# Effective field theory of the quantum Hall transition

Roberto Bondesan (Oxford)

Geometric aspects of the QHE - 17/12/15

Joint work with D. Wieczorek & M. Zirnbauer (Köln) Discussions with I. Gruzberg (OSU)

Refs: Phys. Rev. Lett. 112, 186803 (2014) + in preparation

# Outline

## Introduction and motivations

Quantum Hall transition The network model and the observables

### Results

Effective conformal field theory Numerical checks Analytical arguments Lattice vertex operators

# Random geometry of quantum Hall transitions



Integer quantum Hall effect: 2D electrons in magnetic field and random electric potential

### Question:

Universality of critical wave functions (multifractal)

This talk: for first time we construct effective CFT

# The Chalker–Coddington network model



- Wave function on the links
- Evolution operator  $\mathcal{U}$

$$\begin{array}{c} 1 \\ 1 \\ 3 \end{array} \begin{array}{c} 2 \\ 2 \end{array} \\ \mathcal{U}_{\nu} = \begin{pmatrix} \sqrt{1-t^2} & t \\ -t & \sqrt{1-t^2} \end{pmatrix} \times \begin{pmatrix} e^{i\phi_1} & 0 \\ 0 & e^{i\phi_2} \end{pmatrix}$$

*φ*'s random phases. Disorder average E(·)
 *t<sub>c</sub><sup>2</sup> = 1/2*: plateau transition

# Point contacts and the operator K

Open network



 $\blacktriangleright \text{ Hilbert space} = \mathcal{H}_{\text{contact}} \oplus \mathcal{H}_{\text{bulk}}$ 

Projectors:

$$P = \sum_{k=1}^{n} |\mathbf{c}_k\rangle \langle \mathbf{c}_k |, \ Q = 1 - P$$

•  $\mathcal{U} \to \mathcal{QU}$ , prob. loss

Key object:

$$\mathcal{K} = \mathcal{Q}\mathcal{U}(\mathbf{1} - \mathcal{Q}\mathcal{U})^{-1} + (\mathbf{1} - \mathcal{U}^{-1}\mathcal{Q})^{-1}$$

Rem 1: rank( $\mathcal{K}$ ) = number of contacts:  $\mathcal{K} = (\mathbf{1} - Q\mathcal{U})^{-1} \left[ Q\mathcal{U}(\mathbf{1} - \mathcal{U}^{-1}Q) + (\mathbf{1} - Q\mathcal{U}) \right] (\mathbf{1} - \mathcal{U}^{-1}Q)^{-1}$   $= (\mathbf{1} - Q\mathcal{U})^{-1} P(\mathbf{1} - \mathcal{U}^{-1}Q)^{-1}$ 

Rem 2:  $\mathbb{E}(K) = \mathbf{1}$ 

# The observables



 $\rightarrow$  Observables: *statistics of eigenvalues of K* $|_{Obs}$ 

• Example: 1 Obs. link:  $\mathbb{E}(\langle \mathbf{r}|\mathbf{K}|\mathbf{r}\rangle^q)$ 

$$\mathbb{E} \left( \langle \mathbf{r} | \mathcal{K} | \mathbf{r} \rangle \right) = 1 \mathbb{E} \left( \langle \mathbf{r} | \mathcal{K} | \mathbf{r} \rangle^2 \right) = 1 + 2\mathbb{E} \left( |\langle \mathbf{r} | \mathcal{QU} (1 - \mathcal{QU})^{-1} | \mathbf{r} \rangle |^2 \right)$$



• One can prove symmetry  $\mathbb{E}\left(\langle \mathbf{r}|K|\mathbf{r}\rangle^{q}\right) = \mathbb{E}\left(\langle \mathbf{r}|K|\mathbf{r}\rangle^{1-q}\right)$ 

# Interpretation in terms of scattering states

Time evolution open network

$$|\psi(t+1)
angle = \mathcal{QU}\left(|\psi(t)
angle + |\psi_{\mathsf{in}}
angle
ight)$$
 in-wave bdry condition

Scattering states are the stationary states:

$$|\psi_{f c}
angle = \mathcal{Q}\mathcal{U}(1-\mathcal{Q}\mathcal{U})^{-1}|{f c}
angle$$
 .

