11. Übungsblatt zur Vorlesung "Wahrscheinlichkeitstheorie"

Abgabe: Montag, den 13.01.2014, um 07:50 Uhr, vor dem Hörsaal E (Hörsaalgebäude)

Aufgabe 11.1 (mündlich) [Lemma von Borel-Cantelli]

- a) Seien (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{A}$ eine Folge von Ereignissen mit $\lim_{n\to\infty}P(A_n)=1$. Zeigen Sie, dass $P(\limsup_{n\to\infty}A_n)=1$ ist.
- b) Konstruieren Sie einen Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) und eine Folge $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{A}$ mit $\sum_{n=1}^{\infty}P(A_n)=\infty$ und $P(\limsup_{n\to\infty}A_n)=p,\ 0< p<1,\ \text{d.h.}$, auf die Voraussetzung der Unabhängigkeit im Lemma von Borel-Cantelli kann i.A. nicht verzichtet werden.

Aufgabe 11.2 (3 Punkte) [Gleichgradige Integrierbarkeit, Konvergenz im r-ten Mittel] Sei $\{X_n\}_{n\in\mathbb{N}}$ eine i.i.d. Folge reeller Zufallsvariablen auf (Ω,\mathcal{A},P) mit $E|X_1|^r<\infty$ $(r\geq 1,$ fest). Nach dem starken Gesetz der großen Zahlen gilt dann:

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \longrightarrow a := EX_1 \quad P\text{-f.s.} \quad (n \to \infty).$$

Zeigen Sie: $\bar{X}_n \xrightarrow{\mathcal{L}^r} a \quad (n \to \infty).$

Aufgabe 11.3 (4 Punkte) [Null-Eins-Gesetz von Kolmogorov] Seien $\{X_n\}_{n\in\mathbb{N}}$ unabhängige, reelle Zufallsvariablen auf (Ω,\mathcal{A},P) . Beweisen Sie: $\limsup_{n\to\infty} X_n$ und $\liminf_{n\to\infty} X_n$ sind degeneriert, d.h., diese Grenzvariablen sind P-f.s. konstant.

Aufgabe 11.4 (5 Punkte) [Starkes Gesetz der großen Zahlen für Erneuerungsprozesse] Sei $\{X_n\}$ eine i.i.d. Folge reeller, integrierbarer Zufallsvariablen mit $EX_1=a>0$. Setzt man $S_n:=X_1+\cdots+X_n,\ n=1,2,\ldots$, und $N_t:=\sup\{n\geq 1\,|\,S_1,\ldots,S_n\leq t\},\ t\geq 0$, wobei $\sup\emptyset:=0$ sei, so gilt:

- a) $P(N_t < \infty) = 1 \quad \forall \ t \ge 0.$
- b) $\lim_{t\to\infty} N_t = \infty$ P-f.s.
- c) $\lim_{t\to\infty} N_t/t = 1/a$ P-f.s.