remark 5.9.8). Therefore, as in the previous section, assume that Φ :
P × Cr → C is such that for all n ≥ 1 there exists a weight k ∈ Z such that the
function ϕΦ

n : h×Mn,r(C)→ C given by

ϕΦ
n (τ, Z) :=

〈 n∏

i=1

Φ(·, Zi)
〉
q
,

whereZi is the ith row ofZ, is a meromorphic quasi-Jacobi form of weight knwhich
admits a Laurent expansion around all Z ∈ Mn,r(Q) (after identifying Mn,r(C)
with Cnr). Write F = FΦ(1) for the graded algebra of Taylor coefficients of Φ (see
Definition 6.2.2). Given ` ∈ Zn, our aim is to find h` ∈ F such that 〈h`〉q = ξ`(ϕn),
i.e., we want to determine a pull back of ξ`(ϕn) under the q-bracket.

In order to do so, assume the algebra F satisfies the following two properties:

(i) Q2 ∈ F ,

(ii) There is a linear operator D acting on F such that

〈
D

n∏

i=1

Φ(zi)
〉
q

= (dτ + z1dz1 + . . .+ zndzn)ϕ, (7.1)

where D is extended to a linear operator on F [[z1, . . . , zn]] by D(f z`) =
D(f) z` for all f ∈ F and ` ∈ Zn.
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Remark 7.2.1. The function Q2 is known to make the q-bracket equivariant with
respect to the operator Dτ + e2, i.e.,

〈Q2f〉q = (D + e2)〈f〉q

for all f : P → C, explaining the first condition. The second condition is explained
by noting that

g`,s(ϕ) = g`

(∑
i+|j|=s

ϕi,j z
j
)

=
1

s!
g`
(
(dτ + z1dz1 + . . .+ zndzn)sϕ

)
. (7.2)
4

Recall that the algebra F = FΦ(1) is generated by the Taylor coefficients f` =
f`(0) of Φ for ` ∈ Zr. An arbitrary monomial fL in F is given by fL1 · · · fLn with
L ∈Mn,r(Z). We define an operator on F corresponding to the index of ϕ.

Definition 7.2.2. Let M = (mi,j) ∈Mn(Q) be the index of ϕΦ
n . Let Q be the linear

operator on F which is given on monomials by

QfL =
∑

i,j

mi,jfL−ei−ej (L ∈Mn,r(Z) ' Znr),

where, on the right hand side, ei is a unit vector in Znr.

Now, Theorem G can more explicitly be stated as follows, where the three proper-
ties below should be compared with the three properties satisfied by the functions hk
in the introduction (Section 7.1).

Theorem 7.2.3 ( = Theorem G). Let F be a quasimodular algebra satisfying the
above conditions, and Q,D : F → F the operators defined by Definition 7.2.2 and
Equation 7.1, respectively. Then, the linear mapping π : F → F given by

π(f) =
∑

r≥0

r∑

s=0

(−1)r
Qr2 Qr−sDsf

(m− r − 3
2)r (r − s)! s!

whenever f ∈ F is homogeneous of weight m satisfies

〈π(F)〉q ⊆M.

Furthermore, one can choose a vector subspaceM⊆ πF such that

(i) F =M⊕Q2F;

(ii) 〈M〉q ⊆M ;

(iii) 〈Q2F〉q ∩M = {0}.
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Remark 7.2.4. For the Bloch–Okounkov algebra Λ∗ the mapping π turns out be the
projection of Theorem A andM = π(Λ∗) = H. We do not expect that the conditions
in this section ensure that π is a projection in general, nor that π(Q2F) = {0} (in
which case one could chooseM = π(F)), nor that the splitting in (i) is canonical.
However, just as with Theorem A, once one has chosenM it follows immediately
from (i) that every element of F has a canonical expansion

f =
∑

i≥0

fiQ
i
2

with fi ∈M, and that 〈f〉q ∈M precisely if 〈fi〉q = 0 for all i > 0. 4

Proof. By (7.2) and by construction of Q one has that

1

s!

〈
Qr−sDsfm

〉
q

= (Qr−sgm)(ϕ)s ,

from which it follows that
〈h(fm)〉q = ξm(ϕ),

where ϕ is the meromorphic Jacobi form ϕ(z) = 〈∏n
i=1 Φ(zi)〉q. Hence, π(f) is

modular under the q-bracket for all f ∈ F .
ChooseM0 ⊆ F such that F = M0 ⊕ Q2F . Then, we takeM = πM0. As,

by definition, π(f) − f is a multiple of Q2, the first property follows. The second
property is immediate as M ⊆ π(F). For the last property, let f ∈ Q2F with
〈f〉q ∈ M be given. As f is divisible by Q2, the q-bracket 〈f〉q is in the image
of D+e2 acting on quasimodular forms. Now, the zero function is the only function
in the image of D + e2 which is modular, so that the last property follows.

The rest of this chapter is devoted to examples of quasimodular algebras to which
Theorem 7.2.3 applies.

7.3 First example: The Bloch–Okounkov algebra

In order to apply the results of the previous section to the Bloch–Okounkov alge-
bra Λ∗, we have to understand how the operators dτ and dzi act on the n-points
functions Fn (defined by Definition 1.4.2), or equivalently, we have to understand
the transformation behaviour of Fn . This behaviour is uniquely determined by the
following two properties.
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Proposition 7.3.1. For all n ≥ 1 one has

dτFn(z1, . . . , zn) = 0,

dz1Fn(z1, . . . , zn) =
n∑

i=2

Fn−1(z1 + zi, z2, . . . , ẑi, . . . , zn).

Proof. The second equality is equivalent to [BO00, Theorem 0.6], whereas the first
statement seems not to be in the literature. As both statements follow by more or less
the same argument, we give both proofs. That is, we prove

dτVn(z1, . . . , zn) = 0,

dziVn(z1, . . . , zn) =

{
Vn−1(z1, . . . , zi + zi+1, . . . , zn) i < n

0 i = n
(7.3)

inductively using the recursion (1.15), from which the proposition follows directly.
For n = 1 both statements are clearly true. Hence, by the identity

[dτ , D
m
z ] = −2mDm−1

z dz + m(m− 1)Dm−2
z .

and after assuming that dτVn = 0, we find that θ(z1 + . . .+ zn+1) dτVn+1(z) equals

−
n−1∑

m=0

(−1)n−1−m

(n− 1−m)!
θ(n−1−m)(z1 + . . .+ zm) Vm(z1, . . . , zm).

By the recursion (1.15) one finds that this expression vanishes. Hence, dτVn+1 = 0
and dτFn = 0 as desired.

Denote

V i
m−1(z1, . . . , zm) = Vm−1(z1, . . . , zi + zi+1, . . . , zm).

By applying dzi to the recursion (1.15), using the identity [dz, D
m
z ] = −2mDm−1

z I
(with I the index operator, see Remark 5.7.3) and assuming that (7.3) holds, we find

θ(z1 + . . .+ zn+1) dziVn+1(z1, . . . , zn+1)

=
n∑

m=i

(−1)n−m

(n−m)!
θ(n−m)(z1 + . . .+ zm) Vm(z1, . . . , zm) +

−
n∑

m=i+1

(−1)n+1−m

(n+ 1−m)!
θ(n+1−m)(z1 + . . .+ zm) V i

m−1(z1, . . . , zm).
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Again using the recursion (1.15), we conclude that

θ(z1 + . . .+ zn+1) dziVn+1(z1, . . . , zn+1)

= −
i−1∑

m=0

(−1)n−m

(n−m)!
θ(n−m)(z1 + . . .+ zm) Vm(z1, . . . , zm) +

−
n∑

m=i+1

(−1)n+1−m

(n+ 1−m)!
θ(n+1−m)(z1 + . . .+ zm) V i

m−1(z1, . . . , zm)

= θ(z1 + . . .+ zn+1) Vn(z1, . . . , zi + zi+1, . . . , zn+1).

Remark 7.3.2. By this proposition and Theorem 5.9.10 the transformation of the
Taylor coefficients of Fn are determined. For its Fourier expansion see [BM15]. 4

Next, recall the jth order differential operators Dj , defined in Definition 2.3.8,
given by

Dj =
∑

i∈Zj≥0

( |i|
i1, i2, . . . , ij

)
Q|i| ∂i, with ∂i =

∂j

∂Qi1+1 · · · ∂Qij+1
, (7.4)

where the coefficient is a multinomial coefficient (in this section we pretend these op-
erators act on Λ∗, although formally there are only defined onR by Definition 2.3.8).

These operators turn out to correspond to certain symmetric powers of the deriva-
tive operators dzi . In particular, observe that the coefficient of z` in the case j = 1
below, is given by g`(Fn)1 .Hence, the operator D , requested in the previous section,
is given by D = D2/2.

Proposition 7.3.3. For all j ≥ 1 one has

〈DjW (z)〉q = j!
(
z1d

j−1
z1 + . . .+ znd

j−1
zn

)
Fn(z).

Proof. Observe that

DjQ` = j!
∑

i1<...<ij

(
`i1 + . . .+ `ij − j
`i1 − 1, . . . , `ij − 1

)
Q`i1+...+`ij−j · · · Q̂li1 · · · Q̂lij · · · ,

where the binomial coefficient vanishes whenever li = 0 for some i. Hence,

DjWλ(z) = j!
∑

i1<...<ij

(zi1 + . . .+ zij )Wλ(zi1 + . . .+ zij , . . . , ẑi1 , . . . , ẑij , . . .).

By symmetry of Fn and Proposition 7.3.1 the statement follows.
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Now, by invoking Theorem 7.2.3, we find the following refinement of Theo-
rem G. In particular, we find a different expression for the projection π in Theorem A,
and hence also for the basis elements hλ in (2.8), which equal π(Qλ1 . . . Qλn). More-
over, by construction, we deduce that the q-bracket of hλ is given by ξλ+(Fn), where
λ+ = (λ1 + 1, λ2 + 1, . . .).

Theorem 7.3.4. Let ∂ = D1 and D2 be given by Equation 7.4. The linear mapping
π : Λ∗ → Λ∗ given by

π(f) =
∑

r≥0

r∑

s=0

(−1)s
Qr2 ∂

2r−2sDs
2(f)

2r(`− r − 3
2)r (r − s)! s!

whenever f is of weight ` is a projection satisfying π(Q2Λ∗) = 0 and

π(f) =
Q
−3/2+`
2 f∨Q3/2

2

(3
2)−` `!

