Transfer matrices, Riemann surfaces and topological phases of matter

(VD, V Chua, PRB 93 (2016) 134304)

Vatsal Dwivedi

University of Cologne

ILLINOIS

University of Illinois at Urbana-Champaign
Gapped in bulk, but distinguished from trivial (atomic) insulator by “topology”
Noninteracting topological insulators

Gapped in bulk, but distinguished from trivial (atomic) insulator by "topology"

Cannot be continuously deformed into an atomic insulator without closing the bulk gap.
Gapped in bulk, but distinguished from trivial (atomic) insulator by “topology”

Cannot be continuously deformed into an atomic insulator without closing the bulk gap.

Exponentially localized modes at interface with atomic insulator, which cannot be removed by local deformations.
Gapped in bulk, but distinguished from trivial (atomic) insulator by “topology”

Cannot be continuously deformed into an atomic insulator without closing the bulk gap.

Exponentially localized modes at interface with atomic insulator, which cannot be removed by local deformations.

Described by single particle Hamiltonians without interactions:

$$\mathcal{H}\,|\psi\rangle = \varepsilon\,|\psi\rangle, \quad |\psi\rangle = \sum_{n,\alpha} \psi_{n,\alpha} \,|n,\alpha\rangle.$$
Example: 1D Topological Insulator

The Lore

Topological invariant = Net Berry phase across the bulk Brillouin zone

\[C = \frac{1}{2\pi} \oint \mathbf{S}_1 \mathbf{a} \in \mathbb{Z}, \mathbf{a} \equiv -i \langle \tilde{\psi}_k | \tilde{\psi}_k \rangle. \]

Winding number (Brouwer degree) of the map \(BZ \sim \mathbf{S}_1 \rightarrow \mathbf{S}_1 : k \mapsto \text{arg}(\tilde{\psi}_k) \).
The Lore

Example: 1D Topological Insulator

Topological invariant = Net Berry phase across the bulk Brillouin zone

\[\mathcal{C} = \frac{1}{2\pi} \oint_{S^1} a \in \mathbb{Z}, \quad a \equiv -i \langle \tilde{\psi}_k | d\tilde{\psi}_k \rangle. \]

Winding number (Brouwer degree) of the map \(BZ \cong S^1 \to S^1 : k \mapsto \arg(\tilde{\psi}_k) \)
Example: 2D Chern insulator

Topological invariant = Net Berry flux across the bulk Brillouin zone

\[C = \frac{1}{2\pi} \oint_{\mathcal{BZ}} F \in \mathbb{Z}, \quad F \equiv -i \langle d\tilde{\psi}_k | \wedge | d\tilde{\psi}_k \rangle. \]

First Chern number of a principal \(U(1) \) bundle over the Brillouin zone \(\mathcal{BZ} \sim \mathbb{T}^2 \).
Topological invariant = Net Berry flux across the bulk Brillouin zone

\[C = \frac{1}{2\pi} \oint_{T^2} \mathcal{F} \in \mathbb{Z}, \quad \mathcal{F} \equiv -i \langle d\tilde{\psi}_k | \wedge | d\tilde{\psi}_k \rangle. \]

First Chern number of a principal $U(1)$ bundle over the Brillouin zone $BZ \simeq T^2$.
The bulk and the boundary

Bulk states: Momentum space (Bloch’s theorem)

Edge states: Position space (Decaying ansatz solution)

- Bulk topological invariant
- Edge invariants
- Bulk-boundary correspondence
 - e.g: Chern number = Number of “nontrivial” edge states on a given edge
 - Treat edge and bulk on an equal footing?

