Geometric Deformations and Berry Curvature in Quantum Hall States

Barry Bradlyn
Princeton

Workshop on Geometry in the QHE
15 December 2015

Collaborators: Nicholas Read

Outline

- Geometric deformations and the induced action
- Berry curvature and central charge
- Example - conformal block trial states
- Conclusions

Motivation

- Can we calculate central charge directly from bulk wavefunctions?
- Way forward - couple microscopic system to background geometry
- uniform deformations <-> viscosity
- spatially varying deformations <-> central charge

Geometric Perturbations

- Introduce vielbeins e_{α}^{μ} - local orthonormal basis of tangent vectors
- Non-relativistic: preferred time direction $\alpha=0$
- Spin connection ω_{μ} - tells us how vielbeins rotate from point to point
- (degenerate) spacetime metric

$$
h_{\mu \nu}=\eta_{a b} e_{\mu}^{a} e_{\nu}^{b}
$$

- spacetime volume element $\widehat{\sqrt{g}}=\operatorname{det}(\mathbf{e})$
- Torsion $T_{\mu \nu}^{\alpha}=\partial_{\mu} e_{\nu}^{\alpha}-\partial_{\nu} e_{\mu}^{\alpha}+\epsilon^{0 \alpha \beta}\left(\omega_{\mu} e_{\nu}^{\beta}-\omega_{\nu} e_{\mu}^{\beta}\right)$
- Curvature $R_{\mu \nu}=\partial_{\mu} \omega_{\nu}-\partial_{\nu} \omega_{\mu}$

More on Non-relativistic

 geometry- vielbein is covariantly constant

$$
0=\nabla_{\mu} e_{\nu}^{\alpha}=\partial_{\mu} e_{\nu}^{\alpha}+\omega_{\mu} \epsilon_{b}^{a} e_{\nu}^{b} \delta_{a}^{\alpha}-\Gamma_{\mu \nu}^{\lambda} e_{\lambda}^{\alpha}
$$

- Given a choice of vielbeins, it is not in general possible to find a Levi-Civita connection
- $C^{a b}=e_{0}^{\mu}\left(\eta^{b c} e_{c}^{\nu} T_{\mu \nu}^{a}+\eta^{a c} e_{c}^{\nu} T_{\mu \nu}^{b}\right)$ does not depend on spin connection
- => independent variables are vielbeins and "reduced torsion" $\tilde{T}_{\mu \nu}^{a} \equiv T_{\mu \nu}^{a}-\frac{1}{2} \eta_{b c} C^{a b}\left(e_{\mu}^{0} e_{\nu}^{c}-e_{\nu}^{0} e_{\mu}^{c}\right)$

Induced Action for QH States

- Gapped system -> Integrate out matter in bulk to get Induced action

$$
\exp \left(i S_{\mathrm{eff}}\right)=\int \mathcal{D} \psi \exp (i S[\psi, e, A, \tilde{T}])
$$

- Two types of terms

$$
\begin{aligned}
S_{\text {eff }}=\int d^{3} x \widehat{\sqrt{g}} \epsilon(e, T, R, F) & +\frac{\nu}{4 \pi} \int d^{3} x \widehat{\epsilon}^{\mu \nu \lambda}\left(A_{\mu} \partial_{\nu} A_{\lambda}+2 \bar{s} \omega_{\mu} \partial_{\nu} A_{\lambda}+\overline{s^{2}} \omega_{\mu} \partial_{\nu} \omega_{\lambda}\right) \\
& +\frac{c}{96 \pi} \int d^{3} x \widehat{\epsilon}^{\mu \nu \lambda}\left(\Gamma_{\mu \sigma}^{\rho} \partial_{\nu} \Gamma_{\lambda \rho}^{\sigma}+\frac{2}{3} \Gamma_{\mu \sigma}^{\rho} \Gamma_{\nu \theta}^{\sigma} \Gamma_{\lambda \rho}^{\theta}\right)
\end{aligned}
$$

- "Locally covariant": integrand is a scalar
- "Topological": integrand changes by boundary term under symmetries

Induced Action and Berry Curvature

- Consider a general induced action:

$$
S_{\mathrm{eff}}[\mathcal{Q}]=\int d^{d} x d t\left[\epsilon(\mathcal{Q})+\mathcal{L}_{\mathrm{top}}(\mathcal{Q})\right]
$$

- gapped phase, external fields evolve along (contractible) closed path -> adiabatic theorem

$$
U\left[\phi_{i}, \phi_{f}=\phi_{i}, \mathcal{Q}\right]=e^{i \Omega}=e^{i S_{\mathrm{eff}}[\mathcal{Q}]}
$$

