

Institute of Solid State Physics RAS

Sergey Dickmann Chernogolovka, Russia

Goldstone mode stochastization in a quantum Hall ferromagnet

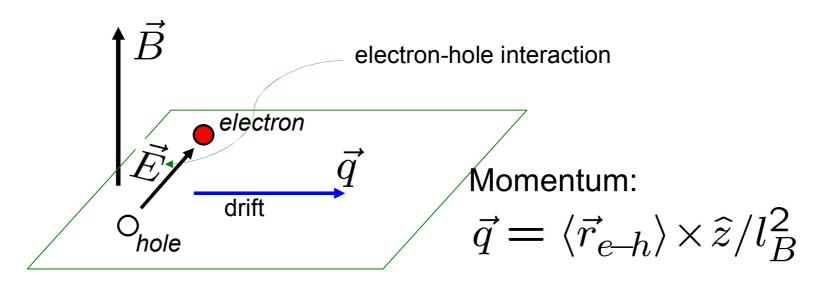
S. Dickmann

(Cologne, December 14, 2015)

OUTLINE

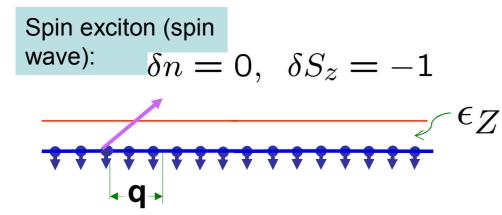
- "Zero" and "nonzero" spin excitons are lowest energy excitations in a spin polarized integer quantum Hall system
- Goldstone mode excitation -- *experiment*
- Goldstone mode -- *theory*
- Goldstone mode stochastisation *theory and experiment*

Magneto-exciton (Gor'kov, Dzyaloshinskii, 1967)



- The Landau-level degeneration is lifted due to electron-hole interaction. 'Natural' quantum number \vec{q} appears due to the translation invariance of the system.
- Due to translation invariance a special \hat{P} operator appears playing the same role as momentum operator in the absence of magnetic field: $[\hat{P},H_{\rm int}]\equiv 0$.
- The magneto-exciton energy: $E_X = \mathcal{E}(q)$

Simplest excitation in a completely polarized QHF



First-order approximation results: (Yu. A Bychkov *et al*, 1981; C. Kallin, B.I. Halperin 1984)

$$E_{sw}(q) = \epsilon_{Z} + \mathcal{E}_{sw}(q)$$

Spin exciton and other exciton-type states are suitable to study by using the excitonic basis set: $Q_{aba}^{\dagger}|0\rangle$, $|0\rangle \equiv |vac\rangle$

$$\mathcal{Q}_{abq}^{\dagger} = N_{\phi}^{-1/2} \sum_{p} e^{-ipq_x} b_{p+q_y/2}^{\dagger} a_{p-q_y/2},$$

a and b are binar indexes: $a = (n_a, \sigma_a)$ the LL index spin index: $\sigma = \uparrow / \downarrow$

Important: Exciton states are eigen states of the Gor'kov-Dzyaloshinski *P*-momentum operator of the magnetoexciton:

$$\widehat{P}\mathcal{Q}_{abq}^{\dagger}|0
angle = \mathbf{q}\mathcal{Q}_{abq}^{\dagger}|0
angle$$

Zero spin exciton if $\mathbf{q} \equiv 0$: $\mathcal{Q}_{\mathbf{0}}^{\dagger} \equiv S_x - iS_y$ $\mathcal{Q}_{\mathbf{0}}^{\dagger} |0\rangle$ is eigen state for any QH system corresponding to the change of spin numbers $\delta S_z = -1$ and $\delta S = 0$

Nonzero spin exciton

$$[H_{\text{int}}, \mathcal{Q}_{\mathbf{q}}^{\dagger}] |0\rangle = \mathcal{E}_{sw}(q) \mathcal{Q}_{\mathbf{q}}^{\dagger} |0\rangle$$

is eigen state for the QH ferromagnet to the leading order approximation in H_{int} . Change of the spin numbers is

 $\delta S_z = \delta S = -1$

Important: in spite of $Q_0^{\dagger} \equiv \lim_{q \to 0} Q_q^{\dagger}$

these are different states:

$$\mathcal{Q}_{\mathbf{0}}^{\dagger}|0
angle
eq$$
 lim $_{\mathbf{q}
ightarrow 0}\mathcal{Q}_{\mathbf{q}}^{\dagger}|0
angle$

Physical meaning of this "discrepancy"

Let \mathcal{L} be linear dimension of the system.

 $2\pi/\mathcal{L}$ is spacing for q numbers

 $\mathbf{q} \equiv \mathbf{0} \longrightarrow$ means that $q << 2\pi/\mathcal{L}$

whereas

q
ightarrow 0 —means that $2\pi/\mathcal{L} << q << 1/l_B$

Spin Goldstone mode

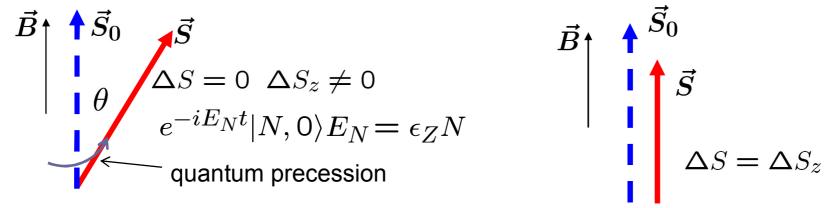
Ground state: \mathcal{N}_{ϕ} $|0,0\rangle = |\uparrow\uparrow\uparrow\uparrow\dots\uparrow\rangle$ (\mathcal{N}_{ϕ} is the degeneration number of the completely occupied Landau level).

The eigenstate

 $|N,0\rangle = (Q_0^{\dagger})^N |0,0\rangle$, where $Q_0^{\dagger} = S_{-/\sqrt{N_{\phi}}}$ (S_=S_x-iS_y) is the Goldstone condensate: $S = N_{\phi}/2$ and $S_z = N_{\phi}/2 - N$

 $\cos\theta = S_z/S$

Another case of deviation is ensemble of nonzero spin excitons:



Relaxation of spin excitations

Spin stochastization or spin relaxation?

Total number of spin excitons determines the S_z spin component: $S_z = N_{\phi}/2 - N$

Spin stochastization of the GM is a fast process without change of the S_z spin component, i.e. at fixed number of spin excitons N and at fixed Zeeman energy.

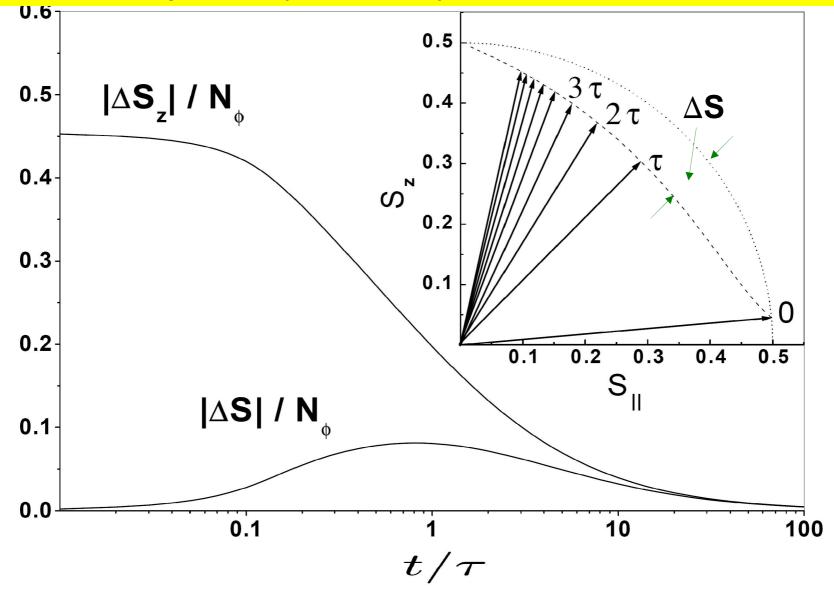
Spin exciton relaxation is change of the S_z component --- occurs much slower because related to annihilation processes of spin excitons and release of the energy --- studied experimetally and theoretically (Zhuravlev,SD, Kulik, Kukushkin, PRB 2014). The time > 100 ns.

Stochastization

 $\Delta S = \Delta S_z$

The GM decay if spin relaxation and stochastization occur simultaneously.