- “Transfer matrices”
 - Analytically tractable treatment in position space.
 - Potential algebraic proof of bulk-boundary correspondence(s)?
The bulk and the boundary

Bulk states: Momentum space
(Bloch’s theorem)

Bulk topological invariant

Edge states: Position space
(Decaying ansatz solution)

Edge invariants
The bulk and the boundary

Bulk states: Momentum space
(Bloch’s theorem)

Edge states: Position space
(Decaying ansatz solution)

Bulk topological invariant

Edge invariants

Bulk-boundary correspondence

e.g.: Chern number = Number of “nontrivial” edge states on a given edge
The bulk and the boundary

Bulk states: Momentum space
(Bloch’s theorem)

Edge states: Position space
(Decaying ansatz solution)

Bulk topological invariant

Edge invariants

Bulk-boundary correspondence

e.g: Chern number = Number of “nontrivial” edge states on a given edge

Treat edge and bulk on *an equal footing*??
The bulk and the boundary

Bulk states: Momentum space
(Bloch’s theorem)

Bulk topological invariant

Edge states: Position space
(Decaying ansatz solution)

Edge invariants

Bulk-boundary correspondence

e.g: Chern number = Number of “nontrivial” edge states on a given edge

Treat edge and bulk on an equal footing??

“Transfer matrices”
The bulk and the boundary

Bulk states: Momentum space
(Bloch’s theorem)

Edge states: Position space
(Decaying ansatz solution)

Bulk topological invariant

Edge invariants

Bulk-boundary correspondence

e.g: Chern number = Number of “nontrivial” edge states on a given edge

Treat edge and bulk on *an equal footing*??

“**Transfer matrices**”

- Analytically tractable treatment in position space.
- Potential algebraic proof of bulk-boundary correspondence(s)?
Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function

Yasuhiro Hatsugai*

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
and Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan
(Received 27 May 1992; revised manuscript received 1 April 1993)

We study edge states in the integral quantum Hall effect on a square lattice in a rational magnetic field $\phi = p/q$. The system is periodic in the y direction but has two edges in the x direction. We have found that the energies of the edge states are given by the zero points of the Bloch function on some Riemann surface (RS) (complex energy surface) when the system size is commensurate with the flux. The genus of the RS, $g = q - 1$, is the number of the energy gaps. The energies of the edge states move around the holes of the RS as a function of the momentum in the y direction. The Hall conductance σ_{xy} is given by the winding number of the edge states around the holes, which gives the Thouless, Kohmoto, Nightingale, and den Nijs integers in the infinite system. This is a topological number on the RS. We can check that σ_{xy} given by this treatment is the same as that given by the Diophantine equation numerically. Effects of a random potential are also discussed.

“...the energies of the edge state; are given by the zero points of the Bloch function on some Riemann surface (RS) (complex energy surface) when the system size is commensurate with the flux...”
The Appetizer: Chern Insulator
FORMAL SETUP:

Consider a family of vector spaces $\mathcal{V}_n \equiv \mathbb{C}^{2^r}$, $r \in \mathbb{Z}^+$, $n \in \mathbb{Z}^f$, $f \in \mathbb{Z}$. A transfer matrix is then a linear operator $T \in \text{SL}(2^r, \mathbb{C})$. Given a vector $\phi_0 \in \mathcal{V}_0$, we can use T to define $\phi_n = T^n \phi_0 \in \mathcal{V}_n$. We are primarily interested in the asymptotics of $\|\phi_n\|$ as $n \to \pm \infty$. ($f = \mathbb{Z}$)

But asymptotics of $\|\phi_n\| \sim$ spectrum of $T \equiv \sigma[T]$

Let $T\phi_0 = \rho \phi_0$; $\|\phi_0\| = 1$. Then,

$|\rho| = 1 \Rightarrow \|\phi_n\| = 1$ as $n \to \pm \infty$: "bulk"

$|\rho| \leq 1 \Rightarrow \|\phi_n\| \to 0$ as $n \to \pm \infty$: "edge"

To explain what "bulk" and "edge" states mean, we consider an example:

> (Simple) Tight-binding model:

Hilbert space: $\mathcal{H} \equiv \text{span}\{ |n\rangle \}_{n \in \mathbb{Z}^f} \equiv \text{single particle states localized at site } n$.

Dual: $\mathcal{H} \equiv \text{span}\{ \langle n| \}_{n \in \mathbb{Z}^f}; \langle m|n\rangle = \delta_{mn}$.

Consider the Hamiltonian $\mathcal{H}: \mathcal{H} \to \mathcal{H}$ defined by

$$\mathcal{H} = \sum_{n \in \mathbb{Z}^f} \left[t |n+1\rangle \langle n| + \mu |n\rangle \langle n| + t |n\rangle \langle n+1| \right] ; \quad t, \mu \in \mathbb{R}$$

Clearly, $\mathcal{H}^\dagger = \mathcal{H} \Rightarrow \sigma[\mathcal{H}] \subseteq \mathbb{R}$.

We seek to solve the (time-independent) Schrödinger equation

$$\mathcal{H}|\psi\rangle = E|\psi\rangle ; \quad |\psi\rangle = \sum_{n \in \mathbb{Z}^f} \psi_n |n\rangle ; \quad \psi_n \in \mathbb{C}.$$
Substituting \(H \) and \(\Psi \),

\[
\sum_{m,n} \left[t|m+1\rangle\langle m| + \mu|m\rangle\langle m| + t|m\rangle\langle m+1| \right] \psi_n |n\rangle = \sum_n \varepsilon \psi_n |n\rangle
\]

\[\Rightarrow t \psi_{n+1} + \mu \psi_n + t \psi_{n-1} = \varepsilon \psi_n \quad \forall \ n \quad (\text{not true at boundaries}) \]

\[\Rightarrow \psi_{n+1} = \frac{\varepsilon - \mu}{t} \psi_n - \psi_{n-1} \]

\[\Rightarrow \begin{pmatrix} \psi_{n+1} \\ \psi_n \\ \dot{\psi}_n \end{pmatrix} = \begin{pmatrix} \frac{\varepsilon - \mu}{t} & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \psi_n \\ \dot{\psi}_n \\ \psi_{n-1} \end{pmatrix} \Rightarrow \phi_{n+1} = T \phi_n \quad ; \quad \phi_n \in \mathbb{C}^2 = \mathbb{C}^2 \]

\[(c = 1) \]

Clearly, \(T(\varepsilon) \in SL(2, \mathbb{C}) \quad \forall \ v. \) What can we compute with this?

Consider the eigenvalue problem \(T \phi_0 = \rho \phi_0 \quad ; \quad \phi_0 = (\beta \alpha) \)

\[\begin{pmatrix} \frac{\varepsilon - \mu}{t} & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \beta \\ \alpha \end{pmatrix} = \rho \begin{pmatrix} \beta \\ \alpha \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{\varepsilon - \mu}{t} \beta - \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \rho \beta \\ \rho \alpha \end{pmatrix} \]

\[\Rightarrow \beta = \rho \alpha \Rightarrow \phi_0 = \alpha \begin{pmatrix} \rho \\ 1 \end{pmatrix} \]

\[\Rightarrow \phi_n = T^n \phi_0 = \rho^n \phi_0 = \alpha \left(\rho^{n+1} \right). \quad \text{But} \quad \phi_n = \begin{pmatrix} \psi_n \\ \dot{\psi}_n \end{pmatrix} \Rightarrow \psi_n = \alpha \rho^{n+1} \]

\[\Rightarrow |\psi\rangle = \alpha \rho \sum_n \rho^n |n\rangle \Rightarrow \text{But} \quad |\psi\rangle \text{ probability of particle being on site } n! \]

* For \(|\rho| = 1\), define \(\rho = e^{ik} : k \in (-\pi, \pi] \)

\[\Rightarrow |\psi\rangle = \sum_{n \in \mathbb{Z}} e^{ikn} |n\rangle \quad \text{"Bloch wave"} \]

\[\Rightarrow \text{for } \mathcal{J} = \mathbb{Z} \text{ (infinite system), we only have these states (with a delta function normalization)} \]

(2)
• For $|p| \geq 1$, the state is not normalizable on \mathbb{Z}, but is normalizable on half lines!

$\implies |p| < 1 \implies |\Psi_n| \to 0$ as $n \to \infty$

(\text{Taking } \mathcal{H} = \mathbb{Z}^+, |\Psi\rangle = \sum_n \rho_n |n\rangle \text{ is localized near } n = 0) \text{ "left edge"}

$\implies |p| > 1 \implies |\Psi_n| \to 0$ as $n \to -\infty$ \text{ "right edge"}

\underline{Aside: Symmetry}

Translation invariance = "momentum is a good quantum number"

$\mathcal{L} \rightarrow$ symmetry group (of \mathcal{H}) = \mathbb{Z} for $\mathcal{H} = \mathbb{Z}$

$\mathcal{L} \rightarrow$ abelian \implies all unitary irreps are 1D, labelled by characters

$\chi = e^{ik} \in S^1$.

\therefore Each eigenstate of \mathcal{H} carries a 1D representation of \mathbb{Z}, and k labels the corresponding character.

• For $f \in \mathbb{Z}$, no symmetry group (but semigroup) and $\chi \notin S^1$

anymore: Representations of $_ ?$

Thus, to study this system, we should look at eigenvalues of T.

But $\det T = 1$, define $\Delta(\epsilon) = kT(\epsilon)$ to get

$$p_{\pm} = \frac{\pm \Delta \pm \sqrt{\Delta^2 - 4}}{2} : |p| = 1 \text{ if } \Delta^2 - 4 \leq 0$$

The quantity $\Delta(\epsilon)$ is the Floquet discriminant.

$\mathcal{L} \rightarrow$ Generically a polynomial in ϵ.

Allowing ϵ to be complex, it must live on a Riemann surface \mathcal{R}

with map $\mathcal{R} \to \mathbb{C} : \epsilon \mapsto \frac{\pm \Delta \pm \sqrt{\epsilon^2 - 4}}{2}$.
More explicitly, consider the tight binding model, where

\[\Delta = \frac{\varepsilon - \mu}{t} \Rightarrow \Delta^2 - 4 = 0 \text{ for } \varepsilon = \mu \pm 2|t| \]

\exists \text{ a square root branch cut}

\[\Rightarrow \text{ Define it for } \varepsilon \in (\mu - 2|t|, \mu + 2|t|) \]

\[\therefore \text{ Bulk band } \iff \text{ Branch cut} \]

Genus of \(R = (\# \text{ of } \sqrt{\varepsilon} \text{ - branch cuts}) - 1 \) \hspace{1cm} (Riemann - Hurwitz)

\[= (\# \text{ of bulk bands}) - 1 = 0 \text{ (for this case)} \]

\[\Rightarrow R \cong S^2, \quad \pi_1(S^2) = 0 \Rightarrow \text{ no noncontractible loops}. \]

More generally, the Floquet discriminant is a polynomial in \(\varepsilon \)

of order \(N \Rightarrow N \text{ bulk bands } \Rightarrow N \text{ branch cuts} \)

\[\therefore \exists \text{ an associated Riemann surface of genus } N-1. \]
GENERALIZATION:

Consider a vector space $\mathbb{C}^q; q < \infty$
associated with each lattice site n
\equiv physically spin/orbitals/...

Also consider finite range hopping,
so that

$$
\mathcal{H} = \sum_{n \geq 1} \sum_{l=1}^{q} \left[\sum_{\alpha \beta} (t_{\alpha \beta} |n \rangle \langle n+l, \alpha| + t_{\alpha \beta}^* |n, \alpha \rangle \langle n+l, \beta|) \\
+ \mu_{\alpha \beta} |n, \alpha \rangle \langle n, \beta| \right]
$$

where $\mathcal{H} : \mathcal{H} \rightarrow \mathcal{H}$, $\mathcal{H} = \text{span} \{ |n, \alpha \rangle \}_{n \geq 1, \alpha = 1 \cdots q}$

Group these sites into supercells, so that \exists only nearest neighbor hopping between the supercells to get

$$
\mathcal{H} = \sum_{n \geq 1} \sum_{ab} \left[J_{ab} |n+1, a \rangle \langle n, b| + M_{ab} |n, a \rangle \langle n, b| + J_{ab}^* |n, a \rangle \langle n+1, b| \right]
$$

⇒ Can be thought of as a "basis transformation" on \mathcal{H}.