, (7.5)

where the mapping ∨ is given on page 34 in terms of the commuting family of oper-
ators ∆λ of Definition 2.3.10. Furthermore,M := π(Λ∗) satisfies

(i) Λ∗ =M⊕ (Q2), where (Q2) = Q2Λ∗;

(ii) 〈M〉q ⊆M ;

(iii) 〈(Q2)〉q ∩M = {0};
(iv) M = H, whereH is the harmonic subspace of Λ∗ (see Definition 2.3.1).

Proof. Equation 7.5, as well as the fact that π is a projection, follows directly from
Corollary 2.3.15. In particular, as ∆2(Q

3/2
2 ) = 0, it follows that π(Q2f) = 0.

For the properties ofM, observe that D and Q, defined in the previous section,
can also be expressed as D2/2 and −∂2/2 respectively. Hence, the first three prop-
erties follows from Theorem 7.2.3, and the fourth follows as π coincides with the
projection map in Theorem A.

Remark 7.3.5. Note that this proof gives a second proof of Theorem A, as for the
proof of the first three properties ofM we did not use any of the results of Chapter 2.

4
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7.4 Second example: the Bloch–Okounkov algebra of higher level

In order to extend the result in the previous section to the Bloch–Okounkov alge-
bras Λ∗(N) of level N (see (6.2) and Section 6.3), we should generalise the opera-
tors ∂ and D2.

Definition 7.4.1. Let R̂ = Q[Qk(a) | k ∈ Z, a ∈ Q] be the algebra in the formal
variables Qk(a) with canonical projection to

⋃
N∈Z Λ∗(N). Given a ∈ Qj , define

the jth order differential operators Dj on R̂ by

Dj =
∑

i∈Zj≥0

∑

a∈Qj

( |i|
i1, i2, . . . , ij

)
Q|i|(|a|) ∂i(a),

where

∂i(a) =
∂j

∂Qi1+1(a1) · · · ∂Qin+1(an)
.

From now on we pretend that these operators act on Λ∗(N), by identifying
Λ∗(N) with a quotient of R̂ via the obvious inclusion map. Note that restricted
to Λ∗ the operators Dj are the same as defined in Definition 2.3.8. Similarly, the
operators Dj satisfy the following property.

Proposition 7.4.2. For all j ≥ 1 and a ∈ Qn one has

〈DjW (z + a)〉q = j!
(
(z1 + a1) dj−1

z1 + . . .+ (zn + an) dj−1
zn

)
Fn(z + a).

Therefore, Theorem 7.2.3 now specialises to the following result.

Theorem 7.4.3. Let N ≥ 1 and ∂ = D1 and D2 : Λ∗(N) → Λ∗(N) be given by
Equation 7.4.1. Let the projection π : Λ∗(N)→ Λ∗(N) be given by

π(f) =
∑

r≥0

r∑

s=0

(−1)s
Qr2 ∂

2r−2sDs
2(f)

2r(`− r − 3
2)r (r − s)! s! ,

whenever f ∈ Λ∗(N) is homogeneous of weight `. Then, the subspaceM(N) :=
π(Λ∗(N)) of Λ∗(N) satisfies

(i) Λ∗(N) =M(N)⊕Q2 Λ∗(N);

(ii) 〈M(N)〉q ⊆M(Γ(N));

(iii) 〈Q2 Λ∗(N)〉q ∩M(Γ(N)) = {0}.
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7.5 Third example: double moment functions

For the algebra of double moments functions the n-point functions with respect to
the induced product (see Definition 4.4.1) are given by

Gn(u,v) =
∏

i

( Θ(ui + vi)

Θ(ui)Θ(vi)

)

(see Theorem 4.8.11 and also Section 6.6). Note that Gn is a Jacobi form. Hence,
the operators dτ , du and dv vanish acting on Gn, so that D can taken to be the zero
operator. Recall the derivation d on T given by Definition 4.10.1, i.e.,

d(Tk,`) = k(`− 1)Tk−1,`−1 −
1

2
δk+`−2, d(f � g) = d(f)� g + f � d(g)

for all f, g ∈ T , and satisfying 〈df〉q = dτ 〈f〉q for all f ∈ T .

Theorem 7.5.1. Let the projection π : T → T be given by

π(f) =
∑

r≥0

2r

r!

r︷ ︸︸ ︷
T1,1 � · · · � T1,1� dr(f).

ThenM = π(T ) satisfies the following three properties:

(i) T =M⊕ (T1,1), where (T1,1) = T1,1 � T ;

(ii) 〈M〉q = M ;

(iii) 〈T1,1 � T 〉q ∩M = {0}.

Proof. The statement follows along the same lines as Theorem 7.2.3, by making the
following observations:

• Analogous to ξ`(ϕ), the functions

∑

r≤|`|
(−1)r

∑

s≤r

e
r
2 (Qr−sg`)(ϕ)s

(r − s)!

are modular forms exactly if ϕ is a quasi-Jacobi form;

• 〈T1,1 � f〉q = −2e2〈f〉q for all f ∈ CP ;

• The operator d coincides with the operator Q.

• Theorem 4.6.1 implies that 〈T 〉q = M̃ , from which it follows that equality
holds in (ii).
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Remark 7.5.2. In fact, for all f, g ∈ T one has

π(f � g) = π(f)� π(g).

Hence, 〈πT 〉q is uniquely determined by 〈π(T2,0)〉q = 〈π(T1,1)〉q = 0 and

〈π(Tk,l)〉q =

{
ϑk−1Gl−k+2 l ≥ k
ϑlGk−l k ≥ l + 2

for Tk,l ∈ T with k + l ≥ 4, where ϑ denotes the Serre derivative, defined in Sec-
tion 4.6. The derivatives of Eisenstein series appearing on the right of this equation,
with the case distinction according to the sign of l + 1 − k, should be compared to
the Taylor coefficients of G1(u, v) in Theorem 4.8.11 or [Zag91]. Moreover, they
are very similar (but here in level 1 and there in level 2, and here with Serre deriva-
tives and there with usual derivatives) to the ones that appeared in [KZ95] to prove
the original assertion of Dijkgraaf from which the whole Bloch–Okounkov story
arose. 4



CHAPTER 8

A Kaneko–Zagier equation for quasi-Jacobi forms

8.1 Introduction

In [Obe18, OP16] Oberdieck and Pandharipande conjectured the existence of quasi-
Jacobi forms ϕm and ϕm,n (of explicit weight and index) explaining part of the
Gromov–Witten theory of K3 surfaces. So far, these functions have been left in-
determinate. The goal of this chapter is simply to give an explicit formula for these
functions and study their properties, which is of independent interest. Before we
do so, we discuss the Kaneko–Zagier and the problem in algebraic geometry in fi-
nite characteristic from which it arises, because the functions ϕm turn out to be a
generalisation of the solutions fk of the Kaneko–Zagier equation.

Supersingular elliptic curves and the Kaneko–Zagier equation

LetE be an elliptic curve over an algebraically closed field of characteristic p > 0. If
its corresponding group of p-torsion points is trivial, such an elliptic curve is called
supersingular. This condition only depends on the j-invariant of E. As there are
only finitely many supersingular j-invariants, one can construct the supersingular
polynomial

ssp(j) =
∏

E/Fp
E supersingular

(j − j(E)) ∈ Fp[j].

This polynomial is uniquely determined by a modular form, which we explain
now. For every k ∈ Z the function

fk = Resx=0 ℘
′(x)

k+1
3

This chapter is based on [IOP20], joint work with Georg Oberdieck and Aaron Pixton.
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is a modular form of weight k. Surprisingly, this family of modular forms is a family
of solutions of the Kaneko–Zagier differential equation [KZ98]

D2
τfk + 4(k + 1)G2Dτfk = 2k(k + 1)Dτ (G2) fk. (8.1)

Denote by ∆ = η24 = Q3−R2

1728 and j = Q3

∆ the modular discriminant and modu-
lar j-invariant respectively (which are the discriminant and j-invariant of the complex
elliptic curve C/(Zτ+Z)). Then, fk/∆k/12 is holomorphic for τ ∈ h and transforms
like a modular form of weight 0. If we, for simplicity, assume that k ≡ 0 mod 12,
this function can uniquely be written as a polynomial f̃k in the modular j-invariant.
Without this assumption one first multiplies fk byQ2δRε, where 12 | k+8δ+6ε and
δ ∈ {0, 1, 2} and ε ∈ {0, 1}. After dividing the product by an integral power of ∆
such that the result is of weight 0, it is again a polynomial in the j-invariant and f̃k
is defined analogously. (Equivalently, as in [KZ98], one could divide fk by QδRε

and a suitable integral power of ∆. Then, f̃k divided by the resulting polynomial in j
is a polynomial with only zeros at 0 and 1728.) A main result of [KZ98] is that for
primes p > 3 one has

ssp(j) ≡ cf̃p−1(j) mod p

for some constant c (taken to be ±1 in [KZ98] by a suitable normalization of fk).

Example 8.1.1. Let p = 37. Recall Ramanujan’s notation for the Eisenstein series,
as in Example 1.2.5. Up to a constant, f36 is then given by

81Q9 + 1296Q6R2 + 1440Q3R4 + 128R6 = ∆3f̃36(j)

with

f̃36(j) = 2945j3 + 7879680j2 + 5446434816j − 660451885056.

As
f̃36(j) ≡ 22(j − 8)(j2 − 6j − 6) mod 37,

the supersingular j-invariants for p = 37 are given by j = 8 and by the roots of
j2 − 6j − 6 in F372 .

A Kaneko–Zagier equation for Jacobi forms

Let τ ∈ h, z ∈ C, q = e2πiτ , p = e2πiz and Dτ = 1
2πi

d
dτ = q ddq . Recall that

the normalised Jacobi theta function Θ is given by Θ(τ, z) = θ(τ,z)
θ′(τ,0) with θ given

by (1.14). Consider the ratio

F (z) :=
D2
τΘ(z)

Θ(z)
= −

∑

m,r≥1

r3 (pm/2 − p−m/2)2 qmr,
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where, as we often do, we have dropped τ from the argument.
We define formal series ϕm ∈ Q[p±

1
2 ][[q]] for all m ∈ Z by the differential

equation

D2
τϕm = m2 F ϕm, (8.2)

together with the constant term

ϕm = (pm/2 − p−m/2) + O(q). (8.3)

Since the constant term of F in q vanishes, the differential equation (8.2) determines
the functionsϕm uniquely from the initial data. By definition, we haveϕ−m = −ϕm.

Our first main result, which is the first part of Theorem H, is the following char-
acterisation of the functions ϕm .

Theorem 8.1.2. Let m ≥ 0. Then,

ϕm(z) = Resx=0

(Θ(x+ z)

Θ(x)

)m
. (8.4)

In particular, ϕm is a holomorphic quasi-Jacobi form of weight−1 and index |m|/2.

