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Chapter 1

Introduction

In this thesis, two different topics will be presented and discussed. The link between
these two is what we commonly call algebraic number theory: the study of numbers
which satisfy a monic polynomial with coefficients in Z.

Throughout this work, K denotes an algebraic number field over the rational numbers,
that is a finite algebraic extension of Q. For any such K, the ring OK contains all the
elements of K which satisfy a monic polynomial in Z[x], i.e. every α ∈ K such that
f(α) = 0 for some monic f ∈ Z[x]. We call OK the ring of integers of K and its elements
algebraic integers or integers of K. In order to avoid confusion, the elements of Z are
called rational integers.

We will be working with rings that have different groups of units and thus we will
often make use of the following definition.

Definition 1.0.1. Let R be a ring and a, b ∈ R such that a = εb for a unit ε ∈ R. Then
we call a and b associates of each other and write a ' b.

In any algebraic number field, we may also define the norm function which gives us a
sense of how large the residue ring of the ideal generated by the respective element is.

Definition 1.0.2. Let K be an algebraic number field and α ∈ K. The norm of α in K
is

NK(α) =
∏

ϕ∈Gal(K/Q)

ϕ(α)

where K is an algebraic normal closure of K in the algebraic numbers A and Gal( . )
denotes the Galois group of an extension.

For an ideal a ⊂ OK , we define its norm to be

N(a) = |OK/a| ,

the cardinality of its residue ring.

We know from basic algebraic number theory, that the norm of an algebraic integer is
a rational integer. Closely related to the structure of the ideals of OK is the ideal class
group of K.

Definition 1.0.3. Let K be a number field. We call a ⊂ K a fractional ideal of K if
there is an α ∈ OK such that αa ⊂ OK . The set of (principal) fractional ideals is denoted
by IK (PK resp.). We call

Cl(K) := IK/PK

the ideal class group of K. Its cardinality is the class number of K.
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1.1 Perfect numbers in the Eisenstein integers

In the first part, we will generalise a concept which the reader may be familiar with to a
certain class of algebraic fields. The sum-of-divisors-function σ is given for any natural
number n by

σ(n) =
∑
d |n

d (1.1)

where d is a natural number. It adds up all the positive divisors of n. There is also an
alternative form which we will use as a definition of the σ-function.

Definition 1.1.1. Let n =
∏

p |n p
ep be a natural number with its decomposition into

prime numbers p ∈ P. We define

σ(n) =
∏
p |n

pep+1 − 1

p− 1
. (1.2)

Using the fact that
∑ep

k=0 p
k = pep+1−1

p−1 and the fundamental theorem of arithmetic shows
that the two Equations 1.1 and 1.2 coincide.

Numbers satisfying certain properties based on their image under this function have
already been studied by Euclid (4th/3rd century BC) and the ancient Greeks. The
interest they had in these numbers is clearly represented by the first term in the following
definition.

Definition 1.1.2. A natural number n is called

• perfect if σ(n) = 2n,

• abundant if σ(n)− 2n > 0, or

• deficient if σ(n)− 2n < 0.

The absolute value of the difference is called the abundance or deficiency of n, respectively.

Example 1.1.3. The smallest perfect number is 6 because

σ(6) = 1 + 2 + 3 + 6 = 12 = 2 · 6.

The smallest abundant number is 12, with abundance 4, because

σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 = 2 · 12 + 4.

And the smallest deficient number is 1, with deficiency 1, because

σ(1) = 1 = 2 · 1− 1.

In particular, any proper multiple of a perfect or abundant number is abundant and any
proper divisor of a perfect or deficient number is deficient.

Back in the days of the ancient Greeks, it was already known to them that there is a
significant difference between the even and odd perfect natural numbers. That is, they
were solely able to find even numbers of that kind.
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Theorem 1.1.4. (Euclid–Euler) An even natural number is perfect if and only if it is
of the form 2k−1(2k − 1) for some k ∈ N such that 2k − 1 is prime.

The if -direction was proven by Euclid while the converse remained unknown until
the Swiss mathematician Leonard Euler (1707 – 1783 AD) proved it in 1747. Euler
himself also stated a condition on the form of an odd perfect rational integer and further
conditions have been added by the subsequent work of different mathematicians during
the past centuries. However, not a single such number has been found yet and it is
uncertain whether there are any.

In the 20th century, the concept of an even number was generalised to the ring of
integers of some cyclotomic fields. A cyclotomic field is the splitting field of the polynomial
xn − 1 and generated by a primitive n-th root of unity ζn. In this thesis, we will focus
especially on the primitive roots of unity ζ4 =: i and ζ3 =: ω.

Definition 1.1.5. Let K = Q(ζp) for some p ∈ P or p = 4. An element α ∈ OK is called
even if it is divisible by 1− ζp. Otherwise, we call it odd.

This definition is even extendable to Q which can be seen as Q(ζ2) with ζ2 = −1.
Then 1− ζ2 = 2 gives us the familiar meaning of evenness in the rational integers.

Spira [26] and McDaniel [14] did this generalisation explicitly for the Gaussian
integers Z[i], named after Carl Friedrich Gauss (1777 – 1885 AD), being the ring
of integers of Q(i) and worked towards transferring the Euclid–Euler Theorem to the
Gaussian integers via a generalisation of the σ-function. The latter succeeded in doing
so whereas Parker, Rushall, and Hunt [34], who tried the same for the Eisenstein
integers Z[ω], named after Gotthold Eisenstein (1823 – 1852 AD), only managed to
find an even so-called norm-perfect integer which will be defined in Chapter 2.

We will refine the results by Parker et al. and also state a theorem on the form of
an odd perfect Eisenstein integer, using a helpful paper published by Ward [30]. The
work on perfect integers in the rational, Gaussian, and Eisenstein integers is briefly
summarised in the following table.

Ring Even norm-perfect integers Odd norm-perfect integers (form)
Z Euclid and Euler Euler
Z[i] McDaniel [14] Ward [30]
Z[ω] Parker et al. [34] and this thesis this thesis

Z[ζp], p ≥ 5 conjectured in this thesis this thesis

Table 1.1: Summary of the work on norm-perfect integers in cyclotomic fields

The first part of this thesis will be concluded with an excursion to other quadratic
extensions K/Q and discuss possible perfect numbers therein.

1.2 Sums of integral squares in quadratic extensions

The second part of this thesis concentrates on the representation of algebraic integers in a
number field K as sums of squares of algebraic integers of that same field, i.e. of integral
squares. One of the most notable results is a theorem, conjectured by Albert Girard
(1595 – 1632 AD) in 1625 and proven by Euler in 1755.
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Theorem 1.2.1. For any positive rational prime p, there exist x, y ∈ Z such that

p = x2 + y2

if and only if p 6≡ 3 mod 4Z.

Since there are primes p ∈ P with p ≡ 3 mod 4Z, the question about the smallest
k ∈ N such that every natural number can be represented as sum of k squares arose. In
1770, Joseph Louis Lagrange (1736 – 1813 AD) presented a proof for the following
infamous theorem.

Theorem 1.2.2. (Lagrange’s Four-Square-Theorem) For any n ∈ N, there exist

w2 + x2 + y2 + z2 = n

with w, x, y, z ∈ Z.

Similarly to the question of perfect numbers, this may be transferred to the ring of
integers of any algebraic number field. Before heading on in this direction, we state an
often used definition.

Definition 1.2.3. Let K be a number field.

1. Any embedding σ : K → C is called real if σ(K) ⊂ R.

2. An element α ∈ K such that σ(α) > 0 for all real embeddings σ of K is called
totally positive.

Note that, if K does not admit any real embedding, every element of K is totally positive.

In 1921, Carl Siegel (1896 – 1981 AD) proved a theorem, conjectured by David
Hilbert (1862 – 1943 AD) in 1902.

Theorem 1.2.4. [25] Let K be a number field and α ∈ OK be totally positive. Then
there exist

w2 + x2 + y2 + z2 = α

with w, x, y, z ∈ K.

We may rejoice, seeing that Lagrange’s Theorem can be transferred in such a direct
manner. Unfortunately, this generalisation has two restrictions: It only holds for totally
positive α and the squares may not be integral. Nevertheless, there has been a lot of
work towards generalising the statement where the negative of the latter condition holds.
A particular interesting work was published by Ivan M. Niven (1915 – 1999 AD) [20],
dealing with the case of quadratic fields.

Theorem 1.2.5. [20] Let K = Q(
√
d) be a quadratic extension of Q with a square-free

rational integer d < 0.

1. If d 6≡ 1 mod 4, then an integer a + b
√
d ∈ OK , a, b ∈ Z is expressible as sum of

three integral squares if and only if 2 | b.

2. If d ≡ 1 mod 4, then every integer in OK is expressible as sum of three integral
squares.
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Interestingly, Niven also stated necessary and sufficient conditions for integers of real
quadratic fields to be expressible as sum of four or five integral squares but we will focus
on the representation counting function of Lagrange’s Theorem and its pendant in the
imaginary quadratic extensions.

Definition 1.2.6. For k, n ∈ N, k 6= 0, we define rk(n) to be the number of representations
of n as sum of k squares, i.e.

rk(n) =

∣∣∣∣∣
{

(x1, . . . , xk) ∈ Zk :
k∑
j=1

x2j = n

}∣∣∣∣∣ .
In particular, a representation (x1, . . . , xk) is different from (xk, x1, . . . , xk−1).

In complex extensions, squares may have almost any angle with respect to the positive
real line. In order to properly work with this, a certain notation is needed.

Definition 1.2.7. Let K be a number field and k ∈ N≥1. Then define

Q(K) = {x2 : x ∈ K}

the set of squares of K and
Q′(K) = {x2 : x ∈ OK}

the set of integral squares of K. Similarly, let R(K) be the set of finite sums of elements
in Q(K) and R′(K) the set of finite sums of elements in Q′(K).

We may now turn to the counting function.

Definition 1.2.8. Let K be a number field and k ∈ N≥1. Then define

rk,K : OK → N ∪ {∞}

such that rk,K(α) is the number of representations of α as sum of k elements of Q′(K),
i.e.

rk,K(α) =

∣∣∣∣∣
{

(x1, . . . , xk) ∈ OkK :
k∑
j=1

x2j = α

}∣∣∣∣∣ ,
similar to above.

Note that rk(s) = rk,Q(s) for all s ∈ Z. We immediately see that R′(K) is the set of
integers α in K for which there is a kα ∈ N such that rkα,K(α) > 0. We will study these
functions for certain k and K and present some interesting observations.

Lastly, the Theorem 1.2.1 reminds us of certain other ways to express primes as sums
of squares. It may be regarded as a special case of the equation

p = x2 + dy2 (1.3)

with p ∈ P, x, y ∈ Z and d ∈ N. Such a representation of a rational prime is closely
related to the structure of the ring Z[

√
−d] via the decomposition of

x2 + dy2 = (x+ y
√
−d)(x− y

√
−d).

For d ∈ {2, 3}, the ancient Greeks knew the solutions. However, the solubility of the
factorisation of the right-hand side heavily depends on two properties of Z[

√
−d]: Is it
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the ring of integers of a number field and is it a UFD? If the answer is positive for both
questions, the rational positive primes p for which Equation 1.3 has a solution in the
rational integers are simply those who split in Z[

√
−d]. But this holds only true for a

few d, the most prominent obstacle being OQ(
√
−d) 6= Z[

√
−d] for d ≡ 3 mod 4Z. A huge

break-through occurred with the publication of Primes of The Form x2 + ny2 by David
Cox, solving the question for all d ∈ N.

We will transfer Equation 1.3 to certain quadratic extensions K of the rational num-
bers, namely those with class number 1. Our solutions will come from OK , leading us to
investigate the ring OK [

√
−d] and finding a pendant of Cox’s main theorem.

Theorem 1.2.9. Let n ≡ 1 mod 4Z a square-free natural number such that K = Q(
√
n)

is a real quadratic field of class number 1. Let d > 0 be a square-free natural number
with d ≡ 2 mod 4Z and coprime to n. Let p be an odd natural prime below the prime
ideal p = 〈ψ〉 ⊂ OK . Then there is a monic irreducible polynomial fn,d ∈ OK [t] such that
if p divides neither d nor the discriminant of fn,d, then

ψ = α2 + dβ2 ⇐⇒

{
either

(
−d
p

)
= 1 or

(
−d
p

)
=
(
n
p

)
= −1

and fn,d(t) ≡ 0 mod p has an integer solution.

Furthermore, fn,d may be taken to be the minimal polynomial of a real algebraic integer
α for which H = L(α) is the Hilbert class field of the CM-field L = K(

√
−d).





Part I

Perfect numbers in the Eisenstein
integers
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Chapter 2

Perfect numbers in the rational
integers

In this chapter, we will briefly recollect some facts about the sum-of-divisors-function that
have been known for some time. Elementary number theory tells us that the σ-function
as defined in Definition 1.1.1 is multiplicative, i.e. σ(mn) = σ(m)σ(n) for any coprime
m,n ∈ N and σ(ε) = 1 for any unit ε. It feels natural to extend this function to the
ring of rational integers by defining σ(−n) = σ(n). A negative number is called perfect,
abundant, or deficient if its positive associate fulfils the respective property.

2.1 Even perfect rational integers

We restate the Euclid–Euler Theorem and present Euler’s proof.

Theorem 2.1.1. (Theorem 1.1.4, Euclid-Euler) An even natural number is perfect if
and only if it is of the form 2k−1(2k − 1) for some k ∈ N such that 2k − 1 is prime.

Proof. Let 2k − 1 be prime. Obviously, it is odd, so

σ(2k−1(2k − 1)) = σ(2k−1)σ(2k − 1) = (2k − 1)2k

and we see that 2k−1(2k − 1) is perfect.

Conversely, suppose n = 2k−1x is a perfect natural number with x odd and k ≥ 2. As
n is perfect, we have

2kx = 2n = σ(n) = σ(2k−1)σ(x) = (2k − 1)σ(x)

Since 2k − 1 is odd, it has to divide x, say (2k − 1)y = x for a y ∈ N. We divide the left
most and right most term by 2k − 1 to get

2ky = σ(x) = x+ y + z = 2ky + z

where z is the sum of the remaining divisors of x. Comparing both sides yields z = 0 and
consequently y = 1. Thus, x = 2k − 1 is a prime. �

Definition 2.1.2. The numbers 2k − 1 for k ∈ N are called Mersenne numbers.

9



10 CHAPTER 2. PERFECT NUMBERS IN THE RATIONAL INTEGERS

These numbers are named after the French monk Marin Marsenne (1588 – 1648
AD) who studied those numbers while searching for large prime numbers. Mersenne
primes are still among the largest known prime numbers. A necessary condition for such
a number to be prime is that k is prime itself. However, this is not sufficient as we may
see by the example

211 − 1 = 2047 = 23 · 89.

The Theorem 1.1.4 solved the question of the form of even perfect natural numbers
and proved that there is a bijection between these numbers and Mersenne primes. It
does not make any statement about the amount of such numbers. Presently, the Great
Internet Mersenne Prime Search [15], abbreviated GIMPS, is working on testing several
large Mersenne numbers on primality. Since 1996, GIMPS has increased the number of
known Mersenne primes from 34 to 51, the largest so far being 282,589,933−1. Proving by
brute force that so great a number is prime is very inefficient. Fortunately, there has been
an effective primality test for Mersenne primes, the Lucas–Lehmer test, named after
the french mathematician Édouard Lucas (1842 – 1891 AD) and the U.S.–american
mathematician Derrick Henry Lehmer (1905 – 1991 AD). The test uses properties of
the ring Z[

√
3] and the author recommends that the interested reader has a look into it

(see here).

2.2 Odd perfect rational integers

The question of the last section can be regarded as completely solved, meanwhile the
odd perfect rational integers are an open problem. Over the last few decades, there has
been a significant progress towards the form which such a number can have. Noteworthy
contributions have been made by Nielsen [19] and Ochem and Rao [21] who provided
an upper (based on the number of prime factors) and an unconditional lower bound for
any odd perfect rational integer. Some other authors proved a lower bound for the amount
of prime divisors of odd perfect rational integers. For the purpose of this thesis, we will
focus on the theorem Euler himself stated.

Theorem 2.2.1. (Euler) Let n be an odd perfect natural number. Then

n = pkq2

for some prime p ∈ P and odd natural number q. Moreover, p ≡ k ≡ 1 mod 4Z and
〈p, q〉 = Z.

In order to prove this, we will provide another lemma first.

Lemma 2.2.2. Let p be an odd natural prime.

1. If m is even, then σ(pm) ≡ 1 mod 2Z.

2. If m ≡ p ≡ 1 mod 4Z, then σ(pm) ≡ 2 mod 4Z.

3. Otherwise, σ(pm) ≡ 0 mod 4Z.

Proof. Recall that σ(pm) =
∑m

k=0 p
k.

1. Every power of p is odd and a sum of an odd number of odd integers is odd.

https://www.mersenne.org/various/math.php
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2. If p ≡ 1 mod 4Z, then each power pk ≡ 1 mod 4Z. Hence,

σ(pm) ≡ m+ 1 ≡ 2 mod 4Z

since m ≡ 1 mod 4Z.

3. This leaves the cases where at least one amongst p and m has to be congruent to 3
modulo 4Z.

If p ≡ 1 mod 4Z, we easily see by comparing this with the second bullet that
σ(pm) ≡ 0 mod 4Z since m ≡ 3 mod 4Z.

If p ≡ 3 mod 4Z, then each pair of consecutive powers of p satisfies pk−1+pk ≡ 3+1
or ≡ 1 + 3 mod 4Z. Additionally,

σ(p) = 1 + p ≡ 1 + 3 ≡ 0 mod 4Z.

This covers all the cases. �

Proof of Theorem 2.2.1. Due to the multiplicativity of the σ-function, we may factorise

σ(n) =
s∏

k=0

σ(pekk )

where the product is over the prime factors of n =
∏s

k=0 p
ek
k . As n is perfect and odd, we

get
s∏

k=0

σ(pekk ) = 2n ≡ 2 mod 4Z.

Therefore, none of the prime divisors of n may satisfy the third case of Lemma 2.2.2 and
exactly one satisfies the second case. All the others have to appear with an even power.
In total, this yields the claimed form. �

While dealing with odd perfect numbers in other rings of integers we will copy the
basic strategy of this proof and, especially, deduce counterparts to Lemma 2.2.2.



Chapter 3

Generalisation to cyclotomic fields

Before defining what it means for an algebraic integer to be perfect, we need to think
about what the σ-function is supposed to express. In the rational integers, it symbolises
the accumulated size of all divisors of an integer. In order to conserve a somewhat constant
ratio between the sizes of elements which we will deem interchangeable in some way, i.e.
associates, we will restrict ourselves to the cyclotomic fields Q(ζn) where ζn is an n-th
root of unity. Their ring of integers is given by Z[ζn].

3.1 The concept of odd and even in Z[ζp]
The second property we need to address regarding the σ-function is that in the naive def-
inition on the natural numbers (and their extension to the rational integers) we constrain
the sum to positive divisors. However, the cyclotomic fields over Q are complex extensions
and hence, we do not really have a sense of positivity, not even in Z[ζn]. Aiming towards
creating something of that kind, we restrict the set of fields we want to work on even
further: We only consider cyclotomic fields K = Q(ζp) where p ∈ P is a natural prime
or p = 4 and OK is a UFD. We will call this set R. The set of primes of an algebraic
number field K will be denoted by PK .

Definition 3.1.1. Let K = Q(ζp) ∈ R. A prime ψ ∈ OK is positive if its angle with
respect to the positive real line is smaller than any of its associates’ and, if p 6= 3, 4, its
absolute value in C is the smallest such that |ψ| ≥ p−1

√
NK(ψ). An integer α of K is

positive if it is the product of positive primes. We denote the sets of positive primes or
integers by P+

K or O+
K , respectively.

We note that this is—again—coherent with Q being the field containing the second
root of unity. The additional condition for p 6= 3, 4 is due to Z[ζp] containing an infinite
group of units. It is also clearly different from the definition of being totally positive.
Moreover, every non-zero integer has exactly one positive associate so that we can easily
define a function that yields the same value for different associates just based on the
positive integers of K. We point out that the choice of our positive set P+

K is completely
arbitrary, any representative system of the associate equivalence class may be chosen.
Since OK is a UFD, the following definition makes sense and extends the σ-function to
the integers of K. It is inspired by the works by Spira [26], McDaniel [14], and Parker
et al. [34].

12
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Definition 3.1.2. Let K ∈ R. Let α =
∏l

k=1 π
ek
k be a positive integer in OK and πk ∈ P+

K

for all k. We define the sum-of-divisors-function of K as

σK(α) =
l∏

k=1

πek+1
k − 1

πk − 1
.

Furthermore, any associate of α has the same value under σK . Additionally, we set
σK(0) = 0.

If the ring of integers is not a UFD, this definition is not well-defined. The most
common example for such a ring of integers is Z[

√
−5] = OQ(

√
−5) where the irreducible

elements 1±
√
−5, 2, and 3 are not prime. Nevertheless, there is still a way to define the

σ-function on a field K reasonably, done so by the author in a previous work [27] where it
depends on the size of the divisors of the ideal generated by the argument. The definition
we use has the advantage that σK(q) = σ(q) for any rational prime q ∈ P that is prime in
Z[ζp], too.

The σ-function on the naturals numbers has the property that σ(n) ≥ n for all n ∈ N.
We will now investigate why the choice we made for O+

K is advantageous. The following
lemma was proven by Spira [26].

Lemma 3.1.3. (Spira) Let K ∈ {Q,Q(ζ3),Q(ζ4)} and α ∈ OK . We have

NK

(
αn+1 − 1

α− 1

)
≥ NK(αn)

if <(α) ≥ 1 and α 6= 0.

Proof. Firstly, recall that both sides are rational integers and the norm is the absolute
value (if K = Q) or its square (otherwise). It is

NK

(
αn+1 − 1

α− 1

)
> NK

(
αn+1 − 1

α

)
≥ NK(αn)− 1

NK(α)

where the second term of the right-hand side is between 0 and 1, so we may neglect it if
we substitute > by ≥. �

Taking the differences we encountered in the previous chapter into account, it may
seem fit to generalise the concept of odd and even to other rings of integers. For this pur-
pose, we recall some definitions and basic statements from elementary algebraic number
theory. These may be found in one of Koch’s books [10], for example.

Lemma 3.1.4. Let K be a number field. OK is a Dedekind domain, i.e. each ideal
factorises into a unique decomposition of prime ideals.

Definition 3.1.5. Let K be as above and p ∈ P a natural prime. Decompose pOK =∏g
k=1 p

ek
k into prime ideals pk of OK . p is said to

1. ramify if there is a subscript k such that ek > 1.

2. split if g > 1.

3. be inert if there is a subscript k such that the cardinality of OK/pk is divisible by p2.
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If exactly one of the cases applies to p, we say that p totally ramifies, totally splits, or is
totally inert in K.

We recall the next lemma from any elementary algebraic number theory course.

Lemma 3.1.6. Let K/Q be a Galois extension and pOK =
∏g

k=1 p
ek
k a decomposition

into prime ideals of OK . Then there exist e, f ∈ N such that ek = e and N(pk) = f for
any 1 ≤ k ≤ g and efg = [K : Q].

It follows one more definition and a few helpful statements which lead us to a well-
chosen sense of odd and even in OK .

Definition 3.1.7. Let K be a number field and {α1, . . . , αn} a basis of OK over Z. The
discriminant of K is

∆K = det


ϕ1(α1) ϕ2(α1) . . . ϕn(α1)
ϕ1(α2) ϕ2(α2) . . . ϕn(α2)

...
...

...
...

ϕ1(αn) ϕ2(αn) . . . ϕn(αn)


2

where ϕ1, . . . , ϕn are the embeddings of K into C.

Lemma 3.1.8. Let K be any number field.

1. It is ∆K ∈ Z and

2. A natural prime p ∈ P ramifies in K if and only if p divides ∆K in Z. (Dedekind)

Computing the discriminant of K = Q(ζp) for a natural prime p yields

∆K = (−1)
p−1
2 pp−2

and for p = 4, we have
∆K = −4.

This implies that p or 2 (in the case of p = 4) is the only prime ramifying in K. Another
helpful tool to find the explicit decomposition of the ideal pOK is the following theorem.
The reader may be familiar with another form of this statement but we will use this one
as it perfectly fits our requirements.

Theorem 3.1.9. (Dedekind–Kummer)[22, p. 46] Let K = Q(α) be a number field and
p ∈ P, such that p - [OK : Z[α] ]. Let f ∈ Z[x] be the minimal polynomial of α and f ≡ f
mod pZ. Additionally, let

f = f
e1
1 . . . f

er
r

for some r ∈ N be the decomposition of f in pairwise coprime, irreducible, monic poly-
nomials in Fp[x]. For any i, choose an fi ∈ Z[x], such that f i ≡ fi mod pZ, and denote
by pi the ideal 〈p, fi(α)〉 ⊂ OK . Then, it holds that

〈p〉 =
r∏
i=1

peii

in OK and N(pi) = pdeg fi .
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Using the Dedekind–Kummer Theorem, we get

pOK = 〈1− ζp〉p−1

where 〈1 − ζp〉 is, indeed, a prime ideal of OK , so p totally ramifies. We also compute
NK(1 − ζp) = p. As we already defined what it means for a prime to be positive in OK ,
we now finally choose ζp explicitly.

Definition 3.1.10. ζp is the primitive p-th root of unity such that 1− ζp is positive.

For any other prime, we may use the following lemma for computing the norm of the
prime ideals above it after recalling that the norm N(a) of an ideal a is equal to the norm
of its generator if OK is a PID.

Lemma 3.1.11. Let p, q ∈ P, p 6= q, be positive rational primes and Q ⊃ 〈q〉 a prime
ideal in K = Q(ζp). Then N(Q) = qf where f is the order of q in (Z/pZ)∗.

Proof. Because of Dekekind–Kummer, we consider the equation

xp − 1 ≡ 0 mod qZ

since any of its irreducible factors other than x−1 is an irreducible factor of g :=
∑p−1

k=0 x
k

mod qZ which is the reduction of the minimal polynomial of ζp. Let F be the smallest
extension of Fq such that it contains all the roots of xp−1, say F = Fqf . By Lagrange’s
Theorem about the order of an element, it is p | qf − 1 and hence, qf ≡ 1 mod pZ. As
F is the smallest such extension, we also deduce that f is the smallest positive integer
satisfying that congruence condition. Thus, each irreducible factor of g has degree f and
it follows N(Q) = f . �

For any positive rational prime q < p, we have q > 1 and thus qf > p if qf ≡ 1 mod p.
Hence, we may say that 1 − ζp is the non-unit of minimal norm because the norm is a
multiplicative function. Moreover, we see that the norm only takes values being ≡ 0, 1
mod pZ because each prime element has norm satisfying that congruence condition as
we saw above. In combination with the fact that the prime ideals of OK are exactly the
prime ideals we derive from the decomposition of the prime ideals of Z in OK , we deduce
the following lemma.

Lemma 3.1.12. Let K = Q(ζp) ∈ R and p 6= 4. An element α ∈ OK is even if and only
if its norm is divisible by p. If p = 4, α is even if and only if its norm is even in Z.

Proof. 1− ζp is the only prime up to associates that has norm p if p 6= 4. Otherwise,
1 + i is the only prime of norm 2. �

The concept of evenness in any field K ∈ R is established, so we may now advance to
the main definition of Part I following the equivalent definitions presented by McDaniel
[14] and Parker et al. [34].

Definition 3.1.13. Let K = Q(ζp) ∈ R and α ∈ OK . We call α

1. perfect if σK(α) = (1− ζp)α or

2. norm-perfect if NK (σK(α)) = NK(1− ζp)NK(α).
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For the sake of completeness, we will also establish that α is

3. abundant if NK (σK(α)) > NK(1− ζp)NK(α) or

4. deficient if NK (σK(α)) < NK(1− ζp)NK(α).

Giving this a moment’s thought, we notice that this extends to the case where K = Q
because Q = Q(ζ2). Moreover, every perfect integer is also norm-perfect. However, we
have to be aware that the set of (norm-)perfect integers depends on our choice of the set
P+
K .

Lastly, we want to generalise the Mersenne numbers.

Definition 3.1.14. Let K = Q(ζp) ∈ R. We call the numbers (1− ζp)k − 1 with k ∈ N
the Mersenne numbers of K.

We generalise a result from the rational Mersenne numbers to any field K ∈ R.

Lemma 3.1.15. If (1− ζp)k − 1 with k ∈ N≥2 is prime, then k is a rational prime.

Proof. Suppose k is not prime, i.e. k = mn with m,n ∈ N≥2. Then

(1− ζp)k − 1 = [(1− ζp)m]n − 1

= [(1− ζp)m − 1]
n−1∑
j=0

(1− ζp)mj.

As m ≥ 2, we have that the left factor is not a unit. Moreover, as n ≥ 2, we have m < k,
so (1− ζp)m − 1 6' (1− ζp)k − 1. �

In the case of the Gaussian and Eisenstein Mersenne numbers, Berrizbeitia
and Iskra [1] presented primality tests similar to the Lucas–Lehmer test for the rational
Mersenne numbers.

3.2 Perfect numbers in the Gaussian integers

One of the most commonly known algebraic extensions of the rationals Q is Q(i). We
recall some properties of this number field:

1. It is the splitting field of x2 + 1 ∈ Q[x] and thus a Galois extension of Q. Its
automorphism group consists of two elements: the identity and the complex conju-
gation.

2. Therefore, it is a cyclotomic field and a quadratic extension of Q.

3. Its ring of integers is OQ(i) = Z[i], the Gaussian integers.

4. The norm function is given by NQ(i)(a+ bi) = a2 + b2.

5. Its discriminant is ∆Q(i) = −4.

6. Its set of positive primes is P+
Q(i) = {a + bi ∈ Z[i] : a > 0, b ≥ 0} ∩ PQ(i). Thus, the

minimal prime is 1 + i.
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0

iZ

Z

Figure 3.1: The Gaussian integers near the origin, each represented by an intersection
of two lines. The positive primes lie in the shaded domain, excluding the left boundary.

If we pay a close look to the behaviour of odd and even numbers in Z[i], we see that,
due to NQ(i)(1 + i) = 2, it is

Z[i]/〈1+i〉 ∼= Z/2Z.

Hence, there is only one congruence class of odd Gaussian integers and the computations
modulo (1 + i)Z[i] are similar to those modulo 2Z in the rational integers. We may
therefore distinguish between odd and even perfect Gaussian integers.

This section presents the main ideas used by McDaniel [14] in order to transfer the
Euclid–Euler Theorem to the Gaussian integers. A crucial step is the improvement
of Spira’s inequality in Lemma 3.1.3.

Lemma 3.2.1. (McDaniel [14, p. 138]) Let α ∈ Z[i] and |α| ≥
√

5. Then

NQ(i)

(
αn+1 − 1

α− 1

)
> NQ(i)(α

n)

(
1 +

2<(α)− 1.4

NQ(i)(α)

)
for all n ∈ N>0.

The proof consists mostly of computations. However, using the definition of σQ(i) and
the multiplicativity of the norm function, this lemma yields a very useful corollary.

Corollary 3.2.2. Let ψ be an odd positive Gaussian prime. Then

NQ(i)

(
σQ(i)(ψ

n)

ψn

)
> 1 +

2<(ψ)− 1.4

NQ(i)(ψ)

for all n ∈ N>0.

In order to use the previous lemma to prove this corollary, we point out that any odd
positive Gaussian prime has an absolute value of at least

√
5.

When taking a closer look at NQ(i)(α) for an arbitrary α ∈ Z[i], we get an inequality
which looks quite similar to one we are familiar with from the rational integers.
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Lemma 3.2.3. Let α ∈ Z[i]. Then NQ(i)

(
σQ(i)(α)

)
≥ NQ(i)(α).

Proof. The norm on Z[i] is multiplicative and any positive Gaussian prime satisfies
Lemma 3.1.3. �

In the rational integers, the Eulcid–Euler Theorem is restricted to even perfect num-
bers and, similarly, McDaniel’s theorem only answers the question about even (norm-)
perfect Gaussian integers. Corollary 3.2.2 and Lemma 3.2.3 together yield some lower
bounds on the norm of an odd prime divisor of an even norm-perfect Gaussian integer.
These are joint by McDaniel with a theorem by Spira.

Lemma 3.2.4. (Spira [26, p. 123]) Let η = (1 + i)k−1µ be a norm-perfect Gaussian
integer with k ∈ N≥2 and µ odd. Then k ≡ 0,±1 mod 12Z.

Before we move on to the main theorem of this section, we need another definition.

Definition 3.2.5. Let η be a (norm-)perfect Gaussian integer. η is called primitive if
there is no θ ∈ Z[i] such that θ is (norm-)perfect, θ | η and θ 6' η.

This deals with the fact that Lemma 3.2.3 does not provide a strict inequality.

Theorem 3.2.6. (McDaniel [14, p. 137]) Let Mp = (1 + i)p − 1 be a Gaussian
Mersenne prime and ε a unit in Z[i].

1. If p ≡ 1 mod 8Z, then η = ε(1 + i)p−1Mp is a primitive norm-perfect Gaussian
integer.

2. If p ≡ −1 mod 8Z, then η = ε(1 + i)p−1Mp is a primitive norm-perfect Gaussian
integer.

Conversely, if η is an even norm-perfect, then, for some unit ε, there is either

1. a rational prime p ≡ 1 mod 8Z such that η = ε(1 + i)p−1Mp or

2. a rational prime p ≡ −1 mod 8Z such that η = ε(1 + i)p−1Mp

where Mp is a Gaussian Mersenne prime. Moreover, norm-perfect may be substituted
by perfect if we only consider the first bullet in each part and replace ε by −i.

This settles the even (norm-)perfect Gaussian integers. So far, there has not been
much work about their odd counterparts but Ward proved a theorem on the form of
such an integer.

Theorem 3.2.7. (Ward [30, p. 2]) Let η be an odd norm-perfect Gaussian integer.
Then it is of the form

η = ψkρ2

for an odd k ∈ Z, an odd Gaussian prime ψ, and an odd Gaussian integer ρ.

Surprisingly and in contrast to the rational integers, Ward is able to present an odd
positive norm-perfect Gaussian integer: 2+ i which is also prime. We quickly check that

NQ(i)(σQ(i)(2 + i)) = NQ(i)(3 + i) = 32 + 12 = 10 = 2 · 5 = 2NQ(i)(2 + i).
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However, this is the only norm-perfect Gaussian prime which can be seen by evaluating
the equation

NQ(i)(ψ + 1) = NQ(i)

(
σQ(i)(ψ)

)
= 2NQ(i)(ψ)

as σQ(i)(ψ) = ψ+ 1 for any positive prime ψ. If we choose our set of positive primes P+
Q(i)

differently, such that 2−i is positive instead of 1+2i, it will be another odd positive norm-
perfect prime. This underlines the fact that our set of (norm-)perfect integers depends
on the set P+

K for K ∈ R.



Chapter 4

Perfect numbers in the Eisenstein
integers and cyclotomic fields of
higher degree

The degree of the field extension [Q(ζn) : Q] is ϕ(n) where ϕ is Euler’s totient function.
There are exactly two solutions to ϕ(n) = 2 which are n ∈ {3, 4}. We dealt with n = 4
in the previous chapter but less has been done in the case of n = 3 so far.

Definition 4.0.1. We define

ω := exp

(
2πi

3

)
,

the primitive third root of unity in the upper complex half-plane.

The extensions Q(i)/Q and Q(ω)/Q have a lot in common. We recapitulate some of
the properties of the latter, starting with the two it shares with the former.

1. It is the splitting field of x2 + x + 1 ∈ Q[x] and thus a Galois extension of Q.
Its automorphism group consists of two elements: the identity and the complex
conjugation.

2. Therefore, it is a cyclotomic field and a quadratic extension of Q.

3. Its ring of integers is OQ(ω) = Z[ω], the Eisenstein integers.

4. The norm function is given by NQ(ω)(a+ bω) = a2 − ab+ b2.

5. Its discriminant is ∆Q(ω) = −3.

6. Its set of positive primes is P+
Q(ω) = {a + bω ∈ Z[ω] : a > b ≥ 0} ∩ PQ(ω). Thus, the

minimal prime is 2 + ω = 1− ω2.

A main difference to Z[i] and Z directly impacting the computations we want to do
in Z[ω] is that, since NQ(ω)(1− ω2) = 3,

Z[ω]/〈1−ω2〉 ∼= Z/3Z.

So there are two congruence classes of odd Eisenstein integers, namely those congruent
to 1 or 2 modulo (1− ω2)Z[ω].

We will also copy the definition of a primitive (norm-)perfect number.

20
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0 Z

(1 + ω)ZωZ

Figure 4.1: The Eisenstein integers near the origin, each represented by an intersection
of three lines. The positive primes lie in the shaded domain, excluding the upper boundary.

Definition 4.0.2. Let α be a (norm-)perfect Eisenstein integer. α is called primitive
if there is no β ∈ Z[ω] such that β is (norm-)perfect, β |α and β 6' α.

In 2016, Parker, Rushall, and Hunt published a short paper [34] transferring
some of McDaniel’s results to the Eisenstein integers. Even though they use a similar
definition of σQ(ω), they do not introduce the concept of positive Eisenstein integers.
So for simplicity, they choose 1− ω to be their minimal prime while the relevant—in our
sense of definition 3.1.1 positive—associate is still chosen to be 1 − ω2. However, they
present a sufficient condition for an even norm-perfect Eisenstein integer. The theorem
is cited in its original form and therefore uses Parker et al.’s definitions.

Theorem 4.0.3. (Parker, Rushall, Hunt [34, p. 10]) Given any rational integer
k > 1, if (1− ω)k − 1 is an Eisenstein Mersenne prime and if k ≡ 11 mod 12Z, then
α = (1− ω)k−1[(1− ω)k − 1] is an even norm-perfect Eisenstein integer.

Oddly enough, Parker et al. do not refine their computations in this theorem’s proof
to show that—with their definitions—a particular associate of α is indeed perfect. We
will adjust the theorem to our own definitions in the next section and close this gap.
The main aim of this part of the thesis will be to also prove a converse statement, i.e.
to prove the counterpart of the Euclid–Euler Theorem for Eisenstein integers. The
inspiration for this is given by McDaniel’s Theorem 3.2.6.

Parker et al. also state a conjecture about the form of an odd norm-perfect Eisen-
stein integer.

Conjecture 4.0.4. [34, p. 11] Any odd norm-perfect Eisenstein integer has to be of the
form α = ψkγ3 where ψ is an odd Eisenstein prime, k ≡ 2 mod 3Z a rational integer
and γ an odd Eisenstein integer coprime to ψ.

So far, there has not been any proof for this conjecture to be true but we will prove
another form in the next-again section, presenting this form as a mere subcase.
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4.1 Even perfect Eisenstein integers

The aim of this section is to prove the following two main theorems of this part, transfer-
ring the Euclid–Euler Theorem to the Eisenstein integers.

Theorem 4.1.1. α ∈ Z[ω] is an even primitive perfect number if and only if

α = −ω(1− ω2)k−1[(1− ω2)k − 1]

where (1− ω2)k − 1 is prime with a rational integer k ≡ 1 mod 12Z.

Since perfect implies norm-perfect and the norm of any unit is 1, any associate of a
perfect number is norm-perfect. This thus covers the first half of the second theorem.

Theorem 4.1.2. α ∈ Z[ω] is an even primitive norm-perfect number if and only if either

1. α = ε(1− ω2)k−1[(1− ω2)k − 1] where (1− ω2)k − 1 is prime with a rational integer
k ≡ 1 mod 12Z or

2. α = ε(1−ω2)k−1[(1− ω2)k − 1] where (1−ω2)k − 1 is prime with a rational integer
k ≡ −1 mod 12Z

and ε is a unit in Z[ω].

Notice the similarity to the results by McDaniel. The significantly more difficult
part is proving the only-if -direction in either theorem since computing the value of the
σQ(ω)-function of a given element is fairly easy. To this end, we transfer two of Spira’s
lemmata.

Lemma 4.1.3. Let α ∈ Z[ω]. Then NQ(ω)

(
σQ(ω)(α)

)
≥ NQ(ω)(α).

Proof. The norm is multiplicative and any positive Eisenstein prime satisfies Lemma
3.1.3. �

In particular, this lemma tells us that any multiple of an abundant number is also
abundant. This helps us say something about the exponent k of an even norm-perfect
number.

Lemma 4.1.4. Let α = (1− ω2)k−1µ be an even norm-perfect Eisenstein integer with
µ odd and a rational k ≥ 2. Then k ≡ ±2,±1, 0 mod 12Z.

Proof. Recall that the norm and σQ(ω)-function are multiplicative and thus, so is their
composition. We decompose

3NQ(ω)(α) = NQ(ω)

(
σQ(ω)(α)

)
= NQ(ω)

(
σQ(ω)((1− ω2)k−1)

)
NQ(ω)

(
σQ(ω)(µ)

)
.

We are interested in the left factor and continue our computations.

NQ(ω)(σQ(ω)((1− ω2)k−1)) = NQ(ω)

(
(1− ω2)k − 1

1− ω2 − 1

)
= NQ(ω)

(
−ω((1− ω2)k − 1)

)
= 3k − 2<

(
(1− ω2)k

)
+ 1.



4.1. EVEN PERFECT EISENSTEIN INTEGERS 23

For k 6≡ ±2,±1, 0 mod 12Z, the middle term is less than or equal to 0, so the whole
expression is greater than 3k = 3NQ(ω)

(
(1− ω2)k−1

)
. Using Lemma 4.1.3, this would

imply that α is abundant. Therefore, k ≡ ±2,±1, 0 mod 12Z. �

This considerably reduces the possible residue classes of k mod 12Z. Now, we will
extend Lemma 3.2.1 and its corollary 3.2.2 to the Eisenstein integers.

Lemma 4.1.5. Let ψ be an odd positive Eisenstein prime. Then

NQ(ω)

(
σQ(ω)(ψ

n)

ψn

)
> 1 +

2<(ψ)− 1.4

NQ(ω)(ψ)

for all n ∈ N>0.

Proof. Firstly, we remark that the computations in the proof of Lemma 3.2.1 [14] are
based on the norm on Z[i]. If we have a look at definition 1.0.2 and the fact that the
automorphism groups of both Q(i) and Q(ω) only consist of the identity and the complex
conjugation and therefore have a similar image, we may easily transfer that lemma to the
Eisenstein integers for |ψ| >

√
5.

We are left to examine the inequality for all odd positive primes ψ with absolute value
less than

√
5. There is only one such prime, namely 2. However, we have

NQ(ω)

(
2n+1 − 1

2− 1

)
= NQ(ω)(2

n)NQ(ω)

(
2− 1

2n

)
= NQ(ω)(2

n)

(
4− 1

2n−2
+

1

22n

)
> NQ(ω)(2

n)

(
1 +

13
5

4

)
= NQ(ω)(2

n)

(
1 +

2<(2)− 1.4

NQ(ω)(2)

)
for all n ∈ N>0. We deduce the desired inequality by dividing both sides by NQ(ω)(2

n). �

We move on to find some estimate about the norm of an odd divisor of an even
norm-perfect Eisenstein integer, so that we can minimise the number of possible prime
divisors. This technique is inspired by McDaniel’s work but a bit more straight forward,
since the setting of the Eisenstein integers lets us drop one extra lemma that was crucial
in McDaniel’s proof.

Lemma 4.1.6. Let α = (1− ω2)k−1µ be a norm-perfect Eisenstein integer with µ odd
and a rational k ≥ 2. Let ψ be a positive prime divisor of µ. Then

N(ψ) >
13

5
·

NQ(ω)

(
(1− ω2)k − 1

)
3k −NQ(ω) ((1− ω2)k − 1)

.

Proof. Let e be the maximal exponent such that ψe |µ. Using the fact that α is
norm-perfect and Lemma 4.1.3, we get

1 =
NQ(ω)

(
σQ(ω)(α)

)
3NQ(ω)(α)

≥
NQ(ω)

(
(1− ω2)k − 1

)
NQ(ω)

(
σQ(ω)(ψ

e)
)

3kNQ(ω)(ψe)
.
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The previous lemma then tells us that

NQ(ω)

(
(1− ω2)k − 1

)
NQ(ω)

(
σQ(ω)(ψ

e)
)

3kNQ(ω)(ψe)

>
NQ(ω)

(
((1− ω2)k − 1

) (
NQ(ω)(ψ) + 2<(ψ)− 1.4

)
3k
(
NQ(ω)(ψ)

) .

Solving this for NQ(ω)(ψ) yields

NQ(ω)(ψ) > (2<(ψ)− 1.4)
NQ(ω)

(
(1− ω2)k − 1

)
3k −NQ(ω) ((1− ω2)k − 1)

.

We have a quick look at the smallest odd positive primes of Z[ω] so that we can estimate
2<(ψ). In the following table, p is the rational prime such that ψ lies above p.

p ψ <(ψ)
2 2 2
5 5 5
7 2− ω2 5

2

7 1− 2ω2 2
11 11 11

Table 4.1: Real parts of the odd positive primes of the least norm

Thus, <(ψ) ≥ 2 and we are done since 2 · 2− 1.4 = 13
5

. �

Examining the primes of Z[ω] with regard to their norm brings another property back
to our minds that we know from elementary algebraic number theory. It will be left
without proof but we refer to Dedekind–Kummer and the fact that the Eisenstein
integers form a UFD.

Lemma 4.1.7. Let α ∈ Z[ω] and NQ(ω)(ψ) |NQ(ω)(α) in Z for a prime ψ ∈ Z[ω], then

ψ |α or ψ |α. Moreover, if p |NQ(ω)(α) for some rational prime p, then there is a prime
ρ ∈ Z[ω] such that ρ |α and NQ(ω)(ρ) = p or NQ(ω)(ρ) = p2.

Due to Lemma 4.1.4, we need to apply Lemma 4.1.6 to only five residue classes.
Fortunately, some of them can be dealt with at the same time. The following lemma will
now join most of the results we have acquired so far.

Lemma 4.1.8. Let α = (1− ω2)k−1µ ∈ Z[ω] be norm-perfect with µ odd and a rational
k ≥ 2. Then k ≡ ±1 mod 12Z, (1 − ω2)k − 1 is prime and either (1 − ω2)k − 1 or
(1− ω2)k − 1 divide µ.

Proof. Let ψ be an odd positive prime divisor of (1− ω2)k − 1 ' σQ(ω)

(
(1− ω2)k−1

)
,

say (1 − ω2)k − 1 = ψρ for a ρ ∈ Z[ω], and such that ψ has the least norm among such
divisors of (1− ω2)k − 1. Since α is norm-perfect and the norm of any unit is 1, we have

3NQ(ω)(α) = NQ(ω)

(
σQ(ω)(α)

)
= NQ(ω)

(
σQ(ω)(µ)

)
NQ(ω)(ρ)NQ(ω)(ψ).
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By Lemma 4.1.7 and since ψ is odd, it follows either ψ |α or ψ |α. It is NQ(ω)(ψ) =

NQ(ω)(ψ), so we may apply the Lemma 4.1.6. We examine the norm of (1 − ω2)k − 1
depending on k.

k mod 12Z <
(
(1− ω2)k

)
NQ(ω)

(
(1− ω2)k − 1

)
±2 3

k
2

2
3k − 3

k
2 + 1

±1 3
k+1
2

2
3k − 3

k+1
2 + 1

0 3
k
2 3k − 2 · 3 k

2 + 1

Table 4.2: The norm of (1− ω2)k − 1 depending on k

Notice the symmetry in this table. We go ahead and insert these numbers into our
inequality from Lemma 4.1.6.

k mod 12Z NQ(ω)(ψ) >

±2 13
5
· 3k−3

k
2 +1

3
k
2−1

±1 13
5
· 3k−3

k+1
2 +1

3
k+1
2 −1

0 13
5
· 3k−2·3

k
2 +1

2·3
k
2−1

Table 4.3: Some estimates for NQ(ω)(ψ)

We will distinguish between three cases.
Case 1: Suppose k ≡ 0 mod 12Z, say k = 12t for some t ∈ N>0. Then, the norm of

(1− ω2)k − 1 is

(36t − 1)2 = (3t − 1)2(3t + 1)2(32t − 3t + 1)2(32t + 3t + 1)2.

By Lemma 4.1.7, we have NQ(ω)(ψ) ≤ (3t − 1)2. However, table 4.3 gives

NQ(ω)(ψ) >
13

5
· 3k − 2 · 3 k

2 + 1

2 · 3 k
2 − 1

=
13

5
· (3

k
2 − 1)2

2 · 3 k
2 − 1

=
13

10
· (3

k
2 − 1)2

3
k
2 − 1

2

> 3
k
2 − 1

> (3t − 1)2

for t ≥ 1.
Case 2: For k ≡ ±2 mod 12Z, we have

NQ(ω)(ψ) >
13

5
· 3k − 3

k
2 + 1

3
k
2 − 1

>
13

5
· 3k − 2 · 3 k

2 + 1

3
k
2 − 1

=
13

5
(3

k
2 − 1).
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Using Lemma 4.1.7, we will show a contradiction for both cases.
Subcase 2.1: Suppose k ≡ 2 mod 12Z, say k = 12t + 2 for some t ∈ N≥0. Then, the

norm of (1− ω2)k − 1 is

312t+2 − 36t+1 + 1 = (36t+1 − 33t+1 + 1)(36t+1 + 33t+1 + 1).

The left factor is less than 13
5

(3
k
2 − 1) since k

2
= 6t+ 1.

Subcase 2.2: Suppose k ≡ −2 mod 12Z, say k = 12t− 2 for some t ∈ N>0. Then, the
norm of (1− ω2)k − 1 is

312t−2 − 36t−1 + 1 = (36t−1 − 33t + 1)(36t−1 + 33t + 1).

The left factor is less than 13
5

(3
k
2 − 1) since k

2
= 6t− 1.

Case 3: Suppose k ≡ ±1 mod 12Z such that k ≥ 11. By table 4.3, we get

NQ(ω)(ψ) >
13

5
· 3k − 3

k+1
2 + 1

3
k+1
2 − 1

=
13

5
·

3k−1 − 3
k−1
2 + 1

3

3
k−1
2 − 1

3

>
13

5
· 3k−1 − 2 · 3 k−1

2 + 1

3
k−1
2 − 1

3

>
12

5
· 3k−1 − 2 · 3 k−1

2 + 1

3
k−1
2 − 1

=
12

5

(
3
k−1
2 − 1

)
>
√
NQ(ω) ((1− ω2)k − 1),

so, by multiplicity of the norm and minimality of NQ(ω)(ψ), (1−ω2)k − 1 has exactly one

prime divisor, hence it is prime and ψ = (1−ω2)k − 1 or ψ = (1− ω2)k − 1. Thus, either
(1− ω2)k − 1 or (1− ω2)k − 1 divide µ.

The last inequality in the previous computation holds because(
12

5

(
3
k−1
2 − 1

))2

>

(
11

5

(
3
k−1
2 − 1

2

))2

=
121

25

(
3k−1 − 3

k−1
2 +

1

4

)
=

121

75

(
3k − 3

k+1
2 +

3

4

)
> 3k − 3

k+1
2 + 1

= NQ(ω)((1− ω2)k − 1)

for k ≥ 11. This finishes the proof. �

We are ready to take the last few steps towards proving the two main theorems of this
section.
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Lemma 4.1.9. Let α = (1 − ω2)k−1µ be a norm-perfect Eisenstein integer such that
k ≥ 2 and µ is odd.

1. If k ≡ 1 mod 12Z, then µ =
(
(1− ω2)k − 1

)
ρ for some odd ρ, and

2. if k ≡ −1 mod 12Z, then µ =
(

(1− ω2)k − 1
)
ρ for some odd ρ.

Proof. Suppose k ≡ 1 mod 12Z. Since k ≥ 2, (1− ω2)k − 1 is not a unit and its
positive associate is

(1 + ω)((1− ω2)k − 1) = 3(1− ω)k−2 − 1− ω.

Thus,

σQ(ω)((1− ω2)k − 1) = 3(1− ω)k−2 − ω

because (1−ω2)k−1 and its complex conjugate are prime by Lemma 4.1.8. Furthermore,

NQ(ω)

(
σQ(ω)((1− ω2)k − 1)

)
=
(
3(1− ω)k−2 − ω

) (
3(1− ω2)k−2 − ω2

)
= 3k − 6<(ω(1− ω2)k−2) + 1.

We compute, since k is a rationally odd natural number, that

ω(1− ω2)k−2 = (ω − 1)k−2 = −
(
3(1− ω)k−3

)
,

so

<(ω(1− ω2)k−2) = −3
k−1
2

2
.

Thus,

NQ(ω)

(
σQ(ω)((1− ω2)k − 1)

)
= 3k + 3

k+1
2 + 1 > 3k = 3NQ(ω)

(
(1− ω2)k−1

)
.

Since

NQ(ω)

(
σQ(ω)((1− ω2)k−1)

)
= NQ(ω)

(
(1− ω2)k − 1

)
= NQ(ω)

(
(1− ω2)k − 1

)
their product is greater than 3NQ(ω)

(
(1− ω2)k−1((1− ω2)k − 1)

)
, hence the prime divid-

ing µ must be (1− ω2)k − 1.

The proof for k ≡ −1 mod 12Z works analogously. �

This lemma proves in particular that a norm-perfect number is never divisible by
3k− 3

k+1
2 + 1, i.e. by the product of an Eisenstein Mersenne prime and its conjugate.

The rest is just putting all the pieces together.

Proof of Theorem 4.1.2. The only-if -direction is a corollary of the previous lemma
since we proved that every norm-perfect number is divisible by exactly one of the presented
primitive norm-perfect numbers.
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The if -direction is a simple computation and will be shown for the case k ≡ −1
mod 12Z. Quickly check beforehand that (1− ω2)k − 1 is positive. It is

NQ(ω)

(
σQ(ω)(α)

)
= NQ(ω)

(
(1− ω2)k − 1

1− ω2 − 1
·
((

(1− ω2)k − 1
)

+ 1
))

= NQ(ω)

(
(1− ω2)k − 1

)
NQ(ω)

((
(1− ω2)k − 1

)
+ 1
)

= NQ(ω)

(
(1− ω2)k − 1

)
NQ(ω)

(
(1− ω2)k

)
= 3NQ(ω)

(
(1− ω2)k − 1

)
NQ(ω)

(
(1− ω2)k−1

)
= 3NQ(ω) (α) ,

hence α is norm-perfect. However, (1− ω2)k − 1 and any power of (1− ω2) are deficient,
so α is primitive.

The computation for k ≡ 1 mod 12Z works analogously. �

Proof of Theorem 4.1.1. The if -direction is given by a similar computation as in the
previous proof but without the norm function. Notice, if k ≡ 1 mod 12Z, then

σQ(ω)

(
(1− ω2)k − 1

)
= (1− ω2)k,

yielding
σQ(ω)

(
(1− ω2)k−1((1− ω2)k − 1)

)
= (1− ω2)k((1− ω2)k − 1).

Conversely, the only-if -direction is proven by examining all the possible primitive
norm-perfect numbers, since every perfect number is also norm-perfect. The associates
of a perfect number cannot be perfect, since all of them have the same image under the
σQ(ω)-function. In the case of k ≡ −1 mod 12Z, we see from the computations in the
previous proof that the equation

σQ(ω)(α) = (1− ω2)α

cannot hold, since the left-hand side is divisible by (1− ω2)k − 1 and the right-hand side
by its complex conjugate but neither of them is divisible by the product of those two
factors, which is 3k − 3

k+1
2 + 1. �

4.2 Odd perfect Eisenstein integers

Similarly to the previous cases of the rational and the Gaussian integers, the case of odd
norm-perfect Eisenstein integers proves to be a bit more difficult to come by. Parker
et al. presented a form for such a number in their conjecture 4.0.4. We will work in
a similar way like Ward who transferred Lemma 2.2.2 to Z[i]. Due to two congruence
classes of odd numbers being existent in Z[ω], we will have to work a bit differently.

Lemma 4.2.1. Let ψ ∈ P+
Q(ω) be an odd positive prime and m ∈ N. It is

NQ(ω)(σQ(ω)(ψ
m)) ≡ 0 mod 3Z

if and only if one of the following cases applies:

1. ψ ≡ 1 mod 1− ω2 and m ≡ 2 mod 3Z.



4.2. ODD PERFECT EISENSTEIN INTEGERS 29

2. ψ ≡ 2 mod 1− ω2 and m ≡ 1 mod 2Z.

Proof. By Lemma 3.1.12, the norm of σQ(ω)(ψ
m) =

∑m
k=0 ψ

k is divisible by 3 if and
only if the sum itself is even. Recall that

Z[ω]/〈1−ω2〉 ∼= Z/3Z.

1. If ψ ≡ 1 mod 1− ω2, each of its powers is congruent to 1 mod 1− ω2. Thus,

m∑
k=0

ψk ≡ m+ 1 mod 1− ω2

which is 0 if and only if m ≡ 2 mod 3Z.

2. If ψ ≡ 2 mod 1 − ω2, we have ψl ≡ l mod 2Z. For rationally odd k ∈ N, this
implies

ψk−1 + ψk ≡ 0 mod 1− ω2.

Now just use the sum above. �

Theorem 4.2.2. Let α be an odd norm-perfect Eisenstein integer and define Pj =
{ψ ∈ P+

Q(ω) : ψ ≡ j mod 1− ω2 ∧ ψ |α} for j ∈ {1, 2}. α has to be of the form

εψk0
∏

ψ1∈P1, ψ1 6=ψ0

ψ
eψ1
1

∏
ψ2∈P2, ψ2 6=ψ0

ψ
eψ2
2

with either

1. ψ0 ∈ P1, k ≡ 2 mod 3Z or

2. ψ0 ∈ P2, k ≡ 1 mod 2Z

as well as eψ1 6≡ 2 mod 3Z and eψ2 ≡ 0 mod 2Z and ε being a unit in either case.

Proof. Since α is norm-perfect, we have

NQ(ω)

(
σQ(ω)(α)

)
= 3NQ(ω)(α).

Write
α = ε

∏
ψ1∈P1

ψ
eψ1
1

∏
ψ2∈P2

ψ
eψ2
2 .

As the norm and σQ(ω)-function are both multiplicative, so is their composition and we
may write the first equation as∏

ψ1∈P1

NQ(ω)

(
σQ(ω)(ψ

eψ1
1 )

) ∏
ψ2∈P2

NQ(ω)

(
σQ(ω)(ψ

eψ2
2 )

)
= 3

∏
ψ1∈P1

NQ(ω)

(
ψ
eψ1
1

) ∏
ψ2∈P2

NQ(ω)

(
ψ
eψ2
2

)
,

using that the norm of a unit is 1 and the σQ(ω)-function is defined up to associates. By
Lemma 3.1.11, the norm of any odd Eisenstein is congruent to 1 modulo 3Z. Therefore,
the right-hand side is congruent to 3 modulo 9Z implying that exactly one of the prime
factors of α satisfies the conditions listed in Lemma 4.2.1. The possible forms are the
ones presented above. �

This theorem is a bit weaker than the conjecture. Nevertheless, we get a corollary if
we distinguish between the two congruence classes of odd integers.
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Corollary 4.2.3. In the case of the previous theorem, each case corresponds to exactly
one congruence class of odd positive integers, i.e. ψ0 ∈ P1 if and only if α ≡ 1 mod 1−ω2

under the assumption that α is positive.

Proof. We evaluate the product from the theorem and remark that ε = 1 since we are
focusing on positive integers. In any case, the powers

ψ
eψ1
1 ≡ 1 mod 1− ω2

since ψ1 ≡ 1 mod 1− ω2 and also

ψ
eψ2
2 ≡ 1 mod 1− ω2

since eψ2 ≡ 0 mod 2Z and ψ2 ≡ 2 mod 1−ω2. Hence, the congruence class of the whole
product only depends on ψk0 which is ≡ 1 modulo 1−ω2 if ψ0 ∈ P1 and ≡ 2 modulo 1−ω2

if ψ0 ∈ P2. �

Similarly to the case of the rational integers, the author has not been able to present
any odd norm-perfect integers yet. However, we can prove that the Gaussian integers
feature a kind of numbers which cannot be found in the Eisenstein integers.

Theorem 4.2.4. There is no odd norm-perfect Eisenstein prime.

Proof. Suppose ψ is an odd norm-perfect positive Eisenstein prime. Then,

3NQ(ω)(ψ) = NQ(ω)

(
σQ(ω)(ψ)

)
= NQ(ω)(ψ + 1).

Evaluating this yields the equation

3(a2 − ab+ b2) = (a+ 1)2 − (a+ 1)b+ b2

which has the integer solutions a = 0, b = −1 and a = b = 1 but −ω and 1 + ω are
units and non-positive, too. Since all associates of a norm-perfect number are also norm-
perfect, this is sufficient to prove the claim. �

An interesting fact is that the previous theorem is independent of our choice of the
set of positive primes.

The results in this section apply solely to odd norm-perfect integers but the author
believes that there is not much more that can be said about odd perfect integers and has
not been listed here.

4.3 Cyclotomic fields of higher degree

Recall our set R of cyclotomic fields over Q with class number 1 and generated by ζn
with n being a rational prime or 4. So far, we have presented results concerning the two
fields with the smallest degree, Q(i) and Q(ω). We will have a look at the other fields in
R and there is a nice theorem about which fields exactly are contained in it.
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Theorem 4.3.1. [31, theorem 11.1] The numbers n ∈ N such that Q(ζn) has class number
1 are:

• 1 through 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 48, 50, 54,
60, 66, 70, 84, and 90.

The set R does not contain all of those fields but the number being finite tells us that
the problem of (norm-)perfect numbers in such fields is a soluble one. It is even less than
we may think in the first moment, since it is Q(ζn) = Q(ζ2n) for odd n ∈ N. Thus, our
shortened list of n such that Q(ζn) is a UFD is:

• 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40,
44, 45, 48, 60, and 84.

Picking n such that n is a rational prime or 4, yields the list

• 2, 3, 4, 5, 7, 11, 13, 17, and 19.

The cases n ∈ {2, 3, 4} were dealt with in the preceding chapters and sections. Since the
degree [Q(ζn) : Q] = ϕ(n), the norm of an element in Z[ζn] is the product of an increasing
number of factors which complicates its computation. However, based on our experiences
already gained, we may formulate a conjecture.

Conjecture 4.3.2. Let K = Q(ζp) ∈ R with p 6= 2, 4 where ζp is the primitive p-th root
of unity such that 1− ζp is positive in Z[ζp]. Then,

• the even perfect integers in this ring are given by

−ζ−1p (1− ζp)k−1
(
(1− ζp)k − 1

)
for k ≡ 1 mod 4pZ and (1− ζp)k − 1 being prime and

• the even norm-perfect integers are the associates of the perfect integers from item
1 and the associates of

(1− ζp)k−1
(

(1− ζp)k − 1
)

for k ≡ −1 mod 4pZ and (1− ζp)k − 1 being prime.

When we turn to the odd norm-perfect integers in Z[ζp], however, presenting the form
they have is possible. As

Z[ζp]/〈1−ζp〉 ∼= Z/pZ,

we have to take care about an increasing amount of residue classes of odd primes which
may be factors of an odd norm-perfect number α. Thus, the simplicity of the form of α
heavily depends on the structure of (Z/pZ)∗.

Lemma 4.3.3. Let p be an odd prime, a ∈ N such that a 6≡ 0, 1 mod pZ and t the order
of a in (Z/pZ)∗. Then p |

∑t−1
k=0 a

k.

Proof. By assumption t > 1. Then a is a root of

xt − 1 = (x− 1)
t−1∑
k=0

xk mod pZ.

Since a 6≡ 1 mod pZ and Z/pZ is a field, a has to be a root of the sum, and we get∑t−1
k=0 a

k ≡ 0 mod pZ. �

The following theorem is the generalisation of the work we got familiar with while
working with odd norm-perfect Eisenstein integers.
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Theorem 4.3.4. Let K = Q(ζp) ∈ R with p 6= 2, 4 where ζp is the primitive p-th root of
unity such that 1 − ζp is positive in Z[ζp]. Let α ∈ Z[ζp] be an odd norm-perfect integer
and

Pj = {ψ ∈ P+
Q(ζp)

: ψ ≡ j mod 1− ζp ∧ ψ |α}

for all j ∈ {1, . . . , p− 1}. Then α is of the form

α = εψk0

p−1∏
j=1

 ∏
ψj∈Pj\{ψ0}

ψ
eψj
j


where

1. each ψ with a subscript is an odd positive prime,

2. ε is a unit,

3. if j 6= 1, eψj 6≡ −1 mod tZ where t is the order of j in (Z/pZ)∗,

4. eψ1 6≡ −1 mod pZ, and

5. if ψ0 ∈ Pj for j 6= 1, then k ≡ −1 mod tZ where t is the order of j in (Z/pZ)∗, or if
ψ0 ∈ P1, then k ≡ −1 mod pZ.

Proof. We use that, since α is odd, NK(α) is not divisible by p according to Lemma
3.1.12. Thus, p2 - pNK(α) = NK (σK(α)). By the same argument as in the proof
of Theorem 4.2.2, there is only one particular positive prime divisor ψ0 of α such that
p |NK

(
σK(ψk0)

)
for k being the exponent of ψ0 in the prime decomposition of α. For

ψ0 ∈ P1 this is the case if and only if k ≡ −1 mod pZ and, for j 6= 1 and ψ0 ∈ Pj, this
is the case if and only if k ≡ −1 mod tZ by the previous lemma. All the other primes
must not satisfy these congruence conditions. �



Chapter 5

Generalisation to quadratic number
fields

The second type of field extensions over Q that have been widely studied are the quadratic
extensions.

Lemma 5.0.1. For any quadratic extension K of Q, there is a unique square-free d ∈ Z
such that K ∼= Q(

√
d). The ring of integers is given by

1. Z[1+
√
d

2
] if d ≡ 1 mod 4Z or

2. Z[
√
d] if d 6≡ 1 mod 4Z.

Proof. Easy exercise. Recall that d is square-free, so d 6≡ 0 mod 4Z. �

Since the automorphisms of such a K are given by

•
√
d 7→

√
d and

•
√
d 7→ −

√
d,

the norm of an element a+ b
√
d ∈ Q(

√
d) is

NQ(
√
d)(a+ b

√
d) = a2 − db2.

In order to work out how we want to define positivity in these fields, we examine the
unit group of its ring of integers. In any elementary algebraic number theory course, the
following theorem is discussed.

Theorem 5.0.2. (Dirichlet’s Unit Theorem) Let K be an algebraic number field and
[K : Q] = s + 2t where s is the number of real embeddings and 2t is the number of
complex embeddings of K. Then

(OK)∗ ∼= W × Zs+t−1

where W is the group of roots of unity in K.

Since we work with quadratic extensions, we are in the case of s = 2 or t = 1, so it
seems fit to distinguish between imaginary and real extensions. Additionally, we want
our ring of integers to be a UFD, so we cite the following theorem.

33
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Theorem 5.0.3. [18] Let K = Q(
√
d) be a quadratic extension of Q.

1. If d > 0, then there is an undetermined number of d such that OK is a UFD.

2. If d < 0, then OK is a UFD if and only if

d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

The set of the quadratic extensions of class number 1 will be denoted by Q.

5.1 Imaginary quadratic fields

Let d < 0 be a square-free rational integer throughout this section such that K = Q(
√
d) ∈

Q if not stated otherwise. By Dirichlet’s Unit Theorem, we have that (OK)∗ is exactly
the group of roots of unity in K.

Lemma 5.1.1. Let K = Q(
√
d). It is

• (OK)∗ = {1, i,−1,−i} if d = −1,

• (OK)∗ = {1, ω, ω2,−1,−ω,−ω2} if d = −3, and

• (OK)∗ = {1,−1} otherwise.

Proof. The cases d = −1,−3 were dealt with in the preceding chapters because
Q(
√
−1) ∼= Q(i) and Q(

√
−3) ∼= Q(ω).

For the last case, we simply evaluate the equation

a2 − db2 = 1

for d 6≡ 1 mod 4Z and

a2 − db2 = 4

for d ≡ 1 mod 4Z with a, b ∈ Z. These are only soluble with a = ±1, b = 0 which yields
the claim. �

The previous theorem tells us that in the cases we have not dealt with yet, the unit
group consists of ±1, so there are only two associates in each class. We now choose
a representative system to be our set of positive primes but we point out that this is
arbitrary.

Definition 5.1.2. Let K = Q(
√
d) ∈ Q with rationally negative d 6= −1,−3. A prime

ψ ∈ OK is called positive if either <(ψ) > 0 or <(ψ) = 0 and =(ψ) < 0. An integer
α ∈ OK is called positive if it is the product of positive primes. We call the sets of
positive primes or integers P+

K or O+
K , respectively.

Having defined positivity, we may also define the σ-function on an imaginary quadratic
number field.
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Definition 5.1.3. Let K ∈ Q such that K is an imaginary extension of the rationals.
Let α =

∏l
k=1 π

ek
k be a positive integer in OK and πk ∈ P+

K for all k. We define the
sum-of-divisors-function of K as

σK(α) =
l∏

k=1

πek+1
k − 1

πk − 1
.

Furthermore, any associate of α has the same value under σK . Additionally, we set
σK(0) = 0.

A considerable difference to the case of cyclotomic fields is that we cannot generalise
Spira’s Lemma 3.1.3 as it is shown in the following example.

Example 5.1.4. Let K = Q(
√
−7). Then OK = Z[1+

√
−7

2
] since −7 ≡ 1 mod 4Z. Then

NK(−
√
−7) = 7, so it is prime. Since <(−

√
−7) = 0 and =(−

√
−7) < 0, it is also

positive. By our formula,

NK

(
σK((−

√
−7)2)

)
= NK(

√
−7

2 −
√
−7 + 1) = NK(−6−

√
−7) = 36 + 7 = 43

but clearly
NK((−

√
−7)2) = NK(−7) = 49,

so NK((−
√
−7)2) > NK

(
σK((−

√
−7)2)

)
.

The missing piece towards defining perfect integers in imaginary quadratic fields is
to find our even positive prime. Looking at the cases of the Gaussian and Eisenstein
integers and the computation done in order to present even perfect integers in those
rings, we see that the important property of the prime with minimal norm 1− ζp is that
(1 − ζp) − 1 is a unit. In the cases we are looking at, i.e. d 6= −1,−3, the only non-zero
integer satisfying this is 2. However, 2 is not always prime in OK . We will state two short
lemmata about the ramification and splitting of rational primes in quadratic extensions
but before that we will introduce a sign often used in number theory.

Definition 5.1.5. Let a ∈ Z and p ∈ P. The Legendre symbol is defined by

(
a

p

)
=


0 p | a
1 a is a quadratic residue modulo pZ
−1 otherwise

which is determined by whether the congruence x2 ≡ a mod pZ has a solution.

Lemma 5.1.6. Let K = Q(
√
d). Then an odd prime p ∈ P

1. ramifies if p | d,

2. splits if
(
d
p

)
= 1, or

3. remains inert if
(
d
p

)
= −1.

For the prime 2, a special case applies.
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Lemma 5.1.7. Let K = Q(
√
d) ∈ Q. In OK , 2

1. ramifies if and only if d 6≡ 1 mod 4Z,

2. splits if and only if d ≡ 1 mod 8Z, or

3. is inert if and only if d ≡ 5 mod 8Z.

Proofs. These can be found in most introduction to algebraic number theory courses
and are based on the Dedekind–Kummer Theorem. �

Corollary 5.1.8. Let K = Q(
√
d) ∈ Q be an imaginary number field with d 6= −1,−3.

Then

1. the rational prime 2 remains prime in OK if and only if

d ∈ {−11,−19,−43,−67,−163},

and

2. the rational prime 3 is

• split for d ∈ {−2,−11} and

• inert for d ∈ {−7,−19,−43,−67,−163}.

Proof. This directly follows from the previous lemmata. �

This motivates the following definition that covers the cases in which 2 is the positive
prime of minimal norm.

Definition 5.1.9. Let K = Q(
√
d) with d ∈ {−19,−43,−67,−163}. An integer α ∈ OK

is called even if it is divisible by 2, otherwise odd.
An integer α ∈ OK is called

1. perfect if σK(α) = 2α and

2. norm-perfect if NK (σK(α)) = 4NK(α).

Clearly, we keep the property that any perfect integer is norm-perfect, too. Since 2 is
the even positive prime, we may think about the perfect rational integers to be perfect in
OQ(

√
d) for d ∈ {−19,−43,−67,−163} as well. If 2k−1 is prime, i.e. inert in the extension

OQ(
√
d)/Q, then 2k−1(2k−1) is perfect by the same computation as for the rationals. Since

d is a natural prime number in any case, we may use the Law of Reciprocity by Gauss
which is part of most introduction to number theory courses.

Theorem 5.1.10. (Law of Reciprocity by Gauß) Let p, q ∈ P be prime numbers. Then

(
p

q

)
=

−
(
q
p

)
if p ≡ q ≡ 3 mod 4Z(

q
p

)
otherwise.
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In our settings, d ≡ 1 mod 4Z and is a natural prime, so we are always in the second
case. Hence, we are interested in computing the Legendre symbol

(
d

2k − 1

)
=

(
2k − 1

d

)

for Mersenne primes 2k−1 and d ∈ {−19,−43,−67,−163}. Firstly, we need to compute
2k−1 mod dZ. Since d is prime and thus coprime to 2, we have a quick look at the order
of 2 in (Z/dZ)∗.

d order of 2 in (Z/dZ)∗

−19 18
−43 14
−67 66
−163 162

Table 5.1: Order of 2 in (Z/dZ)∗

Finally, we can compute 2k − 1 mod dZ for all d that we are interested in and
Mersenne primes 2k − 1. This was done using a simple Java program. We point
out that dZ = (−d)Z, so switching the sign in the lower part of the Legendre symbol
is negligible.

k\d −19
(

2k−1
19

)
−43

(
2k−1
43

)
−67

(
2k−1
63

)
−163

(
2k−1
163

)
2 3 −1 3 −1 3 −1 3 −1
3 7 1 7 −1 7 −1 7 −1
5 12 −1 31 1 31 −1 31 −1
7 13 −1 41 1 60 −1 127 −1
13 2 −1 21 1 17 1 41 −1
17 9 1 7 −1 19 1 19 −1
19 1 1 31 1 12 −1 79 −1
31 2 −1 7 −1 49 1 49 1
61 13 −1 31 1 44 −1 109 −1
89 9 1 31 1 6 −1 70 1
107 9 1 38 −1 11 −1 29 −1
127 1 1 1 1 44 −1 76 −1
521 9 1 7 −1 11 −1 147 −1

Table 5.2: 2k − 1 mod dZ and its Legendre symbol
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k\d −19
(

2k−1
19

)
−43

(
2k−1
43

)
−67

(
2k−1
63

)
−163

(
2k−1
163

)
607 2 −1 31 1 17 1 154 −1
1279 1 1 31 1 27 −1 106 −1
2203 13 −1 31 1 27 −1 153 −1
2281 2 −1 21 1 50 −1 41 −1
3217 2 −1 26 −1 56 −1 129 −1
4253 12 −1 26 −1 45 −1 17 −1
4423 2 −1 21 1 1 1 43 1
9689 12 −1 1 1 40 −1 75 −1
9941 12 −1 1 1 11 −1 68 −1
11213 9 1 21 1 11 −1 147 −1
19937 14 −1 1 1 31 −1 91 1
21701 14 −1 1 1 40 −1 149 −1
23209 13 −1 26 −1 47 1 71 1
44497 1 1 31 1 17 1 116 1
86243 12 −1 7 −1 30 −1 68 −1
110503 1 1 1 1 12 −1 79 −1
132049 1 1 1 1 56 −1 79 −1
216091 1 1 1 1 60 −1 106 −1
756839 14 −1 21 1 19 1 73 −1
859433 12 −1 1 1 30 −1 138 −1
1257787 1 1 21 1 27 −1 79 −1
1398269 14 −1 31 1 11 −1 10 −1
2976221 14 −1 7 −1 19 1 120 1
3021377 12 −1 38 −1 45 −1 112 1
6972593 12 −1 31 1 6 −1 63 −1
13466917 1 1 38 −1 17 1 79 −1
20996011 1 1 1 1 27 −1 1 1
24036583 2 −1 26 −1 47 1 107 −1
25964951 12 −1 31 1 6 −1 112 1
30402457 13 −1 1 1 12 −1 122 1
32582657 14 −1 38 −1 11 −1 159 −1
37156667 12 −1 38 −1 40 −1 138 −1
42643801 1 1 26 −1 17 1 45 −1
43112609 9 1 1 1 6 −1 147 −1
57885161 12 −1 31 1 11 −1 75 −1
74207281 2 −1 1 1 56 −1 12 −1

Table 5.3: 2k − 1 mod dZ and its Legendre symbol (continued)

Thus, by Lemma 5.1.6, 2k−1(2k − 1) is perfect in Q(
√
d) if

(
2k−1
d

)
= −1. This gives

solutions for d ∈ {−19,−43,−67,−163}. The case d = −11 may be treated similarly but
we have to let go of the property that our positive even prime is also the positive prime
of minimal norm. For the cases d ∈ {−2,−7}, we have to think of something else since 2
is not prime but this will not be discussed in this thesis.
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5.2 Real quadratic fields

Let d > 0 be a square-free integer throughout this section such that Q(
√
d) ∈ Q. By

Dirichlet’s Unit Theorem and the fact that R contains only two roots of unity, we have
that

(OK)∗ ∼= Z/2Z× Z.

Unfortunately, the list of Theorem 5.0.3 is incomplete regarding the quadratic number
fields with d > 0 and class number 1 but we may still find some results considering an
arbitrary d. To this end, we delay the definition of being positive in OQ(

√
d) and distinguish

primarily between a few cases depending on the primality of 2 and 3 in Q(
√
d). For this,

recall the Dedekind–Kummer Theorem and, especially, that NQ(
√
d)(2) = 4.

1. 2 and 3 are inert, so 2 is a prime of minimal norm.

2. 2 is inert and 3 is not, thus the prime divisors of 3 are primes of minimal norm.

3. 2 is not inert, so its prime divisors are primes of minimal norm.

We put this together, using the Lemmata 5.1.7 and 5.1.6 from the previous section.

Lemma 5.2.1. Let K = Q(
√
d) ∈ Q.

1. 2 is a prime of minimal norm if and only if d ≡ 5 mod 24Z.

2. 3 is non-prime and one of its prime divisors is a prime of minimal norm if and only
if d ≡ 13, 21 mod 24Z.

3. 2 is non-prime and one of its prime divisors is a prime of minimal norm if and only
if d 6≡ 5 mod 8Z.

Proof. Lemma 5.1.6 tells us that 3 is inert in OK if and only if d ≡ 2 mod 3Z. We
then determine the congruence classes of d modulo 8Z and combine these via the Chinese
Remainder Theorem.

Now, we work on each case separately.

1. Case 1 lets us simply take 2 as the even positive prime. For the other cases, we
now think about whether any of those primes ψ of minimal norm also satisfy the
property that ψ − 1 is a unit.

2. In case 2, we want to take one of the prime divisors of 3. Suppose a+b
√
d

2
for some

a, b ∈ Z is such a prime and a+b
√
d

2
− 1 is a unit. We have the two equations

a2 − db2 = ±12, (a− 2)2 − db2 = ±4

which let us divide even more cases, identified by the sign of the right-hand side of
each equation.

(a) (12, 4): Thus 12 = 4a implying a = 3, so db2 = −3 which is impossible for
d > 0.

(b) (12,−4): Thus 12 = 4a − 8 implying a = 5, so db2 = 13, hence d = 13 and
b = ±1.
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(c) (−12, 4): Thus −12 = 4a implying a = −3, so db2 = 21, hence d = 21 and
b = ±1.

(d) (−12,−4): Thus −12 = 4a − 8 implying a = −1, so db2 = 13, hence d = 13
and b = ±1.

3. Case 3 is similar to case 2, we just have a look at the prime divisors of 2 instead of
3.

We will have a look at d ≡ 1 mod 4Z first, so suppose a prime divisor is of the

form a+b
√
d

2
. Then, we have the equations

a2 − db2 = ±8, (a− 2)2 − db2 = ±4

which again lets us consider a few subcases.

(e) (8, 4): Thus 8 = 4a implying a = 2, so db2 = −4 which is impossible for d > 0.

(f) (8,−4): Thus 8 = 4a−8 implying a = 4, so db2 = −8 implying d ≡ 0 mod 2Z
which is a contradiction.

(g) (−8, 4): Thus −8 = 4a implying a = −2, so db2 = 16, hence d = 1 but
Q(
√

1) ∼= Q.

(h) (−8,−4): Thus −8 = 4a − 8 implying a = 0, so db2 = 8 implying d ≡ 0
mod 2Z again.

The above subcases are impossible, therefore we now assume d ≡ 2, 3 mod 4Z and
a prime divisor has the form a+ b

√
d. This yields the equations

a2 − db2 = ±2, (a− 1)2 − db2 = ±1.

(i) (2, 1): Thus 2 = 2a implying a = 1, so db2 = −1 which is impossible for d > 0.

(j) (2,−1): Thus 2 = 2a− 2 implying a = 2, so db2 = 2, hence d = 2 and b = ±1.

(k) (−2, 1): Thus −2 = 2a implying a = −1, so db2 = 1, hence d = 1.

(l) (−2,−1): Thus −2 = 2a − 2 implying a = 0, so db2 = 2, hence d = 2 and
b = ±1. �

These three cases showed that we can find appropriate primes for

d ∈ D′ := {2, 13, 21} ∪ (5 + 24N) .

Fortunately, all elements of the left-hand set satisfy Q(
√
d) ∈ Q. For the right-hand set,

this is unknown. We call D ⊂ D′ the subset such that for d ∈ D, we have Q(
√
d) ∈ Q.

The question we now have to take care of is whether we are able to define an appropriate
set of positive primes. A few properties we probably want P+

K to have are the following:

A) It contains exactly one even prime. Otherwise, defining perfect numbers will be
difficult. If multiple even primes occur among the positive primes, we are still able
to define norm-perfect numbers though.

B) The primes each have a length, i.e. absolute value in R, that is significantly different
from the others in order to conserve the equation σK(p) = σQ(p) for inert primes
p ∈ P. Additionally, this should help us to imagine the differences between two
images more easily.
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A crucial condition is that our positive even prime ψ satisfies ψ − 1 ∈ O∗K . So the
following elements are possible:

1. d ≡ 5 mod 24Z: 2.

2. d = 2: ±
√

2 and 2±
√

2.

3. d = 13: 5±
√
13

2
and −1±

√
13

2
.

4. d = 21: −3±
√
21

2
.

The second and third cases offer more possible representatives, so we want to have a look
at how the splitting behaviour of 2 and 3 affects how reasonable the choices we have are.

Definition 5.2.2. Let K be a number field and PK = Spec(K)\{{0}} its set of non-zero
prime ideals. We define

1. Ram(K) := {p ∈ PK : p is ramified},

2. Spl(K) := {p ∈ PK : p is split}, and

3. In(K) := {p ∈ PK : p is inert}.

Recall that we assume OK to be a PID, so all the generators are associated. Moreover,
we also consider quadratic extensions only, therefore any ideal is totally ramified, split,
or inert.

Because of property B, we want the positive rational integer generators of the ideals
in In(K) to be contained in P+

K . Lemma 3.1.8 tells us that there are only finitely many
ideals in Ram(K) but, by Chebotarev’s Theorem, infinitely many gather in Spl(K).
We might hope to contain all the positive rational primes in O+

K .

Example 5.2.3. Let d = 21 and K = Q(
√

21), so ∆K = 21 = 3 · 7 and we know that
the ramifying rational primes are 3 and 7. Suppose ψ = a+ b

√
21 is a positive generator

of the prime ideal p such that p2 = 7OK . As ψ ∈ R, we have ψ2 > 0, hence 7 is the only
one among 7 and −7 that can be in O+

K . However, this would imply

7 = a2 + 21b2, 0 = 2ab

thus, by the latter equation, either a = 0 or b = 0 but both cases yield a contradiction to
the former equation for a, b ∈ 1

2
Z. So 7 is not a square in OK and it cannot be positive.

Even though this discovery set us back, we may let ourselves get inspired by the
definition of positive primes in the cyclotomic fields inR. By Dirichlet’s Unit Theorem,
there is a fundamental unit which is not ±1 and thus has absolute value other than 1, so
the following definition makes sense. The separate definition for the case d = 2 is due to
the fact that the four possible positive even primes are all associated to each other. For
this, quickly check that ±

√
2± 1 are units.

Definition 5.2.4. Let d ∈ D such that K = Q(
√
d) ∈ Q. α ∈ OK is called even if it is

divisible by a prime of minimal norm. Otherwise, it is called odd.
If d 6= 2, an even prime ψ ∈ OK is positive if ψ > 0 and ψ − 1 is a unit. Otherwise,√

2 is the positive even prime.
An odd prime ψ ∈ OK is positive if its absolute value in R is the smallest amongst its

associates’ such that |ψ| ≥
√
|NK(ψ)| and ψ > 0.

An integer α of K is positive if it is the product of positive primes. We denote the
sets of positive primes or integers by P+

K or O+
K , respectively.



42 CHAPTER 5. GENERALISATION TO QUADRATIC NUMBER FIELDS

After pondering about this for a moment, we see that the definition we chose ensures
property B is satisfied because NK(p) = p2. We can now define the sum-of-divisors
function.

Definition 5.2.5. Let K = Q(
√
d) ∈ Q such that d ∈ D. Let α =

∏l
k=1 π

ek
k be a positive

integer in OK and πk ∈ P+
K for all k. We define the sum-of-divisors-function of K as

σK(α) =
l∏

k=1

πek+1
k − 1

πk − 1
.

Furthermore, any associate of α has the same value under σK . Additionally, we set
σK(0) = 0.

It remains to evaluate whether it fulfils property A as well. To this end, we need to
distinguish cases again.

Lemma 5.2.6. Property A may be satisfied for d ∈ D \ {13}.

Proof. We have the four cases:

1. If d ≡ 5 mod 24Z, then 2 and 3 are inert, so there is only one positive even prime
which is 2.

2. The discriminant of Q(
√

13) is 13, so 3 splits in Z[1+
√
13

2
] and ψ1 6' ψ2 for the two

prime divisors ψ1, ψ2 of 3. As every integer has a positive associate by definition,
both associate classes have a positive representative and we cannot fulfil property
A.

3. Similarly, the discriminant of Q(
√

21) is 21, so 3 ramifies in Z[1+
√
21

2
], thus there is

only one class of associates and −3−
√
21

2
< 0 but −3+

√
21

2
> 0.

4. If d = 2, then by definition there is only one positive even prime. �

The good set therefore is D \ {13} and we finally derive our definition for perfect
numbers in these fields.

Definition 5.2.7. Let d ∈ D \ {13}, K = Q(
√
d), α ∈ OK and ψ be the positive even

prime. We call α

1. perfect if σK(α) = ψα, and

2. norm-perfect if NK (σK(α)) = NK(ψ)NK(α).

We are now interested in what these positive even primes look like.

Lemma 5.2.8. The positive even primes in Q(
√
d) are given by

1. 2 if d ≡ 5 mod 24Z and d ∈ D,

2.
√

2 if d = 2, and

3. −3+
√
21

2
if d = 21.
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Proof. We plug in the values we received from the items (a) to (l). �

Similarly to the case of imaginary quadratic fields, proving an equivalent of the Eu-
clid–Euler Theorem turns out to be not quite as easy. We therefore settle for the
following theorem which only presents even perfect integers in certain cases.

Theorem 5.2.9. Let K = Q(
√
d) with d ∈ D \ {2, 13, 21}. Then

2k−1(2k − 1)

is perfect if 2k − 1 is a prime.

Proof. Since d ∈ D \ {2, 13, 21}, 2 is the positive even prime and thus totally inert.
Similarly, if 2k − 1 is prime, it is totally inert as well because it is also a rational integer.
The values under σK are hence identical with those of the even perfect rational integers
under σQ. �

The remaining cases of d ∈ {2, 21} are more difficult. The author was not able to
present an even perfect prime in those cases but a conjecture can be stated.

Conjecture 5.2.10. Let d ∈ {2, 21} and ψ be the positive prime in OQ(
√
d). Then there

exist kd,md ∈ N such that if α ∈ OQ(
√
d) is an even perfect number, then

ψk − 1 |α

for a k ≡ kd mod mdZ such that ψk − 1 is prime.
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Chapter 6

Sums of integral squares

In this chapter, we will focus on the equations

α =
k∑
j=1

x2j (6.1)

for α, xj ∈ OK , 1 ≤ j ≤ k, for a quadratic number field K, and its corresponding counting
function rk,K(α) as introduced in Definition 1.2.8. After pondering about the structure
of a representation for a moment, we derive an easy first observation about rk,K .

Lemma 6.0.1. Let K be a number field. For any α ∈ OK \ {0}, it is

r1,K(α) = 2 or r1,K(α) = 0

corresponding to α being a square in OK or not.

Proof. In this case, we consider the polynomial

f(x) = x2 − α

which has either two or no roots for α 6= 0. �

As pointed out in Chapter 1, the integers of certain non-real subfields of C lack the
restrictions of squares being particular subsets, e.g. x2 ∈ N for any x ∈ Z. To measure
the unrealness of such number fields, the Stufe (German for level) has been established
by many researchers.

Definition 6.0.2. Let K be a field. We define the Stufe S(K) of K to be the smallest
natural number k such that −1 is the sum of the squares of k elements of K. If no such
k exists, then S(K) =∞ and we call K formally real.

Additionally, if K is a number field, we define the integral Stufe of K to be

S′(K) := min{k ∈ N : rk,K(−1) > 0}.

If S′(K) =∞, then we call K integrally real.

Notice that K may be any field. We will focus on algebraic number fields but the
interested reader may be intrigued by the work by Lam [11] who investigated the Stufe
in arbitrary fields.

In a way, the (integral) Stufe determines how easily the (integral) squares of a field K
touch the negative real line. At this point, the author remarks that the terms positive and
negative will have their familiar meaning from the real numbers from now on. A property
of the Stufe which is easy to find is the following one.

46
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Lemma 6.0.3. Let K ⊂ L be fields, then S(L) ≤ S(K). If K is a number field, then
S(K) ≤ S′(K), too. Hence, every formally real number field is integrally real.

Proof. This follows directly from OK ⊂ K ⊂ L with the first relation only applying
to number fields. �

Without any further ado, we might try to construct a field K for any natural k such
that S(K) = k. This is not always possible and the question about the range of values
of the Stufe has already been solved.

Theorem 6.0.4. [11] Let K be any field, such that S(K) is finite. Then

S(K) = 2k

for some k ∈ N.

For the special case of number fields, there is an improvement known as Siegel’s
Theorem. It may be derived as a corollary by combining the previous theorem with
Theorem 1.2.4 because −1 is an integer.

Corollary 6.0.5. (Siegel’s Theorem) [11] If K is an algebraic number field in the case
of Theorem 6.0.4, then k ∈ {0, 1, 2}.

Lagrange’s Four-Square-Theorem proved that every natural number is expressible
as a sum of four integral squares but it does not tell us anything about numbers that are
not expressible as a sum of three such squares. Adrien-Marie Legendre (1752 – 1833
AD) showed that there are in fact natural numbers needing at least four squares.

Theorem 6.0.6. (Legendre’s Three-Square-Theorem) Let n be a natural number such
that

n = 4k(8m+ 7)

for some k,m ∈ N. Then n is not a sum of three rational integral squares.

Noting that R′(Q) = N, we may generalise this to a definition for all fields inspired
by the work of Ji and Wei [2].

Definition 6.0.7. Let K be a field. We call

p(K) := inf{k ∈ N : ∀α ∈ R(K)∃x1, . . . , xk ∈ K :
k∑
j=1

x2j = α}

the Pythagorean number of K. If p(K) = 1, then K is said to be Pythagorean.
Similarly, the integral Pythagorean number is given by

p′(K) := inf{k ∈ N : rk,K(α) > 0 ∀α ∈ R′(K)}

for any number field K. If p′(K) = 1, then K is called integrally Pythagorean.

Lagrange’s Theorem and Theorem 1.2.5 may thus be interpreted as

p′(Q) = 4 and p′
(
Q(
√
d)
)
≤ 3

for d < 0 such that d ≡ 1 mod 4Z. In 1993, Rajwade proved a correlation between the
Stufe and Pythagorean number of a field.

Theorem 6.0.8. [24] Let K be a field. Then

p(K) ≤ S(K) + 1.

If K is not formally real, then also S(K) ≤ p(K).
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6.1 The counting function in cyclotomic fields

We briefly recollect the facts we know about the equation (6.1) in the rational integers.
In 1834, Carl Gustav Jakob Jacobi (1804 – 1851 AD) found an explicit formula for
the case of Lagrange’s Theorem.

Theorem 6.1.1. (Jacobi) For any n ∈ N, it is

r4(n) = 8
∑

m |n, 4 -m

m

where m ∈ N. Moreover, if 4 - n, then r4(n) = 8σ(n).

Unfortunately, the last sentence is not particularly useful with respect to the first part
of this thesis because, due to the Euclid–Euler Theorem, we only know one perfect
natural number being not divisible by 4 so far, which is 6.

Lemma 6.1.2. The following facts are true:

1. Q is formally real.

2. The function r4,Q is unbounded but finite everywhere.

Proof. The proofs are short and constructive.

1. Since all squares in Q are positive, their sum can never be −1 which is negative.

2. The formula given by Jacobi in Theorem 6.1.1 implies r4,Q(z) <∞ for every z ∈ Z
since r4,Q(z) = 0 if z < 0. Moreover, we see that the sequence

(an)n∈N = 3n

is sent to the sequence

(bn)n∈N = r4,Q ((an)n∈N) = 8
n∑
j=0

3j

which is unbounded. �

We also know some more things about the Stufe of a number field K.

Theorem 6.1.3. The following facts are true:

1. For any number field K, S′(K) = 1 if and only if S(K) = 1 if and only if Q(i) ⊂ K.

2. S′ (Q(i)) = 1 and S′(Q(ω)) = 2.

3. S′ (Q(ζn)) ≤ n− 1 for odd n.

4. S′ (K) ≤ 8 for any non-formally real number field K. (Peters, 1972)

5. S (Q(ζn)) = 3 if m |n for some m ≡ 3 mod 8Z. (Chowla, 1968)

Proof. Again, we have some short proofs.
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1. If S′(K) = 1, then S(K) = 1 due to Lemma 6.0.3, so K contains a root of f(x) =
x2 + 1 which are ±i. Furthermore, if i ∈ K, then i ∈ OK , so S′(K) = 1.

2. See the above item and −1 = ω2 + (ω2)2. It is an easy exercise to prove that
i 6∈ Q(ω).

3. The ring of integers is given by Z[ζn], so ζkn ∈ OQ(ζn) for all 1 ≤ k ≤ n − 1. The
group (W, · ) of roots of unity in K is isomorphic to (Z/nZ,+) via

ι : W → Z/nZ, ζkn 7→ k mod nZ,

so ι
(
(ζkn)2

)
= 2k mod nZ. Since 2 is coprime to n, squaring is thus bijective with

12 = 1, so its restriction to W \ {1} is bijective as well. Hence,

n−1∑
k=1

(ζkn)2 =
n−1∑
k=1

ζkn = −1

because ζn is a root of
∑n

k=0 x
k and x0 = 1.

4. For the proof, we refer to [23].

5. For the proof, we refer to [3]. �

In 2007, Ji and Wei proved the following improvement to both Theorem 1.2.5 and
item 4 of the previous theorem.

Theorem 6.1.4. [2] Let K = Q(ζn) with n ≥ 3 and n 6≡ 2 mod 4Z. Then

p′(K) =

{
4 if n is odd and the order of 2 in (Z/nZ)∗ is odd,

3 otherwise.

Moreover, if n is odd, then

S(K) =

{
4 if the order of 2 in (Z/nZ)∗ is odd,

2 otherwise.

Of course—since this is a thesis in algebraic number theory—we are rather interested
in S′(K) but it turns out that this not as easy because OK is a proper subset of K.
Similarly, for the computation of the number p′(K) of any number field K, we ignore all
integers of K that are not sums of integral squares. Until now, we might have hoped
that, in the case of imaginary number field, we would get rid of the restriction of squares
being positive and thus be able to express any integer of such a field as sum of squares.
However, this is not possible as pointed out in Theorem 1.2.5.

Example 6.1.5. Consider K = Q(i), so any non-zero element is totally positive. Then
i ∈ OK and

i =
i

2
+
i

2
+ 0 + 0 =

(
1 + i

2

)2

+

(
1 + i

2

)2

+ 02 + 02,

as we know from Theorem 1.2.4. However, 1+i
2

is not an algebraic integer because its
minimal polynomial over Z is 2x2 − 2x+ 1.
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Moreover, we if we take a+ bi ∈ Z[i] with a, b ∈ Z, then

(a+ bi)2 = a2 − b2 + 2abi,

so the imaginary part of any sum of integral squares is an even rational integer and hence,
i is not the sum of any number of integral squares in K.

In Theorem 6.1.1, Jacobi provided a closed formula for r4,Q but restricted to the set
N = R′(Q). Here, we will discuss the appearance of certain special values.

Lemma 6.1.6. Let K be a number field and k ∈ N. Then(
m

k

)
rk,K(α) ≤ rm,K(α)

for all α ∈ OK and k ≤ m.

Proof. We may add arbitrarily many zeros to any sum without changing its value
and 02 = 0. The binomial coefficient is derived from the fact that we may put the k en-
tries of a representation of k squares in any of the m entries of the larger representation. �

We will start with Q(i) being the most common of these extensions. Due to Theorem
1.2.5 and Example 6.1.5, we know that R′ (Q(i)) = {a + bi : a, b ∈ Z, 2 | b}. It also
tells us that we are interested in r3,Q(i) rather than r4,Q(i) but it only provides the fact
that r3,Q(i)(α) > 0 for all α ∈ R′(Q(i)). A particular property of the Gaussian integers
regarding squares is that they contain i which leads to this first observation.

Lemma 6.1.7. Let α ∈ Z[i] such that α = β2 for some β ∈ Z[i]. Then rk,Q(i)(α) =∞ for
all m ∈ N≥3.

Proof. For any s ∈ Z, it is

α = β2 = β2 + s2 − s2 = β2 + s2 + (si)2

a sum of three integral squares. Hence,

(β, s, si) ∈

{
(x1, . . . , xk) ∈ OkK :

k∑
j=1

x2j = α

}
,

for infinitely many s. So r3,Q(i)(α) =∞, and the claim follows by the previous lemma. �

This is a huge difference compared to the second item of Lemma 6.1.2. However,
squares are in fact only sporadically distributed amongst the Gaussian integers as we
see in the figure below.
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iZ

Z0−1 1

2i

−2i

4−4

3 + 4i

−3− 4i

−3 + 4i

3− 4i

Figure 6.1: The integral squares near the origin in the Gaussian integers

But the previous lemma also raises the question whether computing r3,Q(i)(α) for any
arbitrary Gaussian integer α is a task that can be done in a reasonable amount of time
and whether we find any good ansatz to cope with the possibilities given by non-integrally
real fields. Focusing on the number of representations r3,Q(i) of rational integers with three
squares from Z[i] may help because we a far more familiar with the arithmetic on Z. Before
proving Lemma 6.1.9, we start with a useful lemma about the rational integers.

Lemma 6.1.8. Let n be an arbitrary rational integer.

1. If n ≡ 2, 3 mod 4Z, then there are infinitely many l,m ∈ Z such that

n = 2(2m+ 1) + l2.

2. If n ≡ 1 mod 4Z, then there are infinitely many l,m ∈ Z such that

n = 2(2m+ 1)− l2.

3. If n ≡ 0 mod 4Z, then there are infinitely many l,m ∈ Z such that

n = 8(m+ 1) + l2.

Proof. We handle each case separately.

1. Suppose n ≡ 2, 3 mod 4Z. Choose l to be an integer such that l ≡ n mod 2Z, so
l2 + 2 ≡ n mod 4Z implying l2 + 2 = n− 4m for some m ∈ Z. Rearranging yields
the claim.

2. Suppose n ≡ 1 mod 4Z. Choose l to be an odd integer, so l2 ≡ n ≡ 1 mod 4Z
implying 2− l2 = n− 4m for some m ∈ Z which yields the claim.
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3. Suppose n ≡ 0 mod 4Z. Let l be a rational integer such that l2 ≡ n mod 8Z, so
l2 = n− 8m′ for some m′ ∈ Z. Substituting m′ by m+ 1 finishes the proof. �

It feels natural to include the l of such a representation to the representation of a
rational integer n as sum of four integral squares from the Gaussian integers. The
question how to express the other term as a sum of two squares will be answered in the
next lemma.

Lemma 6.1.9. It is
rk,Q(i)(n) =∞

for all n ∈ Z and k ≥ 3.

Proof. Due to Lemma 6.1.6, we only need to prove this for k = 3. For this, we will
use the following identity

± 2mg + g2 = (m± g)2 −m2 (6.2)

which hold for all m, g ∈ N. We now distinguish the same cases as in Lemma 6.1.8 which
gives us infinitely many pairs (l,m) for a certain representation.

1. Suppose n ≡ 2, 3 mod 4Z. Then use 6.2 with g = 1, so

n = 2(2m+ 1) + l2

= 2[(m+ 1)2 −m2] + l2

= 2[(m+ 1)2 −m2] + 2(m+ 1)mi− 2(m+ 1)mi+ l2

= [(m+ 1) +mi]2 + [(m+ 1)−mi]2 + l2.

2. Suppose n ≡ 1 mod 4Z. Then use 6.2 with g = 1, so

n = 2(2m+ 1)− l2

= 2[(m+ 1)2 −m2] + (li)2

= 2[(m+ 1)2 −m2] + 2(m+ 1)mi− 2(m+ 1)mi+ (li)2

= [(m+ 1) +mi]2 + [(m+ 1)−mi]2 + (li)2.

3. Suppose n ≡ 0 mod 4Z. Then use 6.2 with g = 2, so

n = 2(4m+ 4) + l2

= 2[(m+ 2)2 −m2] + l2

= 2[(m+ 2)2 −m2] + 2(m+ 2)mi− 2(m+ 2)mi+ l2

= [(m+ 2) +mi]2 + [(m+ 2)−mi]2 + l2.

This finishes the proof. �

So far we found a subset of the set

{α ∈ Z[i] : r3,Q(i)(α) =∞} ⊂ R′ (Q(i))

whose elements each have infinitely many representations and a set Z[i] \R′ (Q(i)) whose
elements have none whatsoever. This is last set is in fact non-empty as we saw in Example
6.1.5 because the imaginary part of a sum of squares is always an even rational integer.
The author has not been able to prove or disprove the following conjecture so far but is
fairly interested in its resolution.



6.2. NON-CYCLOTOMIC QUADRATIC EXTENSIONS 53

Conjecture 6.1.10. For every α ∈ Z[i], it is either r3,Q(i)(α) = 0 or r3,Q(i)(α) =∞.

As we did before in the course of this thesis, we will have a look at the case of the
Eisenstein integers next. Since i 6∈ Q(ω), there are no non-zero pairs α, β ∈ Z[ω] such
that α2 = −β2, so we will not be able to use the trick from Lemma 6.1.7. Moreover,
due to Theorem 1.2.5, we know that r3,Q(ω)(α) > 0 for all α ∈ Z[ω]. Being able to use
three squares makes it still possible to find at least one element which has infinitely many
representations:

0 = 0 · α2 = (1 + ω + ω2)α2 = α2 + (ω2α)2 + (ωα)2

for all α ∈ Z[ω].

6.2 Non-cyclotomic quadratic extensions

Proceeding in the same fashion as in the first part of this thesis, we will now consider the
non-cyclotomic quadratic extension of the rationals and—once again—there is a difference
between the real and imaginary ones. Each one has a particular advantage compared to
the other.

This time, we start with the real extensions. The advantage they have compared to the
imaginary extensions is that every square is positive. It follows straight from the definition
and the property of squares of real numbers being positive that every real extension of Q
is formally real. Among these fields, there is one standing out.

Theorem 6.2.1. (Götzky [8]) Let K be a real quadratic extension of Q such that
every totally positive integer of OK is the sum of four integral squares from K. Then
K = Q(

√
5).

The similarity to Lagrange’s Four-Square-Theorem is remarkable. This was later
improved by Maass [13].

Lemma 6.2.2. Every totally positive integer of Q(
√

5) is the sum of three integral
squares.

In 2016, Thompson [29] presented explicit formulas for r4,Q(
√
5) and r4,Q(

√
2) using

modular forms and the theory of local densities by Siegel.

Theorem 6.2.3. The following formulas hold:

1. If α ∈ Z[1+
√
5

2
] is totally positive, then

r4,Q(
√
5)(α) = 8

∑
06=〈d〉 | 〈α〉

NQ(
√
5)(d)− 4

∑
〈2〉 | 〈d〉 | 〈α〉

NQ(
√
5)(d) + 8

∑
〈4〉 | 〈d〉 | 〈α〉

NQ(
√
5)(d).

2. If α ∈ Z[
√

2] is expressible as sum of four integral squares, then

r4,Q(
√
2)(α) = 8

∑
06=〈d〉 | 〈α〉

NQ(
√
2)(d)− 6

∑
〈2〉 | 〈d〉 | 〈α〉

NQ(
√
2)(d) + 4

∑
〈4〉 | 〈d〉 | 〈α〉

NQ(
√
2)(d).
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By Lemma 6.1.6, we deduce r3,Q(
√
5)(α) <∞ for all α ∈ Z[1+

√
5

2
] or fitting α ∈ Z[

√
2]

because each ideal of those rings has only finitely many divisors and the norm of each of
those is finite.

The imaginary non-cyclotomic quadratic extensions are still very close to the cyclo-
tomic extensions Q(i) and Q(ω). Theorem 1.2.5 tells us that, for any extension Q(

√
d)

with d < 0, we have r3,Q(
√
d)(α) > 0 for all α ∈ R′

(
Q(
√
d)
)

. Moreover, it tells us that its

integral Stufe satisfies

1 ≤ S′
(
Q(
√
d)
)
≤ 3.

The extensions we are interested in right now are non-cyclotomic, so by Theorem 6.1.3
the lower bound can be improved such that

S′
(
Q(
√
d)
)
∈ {2, 3}.

Thus, in order to determine the integral Stufe of an imaginary quadratic extension
K = Q(

√
d), we only need to check whether −1 is expressible as sum of two squares.

Fortunately, Niven stated sufficient and necessary conditions for an integer of an imag-
inary quadratic extension to be expressible as sum of two squares with rational integral
coefficients.

Theorem 6.2.4. [20, p. 410] Let K = Q(
√
d) be an imaginary quadratic extension with

d 6≡ 1 mod 4Z and α = a + 2b
√
d ∈ OK . α is expressible as a sum of two squares of

integers of OK with rational integral coordinates if and only if there exists an integer t
such that

(−d)t2 + at− b2

is a perfect square such that the greatest common divisor of t, b and a−dt is not divisible
by an odd power of a prime congruent to 3 modulo 4Z.

There are two important details in this theorem that we must pay close attention to:

1. A perfect square is meant to be non-zero, and

2. the phrase “with rational integral coordinates” means that we only consider squares
of integers of the form e+ f

√
d with e, f ∈ Z, regardless of d. Thus, we cannot say

much about the case when d ≡ 1 mod 4Z.

Corollary 6.2.5. Let d 6≡ 1 mod 4Z be a square-free negative rational integer. It is

S′
(
Q(
√
d)
)

= 2 if and only if −dt20 = n2 + 1 for some t0, n ∈ N \ {0}.

Proof. We apply the previous theorem. In the case of α = −1, we have

(−d)t2 + at− b2 = (−d)t2 − t− 02 = (−dt− 1)t.

The two factors on the right-hand side are coprime, so in order for the product to be a
perfect square, both of them have to be perfect squares. As 0 is not a perfect square, t 6= 0
and by an assumption d 6= 0. Rearranging and setting t = t20 yields the only-if -direction.

Conversely, the greatest common divisor of t = t20, b = 0 and a− dt = n2 satisfies the
condition from Theorem 6.2.4 because t0 and n2 = −dt20 − 1 are coprime. �
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Finding a solution to the equation

x2 + y2 = −1

in Z[
√
d] in the case of −dt20 = n2 + 1 for some t0, n ∈ N is given by

x = n, y = t0
√
d.

A closer look to the condition of Corollary 6.2.5 reveals that the d < 0, d 6≡ 1 mod 4Z
whose Stufe is 2 are exactly those for which the negative Pell’s equation

x2 + dy2 = −1 (6.3)

is soluble in the rational integers. The list of the first few such −d is given by the
sequence A031396 (excluding 1) in the OEIS. Again, this is not a necessary condition for

S′
(
Q(
√
d)
)

= 2. Notably, Equation 6.3 is not soluble if d is divisible by a natural prime

p ≡ 3 mod 4Z because −1 is not a quadratic residue modulo p for such p. Nevertheless,
we saw in Theorem 6.1.3 that S′

(
Q(
√
−3)

)
= 2. More involved results concerning the

integral Stufe of certain algebraic number fields and related invariants thereof may be
found in [23].

We may use our knowledge about deriving solutions for Pell’s equation from the
so-called fundamental solution.

Lemma 6.2.6. Let d < −1 be a square-free rational integer such that

x2 + dy2 = −1

is soluble. Then r2,Q(
√
d)(−α2) =∞ for all α ∈ OQ(

√
d).

Proof. From basic number theory, we know that due to d < −1 if one solution exists,
then there infinitely many solutions for the equation above. This produces the solutions
for α = −1. For arbitrary α ∈ OQ(

√
d), just multiply each pair of those solutions by α. �

If we wish to be able to somehow compare this result to the one we have about r3,K
where K is either Q(i) or Q(ω), we may just combine the previous Lemma with Lemma
6.1.6. That is, if d satisfies Lemma 6.2.6, then

r3,Q(
√
d)(−α

2) = r3,Q(i)(β
2) = r3,Q(ω)(0) =∞

with α ∈ Q(
√
d) and β ∈ Z[i] arbitrary.

https://oeis.org/A031396


Chapter 7

Prime numbers of the form α2 + dβ2

In this chapter, we will focus on the Equation 1.3 applied to a quadratic number field K:

ψ = α2 + dβ2 (7.1)

with square-free d ∈ Z, ψ a prime element of OK and α, β ∈ OK . Cox proved the
following formidable theorem over the rationals.

Theorem 7.0.1. [5, p. 98] Let d > 0 be a square-free integer with d 6≡ 3 mod 4Z. Then
there is a monic irreducible polynomial gd ∈ Z[t] such that if an odd natural prime p
divides neither d nor the discriminant of gd, then

p = x2 + dy2 ⇐⇒

{ (
−d
p

)
= 1 and gd(t) ≡ 0 mod pZ

has a rational integer solution.

Furthermore, gd may be taken to be the minimal polynomial of a real algebraic integer
α for which L = K(α) is the Hilbert class field of the imaginary quadratic field K =
Q(
√
−d).

Under the assumption that we know the Hilbert class field of a number field K—
which is equivalent to knowing gd by the latter part of the above theorem—, finding those
natural primes p turns out to be fairly simple. Be that as it may, this only applies to
d 6≡ 3 mod 4Z. Fortunately, Cox was also able to solve Equation 1.3 for any d, even
non-square-free.

Theorem 7.0.2. [5, p. 180] Let d > 0 be an integer. Then there is a monic irreducible
polynomial fd ∈ Z[t] such that if an odd natural prime p divides neither d nor the
discriminant of fd, then

p = x2 + dy2 ⇐⇒

{ (
−d
p

)
= 1 and fd(t) ≡ 0 mod pZ

has a real integer solution.

Furthermore, fd may be taken to be the minimal polynomial of a real algebraic integer α
for which L = K(α) is the ring class field of the ring Z[

√
−d] in the imaginary quadratic

field K = Q(
√
−d).

The remarkable part is the equivalence and the existence of the polynomial fd in
particular. The so-called ring class field is a generalisation of the Hilbert class field. It
is one of the class fields which arise from the study of Abelian extensions.

56
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7.1 A short insight to class field theory

In this section, we will recapitulate some chapters of Cox’s book Primes of The Form
x2 + ny2 [5]. Most of the definitions and notations are standard if not stated otherwise.

Definition 7.1.1. Let K be a number field. We call a Galois extension L/K Abelian
if Gal(L/K) is Abelian.

Abelian extensions are the foundation of class field theory. The most prominent
example is called the Hilbert class field. For this, we first need another last definition.

Definition 7.1.2. Let K be a number field. We call

1. the prime ideals P ⊂ OK the finite places of K, and

2. the real embeddings σ of K the infinite places of K.

An infinite place is said to ramify in L/K if there are two different embeddings σ1, σ2
of L whose restrictions to K are both identical to σ. An extension L/K is said to be
unramified if none of its places ramifies. A product of places is called a modulus.

The Hilbert class field H(K) has a few fascinating properties which are closely
related to the splitting behaviour of the prime ideals of OK .

Theorem 7.1.3. Let K be a number field. Then there is a unique maximal unramified
Abelian extension of K, the Hilbert class field H(K).

1. It is
Gal (H(K)/K) ∼= Cl(K) = IK/PK.

2. A prime ideal P ⊂ OK totally splits in H(K) if and only if it is principal.

The first item of the above theorem explains why the case of Z[
√
−d] being a UFD

may be easily solved. In that case, IK = PK , so the class number is 1 and H(K) = K.
Henceforth, the polynomial gd from Theorem 7.0.1 is linear and leaves the solubility of
the Equation 1.3 solely relying on −d being a quadratic residue modulo p or not.

The second item presents the reason why we need to substitute the Hilbert class
field by the ring class field in Theorem 7.0.2. As pointed out in Chapter 1, we are only
interested in integer solutions of Equation 1.3, thus in the decomposition

p = x2 + dy2 = (x+ y
√
−d)(x− y

√
−d)

in Z[
√
−d] but this ring is not OQ(

√
−d) for d ≡ 3 mod 4Z. In order to have a similar

statement about the splitting of a prime ideal P ⊂ Z[
√
−d] we must consider the ring

class field and adjust our definitions concerning the fractional ideal groups of a number
field.

Definition 7.1.4. [5] Let K be a number field and m a modulus of K. We define

IK(m) := {a ∈ IK : a is coprime tom}.

Likewise, for α ∈ OK ,

PK,α(m) := {a ∈ PK ∩ IK(m) : ∃ β ∈ OK such that β ≡ α mod m ∧ a = βOK}.

We also define

PK,Z(m) := {a ∈ PK ∩ IK(m) : ∃ β ∈ OK such that β ≡ α mod m

with αOK and m being coprime ∧ a = βOK}.
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It is important to keep in mind that in the case of the definition of PK,Z(m) the symbol
Z is used in lack of a better option. At first sight, we may think that this yields groups
completely different from IK and PK . In fact, there are ways in interpret those groups in
terms of Definition 7.1.4.

Lemma 7.1.5. [5] It is

Cl(K) = IK/PK = IK(OK)/PK,Z(OK) = IK(OK)/PK,1(OK)

for any number field K.

Proof. The ring OK is coprime to all of its ideals and every element is congruent to 1
modulo OK . �

In class field theory, a certain kind of groups is introduced in order to work with the
splitting behaviour of ideals in general subrings of OQ(

√
−d) for any d ∈ N.

Definition 7.1.6. [5, p. 160] Let K be a number field, m a modulus of K, and PK,1(m) ⊂
H ⊂ IK(m) a group. Then we call

ClH(m) := IK(m)/H

a generalised ideal class group of m.

In class field theory, we finally may use the Existence Theorem to connect those
generalised ideal class groups to certain class fields.

Theorem 7.1.7. (Existence Theorem) [5, p. 162] Let m be a modulus of a number field
K, and let H be a congruence subgroup for m, i. e.,

PK,1(m) ⊂ H ⊂ IK(m).

Then there exists a unique Abelian extension L of K, all of whose ramified places, finite
or infinite, divide m, such that if

Φm : IK(m)→ Gal(L/K)

is the Artin map of K ⊂ L, then

H = ker(Φm).

Proof. See Janusz [9, Chapter V, Theorem 9.16]. �

Here, the correspondence to the generalised ideal groups is clearly visible by the fact
that such a group is given by the quotient of IK and a congruence subgroup H. The
Galois group of the extension L/K is isomorphic to that quotient. To put this into
the context of Definition 7.1.6, we point out that PK,1(m) and PK,Z(m) are such possible
subgroups. We may finally define the ring class field.

Definition 7.1.8. [5] Let m be a modulus of an imaginary quadratic number field K.
We call the extension L of K given by the Existence Theorem, the modulus m, and

1. the congruence subgroup PK,Z(m) the ring class field of conductor m, and

2. the congruence subgroup PK,1(m) the ray class field of conductor m.

For a subring R ⊂ OK with [OK : R] = c < ∞, we call the ring class field of conductor
cOK also the ring class field of R in K.
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7.2 The case of d = 1

Throughout this short section, we will briefly collect the known facts on the popular case
d = 1, i. e., we will have a look at further investigations regarding the expressions

ψ = α2 + β2

for a prime element ψ ∈ PK and integral α, β ∈ OK where K is a number field. If ψ ≡ 1
mod 4Z is a natural prime, then we know by Theorem 1.2.1 that solutions (α, β) ∈ Z2 ⊂
O2
K exist. If we do not restrict ourselves to find an equivalent condition as in Theorem

7.0.2, we may separate α ∈ Z and β ∈ OK \Z in order to be able to use Cox’s results to
say something about those ψ in OK and squares in Z[

√
n].

Theorem 7.2.1. Let n > 0 be a square-free integer. Then there is a monic irreducible
polynomial fn ∈ Z[t] as described in Theorem 7.0.2 such that if an odd natural prime p
divides neither n nor the discriminant of fn, then p is the sum of two integral squares
from Z[

√
n] if(
−n
p

)
= 1 and fn(t) ≡ 0 mod pZ has an integer solution.