The Schrödinger equation becomes

$$
J \psi_{n+1} + M \psi_n + J^\dagger \psi_{n-1} = \varepsilon \psi_n
$$

If J is nonsingular, can write

$$
\psi_{n+1} = J^{-1} (\varepsilon I - M) \psi_n - J^{-1} J^\dagger \psi_{n-1}
$$

⇒

$$
\begin{pmatrix}
\psi_{n+1} \\
\psi_n \\
\end{pmatrix} =
\begin{pmatrix}
J^{-1}(\varepsilon I - M) & -J^{-1}J^\dagger \\
1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
\psi_n \\
\psi_{n-1} \\
\end{pmatrix}; \quad \phi_n \in \mathbb{C}^N
$$

$(r = N)$
What happens when \(J \) is singular?

\(\Rightarrow \) Need to quotient out \(\ker J \) and invert on \(\mathbb{C}^N / \ker J \).

(Reduced) Singular value decomposition:

\[
J = V \Xi W^T ; \quad V = (v_1 \ldots v_r), \quad W = (w_1 \ldots w_r)
\]

\(r = \text{rank } J \).

\(\Xi = \text{diag } \{ \xi_1 \ldots \xi_r \} ; \quad \xi_i > 0 \quad \forall i \)

\(J = \sum_{i=1}^r \xi_i v_i \otimes w_i^T \);

\(\ker J \oplus \text{span } \mathbb{C}^N = \mathbb{C}^N \).

Would like to construct an orthonormal basis of \(\mathbb{C}^N \) using these vectors \((v_i, w_i)\): Need an extra condition

\(J^2 = 0 \iff \langle v_i, w_j \rangle = 0 \quad \forall i, j \)

Can always do this by enlarging the supercell. Thus, \(r \leq \frac{N}{2} \), and form the basis

\[
\begin{bmatrix}
\underbrace{v_1 \ldots v_r}, \quad \underbrace{w_1 \ldots w_r}, \quad \underbrace{x_1 \ldots x_{N-2r}}
\end{bmatrix}
\]

so that

\(V^T V = W^T W = 1_r, \quad X^T X = 1_{N-2r}, \quad V^T W = V^T X = W^T X = 0. \)

Given \(\psi \in \mathbb{C}^N \), expand in this basis as

\[
\psi = \sum_{i=1}^r w_i \frac{\langle v_i, \psi \rangle}{\alpha_i} + \sum_{i=1}^r w_i \frac{\langle w_i, \psi \rangle}{\beta_i} + \sum_{i=1}^{N-2r} w_i \frac{\langle x_i, \psi \rangle}{\delta_i}
\]

\[= V \alpha + W \beta + X \gamma \quad : \quad \alpha, \beta \in \mathbb{C}^r, \gamma \in \mathbb{C}^{N-2r} \]

so that \(\alpha = V^T \psi \), \(\beta = W^T \psi \) etc.
The recursion relation becomes

\[J_\psi_{n+1} + J^\dagger \psi_{n-1} = (E \mathbf{1} - M) \psi_n \]

\(\Rightarrow \) Invert \(E \mathbf{1} - M \) and define \(G \equiv (E \mathbf{1} - M)^{-1} \) : resolvent (singular on \(\sigma[M] \))

to get

\[\psi_n = G J \psi_{n+1} + G J^\dagger \psi_{n-1} \]

