Jonas Kaszian

Mathematics Institute
University of Cologne
Weyertal 86-90
50931 Cologne
me Office: Gyrhofstr. 8b 0.5
Telephone: +49 (0)221 470 1886
Office hours: Tuesday, 10:00 - 11:00
E-mail: jkaszian AT math DOT uni-koeln DOT de

In 2019, I finished my PhD in mathematics under the supervision of Prof. Dr. Kathrin Bringmann at the University of Cologne. After spending two years at the Max-Planck-Institute for Mathematics in Bonn, I returned to the University of Cologne as a Postdoc in 2021. My main research interests are (mock) modular forms, indefinite theta functions and number theory in general.


Winter 2017/18: Seminar Asymptotische Entwicklungen

Summer 2017: Seminar Modulformen

Winter 2016/17: Seminar Mock-Theta-Funktionen

Summer 2016: Proseminar Erzeugende Funktionen

Summer 2016: Seminar L-Funktionen

Papers and Preprints

Generating functions of planar polygons from homological mirror symmetry of elliptic curves,
with Kathrin Bringmann and Jie Zhou, preprint.

Rank two false theta functions and Jacobi forms of negative matrix index,
with Kathrin Bringmann, Antun Milas and Sander Zwegers, Advances in Applied Mathematics,

Some examples of higher depth vector-valued quantum modular forms,
with Kathrin Bringmann and Antun Milas, accepted for publication in the proceedings of Ramanujan's 130th birthday conference in Ropar.

Vector-valued higher depth quantum modular forms and higher mordell integrals,
with Kathrin Bringmann and Antun Milas, Journal of Mathematical Analysis and Applications,

Higher depth quantum modular forms, multiple Eichler integrals, and $\mathfrak{sl}_3$ false theta functions,
with Kathrin Bringmann and Antun Milas, Research in the Mathematical Sciences (2019) 6: 20.

Indefinite theta functions arising in Gromov-Witten theory of elliptic orbifolds,
with Kathrin Bringmann and Larry Rolen, Cambridge Journal of Mathematics, 6 (2018), pages 25-57.

Periodic Structure of the Exponential Pseudorandom Number Generator,
with Pieter Moree and Igor E. Shparlinski, Applied Algebra and Number Theory, doi:10.1017/CBO9781139696456.