If a single mechanism for relaxation and stochastization -> SO coupling + smooth random potential (SD PRL 2004)



An elementary stochastisation process:

$$|N,0\rangle \implies |N,\mathbf{q}\rangle = (\mathcal{Q}_0^{\dagger})^{N-1}\mathcal{Q}_{\mathbf{q}}^{\dagger}|0,0\rangle,$$

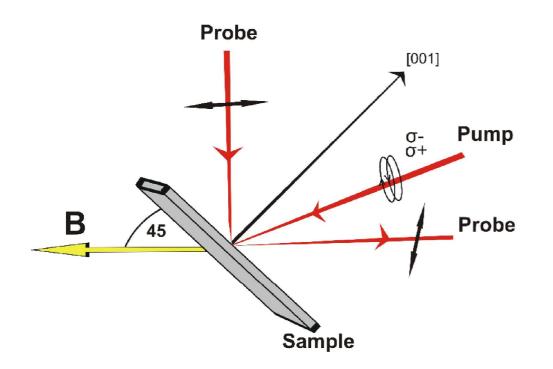
where $\mathcal{Q}_{\mathbf{q}}^{\dagger} = \mathcal{N}_{\phi}^{-1/2} \sum_{p} e^{-iq_{x}p} b_{p+\frac{q_{y}}{2}}^{\dagger} a_{p-\frac{q_{y}}{2}}, \quad a = \uparrow \text{ and } b = \downarrow.$

Both $|N,0\rangle$ and $|N,q\rangle$ are *eigenstates*. orthogonal due to the translation invariance.

The $|N,0\rangle \rightarrow |N,q\rangle$ transition occurs without a change in the $S_z = N_{\phi}/2 - N$ component.

At $q \rightarrow 0$, the energies of both states (E_N) are the same. However, the states $|N,0\rangle$ and $|N,q\rangle$ remain different even at $q \rightarrow 0$ and have different: $S = N_{\phi}/2$ and $S = N_{\phi}/2 - 1$, respectively.

Experiment: the time-resolved Kerr technique is used



The transverse component perpendicular to magnetic field

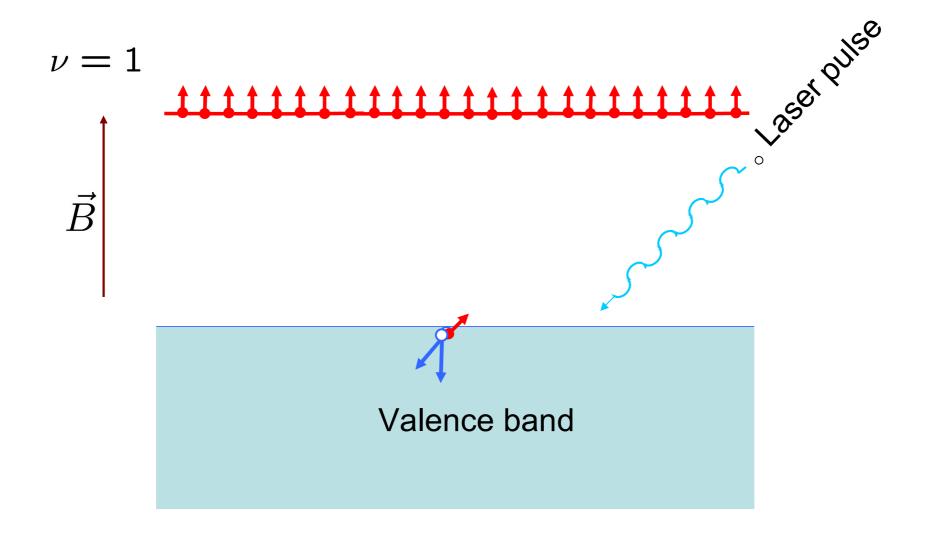
$$\langle S_x(t) + iS_y(t) \rangle$$

is measured

Quantum mechanical averaging

A. Larionov, L. Kulik, SD, I Kukushkin. PRB 2015

How is the Goldstone mode is excited experimetally (elementary transition process)



The present experimental situation

If a single electron, then instead of
$$\uparrow = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 we have $\nearrow = \begin{pmatrix} \cos \frac{\beta}{2} \\ -\sin \frac{\beta}{2} \end{pmatrix}$

If one photon is absorbed in the state $|0, 0\rangle = |\uparrow\uparrow\uparrow ... \uparrow\rangle$, then initially we have a combination of vectors