 $\Rightarrow$  Recalling  ${\it K}=(1-{\it Q}{\it U})^{-1}{\it P}(1-{\it U}^{-1}{\it Q})^{-1},$  in the bulk:

$${\cal K}=\sum_{i=1}^n |\psi_{f c}
angle\langle\psi_{f c}|$$

In particular if 1 pt contact

$$\langle \mathbf{r} | \mathcal{K} | \mathbf{r} \rangle = | \psi_{\mathbf{c}}(\mathbf{r}) |^2$$

# Result I: Pure scaling

2 pt functions



After coarse graining:

$$\mathbb{E}\left\{|\psi_{\mathbf{c}}(\mathbf{r})|^{2q}\right\} = \left\langle e^{q\varphi(\mathbf{r})}\pi(\mathbf{c})\right\rangle_{\mathsf{CFT}}$$

$$\stackrel{\mathsf{Plane}}{\propto} |\mathbf{r} - \mathbf{c}|^{-2\Delta_{q}}$$

- $e^{q\varphi}$  spinless primary, dim:  $\Delta_q = \Delta_{1-q}$
- *π* not pure scaling, by orthogonality contributes Δ<sub>1-q</sub>
   → "background charge" = 1.

Numerical check cylinder:





# Result II: Abelian fusion

3 pt functions

$$\mathbb{E}\left\{|\psi_{\mathbf{c}}(\mathbf{r}_{1})|^{2q_{1}}|\psi_{\mathbf{c}}(\mathbf{r}_{2})|^{2q_{2}}\right\} = \left\langle\pi(\mathbf{c})e^{q_{1}\varphi(\mathbf{r}_{1})}e^{q_{2}\varphi(\mathbf{r}_{2})}\right\rangle_{\mathsf{CFT}}$$

Claim: Abelian (Virasoro) fusion:

$$e^{q_1\varphi} imes e^{q_2\varphi} = e^{(q_1+q_2)\varphi}$$

 $\Rightarrow$   $\pi$  contributes  $\Delta_{1-(q_1+q_2)}$ : 3pt function fixed by conformal inv.

► Numerics: ✓



## Corollary: Parabolicity 4 pt functions

$$\mathbb{E}\left\{|\psi_{\mathbf{c}}(\mathbf{r}_{1})|^{2q_{1}}|\psi_{\mathbf{c}}(\mathbf{r}_{2})|^{2q_{2}}|\psi_{\mathbf{c}}(\mathbf{r}_{3})|^{2q_{3}}\right\} = \left\langle\pi(\mathbf{c})e^{q_{1}\varphi(\mathbf{r}_{1})}e^{q_{2}\varphi(\mathbf{r}_{2})}e^{q_{3}\varphi(\mathbf{r}_{3})}\right\rangle_{\mathsf{CFT}}$$

$$\uparrow_{\Delta_{q_{0}}, q_{0} \equiv 1 - (q_{1} + q_{2} + q_{3})}$$

On the plane, crossing symmetry (one conformal block)

$$q_1 + q_2$$
  $q_1 + q_2$   $q_1 + q_2$   $q_1 + q_2$   $q_2 + q_3$   $\Rightarrow \Delta_q = Xq(1-q)$ 

with X undetermined. Numerically,  $X \sim \frac{1}{4}$ . Rem For a closed system (LDOS), see also [Suslov '15] vs [Evers *et al.* '08, Obuse *et al.* '08]

# Central result: effective theory

Crossing symmetry fixes the 4 pt function and the effective CFT is a free boson with background charge 1.



 $\Rightarrow$  Prediction for the plane:

$$\mathbb{E}\left(|\psi_{\mathbf{c}}(\mathbf{r}_{1})|^{2q_{1}}\cdots|\psi_{\mathbf{c}}(\mathbf{r}_{N})|^{2q_{N}}\right) = \left\langle\pi(\mathbf{c})e^{q_{1}\varphi(\mathbf{r}_{1})}\cdots e^{q_{N}\varphi(\mathbf{r}_{N})}\right\rangle_{\mathsf{CFT}}$$
$$= \prod_{j}|\mathbf{c}-\mathbf{r}_{j}|^{-2\chi q_{j}(1-\sum_{i}q_{i})}\prod_{i< j}|\mathbf{r}_{i}-\mathbf{r}_{j}|^{-2\chi q_{i}q_{j}}.$$