- Top. terms contribute to Berry phase

$$
\Omega=\gamma_{D}+\gamma_{B}, \quad \gamma_{D}=\int d^{d} x d t \epsilon(\mathcal{Q}), \quad \gamma_{B}=\int d^{d} x d t \mathcal{L}_{\text {top }}
$$

Induced Action and Berry Curvature

- From $\gamma_{B}=\int d^{d} x d t \mathcal{L}_{\text {top }}$ we can extract the Berry curvature using Stokes's theorem
- Example - U(1) Chern-Simons term $\bar{\epsilon}^{\mu \nu \lambda} A_{\mu} \partial_{\nu} A_{\lambda}$

$$
\begin{aligned}
A_{0}=0, \quad A_{i}=f_{i}(t) / L & \\
\Longrightarrow \int d^{2} x d t \widehat{\epsilon}^{\mu \nu \lambda} A_{\mu} \partial_{\nu} A_{\lambda} & =\int A_{2} d A_{1}-A_{1} d A_{2} \\
& =-2 \int d A_{1} d A_{2}
\end{aligned}
$$

This constant Berry curvature is the Hall conductivity

Outline

- Geometric deformations
- Berry curvature and central charge

Example - conformal block trial states

Conclusions

Setup

- Take time-like vielbein trivial, $e_{0}^{\mu}=\delta_{0}^{\mu}$ and reduced torsion $\tilde{T}_{\mu \nu}^{a}=0$
- degenerate metric takes the form

$$
h_{\mu \nu}=\left(\begin{array}{cc}
0 & 0 \\
0 & g_{i j}
\end{array}\right)
$$

- Convenient parametrization for $g_{i j}$:

$$
\begin{gathered}
d s^{2}=g_{i j} d x^{i} d x^{j}=e^{\Phi}|d z+\mu d \bar{z}|^{2} \\
d z=d x^{1}+i d x^{2}
\end{gathered}
$$

2D Complex Geometry

- μ - Beltrami coefficient, determines the complex structure via the Beltrami Equation

$$
\begin{aligned}
\bar{\partial} F & =\mu \partial F \\
d s^{2} & =e^{\Phi^{\prime}}|d F|^{2}
\end{aligned}
$$

- Example: Torus, constant $\mu=\frac{i-\tau}{i+\tau}$

Berry Curvature from Induced Action

- We fix $\operatorname{det} g=1 \leftrightarrow \Phi=\frac{1}{1-|\mu|^{2}}$
- Spin connection: $\omega_{z}=-i \bar{\partial} \bar{\mu}+O\left(\mu^{2}\right)$

$$
\omega_{0}=\operatorname{Im}\left(\mu \partial_{0} \bar{\mu}\right)+O\left(\mu^{3}\right)
$$

- Also want to vary EM field s.t. $\delta\left(A_{i}+\bar{s} \omega_{i}\right)=0$
- Can plug these into induced action to find Berry curvature

$$
\begin{gathered}
\gamma_{B}=\int d^{2} x \int d^{2} y \int \mathcal{F}_{\bar{\mu} \mu} d \bar{\mu}(\mathbf{x}) d \mu(\mathbf{y}) \\
\mathcal{F}_{\bar{\mu} \mu}=-\mathcal{F}_{\mu \bar{\mu}}=i \bar{n} \bar{s} \delta\left(z-z^{\prime}\right)+\frac{i\left[c-12 \nu\left(\overline{s^{2}}-\bar{s}^{2}\right)\right]}{12 \pi} \partial \bar{\partial} \delta\left(z-z^{\prime}\right)
\end{gathered}
$$

Prescription

1. Obtain wavefunctions with perturbed metric and magnetic field

- Can be done analytically using "conformal block" trial states
- Numerics on the torus - diagnostic tool for topological order

2. Calculate the functional Berry connection

$$
\mathcal{A}_{\mu}^{e e^{\prime}}=i\left\langle\psi_{e}\right| \frac{\delta}{\delta \mu(z, \bar{z})}\left|\psi_{e^{\prime}}\right\rangle, \quad \mathcal{A}_{\bar{\mu}}^{e e^{\prime}}=i\left\langle\psi_{e}\right| \frac{\delta}{\delta \bar{\mu}(z, \bar{z})}\left|\psi_{e^{\prime}}\right\rangle
$$

3. Take the curl to get the curvature

$$
\mathcal{F}_{\mu \bar{\mu}}=\frac{\delta \mathcal{A}_{\bar{\mu}}(z, \bar{z})}{\delta \mu\left(z^{\prime}, \bar{z}^{\prime}\right)}-\frac{\delta \mathcal{A}_{\mu}(z, \bar{z})}{\delta \bar{\mu}\left(z^{\prime}, \bar{z}^{\prime}\right)}
$$

Outline

- Geometric deformations

Berry curvature and central charge

- Example - conformal block trial states

Conclusions

Analytic Approah:

