Prof. Dr. J. Steinebach Dipl.-Math. M. Kühn

6. Übungsblatt zur Zeitreihenanalyse

Abgabe: Donnerstag, 01.12.05, 10^{10} Uhr

Aufgabe 6.1 (mündlich) [lineare Filter]

Seien $\sum_{j\in\mathbb{Z}} c_j$ und $\sum_{k\in\mathbb{Z}} d_k$ zwei absolut summierbare, komplexe Reihen. Sei weiter $\{Y_n\}_{n\in\mathbb{Z}}$ eine stationäre zentrierte Zeitreihe mit Spektraldarstellung

$$Y_n = \int_{-\pi}^{\pi} e^{in\lambda} dZ_Y(\lambda), \quad n \in \mathbb{Z},$$

und Spektralfunktion F_Y . Geben Sie die Spektraldarstellung und die Spektralfunktion der Zeitreihe

$$X_n = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} c_j d_k Y_{n-j-k}, \quad n \in \mathbb{Z},$$

als Integrale bezüglich Z_Y bzw. F_Y an.

Aufgabe 6.2 (2+2 Punkte) [ARMA(p,q)-Zeitreihen, Spektraldichte] Beweisen Sie die Bemerkungen 6.6 b) und c) der Vorlesung.

Aufgabe 6.3 (2+2 Punkte) [Hilberträume, Projektionstheorem] Sei \mathcal{M} ein abgeschlossener Unterraum eines Hilbertraumes \mathcal{H} . Zeigen Sie:

a) Für alle $x \in \mathcal{H}$ existiert genau ein Element $\hat{x} \in \mathcal{M}$ s.d.

$$||x - \hat{x}|| = \inf_{y \in \mathcal{M}} ||x - y||.$$
 (1)

b) Die Charakterisierung von \hat{x} durch Gleichung (1) ist äquivalent zu:

$$\hat{x} \in \mathcal{M} \quad \wedge \quad (x - \hat{x}) \in \mathcal{M}^{\perp}.$$

Aufgabe 6.4 (2+2 Punkte) [1-Schritt Vorhersagen]

Sei $\{X_n\}_{n\in\mathbb{N}}$ eine reelle, stationäre, zentrierte Zeitreihe mit Autokovarianzfunktion

$$\gamma(h) = \left(\frac{1}{2}\right)^{|h|}, \quad h \in \mathbb{Z}.$$

Sei weiter (0.5, 0.7, 0.6) eine Realisation von (X_1, X_2, X_3) . Berechnen Sie die 1-Schritt Vorhersage $\hat{x}_4(x_1, x_2, x_3)$ sowie den Vorhersagefehler v_4

- a) über Inversion der Kovarianzmatrix Γ_3 ,
- b) mittels des Durbin-Levinson-Algorithmus.