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© Quantum Hall effect and Landau levels

© Fractional quantum Hall effect
@ Laughlin state

© The chiral boson
@ and the Laughlin state
@ as an ansatz for FQH states

@ Matrix Product States
@ a powerful numerical method
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Classical Hall effect

Hall effect : a 2D electron gas in
a perpendicular magnetic field.

= current | voltage
Ry < B

Integer Quantum Hall effect (IQHE)
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Matrix Product State for FQHS

IQHE : von Klitzing (1980)
Quantized Hall conductance
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v is an integer up to O(107°)

Used in metrology
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A single electron in 2D and in a L magnetic field B.
Uniform | magnetic field : gauge choice
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@ energy scale : cyclotron frequency w, = |e—m‘

o length scale : magnetic length Ig = ,/|e—73|
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Landau levels

In (dimensionless) complex coordinate z = (x + iy)/Ig, and setting
0 z 0o z
= — 4= [ Z_Z
a \/5(82—1—2), a \/§<62 2)

Familiar form of the Hamiltonian

1
H = hw. (aTa + 5) [a,al] =
(N +1)*" Landau level : N
1 Nt hw,
En = fue <N * 5) N=0 hw,

Discrete spectrum, large degeneracy
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Lowest Landau Level (N = 0)
Since a = /2 (% + %) ground states are of the form

V(z,2) = f(z) e 2%/
with f(z) is any holomorphic function (9zf = 0).
= chirality : (x,y) > z=(x+1iy)
Ground states, a.k.a. Lowest Landau level (LLL) states

W(x,y) = Fx +iy) e 0T/

Projection to the LLL : x and y no longer commute [&, ] = i /2
DA, > 1R)2

= each electron occupies an area 27/3
magnetic flux through this area = quantum of flux ® = h/e

LLL degeneracy ~ number Ny of flux quanta through the surface
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Landau problem on arbitrary surfaces

Lowest Landau Level on (compact) Riemann surfaces :

~
ST P

The magnetic flux has to be quantized [ d?x B = No2, with N integer.

The ground state degeneracy on a surface of genus g is

No + (1 —g) (Ny > 2g —2)

@ it depends on the topology (genus).
@ it does NOT depend on the geometry (metric)
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Back on flat space : magnetic translations

translation invariance : X and X + & are gauge

equivalent
=5 (Y)
Magnetic translations Ry = e/@Ae?¥V
Aharonov-Bohm effect : (%
.ﬂ —. =
RiRy = e"# ""'RyRz __'__Tj__.....r

Infinitesimal generators of translations commute with H, but

[TX’ Ty] =—i 7& 0

Let us choose momentum along the y direction as a quantum number.
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Cylinder with perimeter L (we identify y =y + L)

Natural gauge choice : A=B

>

/ Ty|wk> = ky|\uk>a ky = T

) _ (x—ky)?
Vi, (x,y) = eve="7 xe

(I =1) J

Momentum k, and position x are locked :

I
X ~ /éky . .
o [&,9] = il% implies that A% = I3 p, . Q

@ localized in X and delocalized in y

e the interorbital distance is QT”I,ZB Density profile of the
LLL orbital Wy (x,y).
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Projection to the LLL : dimensional reduction

Projection to the LLL : x and y no longer commute [&, 9] = i /2 (link with
non-commutative geometry).

4 dimensional phase space = 2 dimensional phase space
A basis of LLL states

12345678

/x

looks like a one-dimensional chain

S A A,

YRR
But !

Physical short range interactions become long range in this description

(distance of order Ig means ~ L/Ig sites).
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The IQHE : bulk insulator

Cartoon picture : no interactions, no disorder

Energy

]2345678

n=2 /X
t' “Bulk Gap~ ~ ~

& n=1

2nd band

@ Landau Levels = flat bands

@ Integer filling with fermions
= Bulk insulator.

n=0
—_ x, ky
How come we have | o« V then? Where is the current flowing?
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The IQHE : conducting edges
= Conducting edges

E .
e each channel contributes
Edge modes e?/h to the Hall conductance
o2
Ep : ny:VW
I S Bulkgap ~ o
2nd band l .
e o’ Chiral (and therefore
protected) massless edges
Ileﬂ edge right edge I

Topological insulator

This quantization is insensitive to disorder or strong periodic potential :

topological invariant : the Chern number

Disclaimer : this is just a cartoon picture. Does not explain plateaux.
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Fractional filling

the many-body problem

/j// -

1
30

MAGNETIC FIELD (Tesla)

FQHE trial wavefunctions
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Fractional filling : the role of interactions
N fermions in Ng orbital/states (filling fraction v = N/N,; < 1)
(or N bosons at any filling fractions)
without interactions we would expect a metallic bulk !
Experimentally, emergence of exotic and non perturbative physics :

@ insulating bulk,
@ metallic chiral edge modes,

@ excitations with fractional charges,

due to electron-electron interactions

Strongly correlated system, no small
parameter. What can we do?

