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• The Chalker-Coddington network:

• The wavefunction accumulates a random phase
on each link

• A beam splitter is at each node:

S =
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• The Chalker-Coddington network:

• The probability amplitude from a to b is:

G(a, b) =
∑

P

∏

l∈P

eıθl

∏

(l,l′)∈P

Sl,l′

S =
1
√

2

(
1 1
−1 1

)



Positive Weights

Acknowledgement

Introduction

-Chalker-Coddington

-Positive Weights

-Restriction

-Recap

CLE Approach

Conclusion

6 / 25

• We compute
σ(a, b) = 〈|G(a, b)|2〉 =

∑
P,P ′〈W (P )W ∗(P ′)〉,

with W (P ) =
∏

l∈P eıθl
∏

(l,l′)∈P Sl,l′.

• The phases need to cancel=⇒ the picture of P
is the same as P ′.

• We get (S = 1√
2

(
1 1
−1 1

)
)

σ(a, b) =
∑

I

A(I)2

2L(I)
, A(I) =

∑

P∈I

∏

(l,l′)∈P

(−)σ(l,l′)
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• A Large Cluster’s Shape is determined EB, I. Gruzberg, A.

W. W. Ludwig by conformal invariance and intrinsic
weights (’conformal restriction’ Lawler)



Conformal Restriction

Acknowledgement

Introduction

-Chalker-Coddington

-Positive Weights

-Restriction

-Recap

CLE Approach

Conclusion

8 / 25

• A Large Cluster’s Shape is determined EB, I. Gruzberg, A.

W. W. Ludwig by conformal invariance and intrinsic
weights (’conformal restriction’ Lawler)

• Only external perimeter is determined.

• It’s the same perimeter for Percolation, Random
Walks, Transition, etc.
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• A statistical approach may be obtained for the
integer quantum Hall transition.

• The approach gives fractal properties of the
electron’s path.

• The accessible fractal properties seem too
general.

• A more detailed description of the interior of the
path is needed.
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• In statistical mechanics, one can often describe
the problem as that of loops in the plane.

• At critical points these loops have conformal
invariance properties.

• The classification of possible critical models can
be done either by appealing to either

1. Conformal Field Theory or
2. Loop Ensembles and the Schramm-Loewner

Equation (SLE).
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• It’s easier to keep track of the sign on the
median lattice, which in this case is the
Manhattan lattice.

• We still need to count the ways to traverse the
lattice, which interfere.



The Manhattan (medial) Lattice

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

Conclusion

12 / 25

• It’s easier to keep track of the sign on the
median lattice, which in this case is the
Manhattan lattice.

• We still need to count the ways to traverse the
lattice, which interfere.



Trees

Acknowledgement

Introduction

CLE Approach

-CLEs

-Manhattan

-Trees

-Fermions

-The Loops

-Re-weighting

Conclusion

13 / 25

• Given a path, draw (for every node visited by
the path) the link from which we got to that
node first.

• One can reconstruct the possible paths given
the tree and the number of visits to each link.
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• Dealing with tree is easier due to Kasteleyn,
Temperley, Kenyon:

|T | = det(K)
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K−1(ik, jl)
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•

• Each loop is weighted by two copies of signed
restricted trees.
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• The partition function of the Free fermions is
Z = det2(Δ).

• We have to re-weigh the loops (in Girsanov
sense) to account of

1. Sign.
2. Constraint
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Z = det2(Δ).

• We have to re-weigh the loops (in Girsanov
sense) to account of

1. Sign.
2. Constraint

• Both can be taken into account by bosonizing
(introducing a height function that describes the
trees). The height function is a Gaussian Free
Field (GFF).

• Z = det2(Δ)〈eϕAϕδ(∂ϕ − v)〉GFF
?
= det2+δc(Δ)
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• The integer quantum Hall transition may be
described in the language of classical statistical
mechanics.

• A loop ensemble may be developed.
• Final result for the weight of the loops is till

pending.
• Critical exponents may be obtained as directly

related to fractal dimensions of subsets of the
loops and trees.
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