Consider the ratio of theta functions

f(x) =
Θ(x+ z)

Θ(x)
,

whose appearance in mathematics goes back to work of Eisenstein [Wei99]. Since
its inverse has Taylor expansion 1/f(x) = Θ(z)−1x + O(x2), the function 1/f(x)
can be formally inverted. By Lagrange inversion, Theorem 8.1.2 then precisely says
that the inverse series is the generating series of the ϕm :

y =
1

f(x)
⇐⇒ x =

∞∑

m=1

ϕm
m

ym. (8.5)

Let us explain the connection of the differential equation (8.2) to the Kaneko–
Zagier equation given by (8.1). A direct calculation shows that a function fk is a
solution to the Kaneko–Zagier equation if and only if gk+1 = fk/η

2k+2 is a solution
of

D2
τgm = 5

3m
2G4 gm (m = k + 1)

We observe that the differential equation (8.2) is a Jacobi-form analogue of the
Kaneko–Zagier equation. Even stronger, since (8.2) does not involve derivatives in
the elliptic variable we can specialise it to z = a for any a ∈ Q and in this way
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obtain an infinite family of Kaneko–Zagier type differential equations with modular
solutions for a congruence subgroup (the proof is immediate if one notes that for any
a ∈ Q the ratio Θ(x+a)

Θ(x) is of index 0 as a meromorphic Jacobi form of higher level,
hence all Taylor coefficients are modular forms rather than quasimodular forms).

Corollary 8.1.3. For all a ∈ Q andm ∈ Z, the modular form ϕm(a) is a solution gm
of the Kaneko–Zagier type equation

D2
τgm = m2 F (a) gm ,

where F (a) denotes the Eisenstein series

F (a) = −
∑

m,r≥1

r3(e(a)m + e(a)−m − 2) qmr (e(a) = e2πia).

The inversion formula (8.5) has the classical analogue [KZ98, Thm. 5(iv)]

x =
∑

k≥1

fk−1

k
yk ⇐⇒ y = ℘′(x)−1/3,

where the role of f(x) is played by the formal cube root of the derivative ℘′(x) =
d
dx℘(x) of the Weierstrass elliptic function ℘, and the solutions fk are normalised
accordingly.

We refer to Section 8.7 for a general construction of differential equations of
Kaneko–Zagier type.

Holomorphic anomaly equations and polynomiality

Holomorphic anomaly equations for a quasi-Jacobi form ψ are by definition an ex-
pression for diτψ and dizψ for all i. As discussed in Chapter 5, dτψ and dzψ measure
the defect of ψ to be honest Jacobi forms. Said differently, holomorphic anomaly
equations determine the precise transformation behaviour of ψ under the Jacobi
group. In this chapter, all quasi-Jacobi forms are polynomials in A,℘, ℘′, G2, G4

and Θ and we often use ∂
∂G2

and ∂
∂A instead of dτ and dz (see Remark 5.6.3).

Proposition 8.1.4. For all m ≥ 1 one has

∂

∂G2
ϕm = 0 and

∂

∂A
ϕm =

1

2

∑

i+j=m
i,j≥1

m2

ij
ϕi ϕj .
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Whereas the holomorphic anomaly equations determine the transformation of the
individual ϕm’s, we prove that the dependence of ϕm on m is polynomially. More
precisely, we see in Proposition 8.3.1 that

ϕm =
∑

k≥1

Pk(m) zk

where each Pk is a polynomial in m of degree at most k with quasimodular forms as
coefficients.

A second differential equation

We are also interested in a second family of functions, defined in terms of the ϕm.
Define formal series ϕm,n ∈ Q[p±1/2][[q]] for all m,n ∈ Z by the differential equa-
tion

Dτϕm,n = mnϕm ϕn F + (Dτϕm) (Dτϕn) (8.6)

together with the condition that the constant term vanishes: ϕm,n = O(q). Since ϕm
is odd in m, the definition implies the symmetries

∀m,n : ϕm,n = ϕn,m = ϕ−m,−n .

Moreover, ϕm,0 = 0 as ϕ0 = 0. Our second main result describes the modular
properties of ϕm,n .

Theorem 8.1.5. For all m,n ∈ Z the difference

ϕm,n − |n|δm+n,0

is a quasi-Jacobi form of weight 0 and index 1
2(|m|+ |n|).

In particular, if we would have normalised ϕm,n by ϕm,n = |n|δm+n,0 + O(q),
the functions ϕm,n would have been quasi-Jacobi forms for all m,n. Hence, this
result together with Theorem 8.1.2 is the content of Theorem H. In the rest of this
chapter we assume ϕm,n = O(q) in order not to break the polynomial dependence
on m and n.

If m 6= −n the proof of Theorem 8.1.5 is easy. Indeed, in this case we have

ϕm,n =
m

m+ n
ϕmDτ (ϕn) +

n

m+ n
Dτ (ϕm)ϕn (8.7)

and since the algebra of quasi-Jacobi forms is closed under differentiation with re-
spect to both z and τ the result follows from Theorem 8.1.2. It hence remains to
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consider the case m = −n. However, since the algebra of quasi-Jacobi forms is not
closed under integration, this case is not obvious.

The polynomial dependence of ϕm on m implies that ϕm,n depends polynomi-
ally on m,n as well. Hence we are allowed to take the limit of the formula (8.7).
The result is

ϕn,−n = Dτ (ϕn)ϕ−n + n
(
Dτ (ϕ′−n)ϕn − ϕ′−nDτϕn

)
,

where ϕ′u is the formal derivative of ϕu with respect to u. But, by inspection the
function ϕ′n is usually not a quasi-Jacobi form and hence from this point it is still un-
clear why ϕn,−n should be quasi-Jacobi. Instead our proof of Theorem 8.1.5 relies on
a subtle interplay between holomorphic anomaly equations and the aforementioned
polynomiality.

As another indirect consequence of the proof of Theorem 8.1.5 we obtain a third,
recursive characterisation of the function ϕm.

Proposition 8.1.6. For all m,n ≥ 1 we have

ϕm+n =
1

m
Dz(ϕm)ϕn +

1

n
ϕmDz(ϕn) +

∑

i+j=m

1

i
ϕi,n ϕj +

∑

i+j=n

1

i
ϕi,m ϕj .

Finally, we mention a conjectural relationship between the geometry of K3 sur-
faces and the functions ϕm and ϕm,n .

Conjecture 8.1.7. The functions ϕm and ϕm,n as defined above are the functions
appearing in the conjectures in [Obe18, OP16].

8.2 The solutions of the differential equation

In this section we study the function ϕm defined by the differential equation (8.2) and
the constant term (8.3). We first prove the evaluation (8.4) which immediately im-
plies that ϕm is a quasi-Jacobi form. We then study the Fourier expansion of ϕm , dis-
cuss the dependence of ϕm on the parameter m, and derive a holomorphic anomaly
equation.
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Proof of Theorem 8.1.2

To prove the theorem, we define the functions ϕm form ≥ 0 by (8.4). Then, we need
to check that these function satisfy the differential equations (8.2) and have the right
constant term (8.3), in other words, that these functions coincide with the uniquely
defined functions at the beginning of this chapter. Checking the constant term is
straightforward, see for example (8.9) below. To check the differential equation we
form the generating series g(y) =

∑
m≥1 y

mϕm/m. Let also Dy = y d
dy . The

differential equation (8.2) is then equivalent to

D2
τg(y) = F (z)D2

yg(y). (8.8)

Consider the function f(x) = Θ(x+z)
Θ(x) and apply the variable change

y =
1

f(x)
⇐⇒ x = g(y),

where we have used Lagrange inversion to identify the inverse of 1/f with the gen-
erating series g(y). Let f ′(x) := Dxf := d

dxf(x). By differentiating f(g(y)) = y
and applying the chain rule we find the transformations

Dyg(y) = − f
f ′
, Dτg(y) = −Dτf

f ′
, D2

yg(y) = − f
f ′
· f
′′f − (f ′)2

(f ′)2
,

D2
τg(y) = − 1

(f ′)3

(
D2
τ (f) (f ′)2 − 2f ′Dτ (f)Dτ (f ′) + f ′′Dτ (f)2

)
.

Applying these and changing variables, the differential equation (8.8) becomes

Dx(f)2D2
τ (f) − 2Dx(f)DxDτ (f)Dτ (f) + D2

x(f)Dτ (f)2 =

F (z)D2
x log(f) f3.

The functions Θ(x + z) and Θ(x) are Jacobi forms of rank 2 in the elliptic
variables (x, z) of index Q(x, z) = 1

2(x + z)2 and Q(x, z) = 1
2x

2 respectively.
(Or, in matrix notation, of index 1

2( 1 1
1 1 ) and 1

2( 1 0
0 0 ) respectively.) Hence, f(x) is a

meromorphic Jacobi form of weight 0 and index Q(x, z) = 1
2(2x+ z)z. We need to

show that the following function vanishes:

F(x, z) = Dx(f)2D2
τ (f) − 2Dx(f)DxDτ (f)Dτ (f) +D2

x(f)Dτ (f)2 +

−F (z)D2
x log(f) f3.

As a polynomial in the derivatives of f , the function F is a rank 2 quasi-Jacobi form
of weight 6 and index Q(x, z) = 3

2(2x + z)z. Using the commutation relations in
Remark 5.7.3 a direct check shows

dτF = dxF = 0.
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In particular, F/f3 has index Q(x, z) = 0, i.e., F/f3 is doubly periodic. Moreover,
by considering the Taylor expansion one checks (e.g., using a computer1) that F is
holomorphic at x = 0 and vanishes to order 3 at x = −z (use the variable change x̃ =
x + z). We conclude that the ratio F/f3 is doubly periodic and holomorphic in x,
so constant in x. The constant is a quasi-Jacobi form in z and is easily checked to
vanish. This shows that the differential equation is satisfied. The claim that the ϕm
are quasi-Jacobi forms of the specified weight follows from Lemma 8.2.1 below.

Define the operator on the algebra of quasi-Jacobi forms by

D̂z = Dz + 2G2
∂

∂A
.

We conclude the following structure result.

Lemma 8.2.1. For every m ≥ 0 there exist modular forms hk ∈Mm−k−1 such that

ϕm(z) =
m−1∑

k=0

hk D̂
k
z (Θ(z)m).

Hence every ϕm is a quasi-Jacobi form of weight−1 and index |m|2 , and ∂
∂G2

ϕm = 0.

Proof. For any power series f(z) we have

eDzxf(z) = f(x+ z).

