Conformal Loop Ensemble for the Integer Quantum Hall Transition

E. Bettelheim

Hebrew University, Jerusalem

Workshop on Geometric aspects of the Quantum Hall Effect December 17, 2015 Cologne, Germany Acknowledgement

Introduction

CLE Approach

Conclusion

Work with I. Gruzberg.

Acknowledgement

Introduction

- -Chalker-Coddington
- -Positive Weights
- -Restriction
- -Recap
- CLE Approach

Conclusion

Introduction

Acknowledgement

Introduction

-Chalker-Coddington

-Positive Weights

-Restriction

-Recap

CLE Approach

Conclusion

• The Chalker-Coddington network:

Acknowledgement

Introduction

-Chalker-Coddington

-Positive Weights

-Restriction

-Recap

CLE Approach

Conclusion

• The Chalker-Coddington network:

 The wavefunction accumulates a random phase on each link

Acknowledgement

Introduction

-Chalker-Coddington

-Positive Weights

-Restriction

-Recap

CLE Approach

- The wavefunction accumulates a random phase on each link
- A beam splitter is at each node:

$$S = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1\\ -1 & 1 \end{array} \right)$$

Acknowledgement

Introduction

-Chalker-Coddington

-Positive Weights

-Restriction

-Recap

CLE Approach

Conclusion

The Chalker-Coddington network:

• The probability amplitude from a to b is: $G(a,b) = \sum_{P} \prod_{l \in P} e^{i\theta_l} \prod_{(l,l') \in P} S_{l,l'}$ $S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$

Acknowledgement

Introduction

-Chalker-Coddington

-Positive Weights

-Restriction

-Recap

CLE Approach

Conclusion

We compute $\sigma(a,b) = \langle |G(a,b)|^2 \rangle = \sum_{P,P'} \langle W(P)W^*(P') \rangle,$ with $W(P) = \prod_{l \in P} e^{i\theta_l} \prod_{(l,l') \in P} S_{l,l'}.$

Acknowledgement

We compute

- Introduction -Chalker-Coddington
- -Positive Weights -Restriction
- -Recap
- CLE Approach

- $\begin{aligned} \sigma(a,b) &= \langle |G(a,b)|^2 \rangle = \sum_{P,P'} \langle W(P)W^*(P') \rangle, \\ \text{with } W(P) &= \prod_{l \in P} e^{i\theta_l} \prod_{(l,l') \in P} S_{l,l'}. \end{aligned}$
- The phases need to cancel

Acknowledgement

- We compute
- Introduction -Chalker-Coddington
- -Positive Weights
- -Restriction
- -Recap
- CLE Approach
- Conclusion

 $\sigma(a,b) = \langle |G(a,b)|^2 \rangle = \sum_{P,P'} \langle W(P)W^*(P') \rangle,$ with $W(P) = \prod_{l \in P} e^{i\theta_l} \prod_{(l,l') \in P} S_{l,l'}$.

The phases need to cancel \implies the picture of P is the same as P'

Acknowledgement

- We compute
- Introduction -Chalker-Coddington
- -Positive Weights
- -Restriction
- -Recap
- CLE Approach
- Conclusion

with $W(P) = \prod_{l \in P} e^{i\theta_l} \prod_{(l,l') \in P} S_{l,l'}$. Where $V(P) = \prod_{l \in P} e^{i\theta_l} \prod_{(l,l') \in P} S_{l,l'}$. The phases need to cancel \Longrightarrow the picture of P is the same as P'

• We get $\left(s = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}\right)$ $\sigma(a, b) = \sum_{I} \frac{A(I)^2}{2^{L(I)}}, \quad A(I) = \sum_{P \in I} \prod_{(l,l') \in P} (-)^{\sigma(l,l')}$

Conformal Restriction

Acknowledgement

Introduction

-Chalker-Coddington

-Positive Weights

-Restriction

-Recap

CLE Approach

Conclusion

A Large Cluster's Shape is determined EB, I. Gruzberg, A. W. W. Ludwig by conformal invariance and intrinsic weights ('conformal restriction' Lawler)

Conformal Restriction

Acknowledgement

Introduction

-Chalker-Coddington

-Positive Weights

-Restriction

-Recap

CLE Approach

Conclusion

A Large Cluster's Shape is determined EB, I. Gruzberg, A. W. W. Ludwig by conformal invariance and intrinsic weights ('conformal restriction' Lawler)

• Only external perimeter is determined.

Conformal Restriction

Acknowledgement

Introduction

-Chalker-Coddington

-Positive Weights

-Restriction

-Recap

CLE Approach

Conclusion

A Large Cluster's Shape is determined EB, I. Gruzberg, A. W. W. Ludwig by conformal invariance and intrinsic weights ('conformal restriction' Lawler)

• Only external perimeter is determined.

It's the same perimeter for Percolation, Random Walks, Transition, etc.

Acknowledgement

Introduction

-Chalker-Coddington

-Positive Weights

-Restriction

-Recap

CLE Approach

Conclusion

A statistical approach may be obtained for the integer quantum Hall transition.

- Introduction
- Chalker-Coddington
- -Positive Weights
- -Restriction
- -Recap
- CLE Approach
- Conclusion

- A statistical approach may be obtained for the integer quantum Hall transition.
- The approach gives fractal properties of the electron's path.

- Introduction
- Chalker-Coddington
- -Positive Weights
- -Restriction
- -Recap
- CLE Approach
- Conclusion

- A statistical approach may be obtained for the integer quantum Hall transition.
- The approach gives fractal properties of the electron's path.
- The accessible fractal properties seem too general.

- Introduction
- -Chalker-Coddington
- -Positive Weights
- -Restriction
- -Recap
- CLE Approach
- Conclusion

- A statistical approach may be obtained for the integer quantum Hall transition.
- The approach gives fractal properties of the electron's path.
- The accessible fractal properties seem too general.
- A more detailed description of the interior of the path is needed.

Acknowledgement

Introduction

CLE Approach

-CLEs

- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting

Conclusion

Conformal Loop Ensemble Approach

Acknowledgement

Introduction

CLE Approach

-CLEs

- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting

Conclusion

Acknowledgement

Introduction

CLE Approach

-CLEs

- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting

Conclusion

In statistical mechanics, one can often describe the problem as that of loops in the plane.

• At critical points these loops have conformal invariance properties.

Acknowledgement

Introduction

CLE Approach

-CLEs

- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting

Conclusion

- At critical points these loops have conformal invariance properties.
- The classification of possible critical models can be done either by appealing to either

Acknowledgement

Introduction

CLE Approach

-CLEs

- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting

Conclusion

- At critical points these loops have conformal invariance properties.
- The classification of possible critical models can be done either by appealing to either
 - 1. Conformal Field Theory

Acknowledgement

Introduction

CLE Approach

-CLEs

- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting

Conclusion

- At critical points these loops have conformal invariance properties.
- The classification of possible critical models can be done either by appealing to either
 - 1. Conformal Field Theory or
 - 2. Loop Ensembles and the Schramm-Loewner Equation (SLE).

The Manhattan (medial) Lattice

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees -Fermions

-The Loops

-Re-weighting

Conclusion

It's easier to keep track of the sign on the median lattice, which in this case is the Manhattan lattice.

The Manhattan (medial) Lattice

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees -Fermions

-The Loops

-Re-weighting

Conclusion

It's easier to keep track of the sign on the median lattice, which in this case is the Manhattan lattice.

• We still need to count the ways to traverse the lattice, which interfere.

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

Conclusion

Given a path, draw (for every node visited by the path) the link from which we got to that node first.

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

Conclusion

Given a path, draw (for every node visited by the path) the link from which we got to that node first.

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

- -Fermions
- -The Loops
- -Re-weighting
- Conclusion

Given a path, draw (for every node visited by the path) the link from which we got to that node first.

• One can reconstruct the possible paths given the tree and the number of visits to each link.

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

- -Fermions
- -The Loops
- -Re-weighting
- Conclusion

Given a path, draw (for every node visited by the path) the link from which we got to that node first.

• One can reconstruct the possible paths given the tree and the number of visits to each link.