But

\[J_\psi_{n+1} = V \Xi W^\dagger (V \alpha_{n+1} + W \beta_{n+1} + X \gamma_{n+1}) = V \Xi \beta_{n+1} \]

\[J^\dagger \psi_{n-1} = W \Xi V^\dagger (V \alpha_{n-1} + W \beta_{n-1} + X \gamma_{n-1}) = W \Xi \alpha_{n-1} \]

so that

\[\psi_n = GV \Xi \beta_{n+1} + GW \Xi \alpha_{n-1} \]

Take projections along \(V, W \) to get

\[\alpha_n = V^\dagger \psi_n = GV \Xi \beta_{n+1} + GW \Xi \alpha_{n-1} \]

\[\beta_n = W^\dagger \psi_n = GV \Xi \beta_{n+1} + GW \Xi \alpha_{n-1} \]

Rearrange to get

\[\begin{pmatrix} \beta_{n+1} \\ \alpha_n \end{pmatrix} = T \begin{pmatrix} \beta_n \\ \alpha_{n-1} \end{pmatrix} \quad ; \quad T = \begin{pmatrix} \Xi^{-1} & -\Xi^{-1} G_{ww} G_{ww} \\ G_{ww} & G_{ww} \end{pmatrix} \]

where by construction, \(G_{vv}^\dagger = G_{vv}, \ G_{ww}^\dagger = G_{ww}, \ G_{vw}^\dagger = G_{vw} \).

Also, \(\phi_{n} \in C^{2r} \) (instead of \(C^{2N} \)), where \(r = \text{rank } J \)

\(\Rightarrow \) Use \(\text{rank}(J) \) to identify the relevant (propagating) degrees of freedom.
Real symplectic: $T \in \text{Sp}(2r, \mathbb{R}) \Rightarrow [G_{ab}, \Xi] = 0$; $a, b \in \{u, v, w\}$

If that is the case, then eigenvalues come in reciprocal pairs $\{ \rho, \frac{1}{\rho} \}$. Let the characteristic polynomial be

$$P(\rho) = \sum_{n=0}^{2r} a_n \rho^n = 0 = P\left(\frac{1}{\rho}\right) = \sum_{n=0}^{2r} a_n \frac{1}{\rho^n}$$

$\Rightarrow P(x)$ is palindromic, i.e. $a_i = a_{2r-i}$, so that

$$P(x) = \sum_{n=0}^{r-1} a_n \rho^n + a_r \rho^r + \sum_{n=r+1}^{2r} a_{2r-n} \rho^n$$

$$= \sum_{n=0}^{r-1} a_n (\rho^n + \rho^{2r-n}) + a_r \rho^r$$

$$= \rho^r \left[a_r + \sum_{n=0}^{r-1} a_n (\rho^{r-n} + \rho^{-(r-n)}) \right]$$

Define $\rho + \rho^{-1} = \Delta \Rightarrow \rho^n + \rho^{-n} = 2T_n\left(\frac{\Delta}{2}\right)$: Chebyshev polynomial

$\Rightarrow P(x) \cdot \rho^{-r} = a_r + \sum_{n=0}^{r-1} 2a_n T_{r-n}\left(\frac{\Delta}{2}\right) = 0$; Solve for Δ

$\Rightarrow r$ solutions $\Delta_1, \ldots, \Delta_r$

$$\rho_{\pm} = \frac{1}{2} \left[\Delta_n \pm \sqrt{\Delta_n^2 - 4} \right]; \quad n = 1 \ldots r$$

\Rightarrow Decompose the system into r chains.

Aside: Homology?

$J^2 = 0 \Rightarrow \ldots C_{n-1} \xrightarrow{J} C_n \xrightarrow{J} C_{n+1} \xrightarrow{\ldots}$ is a chain complex, with $C_n = \mathbb{C}^N \forall n$. Clearly, $\text{im} J = \mathbb{C}^r$, $\ker J = \mathbb{C}^{N-2r}$