Moreover, the Baker–Campbell–Hausdorff formula and the relations in Remark 5.7.3
yield

eDzxe2G2
∂
∂A
x = exD̂z−2x2G2I = e−2x2G2IexD̂z ,

where I denotes the operator acting diagonally on Jacobi forms of rank 1 by multi-
plication by the index. We find that

Θ(x+ z)m

Θ(x)m
= Θ(x)−m eDzx(Θ(z)m)

= Θ(x)−m eDzx e2G2
∂
∂A
x(Θ(z)m)

= Θ(x)−m e−mx
2G2 exD̂z(Θ(z)m)

= x−m exp
(

2m
∑

k≥4
Gk

xk

k!

)
exD̂z(Θ(z)m) ,

1The code for this computation as well as a parallel computation in the proof of Proposition 8.5.5 can
be found on the web page of Georg Oberdieck (https://www.math.uni-bonn.de/~georgo/
note/KZ_code.py). It also contains functions which express the ϕm, ϕmn in terms of A, ℘, ℘′,
G2, G4 and Θ.

https://www.math.uni-bonn.de/~georgo/note/KZ_code.py
https://www.math.uni-bonn.de/~georgo/note/KZ_code.py
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where we used (5.2) in the last step. Taking the coefficient of x−1 yields the first
claim. The second claim follows from the commutation relation [ ∂

∂G2
, D̂z] = 0.

Remark 8.2.2. For all m ≥ 0 we have

ϕ−m(z) = Resx=−z
(Θ(x+ z)

Θ(x)

)−m
.

Indeed, after the variable change x′ = −(x+ z) the right-hand side becomes

−Resx′=0

(Θ(−x′ − z)
Θ(−x′)

)m
= −ϕm(z). 4

8.3 Three expansions of the solutions

We give three different formulas for ϕm , that is we compute the Fourier expansion,
and two types of Taylor expansions in the parameter m.

Fourier expansion

Write

fm(x, z) =
(Θ(x+ z)

Θ(x)

)m
.

For a contour γ around z = 0 and not around any other lattice point z ∈ Zτ + Z we
have

ϕm(z) = Resx=0 fm(x, z) =
1

2πi

∮

γ
fm(x, z) dx.

Let a = −1
2− 1

2τ . Choose the parallelogram with corners a, a+τ, a+τ+1 and a+ 1
for γ (which is the boundary of a fundamental domain for the lattice). By the elliptic
transformations fm(x+ 1, z) = fm(x, z) and fm(x+ τ, z) = p−mfm(x, z) one gets

ϕm(z) =
1

2πi
(1− p−m)

∫ 1

0
fm(a+ t, z) dt =

1

2πi
(1− p−m) Coeffσ0fm(x, z),

where σ = e2πix is the Fourier variable associated to x and the Fourier expansion is
taken for x in the strip Im(τ) < Im(x) < 0. (See also [OP18, App. A] for a similar
argument.)

By the Jacobi triple product

f1(x, z) = s

∞∏

n=1

(1− qnσp)(1− qnσ−1p−1)

(1− qnσ)(1− qnσ−1)
,
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where we have written s = eπiz , so p = s2. Hence,

log fm(x, z) =
1

2
z −

∞∑

n=1

∑

r 6=0

m

r
σr(pr − 1) qmr.

Exponentiating again, we find

ϕm =
(
pm/2 − p−m/2

)
Coeffσ0 exp

(∑

r 6=0

m

r
σr

1− pk
1− qr

)

=
(
pm/2 − p−m/2

) ∑

|a|=0

(∏

i

1− pai
1− qai

)
ml(a)

z(a)
, (8.9)

where the sum in the second equation is over all generalised partitions (allowing both
positive and negative parts) with non-zero parts summing up to 0. Moreover, if we
write a in exponential notation a = (iai)i∈Z\{0} then z(a) =

∏
i i
aiai! is the standard

automorphism factor (4.44). The first Fourier coefficients of ϕm are

ϕm = (sm − s−m)
(
1−m2(s− s−1)2q

)
+O(q2).

The solution ϕm as a function of m

Consider ϕm as a function of m viewed as a (formal) variable. To distinguish with
the case m ∈ Z we will replace m by a variable u.

Consider the expansion

F (z) =
∑

k≥1

Fk(z) q
k, Fk(z) = −

∑

d|k

(k
d

)3
(sd − s−d)2,

where as before we have used s = eπiz , so p = s2. Then by an immediate check the
differential equation (8.2) for ϕm is equivalent to the following formula:

ϕu = (pu/2 − p−u/2) ·
(

1 +
∑

r≥1

∑

k1,...,kr≥1

Fk1(z)Fk2(z) · · ·Fkr(z)
k2

1 (k1 + k2)2 · · · (k1 + . . .+ kr)2
qk1+...+kr u2r

)

.

Second we can use the Fourier expansion of the ϕm given by (8.9). We see that
Theorem 8.1.2 is equivalent to the following non-trivial identity:
∑

|a|=0

(∏

i

1− pai
1− qai

)
ul(a)

z(a)
=

1 +
∑

r≥1
k1,...,kr≥1

Fk1(z)Fk2(z) · · ·Fkr(z)
k2

1 (k1 + k2)2 · · · (k1 + . . .+ kr)2
qk1+...+kr u2r.
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For the third formula, we use a Taylor expansion in u. For positive integers u one
can write the solution

Coeffx−1

(Θ(x+ z)

Θ(x)

)u

as

ϕu(z) = Coeffx−1

(x+ z)u

xu
exp

(
2u
∑

k≥2
Gk

xk − (x+ z)k

k!

)

= Coeffx−1

∞∑

`=1

(
u

`

)( z
x

)`
exp

(
2u
∑

k≥2
Gk

xk − (x+ z)k

k!

)
. (8.10)

The latter expression makes sense as an element of C[[z]] for all u ∈ C. For example,
the first terms read

ϕu(z) = uz − G2u
3z3 +

((
1
3G

2
2 − 1

72G4

)
u5 +

(
1
6G

2
2 − 5

72G4

)
u3
)
z5 + O(z7).

The expansion (8.10) yields the following important structure result.

Proposition 8.3.1. For every k ≥ 1 there exist odd polynomials Pk(u) of degree≤ k
with coefficients in M̃k−1 such that for all m ∈ Z

ϕm(z) =
∑

odd k≥1

Pk(m) zk.

Moreover, P1(u) = u and if k ≥ 2, then u3 | Pk(u).

We find the following language convenient: we say that a set of power se-
ries fm(z) ∈ R[[z]],m ∈ Z for some coefficient ring R is polynomial in m if there
exist polynomials Pk(u) ∈ R[u] such that

∀m ∈ Z : fm(z) =
∑

k≥0

Pk(m) zk.

In the above result R is ring of quasi-modular forms M̃ and ϕm is polynomial in m.

8.4 Holomorphic anomaly equations

The holomorphic anomaly equation ∂
∂G2

ϕm = 0 was proven in Lemma 8.2.1. The
following result proves Proposition 8.1.4, by determining the holomorphic anomaly
of ϕm with respect to the elliptic variable.
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Proposition 8.4.1. For all m ≥ 1 one has

∂

∂A
ϕm =

1

2

∑

i+j=m
i,j≥1

m2

ij
ϕi ϕj . (8.11)

Before we prove this proposition, note that it follows that every zk coefficient
of ∂

∂Aϕm is polynomial in m in the range m ≥ 0. Even so, this coefficient is polyno-
mial in m in the range m ≤ 0. However, these two polynomials do not always agree,
which is made precise in the following result:

Corollary 8.4.2. The difference

ϕAm =
∂

∂A
ϕm − mz ϕm δm<0

depends polynomially on m, i.e., there exist polynomials Qk(u) of degree ≤ k + 1

with coefficients in M̃k−2 such that ϕAm =
∑

k≥2 z
kQk(m). Moreover, u2 | Qk for

all k.

Proof of Corollary 8.4.2. We first rewrite (8.11) as

∂

∂A
ϕm = m

m−1∑

j=1

ϕj
ϕm−j
m− j .

Hence for all m ≥ 0 we have ∂
∂Aϕm =

∑
nQn(m) zn where the polynomials Qn

are determined by

Qn(m) = m
∑

k+`=n
k,`≥1

m−1∑

j=1

Pk(j)
P`(m− j)
m− j

for all m ≥ 0. Here the Pi are the polynomials of Proposition 8.3.1.
For all m > 0 by Lemma 8.5.2 we have

Qn(−m) = −(−m)
∑

k+`=n
k,`≥1

m∑

j=1

Pk(−j)
(P`(u)

u

)∣∣∣
u=−m+j

= −m
∑

k+`=n
k,`≥1

m−1∑

j=1

Pk(j)
P`(−m+ j)

−m+ j
−mPn−1(m),
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where we used the second part of Proposition 8.3.1 for the last equality. Summing
up we obtain as desired

ϕA−m =
∑

n

znQn(−m) = − ∂

∂A
ϕm − mz ϕm .

First proof of Proposition 8.1.4. As in the proof of Theorem 8.1.2 consider the gen-
erating series

g(y) =
∑

m≥1

ϕm
m

ym

and let Dy = y d
dy . We need to prove the equality

∂

∂A(z)
g(y) = g(y)Dyg(y).

Let f(x) = Θ(x+z)
Θ(x) so that f(g(y)) = 1

y . Then by [ ∂∂A , Dz] = 2I we have

∂

∂A(z)
f(x) =

∂

∂A(z)

eDzxΘ(z)

Θ(x)
=

[ ∂
∂A(z) , Dz]x e

DzxΘ(z)

Θ(x)
= x f(x). (8.12)

Applying ∂
∂A to f(g(y)) = 1/y we get

∂

∂A
f(g(y)) + Dxf(g(y))

∂

∂A
g(y) = 0,

and hence
∂

∂A(z)
g(y) = − g(y)

y · (Dxf)
.

Since we also have

Dy(f(g(y))) = Dxf(g(y))Dyg(y) = −1

y
,

and hence
1

Dxf
= −y Dyg(y)

the claim follows.

We give a more direct proof of Proposition 8.1.4 using the following combinato-
rial lemma whose proof follows directly from Lagrange inversion.
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Lemma 8.4.3. Let f(x) be a power series and k ∈ N. Then for all m ≥ 1 we have

1

m

[
f(x)m

]
xm−k

=
1

k

∑

n1+...+nk=m

k∏

i=1

1

ni

[
f(x)ni

]
xni−1 ,

where we write [−]xm for taking the coefficient of xm.

Second proof of Proposition 8.1.4. Observe that by (8.12) we have

∂

∂A

[(Θ(x+ z)

Θ(x)

)m]

x−1

= m

[(Θ(x+ z)

Θ(x)

)m]

x−2

.

Applying Lemma 8.4.3 with k = 2 and f = xΘ(x+z)
Θ(x) yields the desired result.

