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Some recent estimates on nodal sets and nodal
domains in the high-energy limit

Bogdan Georgiev

Max Planck Institute for Mathematics, Bonn
Seminar on mathematical aspects of the quantum Hall effect and related topics,

Semiclassical Analysis, Cologne
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How does an atom look like?

Among other things, as a great leap of modelling, quantum
mechanics resolves a puzzle about stability of atoms.
Prior to quantum mechanics, a hydrogen atom was roughly
pictured as a 2-body planetary system, i.e. in terms of the classical
Hamiltonian H(x , ξ) = 1

2 |ξ|
2 + V (x), where V (x) := − 1

|x | .
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How does an atom look like?

That cannot be right as the electron would radiate energy and
spiral into the nucleus.

So Bohr (1915) proposed a resolution by postulating that the
electron can only occupy stable orbits with energies picked out by
the Bohr-Sommerfeld quantization conditions.
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Schrödinger’s breakthrough

In Quantisierung als Eigenwertproblem, Annalen der Physik, 1926,
Schrödinger modelled the energy states of the electron as
eigenfunctions of the Schrödinger operator:

Ĥϕj :=

(
−~2

2
∆ + V

)
ϕj = Ej(~)ϕj , (1)

where ∆ =
∑ ∂2

∂x2j
is the Laplace operator; V is the potential,

considered as a multiplication operator on L2(R3); ~ is Planck’s
constant.
Let us select an L2-orthonormal basis of eigenfunctions {ϕj}.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stationary states

The time evolution of an energy state is given by the propagator:

U~(t)ϕj := e
−i t~

(
− ~2

2
∆+V

)
ϕj = e−i

tEj (~)
~ ϕj . (2)

Moreover, ϕj induces the probability density |ϕj(x)|2dx , which is
interpreted as the probability of finding a particle at x .

According to physicists, the observable quantities associated to the
energy state ϕj are the above probability density, as well as, more
generally, the matrix elements of observables

⟨Aϕj , ϕj⟩, (3)

where A is a self-adjoint (pseudo-differential) operator.

The factors of e−i
tEj (~)

~ cancel, and so observables remain
constant under the time evolution.
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A resolution

Roughly speaking, modelling energy states by eigenfunctions ϕj
resolves the paradox of particles which are simultaneously in
motion and are stationary.

This comes at the price of trading the geometric (classical
mechanical) Bohr model of classical orbits for eigenfunctions ