Adiabatic response of open systems

Yosi Avron Martin Fraas Gian Michele Graf

December 17, 2015

Question

Are topological phase protected form contact with the world?

Choosing:
Observables and states \Longrightarrow immunity

Question

Are topological phase protected form contact with the world?

Choosing:
Observables and states \Longrightarrow immunity

Ambiguity: Which transport coefficients?

Open vs. isolated systems

F as response to V. Which F?

Ambiguity: Which transport coefficients?

Open vs. isolated systems

F as response to V. Which F?

Open systems

- $F_{\text {friction }}=-\nu V$
- $F_{\text {spring }}=\nu V$
- $F_{\text {Total }}=\dot{P}=0 \mathrm{~V}$

Isolated system

- $F_{\text {friction }}=0$
- $F_{\text {spring }}=F_{\text {Total }}$

Sources of ambiguities

Tensor product \& Observables

System

Bath

Sources of ambiguities

Tensor product \& Observables

Ambiguous tensor decomposition

$$
\mathcal{H}_{\text {system }} \otimes \mathcal{H}_{\text {bath }}=\mathcal{H}_{\text {system }}^{\prime} \otimes \mathcal{H}_{\text {bath }}^{\prime}
$$

Sources of ambiguities

Tensor product \& Observables

Ambiguous tensor decomposition

$$
\mathcal{H}_{\text {system }} \otimes \mathcal{H}_{\text {bath }}=\mathcal{H}_{\text {system }}^{\prime} \otimes \mathcal{H}_{\text {bath }}^{\prime}
$$

Ambiguous observables of sub-system

$$
H=H_{s} \otimes \mathbb{1}+H_{\text {interaction }}+\mathbb{1} \otimes H_{b}
$$

Ambiguity in fluxes (aka rates aka currents)

Ambiguity in fluxes (aka rates aka currents)

$$
Q=\sum_{j<0} a_{j}^{*} a_{j}
$$

System

$$
\begin{array}{lc}
Q \otimes \mathbb{1} & \\
& I_{\text {left } \rightarrow \text { right }}=i\left[H_{s}, Q\right] \\
& I_{\text {Total }}=i\left[H_{s+b}, Q \otimes \mathbb{1}\right]
\end{array}
$$

Formulate an $I_{\text {Total }}$ as a property of the system

Krauss maps

$$
\begin{aligned}
&|\psi\rangle_{s+B}(0) \xrightarrow{\text { Unitary }} \\
& \begin{array}{c}
\\
T_{r_{b}} \\
\downarrow \\
\rho_{s}(0) \\
\\
\\
\\
\\
\\
\\
\\
\text { Krauss } \\
\end{array} \rho_{s+B}(t)
\end{aligned}
$$

Krauss maps

$$
\begin{aligned}
|\psi\rangle_{s+B}(0) & \xrightarrow{\text { Unitary }}|\psi\rangle_{s+B}(t) \\
T_{r_{b}} & \\
\downarrow & \\
\rho_{s}(0) & \xrightarrow{ } \xrightarrow{\text { Krauss }} \\
& \\
& \rho_{s}(t)
\end{aligned}
$$

Kraus: Positivity and Trace preserving

$$
\begin{gathered}
\rho \mapsto \sum K_{j} \rho K_{j}^{\dagger}, \quad \sum K_{j}^{\dagger} K_{j}=\mathbb{1} \\
K \rho K^{\dagger}=(K \sqrt{\rho})(K \sqrt{\rho})^{\dagger} \geq 0 \\
\operatorname{Tr} \rho \mapsto \sum \operatorname{Tr} K_{j} \rho K_{j}^{\dagger}=\operatorname{Tr}\left(\sum K_{j}^{\dagger} K_{j}\right) \rho
\end{gathered}
$$

Generators of Krauss maps

$$
\rho \mapsto \rho+\underbrace{\delta t \mathcal{L} \rho}_{\text {generator }} \quad \rho \mapsto \sum \underbrace{K_{j} \rho K_{j}^{\dagger}}_{\text {positive }}
$$

Generators of Krauss maps

$$
\rho \mapsto \rho+\underbrace{\delta \delta \mathcal{L} \rho}_{\text {generator }} \quad \rho \mapsto \sum \underbrace{K_{j} \rho K_{j}^{\dagger}}_{\text {positive }}
$$

$$
K_{0}=\mathbb{1}+\delta t \Gamma_{0}, \quad K_{j}=\sqrt{\delta t} \Gamma_{j}, \quad \sum K_{j}^{\dagger} K_{j}=\mathbb{1}
$$

$$
\text { trace preserving: } \Gamma_{0}+\Gamma_{0}^{\dagger}+\sum \Gamma_{j}^{\dagger} \Gamma_{j}=0
$$

Solve for $\Gamma_{0}: \quad \Gamma_{0}=-i H-\frac{1}{2} \sum \Gamma_{j}^{\dagger} \Gamma_{j}$

Generators of Krauss maps

$$
\rho \mapsto \rho+\underbrace{\delta \delta \mathcal{L} \rho}_{\text {generator }} \quad \rho \mapsto \sum \underbrace{K_{j} \rho K_{j}^{\dagger}}_{\text {positive }}
$$

$$
K_{0}=\mathbb{1}+\delta t \Gamma_{0}, \quad K_{j}=\sqrt{\delta t} \Gamma_{j}, \quad \sum K_{j}^{\dagger} K_{j}=\mathbb{1}
$$

$$
\text { trace preserving: } \quad \Gamma_{0}+\Gamma_{0}^{\dagger}+\sum \Gamma_{j}^{\dagger} \Gamma_{j}=0
$$

$$
\text { Solve for } \Gamma_{0}: \quad \Gamma_{0}=-i H-\frac{1}{2} \sum \Gamma_{j}^{\dagger} \Gamma_{j}
$$

Lindbladians

$$
\begin{gathered}
\mathcal{L} \rho=-i[H, \rho]+\mathcal{D} \rho \\
\mathcal{D} \rho=\sum 2 \Gamma_{j} \rho \Gamma_{j}^{\dagger}-\Gamma_{j}^{\dagger} \Gamma_{j} \rho-\rho \Gamma_{j}^{\dagger} \Gamma_{j}
\end{gathered}
$$

Schrodinger and Heisenberg

States and Observables

Adjoint (Banach space)
 $$
\operatorname{Tr}(X \mathcal{A} \rho)=\operatorname{Tr}\left(\left(\mathcal{A}^{*} X\right) \rho\right)
$$

Schrodinger and Heisenberg

States and Observables

$$
\begin{aligned}
& \text { Adjoint (Banach space) } \\
& \qquad \operatorname{Tr}(X \mathcal{A} \rho)=\operatorname{Tr}\left(\left(\mathcal{A}^{*} X\right) \rho\right)
\end{aligned}
$$

Observables States $\operatorname{Tr} \rho<\infty$

$$
\mathcal{L} \rho=-i[H, \rho]+2 \Gamma \rho \Gamma^{\dagger}-\Gamma^{\dagger} \Gamma \rho-\rho \Gamma^{\dagger} \Gamma
$$

Schrodinger and Heisenberg

States and Observables

$$
\begin{aligned}
& \text { Adjoint (Banach space) } \\
& \qquad \operatorname{Tr}(X \mathcal{A} \rho)=\operatorname{Tr}\left(\left(\mathcal{A}^{*} X\right) \rho\right)
\end{aligned}
$$

Observables $\|X\|<\infty$

States
 $\operatorname{Tr} \rho<\infty$

$$
\begin{aligned}
& \mathcal{L} \rho=-i[H, \rho]+2 \Gamma \rho \Gamma^{\dagger}-\Gamma^{\dagger} \Gamma \rho-\rho \Gamma^{\dagger} \Gamma \\
& \mathcal{L}^{*} X=+i[H, X]+\left[\Gamma^{\dagger}, X\right] \Gamma+\Gamma^{\dagger}[X, \Gamma]
\end{aligned}
$$

Schrodinger and Heisenberg

States and Observables

$$
\begin{aligned}
& \text { Adjoint (Banach space) } \\
& \qquad \operatorname{Tr}(X \mathcal{A} \rho)=\operatorname{Tr}\left(\left(\mathcal{A}^{*} X\right) \rho\right)
\end{aligned}
$$

Observables

$$
\begin{aligned}
& \mathcal{L} \rho=-i[H, \rho]+2 \Gamma \rho \Gamma^{\dagger}-\Gamma^{\dagger} \Gamma \rho-\rho \Gamma^{\dagger} \Gamma \\
& \mathcal{L}^{*} X=+i[H, X]+\left[\Gamma^{\dagger}, X\right] \Gamma+\Gamma^{\dagger}[X, \Gamma]
\end{aligned}
$$

Schrodinger and Heisenberg

$$
\dot{\rho}=\mathcal{L} \rho, \quad \dot{X}=\mathcal{L}^{*} X
$$

Fluxes (aka rates) $\mathcal{L}^{*} Q$

Two notions of currents in open systems

System

Fluxes (aka rates) $\mathcal{L}^{*} Q$

Two notions of currents in open systems

System

Left-right current

$$
I_{\text {left } \rightarrow \text { right }}=i[H, Q]=i \operatorname{Ad}(H) Q
$$

Fluxes (aka rates) $\mathcal{L}^{*} Q$

Two notions of currents in open systems

System

Left-right current

$$
I_{\text {left } \rightarrow \text { right }}=i[H, Q]=i \operatorname{Ad}(H) Q
$$

Flux: Total current

$$
I_{\text {Total }}=\dot{Q}=\mathcal{L}^{*} Q
$$

Loop currents are not rates

Fluxes vanish in stationary states:

$$
I_{\text {loop }}=-\frac{\partial}{\partial \phi} H \neq \mathcal{L}^{*} Q
$$

Stationary states of \mathcal{L}

Towards adiabatic theory of fluxes

$$
\mathcal{L}^{*} \mathbb{1}=0 \Longrightarrow 0 \in \operatorname{Spectrum}(\mathcal{L})
$$

Stationary states of \mathcal{L}

Towards adiabatic theory of fluxes

$$
\mathcal{L}^{*} \mathbb{1}=0 \Longrightarrow 0 \in \operatorname{Spectrum}(\mathcal{L})
$$

If $\operatorname{dimH}<\infty \operatorname{dim} \operatorname{Ker} \mathcal{L}=1$ generically

Fluxes vanish in stationary states

Fluxes vanish in stationary states:

$$
\operatorname{Tr} \dot{Q} \sigma=0
$$

$$
\operatorname{Tr} \dot{Q} \sigma=\operatorname{Tr}\left(\mathcal{L}^{*} Q\right) \sigma=\operatorname{Tr} Q \mathcal{L} \sigma=0
$$

Adiabatic expansion for fluxes

Slow manifold

Adiabatic evolutions

$$
\epsilon \dot{\rho}=\mathcal{L}_{t} \rho, \quad \epsilon \ll 1
$$

Adiabatic expansion

$$
\rho_{t}=\sigma_{t}+\epsilon \mathcal{L}^{-1} \dot{\sigma}_{t}+\ldots
$$

Adiabatic expansion for fluxes

Slow manifold

Adiabatic evolutions

$$
\epsilon \dot{\rho}=\mathcal{L}_{t} \rho, \quad \epsilon \ll 1
$$

Adiabatic expansion

$$
\rho_{t}=\sigma_{t}+\epsilon \mathcal{L}^{-1} \dot{\sigma}_{t}+\ldots
$$

$$
\rho_{t}=\rho_{0}+\epsilon \rho_{1}+\ldots
$$

Adiabatic expansion for fluxes

Slow manifold

$$
\begin{array}{r}
\text { Adiabatic evolutions } \\
\qquad \dot{\rho}=\mathcal{L}_{t} \rho, \quad \epsilon \ll 1
\end{array}
$$

Adiabatic expansion

$$
\rho_{t}=\sigma_{t}+\epsilon \mathcal{L}^{-1} \dot{\sigma}_{t}+\ldots
$$

$$
\begin{gathered}
\rho_{t}=\rho_{0}+\epsilon \rho_{1}+\ldots \\
\epsilon^{0}: \quad \mathcal{L}_{t} \rho_{0}=0 \Longrightarrow \rho_{0}=\sigma_{t} \\
\sigma_{t} \text { instantaneous stationary state }
\end{gathered}
$$

Adiabatic expansion for fluxes

Slow manifold

Adiabatic evolutions

$$
\epsilon \dot{\rho}=\mathcal{L}_{t} \rho, \quad \epsilon \ll 1
$$

Adiabatic expansion

$$
\rho_{t}=\sigma_{t}+\epsilon \mathcal{L}^{-1} \dot{\sigma}_{t}+\ldots
$$

$$
\rho_{t}=\rho_{0}+\epsilon \rho_{1}+\ldots
$$

$$
\epsilon^{0}: \quad \mathcal{L}_{t} \rho_{0}=0 \Longrightarrow \rho_{0}=\sigma_{t}
$$

$$
\sigma_{t} \text { instantaneous stationary state }
$$

$$
\epsilon^{1}: \quad \dot{\sigma}_{t}=\mathcal{L}_{t} \rho_{1}
$$

Adiabatic expansion for fluxes

Slow manifold

Adiabatic evolutions

$$
\epsilon \dot{\rho}=\mathcal{L}_{t} \rho, \quad \epsilon \ll 1
$$

Adiabatic expansion

$$
\rho_{t}=\sigma_{t}+\epsilon \mathcal{L}^{-1} \dot{\sigma}_{t}+\ldots
$$

$$
\rho_{t}=\rho_{0}+\epsilon \rho_{1}+\ldots
$$

$$
\epsilon^{0}: \quad \mathcal{L}_{t} \rho_{0}=0 \Longrightarrow \rho_{0}=\sigma_{t}
$$

$$
\sigma_{t} \text { instantaneous stationary state }
$$

$$
\epsilon^{1}: \quad \dot{\sigma}_{t}=\mathcal{L}_{t} \rho_{1}
$$

\dot{Q} in adiabatically evolving state

No need to invert \mathcal{L}

The magic

$$
\operatorname{Tr} \dot{Q} \rho_{t} \approx \operatorname{Tr} Q \dot{\sigma}_{t}
$$

\dot{Q} in adiabatically evolving state

No need to invert \mathcal{L}

The magic

$$
\operatorname{Tr} \dot{Q} \rho_{t} \approx \operatorname{Tr} Q \dot{\sigma}_{t}
$$

$$
\begin{aligned}
& \rho=\sigma_{t}+\epsilon \mathcal{L}^{-1} \dot{\sigma}_{t}+\ldots \\
& \mathcal{L}_{t} \rho_{t}=\epsilon \mathcal{L} \mathcal{L}^{-1} \dot{\sigma}+\cdots \approx \epsilon \dot{\sigma}_{t} \\
& \operatorname{Tr} \dot{Q} \rho_{t}=\frac{1}{\epsilon} \operatorname{Tr} \mathcal{L}^{*} Q \rho_{t}=\operatorname{Tr} Q \mathcal{L}_{t} \rho_{t} \approx \operatorname{Tr} Q \dot{\sigma}_{t}
\end{aligned}
$$

The irrelevant dynamics
Adiabatic fluxes oblivious to \mathcal{L}. Only care about $\dot{\sigma}$

Sharing stationary states.

Sharing instantaneous stationary states
 $$
\operatorname{Ker} \mathcal{L}_{t}=\operatorname{Ker}\left(\operatorname{Ad} H_{t}\right)
$$

$$
\text { Example: } \mathcal{D}=\gamma A d^{2}(H)
$$

Geometry of transport

Transport coefficients

$$
\dot{\sigma}=\left(\partial_{\mu} \sigma\right) \dot{\phi}_{\mu}
$$

$$
\underbrace{\operatorname{Tr} \dot{Q} \dot{\rho}_{t}}_{\text {response }} \approx \operatorname{Tr}\left(Q \partial_{\mu} \sigma\right) \underbrace{\dot{\phi}_{\mu}}_{\text {driving }}
$$

Transport coefficient

$$
F_{\mu}=\operatorname{Tr}\left(Q \partial_{\mu} \sigma\right)
$$

Oblivious to \mathcal{L}, cares bout $\dot{\sigma}$

Transport coefficients \& Adiabatic curvature

$$
\begin{gathered}
' U(\phi)=e^{i Q_{\mu} \phi_{\mu}} \\
\sigma(\phi)=U(\phi) \sigma U^{*}(\phi) \\
\partial_{\mu} \sigma=i\left[Q_{\mu}, \sigma\right]
\end{gathered}
$$

Transport coefficients

$$
F_{\mu \nu}=i \operatorname{Tr}\left[Q_{\mu}, Q_{\nu}\right] \sigma
$$

If σ projections

$$
F_{m u \nu}=i \operatorname{Tr} \sigma\left[\partial_{\mu} \sigma, \partial_{\nu} \sigma\right]
$$

Conclusions and Overview

Views of the QHE

Macroscopic

$$
\begin{aligned}
& \mathcal{L}^{*} Q=\frac{\partial}{\partial A} H \\
& \text { Index=Chern } \\
& \text { Gap condition? }
\end{aligned}
$$

A. Fraas and Graf, JSP
(2012) arxiv1202.5750

Multiply connected

$$
\frac{\partial}{\partial A} H
$$

Chern
Dissipation: Kahler geometry
A. Fraas, Kenneth and Graf, NJP (2011) arxiv1008. 4079