8.5 A second differential equation

Recall the two defining properties of the series ϕm,n:

• the differential equation: Dτϕm,n = mnϕm ϕn F + (Dτϕm)(Dτϕn);

• the vanishing of the constant term: ϕm,n = O(q).

The goal of this section is to first prove that ϕm,n are quasi-Jacobi forms (Theo-
rem 8.1.5).

Polynomiality

We first recall the following.

Proposition 8.5.1. If m 6= −n then we have

ϕm,n =
m

m+ n
ϕmDτ (ϕn) +

n

m+ n
Dτ (ϕm)ϕn .

Proof. The differential equation follows from the defining differential equation (8.2)
satisfied by ϕm. The vanishing of the constant term is observed directly.

By definition and the polynomiality of ϕm the series ϕm,n is a power series in z
and q with coefficients which are polynomials in m and n. In order to strengthen this
statement, the following lemma is useful.
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Lemma 8.5.2. Let f(u, v) be a polynomial in variables u, v and let F (u) be the
unique polynomial such that ∀n ≥ 1 : F (n) =

∑n−1
j=0 f(j, n− j). Then

F (−n) = −
n∑

j=1

f(−j,−n+ j).

Proof. For all m ∈ Z, n > 0 define

G(m,n) =
n−1∑

j=0

f(j,m− j).

This agrees with a unique polynomial P (m,n). Now extend G to all m,n ∈ Z by
setting G(m, 0) = 0 and

G(m,n) = −
−n∑

j=1

G(−j,m+ j)

for all m ∈ Z, n < 0. We then have that G(m,n + 1) − G(m,n) = f(n,m − n)
is a polynomial for all m,n. But P (m,n+ 1)− P (m,n) is also a polynomial. The
two polynomials agree for n > 0, so they agree for all n; since G and P also agree
for n > 0, this means that they must also agree for all n.

The lemma now follows, since it is just saying that

F (−n) = P (−n,−n) = G(−n,−n).

We now use Proposition 8.5.1 to prove a stronger statement.

Proposition 8.5.3. There exist polynomials Pr(u, v) of degree at most r in the vari-
ables u, v with as coefficients quasi-modular forms of weight r, such that for all
m,n ∈ Z

ϕm,n =
∑

r>0

zr Pr(m,n).

Moreover, the polynomials Pr(u, v) are divisible by both u2 and v2.

Proof. By the defining differential equation (8.6) and the polynomiality of ϕm there
exist polynomials Pa,r(u, v) of degree r + 2 with rational coefficients such that

ϕm,n(z) =
∑

r>0

zr
∑

a≥1

qa Pa,r(m,n)

for all m,n ∈ Z. Here we have r > 0 since ϕm(0) = 0 for all m.
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On the other hand by Proposition 8.5.1 for all m,n ∈ Z with m 6= −n we have

ϕm,n(z) =
∑

r>0

zr
1

m+ n

∑

k+`=r

(
nDτ (Pk(m))P`(n) +mPk(m)Dτ (P`(n))

)

where Pk(u) are the polynomials of Proposition 8.3.1. Since the inner sum vanishes
when setting m = −n and it is polynomial of degree at most r + 1 in m,n, there
exists a polynomial Pr(u, v) of degree at most r with coefficients in M̃r such that

ϕm,n(z) =
∑

r>0

zr Pr(m,n)

whenever m 6= −n.
The equality of polynomials

∑

a≥1

qa Pa,r(u, v) = Pr(u, v)

holds after evaluating (u, v) at (m,n) for all integers m 6= −n. Hence the equality
holds as an equality of polynomials.

The last statement follows since nDτ (Pk(m))P`(n) + mPk(m)Dτ (P`(n)) is
divisible by both m2 and n2, hence the same holds for the term obtained by dividing
by m+ n.

Example 8.5.4. The first terms in the Fourier and Taylor expansions of ϕm,n are

ϕm,n = −mn(sm − s−m)(sn − s−n)(s− s−1)2q +O(q2)

where s = eπiz , and

ϕu,v(z) =
(
(2G2

2 − 5
6G4)u2v2

)
z4 +

+
(

(−4
3G

3
2 + 2

3G2G4 − 7
720G6)(u4v2 + u2v4) +

+ (−2
3G

3
2 + 1

6G2G4 + 7
720G6)u3v3 +

+ (−2
3G

3
2 + 5

6G2G4 − 7
144G6)u2v2

)
z6 + O(z7).

Holomorphic anomaly equations

From Proposition 8.5.1 we can deduce for all m 6= −n the following anomaly equa-
tion:
∂

∂A
ϕm,n =

n

m+ n

(
Dz(ϕm)ϕn +Dτ (

∂

∂A
ϕm)ϕn +Dτ (ϕm)

∂

∂A
ϕn
)

+

m

m+ n

(
ϕmDz(ϕn) + (

∂

∂A
ϕm)Dτ (ϕn) + ϕmDτ

∂

∂A
ϕn
)
.

(8.13)
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By the anomaly equation for ϕm this gives an expression for ∂
∂Aϕm,n whenever

m 6= −n.
In case m,n > 0 we can find a more efficient equation:

Proposition 8.5.5. For all m,n > 0,

∂

∂A
ϕm,n =

mn

m+ n
ϕm+n +

m−1∑

j=1

m

j
ϕm−j,n ϕj +

n−1∑

j=1

n

j
ϕm,n−j ϕj (8.14)

Proof of Proposition 8.5.5 and Proposition 8.1.6. We prove that the right-hand side
in (8.14) is equal to the right-hand side in (8.13). By the anomaly equation for ϕm
and comparing terms it is equivalent to prove the following equation for allm,n ≥ 1
(which is the statement of Proposition 8.1.6):

ϕm+n =
1

m
Dz(ϕm)ϕn +

1

n
ϕmDz(ϕn) +

∑

i+j=m

1

i
ϕi,n ϕj +

∑

i+j=n

1

i
ϕi,m ϕj .

(8.15)

We multiply both sides with xmyn and sum over all m,n ≥ 1. Write g(x) =∑
m≥1 x

mϕm/m and

h(x, y) = Dxg(x) ·Dτg(y) + Dτg(x) ·Dyg(y).

Then, the equation becomes

y Dxg(x)− xDyg(y)

x− y =Dzg(x) ·Dyg(y) +Dxg(x) ·Dzg(y) + (8.16)

+
(
(Dx +Dy)

−1Dyh(x, y)
)
Dxg(x) +

+
(
(Dx +Dy)

−1Dxh(x, y)
)
Dyg(y),

where (Dx + Dy)
−1 acts term-wise by multiplying the coefficient of xmyn by the

factor (m + n)−1 (this is well defined since both m,n are positive for all non-zero
coefficients) and we have used

(Dx +Dy)
∑

m,n≥1

ϕm,n
m

xmyn = Dyh(x, y).

Rewriting Dy = (Dx +Dy)−Dx we have

(Dx +Dy)
−1Dyh = h− (Dx +Dy)

−1Dxh.
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Inserting this the (Dx+Dy)
−1 term factors out and we obtain that (8.16) is equivalent

to

Dxh = (Dx +Dy)

(
1

Dyg(y)−Dxg(x)
·

(yDxg(x)− xDyg(y)

x− y −Dzg(x) ·Dyg(y) +Dxg(x) ·Dzg(y)
))

.

Expanding and using that (Dx + Dy)(y/(x − y)) = 0 this is equivalent to the van-
ishing of
(
D2
xg(x)Dyg(y)−Dxg(x)D2

yg(y)
)

(1 +Dzg(x) +Dzg(y) + h) + (8.17)

(Dyg(y)−Dxg(x))
(
Dz

(
Dxg(x)Dyg(y)

)
+Dxg(x)Dy(h) +Dyg(y)Dxh

)
.

We consider again the function f(x) = Θ(x+z)
Θ(x) and apply the variable change

x =
1

f(x̃)
, y =

1

f(ỹ)
⇐⇒ x̃ = g(x), ỹ = g(y).

Let us denote f ′(x) = d
dxf(x). We then have the transformations

Dxg(x) = − f
f ′
, D2

xg(x) = − f
f ′
· f
′′f − (f ′)2

(f ′)2
,

Dzg(x) = −Dzf

f
, DxDzg(x) = − f

f ′
· f
′′Dz(f)− f ′Dz(f

′)
(f ′)2

,

Dτg(x) = −Dτf

f ′
, DxDτg(x) = − f

f ′
· f
′′Dτ (f)− f ′Dτ (f ′)

(f ′)2
,

where on the right-hand side we have omitted the argument x̃ in f and its derivatives.
After changing variables and clearing denominators we find that the vanishing

of (8.17) is equivalent to

B(x, y)C(x, y) +
(
f(x)f ′(y)− f ′(x)f(y)

)
·D(x, y) = 0, (8.18)

where we have written x, y for x̃, ỹ and

B(x, y) = f ′′(x) f(x) f ′(y)2 − f ′′(y) f(y) f ′(x)2,

C(x, y) = f ′(x) f ′(y)−Dzf(x) f ′(y)− f ′(x)Dzf(y) +

+ f(x)Dτf(y) +Dτf(x) f(y),

D(x, y) =
(
f ′′(x)Dzf(x)− f ′(x)Dzf

′(x)
)
f ′(y)2 +
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+
(
f ′′(y)Dzf(y)− f ′(y)Dzf

′(y)
)
f ′(x)2 +

−
(
f ′′(x) f(x)− f ′(x)2

)
f ′(y)Dτf(y) +

−
(
f ′′(x)Dτf(x)− f ′(x)Dτf

′(x)
)
f(y)f ′(y) +

−
(
f ′′(y) f(y)− f ′(y)2

)
f ′(x)Dτf(x) +

−
(
f ′′(y)Dτf(y)− f ′(y)Dτf

′(y)
)
f(x)f ′(x).

Let F(x, y, z, τ) be the left-hand side of (8.18). We need to show that F = 0.
We will argue as in the proof of Theorem 8.1.2. Since it is a polynomial in deriva-
tives of Jacobi forms the function F is a quasi-Jacobi form of the three elliptic vari-
ables x, y, z. It is of weight 6 and index Q(x, y, z) = 3

2(2x + 2y + z)z. A quick
check using the commutation relations in Remark 5.7.3 shows that in the algebra of
such quasi-Jacobi forms we have

∂

∂G2
F =

∂

∂A(x)
F =

∂

∂A(y)
F = 0.

By a direct check (e.g., using a computer) F has no poles at y = 0 and vanishes to
order 3 at y = −z. Hence the ratio

F(x, y)

f(x)3f(y)3
,

is holomorphic in y and of index Q(x, y, z) = −3
2z

2. Hence, it is also 2-periodic
(in x and y). There, it is constant in y. But F is symmetric in x and y, so it is also
constant in x. By checking that the constant term vanishes we are done.