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

Conclusion

 Dealing with tree is easier due to Kasteleyn, Temperley, Kenyon:

 $|T| = \det(K)$

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

Conclusion

• Dealing with tree is easier due to Kasteleyn, Temperley, Kenyon:

$$|T| = \det(K)$$

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

Conclusion

• Dealing with tree is easier due to Kasteleyn, Temperley, Kenyon:

$$|T| = \det(K)$$

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

Conclusion

• Dealing with tree is easier due to Kasteleyn, Temperley, Kenyon:

$$|T| = \det(K)$$

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

Conclusion

Dealing with tree is easier due to Kasteleyn, Temperley, Kenyon:

$$|T| = \det(K)$$

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

Conclusion

 Dealing with tree is easier due to Kasteleyn, Temperley, Kenyon:

$$|T| = \det(K)$$

•
$$\langle \psi_{i_1}^{\dagger} \psi_{j_1} \psi_{i_2}^{\dagger} \psi_{j_2} \dots \rangle = \det_{k,l} \left(K^{-1}(i_k, j_l) \right)$$

The Loops

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

The Loops

Conclusion

• Each loop is weighted by two copies of signed restricted trees.

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

Conclusion

The partition function of the Free fermions is $Z = \det^2(\Delta)$.

- Introduction
- CLE Approach
- -CLEs
- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting
- Conclusion

- The partition function of the Free fermions is $Z = det^2(\Delta)$.
- We have to re-weigh the loops (in Girsanov sense) to account of

Acknowle	edgement
----------	----------

- Introduction
- CLE Approach
- -CLEs
- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting
- Conclusion

- The partition function of the Free fermions is $Z = det^2(\Delta)$.
- We have to re-weigh the loops (in Girsanov sense) to account of
 - 1. Sign.

- Introduction
- CLE Approach
- -CLEs
- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting
- Conclusion

- The partition function of the Free fermions is $Z = \det^2(\Delta)$.
- We have to re-weigh the loops (in Girsanov sense) to account of
 - 1. Sign.
 - 2. Constraint

- Introduction
- CLE Approach
- -CLEs
- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting
- Conclusion

- The partition function of the Free fermions is $Z = det^2(\Delta)$.
- We have to re-weigh the loops (in Girsanov sense) to account of
 - 1. Sign.
 - 2. Constraint

- Introduction
- CLE Approach
- -CLEs
- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting
- Conclusion

- The partition function of the Free fermions is $Z = det^2(\Delta)$.
- We have to re-weigh the loops (in Girsanov sense) to account of
 - 1. Sign.
 - 2. Constraint

- Introduction
- CLE Approach
- -CLEs
- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting
- Conclusion

- The partition function of the Free fermions is $Z = det^2(\Delta)$.
- We have to re-weigh the loops (in Girsanov sense) to account of
 - 1. Sign.
 - 2. Constraint
- Both can be taken into account by bosonizing (introducing a height function that describes the trees). The height function is a Gaussian Free Field (GFF).

Acknowledgement

- Introduction
- CLE Approach
- -CLEs
- -Manhattan
- -Trees
- -Fermions
- -The Loops
- -Re-weighting
- Conclusion

- The partition function of the Free fermions is $Z = det^2(\Delta)$.
- We have to re-weigh the loops (in Girsanov sense) to account of
 - 1. Sign.
 - 2. Constraint
- Both can be taken into account by bosonizing (introducing a height function that describes the trees). The height function is a Gaussian Free Field (GFF).

• $Z = \det^2(\Delta) \langle e^{\varphi A \varphi} \delta(\partial \varphi - v) \rangle_{GFF} \stackrel{?}{=} \det^{2+\delta c}(\Delta)$

Acknowledgement

Introduction

CLE Approach

Conclusion

Acknowledgement

Introduction

CLE Approach

Conclusion

The integer quantum Hall transition may be described in the language of classical statistical mechanics.

Acknowledgement

Introduction

CLE Approach

- The integer quantum Hall transition may be described in the language of classical statistical mechanics.
- A loop ensemble may be developed.

Acknowledgement

Introduction

CLE Approach

- The integer quantum Hall transition may be described in the language of classical statistical mechanics.
- A loop ensemble may be developed.
- Final result for the weight of the loops is till pending.

Acknowledgement

Introduction

CLE Approach

- The integer quantum Hall transition may be described in the language of classical statistical mechanics.
- A loop ensemble may be developed.
- Final result for the weight of the loops is till pending.
- Critical exponents may be obtained as directly related to fractal dimensions of subsets of the loops and trees.