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e The Chalker-Coddington network:

-Chalker-Coddington

e [he wavefunction accumulates a random phase
on each link
e A beam splitter is at each node:
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e The probablllty amplltude from a to b is:
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e A statistical approach may be obtained for the
integer quantum Hall transition.

e The approach gives fractal properties of the
electron’s path.

e T[he accessible fractal properties seem too
general.

e A more detailed description of the interior of the
path is needed.
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-The Loops
-Re-weighting

Conclusion e At critical points these loops have conformal
Invariance properties.

e T[he classification of possible critical models can
be done either by appealing to either

1. Conformal Field Theory or
2. Loop Ensembles and the Schramm-Loewner
Equation (SLE).
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e Each loop is weighted by two copies of signed
restricted trees.
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e e T[he integer quantum Hall transition may be
CLE Avpronch described in the language of classical statistical
Conclusion mechanics.
A loop ensemble may be developed.
Final result for the weight of the loops is till
pending.
e C(Critical exponents may be obtained as directly
related to fractal dimensions of subsets of the
loops and trees.
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