Remark 8.5.6. By Proposition 8.5.1 for allm,n > 0 the function ϕm,n is determined
by ϕm and ϕn . Hence (8.15) yields recursive formulas for ϕm , and hence provides
an alternative definition of the set of functions ϕm starting from the initial condition
ϕ1 = Θ(z). For example, the case (n, 1) yields

ϕn+1 = Dz(ϕ1)ϕn +
1

n
ϕ1Dz(ϕn) +

n−1∑

i=1

1

i
ϕi,1 ϕn−i . 4

Proof of Theorem 8.1.5

Write J̃k,m for the space of holomorphic quasi-Jacobi forms of weight k and indexm,
which is the subspace of holomorphic functions in C[A,℘, ℘′, G2, G4,Θ], see (5.16).
We need to show that for all n ≥ 1 we have

ϕn,−n − n ∈ J̃0,n .



172 A Kaneko–Zagier equation for quasi-Jacobi forms

The idea of the proof is to consider the two expressions for ∂
∂Aϕm,n for positivem,n

given by (8.13) and (8.14). These terms are equal for m > 0, and (with minor
modifications) they have natural extensions to m ≤ 0. We will observe that these
extensions are both polynomial in m (when fixing n) up to the same non-polynomial
correction term. Hence they are equal for all m.

Concretely, let n > 0 be fixed and let R(m,n) be the right-hand side of (8.13).
Then by Corollary 8.4.2 the sum of R(m,n) and

−mz δm<0

( n

m+ n
Dτ (ϕm)ϕn +

m

m+ n
ϕmDτ (ϕn)

)
= −mz δm<0 ϕm,n

is polynomial in m. We write

R̃(m,n) = R(m,n) − mz ϕm,n δm<0

to denote this polynomial function.
We now consider the right-hand side of (8.14) and we want to make sense of it

for negative m. For all m ≥ 0, with m 6= n in the second line, define

S(m,n) :=
mn

m+ n
ϕm+n +

m−1∑

j=1

m

j
ϕm−j,n ϕj +

n−1∑

j=1

n

j
ϕm,n−j ϕj

S(−m,n) :=
−mn
−m+ n

ϕ−m+n +

m−1∑

j=1

m

j
ϕ−m+j,n ϕj +

n−1∑

j=1

n

j
ϕ−m,n−j ϕj .

By a direct application of Lemma 8.5.2 the sum

S̃(m,n) = S(m,n)− mz ϕm,n δm<0

is polynomial in m.
By Proposition 8.5.5 we have R(m,n) = S(m,n), hence R̃(m,n) = S̃(m,n)

for all m > 0. By polynomiality in m we get R̃(m,n) = S̃(m,n) for all m 6= −n.
Thus

∀m 6= −n : R(m,n) = S(m,n). (8.19)

We specialise (8.19) to m = −n− 1. Since

S(−n− 1, n) = −(n+ 1)nϕ1 + (n+ 1)ϕ−n,n ϕ1 +

+

n∑

j=2

n+ 1

j
ϕ−(n+1)+j,n ϕj +

n−1∑

j=1

n

j
ϕ−(n+1),n−j ϕj
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and ϕ1 = Θ, Equation 8.19 yields

ϕ−n,n − n =
1

(n+ 1)Θ

(
R(−n− 1, n)−

n∑

j=2

n+ 1

j
ϕ−(n+1)+j,n ϕj −

n−1∑

j=1

n

j
ϕ−(n+1),n−j ϕj

)
.

The term in the bracket on the right lies in J̃−1,n+1/2 by inspection. Moreover, again
by inspection it vanishes at z = 0. Hence it must be divisible by Θ(z) in the algebra
of quasi-Jacobi forms. This gives ϕ−n,n − n ∈ J̃0,n .

Remark 8.5.7. The proof yields more information. For m 6= −n we have ∂
∂Aϕm,n =

R(m,n) by (8.13). Using that R(m,n) = S(m,n) we find the anomaly equation

∂

∂A
ϕ−m,n =

−mn
−m+ n

ϕ−m+n +
m−1∑

j=1

m

j
ϕ−m+j,n ϕj +

n−1∑

j=1

n

j
ϕ−m,n−j ϕj

for all m 6= −n. 4

8.6 Holomorphic anomaly equations II

We finally derive the precise quasi-Jacobi properties of the functions ϕm,n in terms
of holomorphic anomaly equations.

Proposition 8.6.1. For all m,n ∈ Z we have

(a)
∂

∂G2
ϕm,n = 2ϕm ϕn .

(b)
∂

∂A
ϕm,n =

mn

m+ n
ϕm+n +

∑

i+j=m

|m|
j
ϕi,n ϕj +

∑

i+j=n

|n|
j
ϕm,i ϕj .

In (b) we have the convention that the first term vanishes if m+ n = 0 and that in a
sum with condition i + j = ` (for ` = m or ` = n) we sum over all positive i, j if `
is positive, and over all negative i, j if ` is negative.

Proof. Part (a) follows from the defining differential equation (8.6) by applying ∂
∂G2

.
In part (b) by Proposition 8.5.5 and Remark 8.5.7 we only need to prove the case
m = −n. For that we restrict ourself to the region m < 0 and n > 0. Applying ∂

∂A
to (8.6) yields

Dzϕm,n +Dτ
∂

∂A
ϕm,n =

∂

∂A
(mnϕm ϕn F + (Dτϕm)(Dτϕn)) .
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The right-hand side and the first term on the left-hand side are polynomial inm and n
(in the considered region). Hence ∂

∂Aϕm,n is polynomial in m,n up to a constant
in q.2 Let

T (m,n) =
m · n
m+ n

ϕm+n +
∑

i+j=m

|m|
j
ϕi,n ϕj +

∑

i+j=n

|n|
j
ϕm,i ϕj

for all m 6= −n in the region. Using that ϕm and ϕm,n are polynomials in m and n,
the function T (m,n) uniquely extends to m = −n. We already know T (m,n) =
∂
∂Aϕm,n for all m 6= −n so by the polynomiality of ∂

∂Aϕm,n we get for all m,n in
the region

T (m,n) =
∂

∂A
ϕm,n + cm,n(z)

for some cm,n(z) which does not depend on q. Specializing to m = −n we see

∂

∂A
ϕ−n,n + c−n,n(z) = T (−n, n) = −n2z +

∑

i+j=−n

n

j
ϕi,nϕj +

∑

i+j=n

n

j
ϕ−n,iϕj .

But ∂
∂Aϕ−n,n is homogeneous as a quasi-Jacobi form of weight −1 and index n.

Hence the constant terms in q on both sides must match up and so as desired

∂

∂A
ϕ−n,n =

∑

i+j=−n

n

j
ϕi,nϕj +

∑

i+j=n

n

j
ϕ−n,iϕj .

Remark 8.6.2. Once we know that ϕn,−n is quasi-Jacobi and know itsA-derivative it
is not difficult to derive a recursive formula for it (ignoring that we already obtained
a formula in the proof of Theorem 8.1.5). Indeed, consider the defining differential
equation

Dτϕm,n = mnϕm ϕnF + (Dτϕm)(Dτϕn).

Applying ∂
∂A twice and using the commutation relations we get

(|m|+ |n|)ϕm,n + 2Dz
∂

∂A
ϕm,n + Dτ

( ∂

∂A

)2
ϕm,n =

( ∂

∂A

)2(
mnϕm ϕnF + (Dτϕm)(Dτϕn)

)
.

Since ( ∂
∂A)iϕm,n is determined recursively from functions indexed by m′, n′ with

m′ + n′ < m+ n, this yields one more formula for ϕm,n . 4
2There is a small subtlety here since at first it only follows that ∂

∂A
ϕm,n is a power series in z, q

whose coefficients are polynomial in m,n. But then ∂
∂A
ϕm,n is a quasi-Jacobi form for every m,n so

that it actually has to be a power series in z with coefficients which are polynomials with coefficients
quasi-modular forms (of determined weight).



The classical Kaneko–Zagier equation 175

8.7 The classical Kaneko–Zagier equation

The differential equation introduced by Kaneko and Zagier [KZ98] can be charac-
terised among quadratic differential equations as those for which the solution space
is invariant under the modular transformation for the full modular group, so that it
is essentially unique [KK03]. If one however considers congruence subgroups, fur-
ther differential equations of the same type have been found by Kaneko and Koike
[KK04]. In this section we give a general construction which takes as input a mero-
morphic Jacobi form of weight −1 and gives as output a differential equation of
Kaneko–Zagier type. The two Kaneko–Zagier equations above and our case studied
in this chapter are all given by this construction. (A certain differential equation for
index 1 Jacobi forms was studied by Kiyuna [Kiy16] and was called a Kaneko–Zagier
type equation. However, since it is of fourth order it does not fit our framework.)

A general construction

A general recipe to construct Kaneko–Zagier type differential equations is as follows.
Let g be a meromorphic Jacobi form of weight−1 (e.g., g is a meromorphic modular
form of weight −1). Define

E =
Dτg

g
and H =

D2
τg

g
.

By construction E and H are meromorphic quasi-Jacobi forms. Observe that as g is
of weight−1, it follows that ∂

∂G2
H = 0. It is not necessarily true that ∂

∂AH vanishes.
For all m ≥ 1 we consider the differential equation

D2
τgm = m2H(τ) gm . (8.20)

To obtain the connection to the classical presentation, we set m = k + 1, and
consider

fk = gk+1/g
k+1,

which is of weight k. The corresponding differential equation for fk reads

D2
τfk + 2(k + 1)EDτfk + k(k + 1) (E2 −H) fk = 0.

For this choice of g (and hence of E), we define a modified Serre derivative θg on
quasi-Jacobi forms by

θg = Dτ + EW,

where the operator W multiplies a quasi-Jacobi form by its weight. The operator θg
is a derivation vanishing on g. Moreover, the above differential equation can be
rewritten as

θ2
gfk = HW (W + 2) fk . (8.21)
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We give several examples:

(0) In this chapter we considered the case g(z) = Θ(z) (which contains the cases
g = Θ(a) for any a ∈ Q)

(1) For the classical Kaneko–Zagier equation we let

g(τ) =
1

η(τ)2

and get H(τ) = E4(τ)/144. The operator θg is the Serre derivative.

(2) For the differential equation studied in [KK04] we take

g(τ) =
1

η(τ)η(2τ)

and get

E(τ) =
1

24
(E2(τ) + 2E2(2τ)), 26H(τ) =

1

5
(E4(τ) + 4E4(2τ)).