Conformal Block Trial States

- Goal - wavefunctions for particles in the lowest-Landau-level
- These satisfy $(\bar{\partial}-i \bar{A}) \psi=0$
- Such functions can be systematically generated as chiral correlation functions in 2d CFT

$$
\begin{gathered}
S=\frac{1}{8 \pi} \int d^{2} x(\nabla \phi)^{2}+S(\sigma) \quad a\left(z_{i}\right)=\sigma\left(z_{i}\right) \mathcal{O}_{1 / \sqrt{\nu}}\left(z_{i}\right) \\
\psi_{e}\left(\left\{z_{i}\right\}\right)=\lim _{\alpha \rightarrow 0}\left\langle\prod_{i=1}^{N} \alpha a\left(z_{i}\right) \prod_{j=1}^{N / \alpha} \mathcal{O}_{-\alpha / \sqrt{\nu}}\left(w_{j}\right)\right\rangle_{0, e}
\end{gathered}
$$

Trial Wavefunctions in a Curved background

- Non-trivial geometries $=>$ need $\left(\partial_{\bar{F}}-i A_{\bar{F}}\right) \psi=0$
- Naive guess - perturbed CFT correlator

$$
\psi \stackrel{?}{=} \lim _{\alpha \rightarrow 0}\left\langle\prod_{i=1}^{N} a\left(z_{i}\right) \prod_{j=1}^{N / \alpha} \mathcal{O}_{-\alpha / \sqrt{\nu}}\left(w_{j}\right) e^{-\frac{1}{\pi} \int d^{2} x \mu T}\right\rangle_{0}
$$

- Problem - $|\psi|^{2}$ not a scalar!
- Fix - we need to carefully define what we mean by "chiral correlator"
- Inspired by the usual case, we expect $\left\langle\prod_{j} \varphi\left(z_{i}, \bar{z}_{i}\right)\right\rangle_{g}=\sum_{e} \mid \Psi_{e}\left(\left\{z_{i}\right\} \mid \mu\right)^{2}$
- BUT - this ignores anomalies

The Gravitational Anomaly

- Problem in the chiral theory: $\bar{\partial} T-\mu \partial T-2 \partial \mu T=\frac{c}{12} \partial^{3} \mu$
- Naive non-chiral theory: $\nabla_{i} T^{i j} \neq 0$
- Fix - add a local counterterm to the non-chiral action

$$
\begin{aligned}
S & \rightarrow S-\frac{c}{12 \pi} K[\mu, \bar{\mu}, \Phi] \\
K & =\int d^{2} x\left(1-|\mu|^{2}\right)^{-1}\left(\partial \mu \bar{\partial} \bar{\mu}-\frac{1}{2} \mu(\bar{\partial} \bar{\mu})^{2}-\frac{1}{2} \bar{\mu}(\partial \mu)^{2}\right) \\
& +\frac{1}{4} \int d^{2} x\left(1-|\mu|^{2}\right)\left(\frac{1}{2} e^{\Phi} g^{\nu \lambda} \partial_{\nu} \Phi \partial_{\lambda} \Phi+\Phi R_{*}\right)
\end{aligned}
$$

- Restores coordinate invariance at the expense of factorization - holomorphic factorization anomaly

Implications for the Wavefunction

- A general correlator can then be written

$$
\begin{aligned}
\left\langle\prod_{j} \varphi\left(z_{i}, \bar{z}_{i}\right)\right\rangle_{g} & =e^{\frac{c}{12 \pi} K-\sum_{i} s \Phi\left(z_{i}\right)} \sum_{e}\left|\Psi_{e}\left(\left\{z_{i}\right\} \mid \mu\right)\right|^{2} \\
\Psi_{e} & =\left\langle\prod_{j} \varphi\left(z_{i}\right) e^{-\frac{1}{\pi} \int d^{2} x \mu T}\right\rangle_{0, e}
\end{aligned}
$$

- We define wavefunctions

$$
\psi_{e}\left(\left\{z_{i}\right\}\right)=e^{\frac{c}{24 \pi} K-\sum_{i} \frac{s}{2} \Phi\left(z_{i}\right)} \lim _{\alpha \rightarrow 0}\left\langle\prod_{i} a\left(z_{i}\right) \prod_{j} \mathcal{O}_{-\alpha / \sqrt{\nu}}\left(w_{j}\right) e^{-\frac{1}{\pi} \int d^{2} x \mu T}\right\rangle_{0, e}
$$