$\Rightarrow H_n(C_*) = \frac{\ker J}{\text{im} J} \cong \mathbb{C}^{N-2r}$

By SVD, we are essentially quotenting out this homology?
Easiest to state as the Bloch Hamiltonian

$$\mathcal{H}_{\text{Bloch}} = \sin k_x \sigma^x + \sin k_y \sigma^y + (2 - m - \cos k_x - \cos k_y) \sigma^z$$

where σ's are Pauli matrices:

$$\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The bulk Chern number is

$$C = \begin{cases} +1 & ; \ 0 \leq m \leq 2 \\ -1 & ; \ 2 < m < 4 \\ 0 & ; \ \text{otherwise} \end{cases}$$

Gap closes for $m = 0, 2, 4$

For finite strip along x, inverse Fourier transform and compute the Schrödinger equation as

$$J \psi_{n+1} + M \psi_n + J^\dagger \psi_{n-1} = \varepsilon \psi_n$$

with

$$J = \frac{1}{2i} (\sigma^x - i \sigma^z) = \frac{1}{2} \begin{pmatrix} -1 & -i \\ -i & 1 \end{pmatrix} ; \quad \text{rank } J = 1$$

$$M = \sin k_y \sigma^y + \Lambda(k_y) \sigma^z ; \quad \Lambda(k_y) = 2 - m - \cos k_y$$

The transfer matrix becomes

$$T = \frac{1}{|\Lambda|} \begin{pmatrix} -\varepsilon^2 + \Lambda^2 + \sin^2 k_y \ & \varepsilon - \sin k_y \\ - \varepsilon^2 + \Lambda^2 + \sin^2 k_y \ & 1 \end{pmatrix}$$

Floquet discriminant

$$\Delta(\varepsilon, k_y) = \frac{1}{|\Lambda|} \left(1 - \varepsilon^2 + \Lambda^2 + \sin^2 k_y \right) ; \quad \text{band edges} : \Delta^2 = 4$$
For edge states, impose Dirichlet boundary condition

Left: \[\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad T \phi_0 = \rho \phi_0 \Rightarrow \begin{pmatrix} \# \\ -(\varepsilon + \text{sink}_y) \end{pmatrix} = \begin{pmatrix} \rho \\ 0 \end{pmatrix} \]

\[\Rightarrow \varepsilon_L = -\text{sink}_y \]

Right: \[\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad T \phi_0 = \rho \phi_0 \Rightarrow \begin{pmatrix} \varepsilon - \text{sink}_y \\ \# \end{pmatrix} = \begin{pmatrix} 0 \\ \rho \end{pmatrix} \]

\[\Rightarrow \varepsilon_R = \text{sink}_y \]

Consider the "left" one:

\[P_L = \left. \left(-\varepsilon^2 + \Lambda^2 + \text{sin}^2 k_y \right) \right|_{\varepsilon = -\text{sink}_y} = \Lambda^2 \]

\[= (2 - m - \text{cos} k_y)^2 \]

\[\exists \text{ a Riemann surface } \forall k_y, \text{ but they all have genus } 1 \]

\[\Rightarrow \text{Map to a single Riemann surface (by rescaling)} \]

\[|P_L| = 1 \text{ for } 2 - m - \text{cos} k_y = \pm 1 \]

\[\Rightarrow \text{cos} k_y = (2 \mp 1) - m \]

Take \(m \in (0, 2) \Rightarrow k_y = \pm \cos^{-1}(1 - m) \mp \theta \)

\[\therefore \text{for } -\theta < k_y < \theta, \varepsilon \text{ on top sheet} \]

\[\text{L3 cross over at } k_y = \pm \theta. \]

\[\therefore \varepsilon_L(k_y) \text{ is noncontractible on } \mathbb{R} \text{ (with winding number } +1) \]

\[\varepsilon_R(k_y) \text{ winds the other way round.} \]

Finally:

\[k_y \mapsto T(\varepsilon_L(k_y), k_y) \text{ is a curve on } \text{Sp}(2,\mathbb{R}) \text{ and} \]

\[\pi_1(\text{Sp}(2,\mathbb{R})) \cong \mathbb{Z} \Rightarrow \text{Associated winding } \# \equiv \text{Maslov index} \]