The operator θg matches the derivative operator of [KK04, Sec. 2]. Unpub-
lished work by Tomoaki Nakaya [Nak19, Section 3.5] shows that in this case

fk = Resz=0

(
Dz

Θ(2τ, 2z)

Θ(τ, z)2

)−(k+1)/2

is a solution of the differential equation (8.21) for all k ≥ 1.

Provided with these examples (and more in [Nak19]), a natural question we do
not answer in this thesis is the following.

Question 8.7.1. Does there exists a (natural) lift ψg of meromorphic modular forms g
of weight −1 such that

(i) gm = Resx=0 ψg(x)m solves the differential equation (8.20) given by g;

(ii) for some n ∈ Z the function ψng is a meromorphic Jacobi form?

Recursive construction of the solutions

Let fk and fl be two solutions of (8.21) of weight k and l respectively. We write

[f, h] := kθg(f)h− lfθg(h) = kDτ (f)h− lfDτ (h),

which specialises to the first Rankin-Cohen bracket on modular forms.
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Proposition 8.7.2. We have

θg[fk, fl] =
k − l
l + 2

[fk, θg(fl)],

θ2
g [fk, fl] = (k − l)(k − l − 2)H[fk, fl] + k(k − l)fk[fl, H].

Proof. This follows from a direct computation.

Corollary 8.7.3. Suppose that [fl, H] = 0. Then

[fk, fl]g
2l+4 and [fkg

2k+2, fl]g
−2k−2

are solutions of (8.21) of weight k − l − 2 and k + l + 2 respectively.

Hence if a function fl as in the corollary exists, then from any given solution we
can recursively write down solutions of (8.21) with weight in the same residue class
modulo l.

Example 8.7.4. For the classical Kaneko–Zagier equation we can take fl = E4.
Then indeed [fl, H] = 0, so that if fk is a solution we have that [fk, E4]/∆ is a
solution of weight k−6, and [fkη

−4k−4, E4]η4k+4 is a solution of weight k+6. The
first of these equations can also be found in [KK03, Proposition 1(i)].

Example 8.7.5. For the Kaneko–Zagier equation in Example (2) we can take fl =
2E2(2τ) − E2(τ). Then, indeed [fl, H] = 0, so solutions can be constructed 4-
periodically, compare also with [KK04].

Remark 8.7.6. For the differential equation of Example (0), considered in this chap-
ter, it turns out that the recursive structure described in Corollary 8.7.3 does not exist.
To see this, suppose (for our general family of Kaneko-Zagier equations) that there
exists a solution fl and that moreover we have [fl, H] = 0. Then the condition
[fl, H] = 0 is equivalent to

θgfl =
l

4

(
D3
τg

D2
τg

+ 3
Dτg

g

)
fl .

Applying θg to this equation and using the differential equation for the left-hand side,
we obtain

16(l + 2)
D2
τg

g
= 4

D4
τg

D2
τg

+ 12
D2
τg

g
+ (l − 4)

(
D3
τg

D2
τg

)2

+

+ 2(3l + 4)
D3
τg

D2
τg

Dτg

g
+ 3(3l + 4)

(
Dτg

g

)2

.
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For g = η−2 this equation is only satisfied if l = 4, and for g = (η(τ)η(2τ))−1 only
if l = 2. However, for g = Θ(z) this equation is never satisfied, so Corollary 8.7.3
cannot be applied. This points to a structural difference between the Kaneko–Zagier
equation in this chapter and the already existing Kaneko–Zagier equations, which,
like Question 8.7.1, is a possibly interesting topic. 4



APPENDIX A

Tables of functions on partitions and quasimodular
forms

A.1 Shifted symmetric harmonic polynomials up to weight 10

We list all harmonic polynomials hλ of even weight at most 10. The corresponding q-
brackets 〈hλ〉q are computed by the algorithm prescriped by Zagier [Zag16] using
SageMath [Sage17].

λ hλ 〈hλ〉q

() 1 1

(4) 27
4

(
Q2

2 + 2Q4

)
9

320
Q

(6) 225
4

(
63Q6 + 9Q2Q4 +Q3

2

)
− 55

384
R

(3, 3) 225
4

(
63Q2

3 − 108Q2Q4 + 2Q3
2

)
115
384

R

(8) 19845
16

(
3960Q8 + 360Q2Q6 + 20Q2

2Q4 +Q4
2

)
19173
4096

Q2

(5, 3) 19845
2

(
495Q3Q5 + 45Q2Q

2
3 − 1350Q2Q6 − 50Q2

2Q4 + 2Q4
2

)
− 2415

128
Q2

(4, 4) 297675
8

(
132Q2

4 + 24Q2Q
2
3 − 440Q2Q6 − 28Q2

2Q4 +Q4
2

)
− 38241

2048
Q2

(10) 382725
8

(
450450Q10 + 30030Q2Q8 + 1155Q2

2Q6 + 35Q3
2Q4 +Q5

2

)
− 2053485

4096
QR

(7, 3) 1913625
8

(
90090Q3Q7 + 6006Q2Q3Q5 − 336336Q2Q8+

+231Q2Q
2
3 − 12936Q2

2Q6 − 112Q3
2Q4 + 10Q5

2

)
11975985

4096
QR

(6, 4) 13395375
8

(
12870Q4Q6 + 1716Q2Q3Q5 + 858Q2Q

2
4 − 96096Q2Q8+

+132Q2
2Q

2
3 − 6501Q2

2Q6 − 89Q3
2Q4 + 5Q4

2

)
21255885

4096
QR

(5, 5) 8037225
4

(
10725Q2

5 + 1430Q2Q3Q5 + 1430Q2Q
2
4 − 10010Q2Q8+

+165Q2
2Q

2
3 − 7700Q2

2Q6 − 120Q3
2Q4 + 6Q5

2

)
7759395
1024

QR

(4, 3, 3) 13395375
8

(
12870Q2

3Q4 − 34320Q2Q3Q5 + 10296Q2Q
2
4+

+363Q2
2Q

2
3 + +55440Q2

2Q6 − 376Q3
2Q4 + 10Q5

2

)
− 16583805

4096
QR
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In case |λ| is odd the harmonic polynomials hλ up to weight 9 are given in the
following table. The q-bracket of odd degree (harmonic) polynomials is zero, hence
trivially modular.

λ hλ

(3) − 9
4
Q3

(5) − 135
4

(5Q5 +Q2Q3)

(7) − 14175
16

(
126Q7 + 14Q2Q5 +Q2

2Q3

)
(4, 3) − 99225

16

(
18Q3Q4 − 40Q2Q5 +Q2

2Q3

)
(9) − 297675

8

(
7722Q9 + 594Q2Q7 + 27Q2

2Q5 +Q3
2Q3

)
(6, 3) − 893025

4

(
1287Q3Q6 + 99Q2Q3Q4 − 4158Q2Q7 − 162Q2

2Q5 + 5Q3
2Q3

)
(5, 4) − 8037225

8

(
286Q4Q5 + 66Q2Q3Q4 − 1540Q2Q7 − 117Q2

2Q5 + 3Q3
2Q3

)
(3, 3, 3) − 893025

4

(
1287Q3

3 − 3564Q2Q3Q4 + 3240Q2
2Q5 + 10Q3

2Q3

)

A.2 Examples of quasimodular generating series of Hurwitz numbers

Next, we provide some examples of the quasimodular forms
∑

d h
g,d
k,l,m(µ) qd, com-

puted using SageMath [Sage17]. See [RY10, Section 10] for an extensive list of
quasimodular forms corresponding to simple Hurwitz numbers (l = m = 0, µ = ()).

Genus g = 2

∑
d

h2,d
2,0,0() qd =

1

26345

(
5P 3 − 3PQ− 2R

)
= 2q2 + 16q3 + 60q4 + 160q5 + 360q6 + 672q7 + 1240q8 + 1920q9 +O(q10)

∑
d

h2,d
0,2,0() qd =

1

27345

(
5P 3 − 3PQ− 2R+ 45P 2 + 18Q+ 90P − 153

)
= 2q2 + 13q3 + 44q4 + 109q5 + 235q6 + 422q7 + 760q8 + 1151q9 +O(q10)

∑
d

h2,d
0,0,2() qd =

1

27345

(
5P 3 − 3PQ− 2R− 45P 2 − 18Q− 90P + 153

)
= 3q3 + 16q4 + 51q5 + 125q6 + 250q7 + 480q8 + 769q9 +O(q10)
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Genus g = 3

∑
d

h3,d
2,0,0(3) qd

=
1

2133552

(
−875P 5 + 1775P 3Q− 10P 2R− 894PQ2 + 4QR+

750P 4 − 1710P 2Q+ 60PR+ 900Q2 + 135P 3 − 81PQ− 54R
)

= 36q3 + 540q4 + 3606q5 + 15726q6 + 53298q7 + 149142q8 + 367920q9 +O(q10)

∑
d

h3,d
0,2,0(3) qd

=
1

2143552

(
−875P 5 + 1775P 3Q− 10P 2R− 894PQ2 + 4QR+

− 2625P 4 − 630P 2Q+ 23460
7

PR+ 648
7
Q2

+ 2835P 3 + 1359PQ− 5814R+ 3150P 2 − 4608Q+ 7020P − 4131
)

= 27q3 + 369q4 + 2337q5 + 9795q6 + 32307q7 + 88446q8 + 214536q9 +O(q10)

∑
d

h3,d
0,0,2(3) qd

=
1

2143552

(
−875P 5 + 1775P 3Q− 10P 2R− 894PQ2 + 4QR+

+ 4125P 4 − 2790P 2Q+ 22620
7

PR+ 11952
7

Q2+

− 2565P 3 − 1521PQ+ 5706R− 3150P 2 + 4608Q− 7020P + 4131
)

= 9q3 + 171q4 + 1269q5 + 5931q6 + 20991q7 + 60696q8 + 153384q9 +O(q10)

A.3 Double moment functions up to weight 4

For all basis elements f ∈ T≤4 in the basis provided by Theorem 4.8.9, we com-
pute its representation in the basis consisting of double moment function and the
quantities 〈f〉u, 〈f〉q, D(f), d(f) andM(f).