 $| \nearrow \uparrow \uparrow \uparrow \dots \uparrow \rangle$, $| \uparrow \nearrow \uparrow \uparrow \dots \uparrow \rangle$, $| \uparrow \uparrow \nearrow \uparrow \dots \uparrow \rangle$, \dots and $| \uparrow \uparrow \uparrow \dots \uparrow \nearrow \rangle$,

On the base of the indistinguishability principle one finds the initial state $|i\rangle = \hat{L}_{\beta}(0)|0,0\rangle$, where $\hat{L}_{\beta}(0) = \cos\frac{\beta}{2}\hat{I} - \sin\frac{\beta}{2}\mathcal{Q}_{0}^{\dagger}$

The appearance of a zero-exciton operator is stipulated by the strict `verticality' of the transition process

$$\mathcal{L}k_{ ext{photon}\parallel}\!\ll\!1$$
 ,

where \mathcal{L} is a linear characteristic of 2D density spatial fluctuations

Why only one `tilted' electron?

The initial state is not an eigenstate. It does not correspond to definite S_z but still corresponds to definite $S = N_{\phi}/2$.

Under the experimental conditions, $N\!\ll\!N_{\phi}$, the elementary dephasing process is a single exciton process.

Consider a domain of area A smaller than A_{SP}/N : $A \ll A_{SP}/N$ (A_{SP} is the area of the laser spot).

No more than a single photon is absorbed within the A domain,

Kerr oscilations

Our task is to study the temporal evolution of the initial state

$$|i\rangle = \cos \frac{\beta}{2} |0,0\rangle - \sin \frac{\beta}{2} |1,0\rangle$$

In the absence of any violation of the translation invariance, the Schroedinger equation results in state

$$|t
angle = \hat{L}_{\beta}(t)|0,0
angle$$
 at moment t , where
 $\hat{L}_{\beta}(t) = \cos\frac{\beta}{2}\hat{I} - \sin\frac{\beta}{2}e^{-i\epsilon_{Z}t}\mathcal{Q}_{0}^{\dagger}$
The calculation of expectation $\langle t|\hat{S}_{x} + i\hat{S}_{y}|t
angle = -\frac{1}{2}\sin\beta\sqrt{\mathcal{N}_{\phi}}e^{-i\epsilon_{Z}t}$

explains the Kerr signal oscillations with frequency ϵ_Z/\hbar

but does not explain the Kerr signal decay.

The stochastization process (slow compared to the precession)

This is a conversion of component $e^{-i\epsilon_Z t}|1,0\rangle$ of state $|t\rangle$ to component $e^{-i\epsilon_Z t}|1,q\rangle$ at q
ightarrow 0.

When calculating the $\langle t, \mathbf{q} | S_x + iS_y | \mathbf{q}, t \rangle$ quantum average, at any state $|t, \mathbf{q}\rangle = \cos \frac{\beta}{2} |0, 0\rangle - e^{-i\mathcal{E}_q t} \sin \frac{\beta}{2} |1, \mathbf{q}\rangle$

we come to a zero result: $\langle \mathbf{q}, t | \hat{S}_x + i \hat{S}_y | t, \mathbf{q} \rangle \equiv 0.$

 $\mathcal{E}_q = \epsilon_Z + q^2/2M_X$ is the spin exciton energy at small dimensionless **q**.)

Thus the time of the Kerr signal decay is equal to the transition time of zero exciton conversion into nonzero one with the same energy:

$$|1,0
angle \implies |1,\mathbf{q}
angle_{q
ightarrow 0}.$$

What kind of interaction is responsible for the stochastization?

The perturbation responsible for the $|1,0\rangle \implies |1,q\rangle_{q\to 0}$. conversion must be: (i) a spin non-conserving coupling changing the S, but not changing the S_z quantum numbers; and (ii) violating the translation invariance.

The most likely candidate is a term corresponding to the spatial fluctuations of the *g*-factor in 2D electron gas, i.e., the Zeeman energy is actually $\epsilon_Z + g_1(\mathbf{r})\mu_B B$,

and the perturbation Hamiltinian is

$$\widehat{V}_g = -\frac{1}{2}\mu_B B \sum_i \left(\begin{array}{cc} g_1(\mathbf{r}_i) & \mathbf{0} \\ \mathbf{0} & -g_1(\mathbf{r}_i) \end{array}\right)_i$$

In terms of the `excitonic representation' (secondary quantization) the Hamiltonian is 1

where $g_1(\mathbf{r}) = \sum_{\mathbf{q}} \overline{g}_{1\mathbf{q}} \mu_B B(A_{\mathbf{q}} - B_{\mathbf{q}})$ $A_{\mathbf{q}}^{\dagger} = \frac{1}{N_{\phi}} \sum_{p} e^{-iq_x p} a_{p+\frac{q_y}{2}}^{\dagger} a_{p-\frac{q_y}{2}}$, $B_{\mathbf{q}} = A_{\mathbf{q}}(a \to b)$.