MAGNETIC FIELD (Tesla)

o Exact diagonalization
o Effective field theories (theories of anyons)
@ Trial wavefunctions
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Trial wave functions

The v = 1/3 Laughlin state.

filling fraction v = 1/3 + short range model interaction
= exact ground-state :

%(ZI’"' 7ZN) = H(Zi _Zj)3

i<j

v

The model interaction is the short range part of Coulomb.

Extremely high overlap with Coulomb interaction !
(obtained by exact diagonalization)

First hints of a topological phase :

@ excitations with fractional charge e/3

@ topology dependent ground state degeneracy : 38 exact ground states.
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Cartoon picture : thin cylinder limit (L < /)

IA A e

Very small cylinder perimeter L : LLL orbitals no longer overlap
1d problem

Laughlin’s Hamiltonian — Haldane's exclusion statistics
no more than 1 particle in three orbitals

At filling fraction v = 1/3, we get three possible states

[W;)=1---100100100--)
[Wy) =|---010010010--)
[W3) =|---001001001---)

3-fold degenerate ground state on the cylinder (and torus).

Benoit Estienne (LPTHE) Matrix Product State for FQHS 2017, June 13

17 / 44



Bulk excitations/defects : anyons

Adiabatic insertion of a flux quantum at position w
creates a hole in the electronic liquid :

v, —H W — z;) H(z,—zj $

i i<j

10
8
5
4
2
o

Cartoon picture : |---1001000100---) Tttt

Electronic density around a quasihole
(N. Regnault)

fractionalization : the missing electronic charge is e/3
these excitations are called quasi-holes.

,( under adiabatic exchange of two quasi-holes
o ) = phase 27/3
/ \ non trivial braiding !

= quasi-holes = abelian anyons

time
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Massless edge modes

\Uu = Pu H(Z,‘ — Zj)3

i<j

where P, is any symmetric, homogeneous polynomial.

Cartoon picture : no more than 1 electron in 3 orbitals.

@ dispersion relation : E < P
chiral and gapless edge
@ Number of edge states :
» E=0:1 state

» E=1:1 state
» E =22 states
» E =3 : 3 states
» E =4 :5 states
» E =05:7 states
>

(@ E=0

(b)E=1

(dE=2

(QE=1

(cartoon picture)

spectrum of massless chiral boson.
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Massless edge modes

‘Uu = Pu H(Z,‘ — Zj)3

where P, is any symmetric, homogeneous polynomial.

Cartoon picture : no more than 1 electron in 3 orbitals.

(b)E=1 (d)E=2
@ dispersion relation : E < P
chiral and gapless edge
(@)E=0

@ Number of edge states :

E

(JE=1

6 LAk

5 L

4 57

3 =

2 2

i I

0 - (cartoon picture)

3

spectrum of massless chiral boson.
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Edge excitations
Bulk excitations

w1 we=2
Quasi-hole at position w : £ A
@e=o
Voo = [[(w—2) [[(z-2)
i i<j @e=1 ez
@ can be created by adiabatic
insertion of a flux quantum .
@ charge e/3 : fractionalization (cartoen pictur)
@ adiabatic exchange of two @ A chiral U(1) boson
anyons = phase e2/™/3 linear dispersion relation
non trivial braiding! @ The degeneracy of each energy
= quasi-holes = abelian anyons level is given by the sequence
1,1,2,3,5,7,---

V= % Laughlin state = chiral Z; topological phase.
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Chiral boson and Laughlin

using the edge theory to describe the bulk
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The free boson a.k.a. U(1) CFT

Massless gaussian field in 1 + 1 dimensions

S= /d2za¢5¢

The mode decomposition of the chiral free boson is

#(z) = ®g — iag log(z) + /Z —apz "
n;éO

[anyam] = n5n+m,07 [¢07a0] =i

U(1) symmetry : ¢(z) — ¢(z) + 6

conserved current :

J(z) = i0¢(z Z a,z "t
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Vertex operators :

Vo(z) =: e/Q#(2) .