Weight at most 2

f 1 T1,1 T0,2

〈f〉u 1 − 1
24

+
∑
m,r≥1mu

r
m − 1

24
+
∑
m,r≥1 ru

r
m

〈f〉q 1 G2 G2

D(f) 0 T2,2 T1,3

d(f) 0 − 1
2

− 1
2

M(f) 1 X1,1 − 1
24

X0,2 +X0,1 − 1
24
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Samenvatting

Het is lunchtijd! Terwijl jij jouw broodtrommeltje tevoorschijn haalt, komt Jan-
Willem aangelopen met een zak brood en een pot vol smeersel. Wat is dat voor
smeersel? Is het chocopasta? Of heeft hij vandaag weer pindakaas? ‘Je mag wel een
beetje proeven, hoor’, zegt hij wanneer hij je naar de pot ziet staren. ‘Het zijn de
laatste resultaten van mijn proefschrift.’ Je neemt een hapje. Het smaakt een beetje
als gekristalliseerde honing en ook als spekkoek; hij noemt het een quasimodulaire
vorm. ‘Zelfgemaakt,’ zegt hij trots. Nog voordat je hem een verdere vraag kan stel-
len, begint hij al te vertellen: ‘Je neemt een bepaalde hoeveelheid partities, een soort
tetris-chocoladerepen. Even kloppen met een speciaal soort garde—de q-haak—en...
tadaah: een quasimodulaire vorm! Vandaag is het E2, want ik had van elke partitie
evenveel gram als zijn eigen grootte genomen, maar ik had ook best een bepaalde
macht van alle delen kunnen nemen.’ ‘Eh, ik volg het niet helemaal’, onderbreekt
iemand anders hem. ‘Wat zijn dat voor ingrediënten, partities? En wat is nu precies
het recept?’ ‘Lekker is het in ieder geval wel,’ denk je. Hier wil je meer van (w)eten!

In dit proefschrift besturen we variaties op de Bloch–Okounkov stelling: een
soort recept om quasimodulaire vormen te maken uit partities. Een recept begint
altijd met een aantal ingrediënten, geeft vervolgens een bereidingswijze om tot een
resultaat te komen en sluit af met enkele variatietips. Evenzo begint deze samen-
vatting met het introduceren van partities, vervolgens definiëren we de q-haak en de
quasimodulaire vormen die we met dit recept bereiden. We sluiten af met enkele
variatietips, dat wil zeggen: de eigenlijke resultaten van dit proefschrift.
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Ingrediënten: partities

Een partitie is een manier om een geheel getal te schrijven als de som van positieve
gehele getallen. Zo is bijvoorbeeld 3 + 2 een partitie van 5. Alle partities van het
getal 5 zijn als volgt:

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Andere sommen zijn niet mogelijk, behalve dat we ook 2+3 zouden kunnen schrijven
in plaats van 3 + 2. We spreken af dat we dat we in zo’n geval 3 + 2 en 2 + 3 als
dezelfde partitie beschouwen, omdat de volgorde van de getallen in een som niet
uitmaakt. De ‘tetris-chocoladereep’, beter gezegd het Young diagram, die hoort bij
deze partitie is

,

want de eerste rij in dit diagram telt 3 hokjes en de tweede rij telt 2 hokjes. In het
algemeen construeer je het Young diagram van een partitie door de getallen in de
bijbehorende som door een rij van evenveel hokjes te vervangen; in het voorbeeld
van de partities van 5 hierboven krijg je dan:

.

Merk op dat het aantal hokjes in alle bovenstaande diagrammen gelijk is aan 5, dit
getal noemen we de grootte van een partitie.

De ingrediënten van ons recept zijn dus partities: niet alleen van 5, maar partities
van alle mogelijke gehele getallen. We moeten ook nog vertellen wat het gewicht is
van elke partitie voor het recept: het maakt namelijk heel veel uit of je een brood
bakt van 200 g bloem en 4 g zout of 4 g bloem en 200 g zout. Dat is precies waar dit
proefschrift over gaat: welke combinatie van gewichten zorgt er voor dat het recept
een (heerlijke) quasimodulaire vorm als uitkomst heeft? We geven twee voorbeelden
van ‘goede’ gewichten.

Het recept van het smeersel in het begin nam 5 gram van elke bovenstaande
partitie van het getal 5. Dat was echter niet alles, ook van de partities van 6 (probeer
die eens zelf te tekenen – het zijn er 11) werd van elk 6 gram genomen, etc. In andere
woorden: van elke partitie van een geheel getal n werd precies n gram genomen.
Oftewel, het gewicht van elke partitie is gelijk aan de grootte van die partitie, in
wiskundige notatie: g(λ) = λ1 + λ2 + . . . λr, waar g het gewicht is van een partitie
λ = λ1 + λ2 + . . .+ λr bestaande uit r delen.
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Een tweede, iets ingewikkelder recept is als volgt. Neem als gewichtsfunctie

g(λ) =
∑

i

(
(λi − i+ 1

2)2 − (−i+ 1
2)2
)
.

Hoeveel gewicht nemen we dan van de partitie λ = 3 + 2? Nou,

g(3 + 2) = (3− 1 + 1
2)2 − (−1 + 1

2)2 + (2− 1 + 1
2)2 − (−2 + 1

2)2 = 6

gram. Het is precies deze gewichtsfunctie, alsmede combinaties waar het kwadraat
is vervangen door een andere macht, die gebruikt worden in het recept van de Bloch–
Okounkov stelling.

Opmerking. Bij het tellen van zogenaamde overdekkingen van twee-dimensionale
meetkundige objecten (oppervlakken) stuiten wiskundigen als vanzelf op bepaalde
hoeveelheden partities. Dit soort tellingen begon met het werk van de wiskundige
Hurwitz aan het einde van de 19e eeuw en vormt een groot onderzoeksgebied in de
huidige wiskunde en natuurkunde. Ook dit proefschrift bevat enkele resulten over
zulke vragen, maar daar zal ik in deze korte samenvatting niet op ingaan. Mocht
het dus moeilijk zijn om aan de ingrediënten te komen, vraag dan een aftellende
meetkundige of hij nog wat partities heeft!

Bereidingswijze: de q-haak

Neem dus g(λ) gram van elke partitie λ, waarbij g een gewichtsfunctie is. Net als
bij de bereiding van spekkoek maken we de quasimodulaire vorm laag voor laag. In
principe wordt elke laag gevormd door partities van een vaste grootte: de vijfde laag
wordt gemaakt door alle partities van grootte 5 samen te nemen. Echter, helemaal
gescheiden zijn deze lagen niet: ook de eerste, tweede, derde en vierde laag laten
hun sporen na op de vijfde laag. Wiskundigen noemen het resultaat van dit proces de
q-haak van g en schrijven dit als

∑∞
n=1

∑
λ`n g(λ) qn∑∞

n=1

∑
λ`n q

n
. (A.1)

Hier betekent
∑

λ`n g(λ) dat we alle partities van het getal n samen nemen, en qn

geeft aan dat we bezig zijn met de n-de laag (dat wil zeggen, de n-de Fourier coëffi-
ciënt). De noemer van deze uitdrukking zorgt voor het effect van het sporen nalaten
van lagere lagen in de hogere. Deze noemer

∑∞
n=1

∑
λ`n q

n is de telfunctie van
partities:

∞∑

n=1

∑

λ`n
qn = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + . . .
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Het getal 7 staat hierin voor de 7 partities van 5, hierboven opgesomd, en hetzelfde
geldt voor voor de andere coefficiënten. De wiskundige Euler heeft in de 18e eeuw
al een gesloten formule gegeven voor deze reeks. Je zou dus kunnen zeggen dat de
resultaten in dit proefschrift die gaan over de breuk (A.1) een verfijning gegeven van
een welbekende formule van Euler.

Opmerking. De breuk (A.1) kunnen we ook interpreteren als de door de natuurkun-
digen Maxwell and Boltzmann in de 19e eeuw geïntroduceerde toestandsom van een
meetbare grootheid g in een systeem. In dat geval is λ een van de vele microstaten,
het getal n de bijbehorende energie en het getal q een functie van de temperatuur.
Deze toestandsom geeft alle macroscopische informatie over het systeem, bijvoor-
beeld het volume en de druk.

Resultaat: een quasimodulaire vorm

De quasimodulaire vorm die volgens bovenstaand recept is verkregen kan men
zoals hierboven visualiseren1. Het is duidelijk dat quasimodulaire vormen een op-
merkelijk symmetrie bezitten! Deze doet denken aan de kristalstructuur van ho-
ning, de regelmatige structuur van een bijenraat, en ook het werk Hemel en hel van
M. C. Escher.

Daarnaast voelen quasimodulaire vormen glad aan, zonder enige randjes of on-
effenheden (dat wil zeggen, ze zijn holomorf ). Deze ‘gladheid’ en symmetrie zijn de
belangrijkste zichtbare eigenschappen van quasimodulaire vormen als functie, waar-
uit nog twee andere belangrijke eigenschappen te herleiden zijn:

(i) Quasimodulaire vormen kan je bij elkaar optellen, aftrekken en met elkaar
vermenigvuldigen. Het resultaat is dan een nieuwe quasimodulaire vorm.

1zie [LD20] voor hoe men deze afbeeldingen maakt en wat ze precies weergeven.
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Bovendien kan je quasimodulaire vormen differentiëren, ook dan is het re-
sultaat een quasimodulaire vorm.

(ii) Er zijn betrekkelijk weinig quasimodulaire vormen. Alle quasimodulaire vor-
men zijn namelijk een combinatie van drie ‘bouwstenen’, die weG2, G4 enG6

noemen. Het grote voordeel hiervan is dat we quasimodulaire vormen heel
makkelijk kunnen herkennen en dat we hun eigenschappen heel goed begrij-
pen. Het nadeel hiervan is dat als je een kleine fout maakt in de gewichten
van partities in het bereidingsproces het resultaat geen quasimodulaire vorm
meer is.

Variatietips, ofwel de resultaten in dit proefschrift

De belangrijkste resultaten in dit proefschrift zijn de antwoorden op de vragen in
Sectie 1.6. We zouden deze vragen als volgt kunnen parafraseren:

(1) Zoals gezegd kan je quasimodulaire vormen met elkaar vermenigvuldigen,
maar het is zelfs zo dat je de recepten van Bloch en Okounkov met elkaar
kan vermenigvuldigen (door de gewichten van elke partitie in de recepten te
vermenigvuldigen). Bestaan er, naast de recepten van Bloch en Okounkov, nog
meer recepten van quasimodulaire vormen met deze eigenschap?

(2) Er zijn verschillende ‘niveaus’ van symmetrie voor quasimodulaire vormen.
Tot nu toe hebben we ons beperkt tot het geval met de meeste symmetrie.
Kunnen we ook recepten vinden waarbij de uitkomst iets minder symmetrie
heeft?

(3) Bestaan er ook recepten waarbij de uitkomst meer symmetrie oplevert? Im-
mers, sommige quasimodulaire vormen zijn in feite modulaire vormen (de
vormen die een combinatie zijn van G4 en G6 , zonder G2). Bestaat er een
manier om te voorspellen welke recepten modulaire vormen opleveren?

In dit proefschrift leggen we uit hoe en waarom het antwoord op deze drie vragen
‘ja’ is.
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