The `key point' is calculation of the matrix element

$$\mathcal{M}_{\mathbf{q}} = \langle 0 | \mathcal{Q}_{\mathbf{q}} | \widehat{V}_g | \mathcal{Q}_0^{\dagger} | 0
angle$$
 ,

then usual procedure

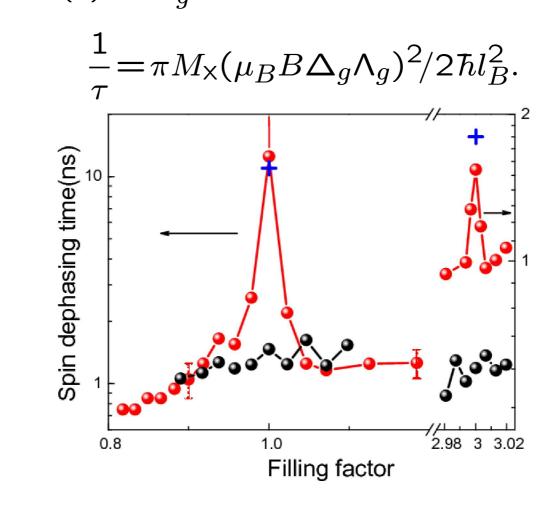
$$\frac{1}{\tau} = \frac{2\pi}{\hbar} \sum_{\mathbf{q}} |\mathcal{M}_{\mathbf{q}}|^2 \,\delta(\epsilon_Z - \mathcal{E}_{\mathbf{q}})$$

Let us assume that the *g*-disorder is Gaussian and governed by correlator

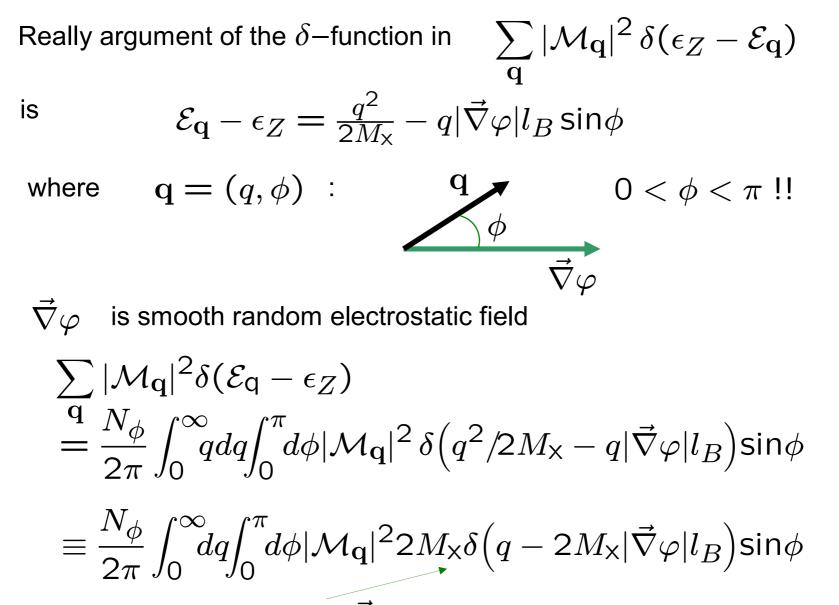
 $K(\mathbf{r}) = \int g_1(\mathbf{r}_0) g_1(\mathbf{r}_0 + \mathbf{r}) d\mathbf{r}_0 / A$

parameterized by fluctuation amplitude Δ_g and correlation length Λ_g , so $K(\mathbf{r}) = \Delta_g^2 e^{-r^2/\Lambda_g^2}$.

The result is



Some `hidden' details



The result does not depend on $\vec{\nabla}\varphi$ but factor $\frac{1}{2}$ appears due to $0 < \phi < \pi$.