5. Übungsblatt zur VL "Mathematische Statistik"

Abgabe: 09.05.2011, 9.45 - 10.00 Uhr, in Seminarraum II des MI

Aufgabe 16 (mündlich) [UMP-Test]

 X_1, \ldots, X_n seien i.i.d. exponentialverteilte Zufallsvariablen mit Erwartungswert $\lambda > 0$. Bestimmen Sie (ohne Benutzung von Satz 8.1 der Vorlesung) einen UMP-Test für $H: \lambda \geq \lambda_0$ gegen $K: \lambda < \lambda_0 \ (\lambda_0 > 0)$.

Aufgabe 17 (4 Punkte) [Maximum-Likelihood-Schätzer, Randmaxima]

 X_1, \ldots, X_n seien unabhängige, $N(\vartheta, 1)$ -verteilte Zufallsvariablen, wobei $\vartheta \in \mathbb{R}_+$. Bestimmen Sie den Maximum-Likelihood-Schätzer $\hat{\vartheta}_n$ für ϑ und zeigen Sie, dass $\sqrt{n} \left(\hat{\vartheta}_n - \vartheta \right)$ im Allgemeinen nicht asymptotisch normalverteilt ist.

Aufgabe 18 (4 Punkte) [Cramér-Rao-Schranke]

Sei $\mathcal{P}^X = \{ P_{\vartheta}^X = f_{\vartheta}(x)\mu : \vartheta \in \Theta \subset \mathbb{R} \}, \Theta \text{ offen, mit}$

- (i) $\frac{\partial}{\partial \vartheta} f_{\vartheta}(x)$ messbar μ -f.ü. $\forall \vartheta \in \Theta$;
- (ii) $\frac{\partial}{\partial \vartheta} \log f_{\vartheta}(x)$ messbar μ -f.ü. $\forall \vartheta \in \Theta$;
- (iii) $0 < E_{\vartheta} \left(\frac{\partial}{\partial \vartheta} \log f_{\vartheta}(X) \right)^2 < \infty \quad \forall \, \vartheta \in \Theta;$
- (iv) $\frac{\partial}{\partial \vartheta} \int f_{\vartheta}(x) \mu(dx) = \int \frac{\partial}{\partial \vartheta} f_{\vartheta}(x) \mu(dx) \quad \forall \vartheta \in \Theta$.

Ferner sei $\gamma = \gamma(\vartheta)$ differenzierbar und d = d(X) ein erwartungstreuer Schätzer für $\gamma = \gamma(\vartheta)$ mit

(v)
$$\frac{\partial}{\partial \vartheta} \int d(x) f_{\vartheta}(x) \mu(dx) = \int d(x) \frac{\partial}{\partial \vartheta} f_{\vartheta}(x) \mu(dx) \quad \forall \vartheta \in \Theta.$$

Zeigen Sie:

a)

$$\operatorname{Var}(d(X)) \ge \frac{(\gamma'(\vartheta))^2}{E_{\vartheta}\left(\frac{\partial}{\partial \vartheta}\log f_{\vartheta}(X)\right)^2}.$$

b) Falls die untere Varianzschranke angenommen wird, so gilt

$$d(X) = \gamma(\vartheta) + \frac{(\gamma'(\vartheta))^2}{E_{\vartheta} \left(\frac{\partial}{\partial \vartheta} \log f_{\vartheta}(X)\right)^2} \frac{\partial}{\partial \vartheta} \log f_{\vartheta}(X) \quad P_{\vartheta}\text{-f.s.}$$

Aufgabe 19 (4 Punkte) [Neyman-Pearson-Ansatz]

Für $n \in \mathbb{N}$ sei $P_{\vartheta}(N=n) = (1-\vartheta)^{n-1}\vartheta$. Geben Sie einen UMP-Test zum Niveau $\alpha = 0.05$ für $H: \vartheta = \frac{1}{2}$ gegen $K: \vartheta = \frac{1}{4}$ an. Wie entscheiden Sie sich bei beobachtetem N=5? Berechnen Sie die Güte des Tests.