2. Übungsblatt zur Vorlesung "Stochastische Prozesse"

Abgabe: Montag, 16.04.2012, 9.50 Uhr, in Seminarraum 2

Aufgabe 2.1 (mündlich) [Filtration]

Sei $X = \{X_t\}_{t\geq 0}$ ein stochastischer Prozess, dessen Pfade rechtsstetig sind und linksseitige Limiten besitzen (cadlag). Zeigen Sie, dass das Ereignis $\{X \text{ ist stetig auf } [0, t_0)\}$ in $\mathcal{F}_{t_0}^X$ liegt, wobei $\{\mathcal{F}_t^X\}_{t\geq 0}$ die kanonische Filtration des Prozesses bezeichnet.

Aufgabe 2.2 (4 Punkte) [symmetrische Irrfahrt]

Sei X_0 eine ZV mit Werten in \mathbb{Z} . Sei weiter $\{Z_n\}_{n\in\mathbb{N}}$ eine Folge von i.i.d. ZV, unabhängig von X_0 , mit

$$P(Z_n = \pm 1) = \frac{1}{2}, \quad n \in \mathbb{N}.$$

Zeigen Sie, dass der Prozess $\{X_n\}_{n\in\mathbb{N}_0}$, gegeben durch

$$X_{n+1} = X_n + Z_{n+1}, \quad n \in \mathbb{N}_0,$$

eine homogene Markov-Kette ist, die keine stationäre Verteilung besitzt.

Hinweis: Eine stationäre Verteilung π erfüllt die Bedingung $\pi^T = \pi^T \mathbb{P}$, wobei \mathbb{P} die Übergangsmatrix der Markov-Kette bezeichnet.

Aufgabe 2.3 (4 Punkte) [Übergangswahrscheinlichkeiten]

Sei $X = \{X_t\}_{t\geq 0}$ ein Markov-Prozess auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit Zustandsraum $(\mathbb{R}, \mathcal{B})$ und Übergangswahrscheinlichkeiten $P_s(x, C)$, $s \geq 0$, $x \in \mathbb{R}$, $C \in \mathcal{B}$. Ferner bezeichne $B(\mathbb{R})$ den Banach-Raum der beschränkten, Borel-messbaren, reellwertigen Funktionen auf \mathbb{R} . Zeigen Sie die Äquivalenz der beiden folgenden Aussagen:

(i)
$$P(X_{t+s} \in C | \mathcal{F}_t^X) = P_s(X_t, C)$$
 P-f.s. für alle $s, t \ge 0$ und $C \in \mathcal{B}$;

(ii)
$$E\left(f(X_{t+s})|\mathcal{F}_t^X\right) = \int f(y)P_s(X_t, dy)$$
 P-f.s. für alle $s, t \ge 0$ und $f \in B(\mathbb{R})$,

wobei $\{\mathcal{F}^X_t\}_{t\geq 0}$ die kanonische Filtration des Prozesses bezeichnet.