Primary states/ vacua |Q) are defined by their U(1) charge Q

2/Q) = Q|Q),  axQ) =0for n>0

The Hilbert space is simply a Fock space

T

Descendants are obtained with the lowering operators a, = a_p,, n > 0

AE=0:
AE=1:
AE =2
AE=3:
AE =4
AE =5:

1 state : |Q)

1 state : a_1|Q)

2 states : 2%, |Q), a_2|Q)

3 states : 2%, |Q), a_2a_1|Q), a_3|Q)

5 states : a*; |Q), a_2a%;|Q), 2%, |Q), a_32_1|Q), a_4|Q)

7 states : ---

v
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The Laughlin state written in terms of a U(1) CFT

Ground state wavefunction

1@ -2 = 00sc V(z) - V(zn)[0),  V(z)=: V3

i<j

where O .. = e~ 1V3Neo g just a neutralizing background charge.

Bulk excitations Edge excitations
Wavefunction for p quasiholes W, = (u|Ope V(z1) - V(zn)|0)
(Ob.c. Van(wa) - Van(wp) V(21) - - V(zw))
with ‘ @ edge mode = CFT descendant

Vagn(w) =: evirW) . @ we recover 1,1,2,3,57,---
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FQH trial wave-function from CFT

Moore and Read (1990) proposed to write
FQH Trial wavefunctions as CFT correlators

V(z, -y zn) = (U|Ope. V(z1) - V(zn)|v)

e Operator V(z) =), 2"V,
e Infinite dimensional Hilbert space (graded by
momentum/conformal dimension)

Why is this ansatz sensible ?
@ correct entanglement behavior (area law and counting)
o yields a consistent anyon model (pentagon and hexagon equations)

@ Laughlin state is of this form
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Trial wavefunctions from CFT

Extrapolating the thermodynamic limit of these trial states is difficult.
Gapped?

Well-defined quasi-holes ?

Non-Abelian braiding ?

Area law for the entanglement entropy ?

Entanglement spectrum ?

Quantum dimensions ?

etc...

The natural conjecture is that they are described by the anyon model
(TQFT) corresponding to the underlying CFT.
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Matrix Product State (MPS)
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Limitations of exact diagonalizations and trial wf

— decomposition of a state |W) on a convenient occupation basis

|\U> = Z C{m,-} |m1, ceey mN¢>
{m;}

12345678

\ ===

What is the amount of memory needed to store the Laughlin state?

1e+10

1e+08

1e+06

10000 |-

100 H

Amount of memory (Mbytes)

1
10 12 14 16 18 20 22

Number of particles

Can't store more than 21
particles !

Matrix Product State : more compact and computationally friendly

Benoit Estienne (LPTHE) Matrix Product State for FQHS 2017, June 13 29 / 44



Matrix Product States

’w> — Z ((U’ B[mn] . B[m1] ’V)) ‘m]_, ey m,,>
{mi}

12345678

) |

B /
Why is this formalism interesting ?

e Many quantities (correlation functions, entanglement spectrum, ...)
can be computed in the (relatively small) auxiliary space.

@ Transfer matrix : one can work numerically on an infinitely long
cylinder (non compact surface, infinitely many electrons!)
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The CFT ansatz W(z;,--- ,zy) = (u|V(z1) - -- V(zn)|v)
is a continuous MPS
Dubail, Read, Rezayi (2012)

Translation invariant MPS

v =3 (<u| glml . .. glma] glmi] |v)) My -+ mp)
{mi}

Zaletel, Mong (2012)
v

o the matrices BlI™ are operators in the underlying CFT

@ the auxiliary space is the (infinite dimensional) CFT Hilbert space . ..

@ ... which can be truncated while keeping arbitrary large precision
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Where does this MPS come from?
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Starting from a trial wavefunction given by a CFT correlator

W(zy,- - zn) = (U|Opc V(z1) - - V(zn)|v)

and expanding V(z) = ), V_,z", one finds (up to orbital normalization)

C(mlv"’amn) = <U| ObC \/—Vin: i \/—VmQ \/_le | >

This is a site/orbital dependent MPS
s ) = (ul Ob‘C.A[mn](n) . ..A[m2](2)A[m1](1) v)

with matrices at site/orbital j (including orbital normalization)

Alml () =
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Translation invariant MPS

A relation of the form Al™(j) = U~AIM(j — 1)U yields

Al iy = u=/ Alml o)1/

and then

Almal (). Alml(1) = y=" x Almlo)u - - Alml(0)u

This is a translation invariant MPS, with matrices

Blm = Alml(0)u
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Translation invariant MPS on the cylinder
Site independant MPS

L)

(vo)m = BlM=

where U is the operator
U= e*%”"’*l'ﬁ«po
where
@ g is the bosonic zero mode (e~/V¥#° shifts the electric charge by v)

o H is the cylinder Hamiltonian : H = 2L,
@ V) is the zero mode of V/(z)

auxiliary space = CFT Hilbert space
infinite bond dimension :/
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Truncation of the auxiliary space
The auxiliary space (i.e. the CFT Hilbert space) basis is graded by the
conformal dimension A,.