Properties of the Wavefunctions

- CFT - $T(z) T(0) \sim \frac{c}{2 z^{4}}+\frac{2}{z^{2}} T(0)+\frac{1}{z} \partial T(0)+\ldots$

$$
T(z) a(0) \sim \frac{s}{z^{2}} a(0)+\frac{1}{z} \partial a(0)+\ldots
$$

- Lets us prove:
- 1. $\left|\psi_{e}\left(\left\{\zeta_{i}\left(z_{i}, \bar{z}_{i}\right)\right\}\right)\right|^{2}=\left|\psi_{e}\left(\left\{z_{i}\right\}\right)\right|^{2}$
- 2. $\left(\partial_{\bar{F}}+i s \omega_{\bar{F}}\right) \psi_{e}\left(z_{1}, \ldots, z, \ldots, z_{N}\right)=0$
- Last step - singular gauge transformation to make ψ_{e} single valued $->\left(\partial_{\bar{F}}+i s \omega_{\bar{F}}-i A_{\bar{F}}^{0}\right) \psi_{e}=0, \quad \nabla \times \mathbf{A}^{0}=\frac{2 \pi \rho}{\nu}->$

$$
B=\frac{2 \pi \rho}{\nu}-s R
$$

Last Important Fact: Generalized Screening

- Need to normalize our wavefunctions
- Recall: Laughlin's trial wavefunction for the $1 / \mathrm{Q}$ FQHE:

$$
\begin{gathered}
\psi_{L}=\prod_{i<j}\left(z_{i}-z_{j}\right)^{Q} e^{-\sum_{i} \frac{1}{4}\left|z_{i}\right|^{2}} \\
\left|\psi_{L}\right|^{2}=\exp \left[\frac{1}{Q}\left(\sum_{i<j} 2 Q^{2} \log \left|z_{i}-z_{j}\right|-\sum_{i} \frac{Q}{2}\left|z_{i}\right|^{2}\right)\right]
\end{gathered}
$$

- => Normalization is the partition fn. for a classical OCP
- Plasma screens for small $\mathrm{Q}=>$ short-range correlations, homogeneous fluid ground state, fractionally charged excitations, etc.

Last Important Fact: Generalized Screening

- Need to normalize our wavefunctions
- Laughlin $1983-\int \prod_{i} d^{2} z_{i}\left|\psi_{L}\right|^{2}$ is the partition fn for a classical plasma
- Generalization to Moore-Read language: $\int \prod_{i} d^{2} z_{i}\left|\psi_{e}(\mu=0)\right|^{2}$ is the partition function for a perturbed CFT (considered as a 2D stat. mech. model)

$$
<\psi_{e} \left\lvert\, \psi_{e}>=\left\langle e^{\int d^{2} z \lambda \bar{a}(\bar{z}) a(z)} e^{-\frac{i \sqrt{\nu}}{2 \pi} \int d^{2} z \phi(z, \bar{z})}\right\rangle_{e}\right.
$$

- Screening<-> the theory is driven to a massive phase
- We assume we are in a top. phase s.t. screening holds

Consequences of Screening

1. Particle density $=$ background charge density $\bar{n}=\rho$
2. $\int \prod_{i}\left(\sqrt{\operatorname{det} g_{i}} d^{2} z_{i}\right) \psi_{e}^{*} \psi_{e^{\prime}}=N(g) \delta_{e e^{\prime}}$
3. Normalization has a local expansion

$$
N(g)=\exp \left[\int d^{2} z\left(a_{0} \sqrt{\operatorname{det} g}+a_{1} R+\ldots\right)\right]
$$

4. Fixed area + Gauss-Bonnet theorem: first two terms are constants

Berry Curvature from the

Wavefunction

- $\int \prod_{i} d z_{i}|\psi|^{2}$ is independent of $\mu, \bar{\mu}$ through 2nd order in derivatives using the screening hypothesis
- LLL wavefunctions in magnetic field $B=\frac{2 \pi}{\nu} \bar{n}-s R$
- ψ depends on $\bar{\mu}$ only via the local counterterms to this order
- Using these properties, we can vary $\mu, \bar{\mu}$ with ρ fixed to find:

$$
\mathcal{F}_{\mu \bar{\mu}}=-2 \operatorname{Im}\left(\left\langle\frac{\delta \psi_{e}}{\delta \mu\left(z^{\prime}\right)} \left\lvert\, \frac{\delta \psi_{e}}{\delta \bar{\mu}(z)}\right.\right\rangle\right)=i \bar{n} \delta\left(z-z^{\prime}\right)+\frac{i c}{12 \pi} \partial \bar{\partial} \delta\left(z-z^{\prime}\right)
$$

- Conclusion: $\overline{s^{2}}=\bar{s}^{2}$ for CFT trial states

Conclusion

- Central charge computed as a Berry curvature
- c is robust to breaking translation \& rotational symmetry, but this is not manifest in our approach
- References: BB \& N. Read Phys. Rev. B 91125303 (2015) BB \& N. Read Phys. Rev. B 91165306 (2015)
- c.f. related work by: Klevtsov et. al., Klevtsov \& Wiegmann, Can Laskin \& Wiegmann, Gromov et. al., and many others