Moreover, fn may be chosen to be the minimal polynomial of a real algebraic integer α
such that K(α) is the ring class field of Z[

√
−n] in K = Q(

√
−n).

Proof. The solution (x, y) ∈ Z2 for

p = x2 + ny2

we obtain from Theorem 7.0.2 yields the solutions (α, β) = (x, y
√
n) for the equation

p = α2 + β2

in Z[
√
n]2. �

It is important to note that this theorem relies on a certain construction. Thus, it
does not provide an equivalence because Z ⊂ Z[

√
n].

Example 7.2.2. Let K = Q(
√

3), so OK = Z[
√

3], and p = 5. We deduce H(K) = K
because OK is a PID. Furthermore,(

−3

5

)
=

(
2

5

)
= −1

but 5 = 12 + 22 and 1, 2 ∈ OK .

A similar approach may be used to find solutions for the case of negative n. The
Diophantine equations

p = x2 + ny2

with n < 0 are known as generalised Pell’s equations. Lagrange reduced the question
to the case |p| <

√
−n. However, finding fundamental solutions is not as simple. Conrad

treated this case in an article [4].
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Some work about the general case of a quadratic number fieldK has been done by Elia
and Monico in [6] and [7] for the fields Q(

√
5) and Q(

√
2) respectively. Furthermore,

Nagell [16, 17] examined the cases K = Q(
√
n) where

n ∈ {±2,±3,±5,±7,±11,±13,±19,±43,±67,±163}

using the fact that, in those cases, the class number of Q(
√
n,
√
−n) is 1. Wei [32] studied

various cases, depending on certain congruence conditions given by prime divisors of n.
As Wei also remarked, if we consider K = Q(

√
−n) with a positive, square-free

rational integer n 6≡ 3 mod 4Z, then the Theorem 6.2.4 gives us equivalent conditions on
α = a + 2b

√
−n ∈ OK for being the sum of two integral squares. Recall that is the case

if and only if there exists an integer t such that

nt2 + at− b2

is a perfect square and the greatest common divisor of t, b and a+ nt is not divisible by
an odd power of a natural prime congruent to 3 modulo 4Z. Wei presented an equivalent
condition for the case in which

1. n 6≡ −1 mod 8Z and there is a prime p |n with p ≡ −1 mod 8Z, or

2. n ≡ 1, 2 mod 4Z and there is a prime p |n with p ≡ 3 mod 8Z, or

3. n ≡ 3 mod 8Z and there is a prime p |n with p ≡ 5 mod 8Z.

7.3 The case of general square-free d

We now assume that d is a square-free rational integer in the Equation 1.3 over OK for
K = Q(

√
n). In the fashion of Example 7.2.2, the solutions from Theorem 7.0.2 also

apply in OK . As mentioned in Chapter 1, we investigate the ring OK [
√
−d] which is a

subring of L = K(
√
−d). This will result in the proof of Theorem 1.2.9.

Theorem 7.3.1. (Theorem 1.2.9) Let n ≡ 1 mod 4Z a square-free natural number such
that K = Q(

√
n) is a real quadratic field of class number 1. Let d > 0 be a square-free

natural number with d ≡ 2 mod 4Z and coprime to n. Let p be an odd natural prime
below the prime ideal p = 〈ψ〉 ⊂ OK . Then there is a monic irreducible polynomial
fn,d ∈ OK [t] such that if p divides neither d nor the discriminant of fn,d, then

ψ = α2 + dβ2 ⇐⇒

{
either

(
−d
p

)
= 1 or

(
−d
p

)
=
(
n
p

)
= −1

and fn,d(t) ≡ 0 mod p has an integer solution.

Furthermore, fn,d may be taken to be the minimal polynomial of a real algebraic integer
α for which H = L(α) is the Hilbert class field of the CM-field L = K(

√
−d).

In 1970, Williams [33] constructed the integral bases for the ring of integers of any
biquadratic field, which applies to L. Beforehand, we may allude to the fact that for any
a, b ∈ Z, it holds true that

Q(
√
a,
√
b) = Q(

√
a,
√
a1b1) = Q(

√
b,
√
a1b1)

for k1 = k
gcd(a,b)

for k ∈ {a, b}. Hence, Williams assumed that the pair (a, b) is congruent

to (1, 1), (1, 2), (2, 3) or (3, 3) modulo 4Z.
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Theorem 7.3.2. [33] Let a, b be square-free rational integers. An integral basis for
Q(
√
a,
√
b) is given by

1. {
1,

1 +
√
a

2
,
1 +
√
b

2
,
1 +
√
a+
√
b+
√
a1b1

4

}
,

if a ≡ b ≡ a1 ≡ b1 ≡ 1 mod 4Z,

2. {
1,

1 +
√
a

2
,
1 +
√
b

2
,
1−
√
a+
√
b+
√
a1b1

4

}
,

if a ≡ b ≡ 1 mod 4Z and a1 ≡ b1 ≡ 3 mod 4Z,

3. {
1,

1 +
√
a

2
,
√
b,

√
b+
√
a1b1

2

}
if a ≡ 1 mod 4Z and b ≡ 2 mod 4Z,

4. {
1,
√
a,
√
b,

√
a+
√
a1b1

2

}
if a ≡ 2 mod 4Z and b ≡ 3 mod 4Z,

5. {
1,
√
a,

√
a+
√
b

2
,

√
b+
√
a1b1

2

}
if a ≡ b ≡ 3 mod 4Z.

Proof. See [33, p. 525]. �

We see that OQ(
√
a)[
√
b] rarely equals OQ(

√
a,
√
b). In fact, the only possible case is item

3 of the previous theorem because either the generator of OQ(
√
a,
√
b) over OQ(

√
a) is 1+

√
b

2

(items 1 and 2) or the last base element contains a fraction which is not generated over
Z by

√
a and

√
b (items 4 and 5).

Thus, if n ≡ 1 mod 4Z and d ≡ 2 mod 4Z with d, n > 1 both square-free and
coprime, then √

−d+
√
−nd

2
=
√
−d1 +

√
n

2
,

so OQ(
√
n)[
√
−d] = OQ(

√
n,
√
−d). Therefore, we may invoke Theorem 7.1.3 and adjust the

proof of Theorem 7.0.1 so that we may apply it to prime elements of the field Q(
√
n)

instead of Q. To avoid complications, we assume further that Z[1+
√
n

2
] is a PID, i. e.

Q(
√
n) ∈ Q. We start by stating some more widely used definitions and statements

which can be found in Lang’s book Algebraic Number Theory [12]. The reader may
compare these to Definition 3.1.5.



62 CHAPTER 7. PRIME NUMBERS OF THE FORM α2 +Dβ2

Definition 7.3.3. Let L/K be an extension of number fields and p ⊂ OK a prime ideal.
Let

pOL =

g∏
k=1

Pek
k

be a decomposition into prime ideals of OL. The index ek is called the ramification index
of the ideal Pk.

In a ring of integers, every prime ideal is maximal, so its residue ring is a field. The
prime ideals Pk above a prime ideal p have the property that

(OL/Pk)/(OK/p)

is a well-defined extension of finite fields.

Definition 7.3.4. Let L/K be an extension of number fields and p ⊂ OK a prime ideal.
Let

pOL =

g∏
k=1

Pek
k

be a decomposition into prime ideals of OL. Then

fk := |(OL/Pk)/(OK/p)|

is called the inertia degree of Pk.

The decomposition and the extensions of residue fields mentioned above motivates the
definition of two subgroups of the Galois group of an extension.

Definition 7.3.5. Let L/K be a Galois extension of number fields and p ⊂ OK a prime
ideal. Let

pOL =

g∏
k=1

Pek
k

be a decomposition into prime ideals of OL. Then the group

Dk = {σ ∈ Gal(L/K) : σ(Pk) = Pk}

is called the decomposition group of Pk. Additionally,

Ik = {σ ∈ Dk : σ(α) ≡ α mod Pk ∀α ∈ OL}

is called the inertia group of Pk.

We will utilise various statements and further notation about these invariants and
groups found in [12], for example in order to prove an often used property of the Hilbert
class field.

Lemma 7.3.6. Let L/K be a finite Galois extension of number fields. Then H(L)/K
is Galois. If K/Q is a totally real Galois extension and L = K(

√
−d) for some

positive square-free rational integer d, then complex conjugation is a non-trivial element
in Gal(H(L)/K).
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Proof. Let K be some algebraic closure of K containing H(L) and σ : L → K be an
injective K-homomorphism (because it is a field homomorphism). Since L/K is a Galois
extension, we know that σ(L) = L from Galois theory. We then get isomorphisms

Gal(H(L)/L) ∼= Gal(σ(H(L))/σ(L)) ∼= Gal(σ(H(L))/L).

Thus, we have that σ(H(L))/L is both Abelian and unramified. Now, the compositum
H(L)σ(H(L)) is Abelian over L because we have an injective homomorphism

Gal(H(L)σ(H(L))/L) ∼= Gal(H(L)/L)×Gal(H(L)/L), τ 7→ (τ |H(L), τ |σ(H(L))).

Moreover, it is unramified because H(L) and σ(H(L)) are subfields of the maximal unram-
ified extension (H(L)σ(H(L)))I/L where I is the inertia group. Hence, H(L)σ(H(L))/L is
an unramified Abelian extension but by maximality H(L)σ(H(L)) = H(L), so σ(H(L))
equals H(L). This implies that H(L)/K is normal and hence Galois.

Furthermore, if K/Q is a totally real Galois extension and L = K(
√
−d) for some

positive square-free rational integer, then complex conjugation generates Gal(L/K) which
is a non-trivial normal subgroup of Gal(H(L)/K). �

The next thing we care about is determining the splitting behaviour of a prime element
ψ ∈ Z[1+

√
n

2
]. The reader may be familiar with the following lemma from an introductory

course in algebraic number theory.

Lemma 7.3.7. Let K be a number field and L1/K,L2/K be two Galois extensions.
Set L3 = L1L2. Let further p be a prime ideal in OK and ei, fi be the ramification and
inertia indices of p in Li/K for i ∈ {1, 2, 3}. Then

1. e3 ≥ max{e1, e2} and f3 ≥ max{f1, f2}, and

2. e3 ≤ e1e2 and f3 ≤ f1f2.

In our setting, L1 and L2 will be replaced by Q(
√
n) and Q(

√
−d), so, for each prime

ideal p = 〈p〉, exactly one value among its ramification index, inertia degree, and number
of prime ideals above it in each of the quadratic extensions is equal to 2, the others are
1. Depending on the splitting and ramification behaviour of each prime p ∈ P, we can
determine the primes which split in Q(

√
n,
√
−d)/Q(

√
n).

Theorem 7.3.8. Let n,−d ∈ Z \ {0, 1} be square-free and coprime such that n ≡ 1
mod 4Z. Let K = Q(

√
n) and p be a prime ideal above the natural odd prime p ∈ P in

OK . Then p splits in K(
√
−d)/K if and only if

1.
(
−d
p

)
= 1 or

2.
(
−d
p

)
=
(
n
p

)
= −1.

Proof. Define M = Q(
√
−d), so L = K(

√
−d) = KM . Note that each of the

extensions K/Q, M/Q and L/Q is Galois. Let p be a natural odd prime, e1, e2, e3
its (unique) ramification indices in K, M or L respectively, likewise f1, f2, f3 being the
corresponding inertia indices.

We will now handle each case separately, depending on the splitting and ramification
behaviour of a natural prime p in K and M . Throughout, we will use Lemma 7.3.7.
Define E = e3

e1
and F = f3

f1
, the ramification index and the inertia degree of a prime p

above p in the extension L/K.



64 CHAPTER 7. PRIME NUMBERS OF THE FORM α2 +Dβ2

1. As n and d are coprime and n ≡ 1 mod 4Z, there is no prime ramifying in both
extensions.

2. If p ramifies in K and splits in M , we have max{1, 1} = 1 ≤ f3 ≤ 1 = 1 · 1 and
max{2, 1} = 2 ≤ e3 ≤ 2 = 2 · 1. Therefore, E = 1 and F = 1 and the prime above
p in K splits in L.

3. If p ramifies in K and is inert in M , we have max{1, 2} = 2 ≤ f3 ≤ 2 = 1 · 2 and
max{2, 1} = 2 ≤ e3 ≤ 2 = 2 · 1. Thus, E = 1 and F = 2 and the prime above p in
K is inert in L.

4. If p splits in K and ramifies in M , we have max{1, 1} = 1 ≤ f3 ≤ 1 = 1 · 1 and
max{1, 2} = 2 ≤ e3 ≤ 2 = 1 · 2. Hence, E = 2 and F = 1 and the primes above p
in K ramify in L.

5. If p splits in K and M , then every ramification index and inertia degree is 1, so the
primes above p in K split in L.

6. If p splits in K and is inert in M , we have max{1, 2} = 2 ≤ f3 ≤ 2 = 1 · 2 and
max{1, 1} = 1 ≤ e3 ≤ 1 = 1 · 1. Therefore, E = 1 and F = 2 and the primes above
p in K are inert in L.

7. If p is inert in K and ramifies in M , we have max{2, 1} = 2 ≤ f3 ≤ 2 = 2 · 1 and
max{1, 2} = 2 ≤ e3 ≤ 2 = 1 · 2. Thus, E = 2 and F = 1 and the prime above p in
K ramifies in L.

8. If p is inert in K and splits in M , we have max{2, 1} = 2 ≤ f3 ≤ 2 = 2 · 1 and
max{1, 1} = 1 ≤ e3 ≤ 1 = 1 · 1. Hence, E = 1 and F = 1 and the prime above p in
K splits in L.

9. If p remains inert in K as well as in M , we have max{2, 2} = 2 ≤ f3 ≤ 4 = 2 · 2 and
max{1, 1} = 1 ≤ e3 ≤ 1 = 1 · 1. So, E = 1 but f3 can be either 2 or 4. However,
suppose f3 = 4, then p would be totally inert in L. The extension L/Q is clearly
non-cyclic and hence Lemma 7.3.9 yields a contradiction. Thus, f3 = 2 and F = 1,
so the prime above p in K splits in L.

We see that the prime ideal p splits in L if and only if either p splits in M (which is equiv-

alent to
(
−d
p

)
= 1) or p remains inert in K and M simultaneously (which is equivalent

to
(
−d
p

)
=
(
n
p

)
= −1). �

We provide the lemma we used in the last item of the previous proof.

Lemma 7.3.9. Let L/K be a Galois extension of number fields. If there exists a totally
inert prime p of K, then L/K is a cyclic extension.

Proof. Suppose there is a totally inert prime p of K. Let D and I be its decomposition
and inertia groups as well as LD ⊂ LI the respective fixed fields. As p is totally inert, we
have LD = K and LI = L. Since the quotient D/I ∼= Gal(LI/LD) = Gal(L/K) is cyclic,
so is L/K. �
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We have found an equivalent condition for our prime element ψ ∈ Z[
√
n] to split in

the extension Q(
√
n,
√
−d)/Q(

√
n). A prime ideal P above it is principal if and only if

it splits completely in the Hilbert class field of Q(
√
n,
√
−d) by Theorem 7.1.3. If P is

indeed principal, then its generator will be of the form

α± β
√
−d

where α, β satisfy Equation 7.1.

Proof of Theorem 1.2.9. The first part was dealt with in Theorem 7.3.8. The second
part of the proof, i. e. proving that the polynomial fn,d fulfils the requirements, follows
by the one in Cox’s Primes of The Form x2 + ny2 [5, pp. 110 – 112]. The only thing we
need to take care of is to replace Q by the real quadratic field Q(

√
n). As it is still the

fixed field of complex conjugation in Q(
√
n,
√
−d), the proof works out identically. �

We finish this section with an example.

Example 7.3.10. Let K = Q(
√

5), which has class number 1, L = K(
√
−2) and p be a

natural prime other than 2 or 5. We know

OL = Z

[
1 +
√

5

2
,
√
−2

]
by Theorem 7.3.2. L has class number 1 (see here [28]), so it is identical to its Hilbert
class field. Also, it is the splitting field of the polynomial x4 + 6x2 + 4. By Theorem 1.2.9,
fn,d may be taken to be t− 1 and a prime element ψ above p is expressible as

ψ = α2 + 2β2

with α, β ∈ OL if (
−2

p

)
= 1

or (
−2

p

)
=

(
5

p

)
= −1.

The first condition may be rewritten as

p ≡ 1, 3 mod 8Z

by the supplements of the Law of Reciprocity (Theorem 5.1.10). For the second condition,
we have

−1 =

(
−2

p

)
=

(
2

p

)(
−1

p

)
⇐⇒ p ≡ 5, 7 mod 8Z

and

−1 =

(
5

p

)
=
(p

5

)
⇐⇒ p ≡ 2, 3 mod 5Z.

Using the Chinese Remainder Theorem for the latter condition and adding the residue
classes from the former, we get

p ≡ 1, 3, 7, 9, 11, 13, 17, 19, 23, 27, 33, 37 mod 40Z

as final set of classes after dismissing the residue classes which satisfy the first condition
but are multiples of 5.

https://www.lmfdb.org/NumberField/4.0.1600.1
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