6. Übungsblatt zur Vorlesung "Stochastische Prozesse"

Abgabe: Montag, 14.05.2012, 9.50 Uhr, in Seminarraum 2

Aufgabe 6.1 (mündlich) [Hölder-Stetigkeit]

Sei $f:I\to\mathbb{R}$ eine auf einem kompakten Intervall $I\subset\mathbb{R}$ von der Ordnung $\gamma>0$ lokal Hölder-stetige Funktion. Zeigen Sie die Existenz reeller Zahlen $\delta,C>0$, für die gilt

$$\sup_{s,t \in I, |s-t| < \delta} |f(s) - f(t)| \le C|s-t|^{\gamma}.$$

Aufgabe 6.2 (3+3 Punkte) [Produkträume]

Sei $\{X_t, t \in T\}$, $T \subset \mathbb{R}$, eine Familie reellwertiger Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) und sei $A \in \mathcal{A}(X_t, t \in T)$. Zeigen Sie:

- a) Falls für $\omega' \in \Omega$ und $\omega \in A$ gilt, dass $X_t(\omega') = X_t(\omega)$ für alle $t \in T$, so liegt ω' in A.
- b) Es existiert eine abzählbare Teilmenge S von T, für die gilt $A \in \mathcal{A}(X_t, t \in S)$.

Aufgabe 6.3 (3 Punkte) [Nichtmessbarkeit der Menge der stetigen Pfade] Beweisen Sie mit Hilfe von Aufgabe 6.2, dass $\mathcal{C}[0,\infty)$ nicht in $(\mathcal{B}^1)^{[0,\infty)}$ enthalten ist.

Aufgabe 6.4 (3 Punkte) [Existenz stetiger Modifikationen] Zeigen Sie, dass für einen Wiener-Prozess $\{W_t\}_{t>0}$ gilt

$$E|W_t - W_s|^{2n} = c_n|t - s|^n,$$

wobei c_n eine von n abhängende Konstante ist (vgl. Bemerkung 6.2.b)), und bestimmen Sie c_n (z.B. mit Hilfe der momenterzeugenden Funktion von W_1).