## From network to vertex models I Second guantization



± bosons & fermions:

$$\rho(e^{X}) = \exp \begin{pmatrix} b_{+}^{\dagger} & f_{+}^{\dagger} & -b_{-} & f_{-} \end{pmatrix} \mathbf{1}_{4} \otimes X \begin{pmatrix} b_{+} \\ f_{+} \\ b_{-}^{\dagger} \\ f_{-} \end{pmatrix}$$

• Point contacts:  $\rho(Q) = \pi(\mathbf{c}) \equiv (|0\rangle \langle 0|)(\mathbf{c})$ 

## From network to vertex model II Mapping of observables

• Def. 
$$B = b_+ - e^{i\alpha}b_-^\dagger$$

Boundary of Bogoliubov transf.



1. 
$$[B, B^{\dagger}] = 0$$
  
2.  $B^{\dagger}B > 0$ 

$$\Rightarrow |\psi_{\mathbf{c}}(\mathbf{r})|^{2q} \stackrel{\text{Wick}}{=} q!^{-1} \Big\langle (B^{\dagger}B)^{q}(\mathbf{r}) \pi_{0}(\mathbf{c}) \Big\rangle_{\mathcal{F}}$$

•  $e^{q\varphi}$  are highest weight vectors of symmetry superalgebra

- $\Rightarrow$  Scaling field
- $\Rightarrow$  Abelian OPE

## From network to vertex model II Mapping of observables

• Def. 
$$B = b_+ - e^{i\alpha} b_-^{\dagger}$$

Boundary of Bogoliubov transf.



1. 
$$[B, B^{\dagger}] = 0$$
  
2.  $B^{\dagger}B > 0$ 

$$\Rightarrow \mathbb{E}\left\{|\psi_{\mathbf{c}}(\mathbf{r})|^{2q}\right\} = q!^{-1} \left\langle \underbrace{(B^{\dagger}B)^{q}}_{e^{q\varphi}}(\mathbf{r}) \pi(\mathbf{c}) \right\rangle_{\mathcal{V}}$$

•  $e^{q\varphi}$  are highest weight vectors of symmetry superalgebra

- $\Rightarrow$  Scaling field
- $\Rightarrow$  Abelian OPE

The compact sector

Recall  $K = \sum_{k} |\psi_{\mathbf{c}_{k}}\rangle \langle \psi_{\mathbf{c}_{k}}|$ . Consider princ. minors at Obs region;

Obs



• 
$$A_n \equiv \text{Det} \left( K \Big|_{\text{Obs}} \right)_{n \times n} \xrightarrow{\mathbf{r}_{k}^{(i)} \to \mathbf{r}}_{\mathbf{c}_k \to \mathbf{c}} \left\langle V_n(\mathbf{r}) \pi(c) \right\rangle_{\text{CFT}}$$

- $V_n(\mathbf{r})$  primary, dim  $= ilde{\Delta}_n$ ,  $ilde{\Delta}_1=0$
- In VM, fermionic highest weight vector:

$$V_n = e^{in\vartheta}, \quad \tilde{\Delta}_n = Xn(n-1)$$

Numerical checks + [Gruzberg,Mirlin,Zirnbauer '13] Question: "parent" theory  $S[\varphi, \vartheta, ...]$ ?

# Conclusions

- New microscopic approach to CFT of quantum Hall transition
- Derived first time theory of critical wave functions: free boson
- Methods general and allow classification of critical behaviors at Anderson transitions in 2D.
   Eg SQHE [Gruzberg,Read,Ludwig '99], Δ<sub>q</sub> = ¼q(3 − q)
- Outlook:
  - Theory on torus
  - Conserved currents on the lattice/CFT

Thank you!

# Conclusions

- New microscopic approach to CFT of quantum Hall transition
- Derived first time theory of critical wave functions: free boson
- Methods general and allow classification of critical behaviors at Anderson transitions in 2D.
   Eg SQHE [Gruzberg,Read,Ludwig '99], Δ<sub>q</sub> = ¼q(3 − q)
- Outlook:
  - Theory on torus
  - Conserved currents on the lattice/CFT

Thank you!