Lola) = Aale)

But in the MPS matrices we have a term

1

m!

Biml — L (vpymeivimne (1)L

The conformal dimension provides a natural cut-off.
Truncation parameter P : keep only states with A, < P.

@ P =0 recovers the thin-cylinder limit | ---100100100- - -)

@ The correct 2d physics requires L > ¢ (bulk correlation length, O(/g))

e For a cylinder perimeter L, we must take P ~ [?

@ Bond dimensions y ~ el -+ of course! since Sy ~ al.

Benoit Estienne (LPTHE) Matrix Product State for FQHS 2017, June 13

36 / 44



What about the torus?

CFT ansatz : ground state |V),
Walzr, o zw) = Tra (27070 Y (z1) - V()

becomes
=5 T, ((_1)(N—1)ﬁaog[mn] . B[m1]> Imy, -, my)
{mi}
where the blue term is only present for fermions (ensures antisymmetry).
The MPS matrices are
,g 1 f

©o ' Vé"e_’ <poq2n q= e2/7r7'
m:

BIm — g% e

Again x grows exponentially with torus thickness.
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Matrix Product States :
a powerful numerical method

plots from collaborations with :
Y-L. Wu, Z. Papic, N. Regnault, B. A. Bernevig
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Infinitely long cylinder, bulk correlation length

The transfer matrix £; = ), A, ® A;,

1

= correlation length (71 oc log(\1/\2)

(0(0)0'(r)) ~ exp(—r/()

Laughlin v=1/3 ——
Laughlin v=1/5 ——

002 004 006 355 002 00
g/l Ig/L

Model state | Laughlin 1/3 | Laughlin 1/5 | MR vac. | MR gh
(/ls [ 1.381(1) 253(7) | 2.73(1) [ 2.69(1)
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Entanglement entropy (orbital cut)
Area law Sp = aL — v, where the subleading term -y is universal

Sa

Sa

Benoit Estienne (LPTHE)

v = log D/d,

Model state ‘ Vvac ‘ Yqh ‘

D

MR 1.04 | 0.69

2v/2

Z3 RR 1451 097 | ——=
2sin ( = )
5
6
) MR vacuum o | B MR quasihole

4
P
2

1 Prngx=18 ——

,,,,, 7 o St
7-1.06(3) | e [T p—
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Ulg Ulg
6
) RR vacuum 5 | b) AR quasihole
4
<8
w2
;
o o
#=1.4(2) 4
0 5 10 15 20 25 30
Ulg
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Quasi-hole excitations

@ Insert quasi-holes in the MPS
@ Compute the density profile

@ Measure the radius of the quasi-hole

0 | -
—15 —10 -5 0 5 10 15 p/( 27.-[2

z/ly
a T T T —— b T T T T
T( )3/5 B - '_23 Read-Rezayi ( )40 _... ]
LK 12 R Moore-Read S 3.5
& 13k - -
E Laughlin 1/3 3.0
I I lfy - |20£0 25 I ] I I
0 2 4 6 8 10 16 18 20 22
T/[U Ly /ZO
v R/t
Laughlin 3 $:26
Moore-Read 5 £:28 §:27
Z3 Read-Rezayi % £:30 35—e :2.8
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Braiding non-Abelian quasi-holes

“X3

A

time

5

abclab'c) | a

~

\

Instead of computing the Berry phase,
= check the behavior of conformal block overlaps

(W,|Wp) = Cidap+ O (e_‘AW‘/&ab)

1.2
0.8
0.4
0.0

i\/[oorel—Rea(i

1092
lolo|®= |ovo|? 1

I102)?

(olo|oyo)

lovyrel?

[1o19]?

(o1¢1€| o102¢)

o

Zgl Rea(ll-Rezalyi

I1o102]?

”25‘\2

5

1
10 15 0 5
An /it

An /Lo

20

Microscopic, quantitative verification of non-Abelian braiding.
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Conclusion

Benoit Estienne (LPTHE) Matrix Product State for FQHS



Conclusion
FQH trial wavefunctions have been used for more than 20 years :

They are nothing but Matrix Product States in disguise

Numerically powerful

» Bulk correlation length ¢ (or equivalently bulk gap)

» precision computation of the topological entanglement entropy
(and the quantum dimensions d,)

» Non-Abelian quasihole radius and braiding

CFT/MPS provide a strong link between microscopics and 3d TQFT

As conjectured by Moore and Read
Model states = (non-Abelian) chiral topological phases.

Limitations : at the end of the day these states are model states
with the anyon data as an input. Similar to quantum-double models.

> Are they in the same universality class as the experimental states?
» DMRG methods might help answer this question.
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