2. Übungsblatt zur VL "Mathematische Statistik"

Abgabe: 18.04.2011, 09.45 - 10.00 Uhr in SR II

Aufgabe 4 (mündlich) [Suffizienz]

Ist $T: (\mathcal{X}, \mathcal{B}) \to (\mathcal{T}, \mathcal{D})$ eine suffiziente Statistik für \mathcal{P}^X und $g: (\mathcal{T}, \mathcal{D}) \to (\widetilde{\mathcal{T}}, \widetilde{\mathcal{D}})$ derart, dass $g^{-1}(\widetilde{\mathcal{D}}) = \mathcal{D}$ gilt, so ist auch $\widetilde{T} = g \circ T$ suffizient für \mathcal{P}^X .

Aufgabe 5 (4 Punkte) [Exponential familien, Regularitätseigenschaften]

Gegeben sei eine einparametrige Exponentialfamilie in natürlicher Parametrisierung, d.h. mit ν -Dichten

$$\frac{dP_{\gamma}^{X}}{d\nu}(x) = c(\gamma) \exp \left\{ \gamma T(x) \right\} \quad \nu - \text{f.\"{u}}.$$

Sei γ_0 ein innerer Punkt von $\widetilde{\Gamma}$. Zeigen Sie, dass in einer Umgebung des Nullpunkts gilt:

$$M_{\gamma_0}(s) = E_{\gamma_0} e^{sT(X)} = \frac{c(\gamma_0)}{c(\gamma_0 + s)}.$$

Aufgabe 6 (4 Punkte) [Suffizienz]

Seien X und Y unabhängige, π_{λ} -verteilte Zufallsvariablen mit $\lambda > 0$. Zeigen Sie, dass die Statistik T(X,Y) = X + Y suffizient ist für λ .

Aufgabe 7 (4 Punkte) [Neyman-Kriterium]

Sei $f: \mathbb{R} \to \mathbb{R}_+$ eine W-Dichte bzgl. λ^1 . Für alle $a, b \in \mathbb{R}$, a < b, existiere c(a, b), so dass

$$f_{a,b}(x) = c(a,b)f(x)I_{[a,b]}(x), \quad x \in \mathbb{R},$$

wieder eine W-Dichte ist. Zeigen Sie:

Sind die Zufallsvariablen X_1, \dots, X_n i.i.d. mit Dichte $f_{a,b}$ und setzt man $X^{(1)} := \min_{i=1,\dots,n} X_i$ und $X^{(2)} := \max_{i=1,\dots,n} X_i$, so ist

$$T(X) = T(X_1, \dots, X_n) = (X^{(1)}, X^{(2)})$$

eine suffiziente Statistik für

$$\mathcal{P}^X = \mathcal{P}^{X_1, \dots, X_n} = \{ \bigotimes_{i=1}^n f_{a,b} \lambda^1 \mid a, b \in \mathbb{R}, a < b \}.$$