10. Übungsblatt zur Vorlesung "Wahrscheinlichkeitstheorie"

Abgabe: Mittwoch, den 08.01.2014, um 07:50 Uhr, vor dem Hörsaal E (Hörsaalgebäude)

Aufgabe 10.1 (mündlich) [Summe unabhängiger Zufallsvariablen]

Seien X und Y unabhängige, reelle Zufallsvariablen mit $P_X=\pi_\lambda$ und $P_Y=\pi_\mu$. Bestimmen Sie die Verteilung von X+Y.

Aufgabe 10.2 (3 Bonuspunkte) [Unabhängigkeit]

Zeigen Sie, dass zu jeder Folge von Wahrscheinlichkeitsräumen $\{(\Omega_i,\mathcal{B}_i,P_i)\}_{i\in\mathbb{N}}$ ein Wahrscheinlichkeitsraum (Ω,\mathcal{A},P) und eine Folge unabhängiger, $\mathcal{A}\text{-}\mathcal{B}_i$ -messbarer Zufallsvariablen $\{X_i\}_{i\in\mathbb{N}}$ existieren, so dass $P_i=P_{X_i}$ für alle $i\in\mathbb{N}$ gilt.

Aufgabe 10.3 (5 Bonuspunkte) [Verteilungsfunktion, Verteilungskonvergenz]

Seien $\{F_n\}_{n\in\mathbb{N}}, F$ eindimensionale Verteilungsfunktionen, wobei die $\{F_n\}_{n\in\mathbb{N}}$ nach Verteilung gegen F konvergieren, das heißt, für alle Stetigkeitspunkte x von F gelte $\lim_{n\to\infty}F_n(x)=F(x)$. Zeigen Sie, dass für zwei konvergente reelle Folgen $a_n\to a$ und $b_n\to b$ und alle Stetigkeitstellen von F(ax+b) gilt:

$$\lim_{n \to \infty} F_n(a_n x + b_n) = F(ax + b).$$

Hinweis: Zeigen (und verwenden) Sie, dass eine Verteilungsfunktion nur abzählbar viele Sprungstellen haben kann.

Aufgabe 10.4 (4 Bonuspunkte) [*P*-fast-sichere Konvergenz]

Seien $\{X_n\}_{n\in\mathbb{N}}$ reelle Zufallsvariablen auf (Ω, \mathcal{A}, P) . Zeigen Sie die Äquivalenz der folgenden Aussagen:

- a) Es gibt eine Zufallsvariable X, so dass $X_n \overset{P-f.s.}{\longrightarrow} X$ $(n \to \infty).$
- b) $\sup_{m>n} |X_m X_n| \xrightarrow{P} 0 \ (n \to \infty).$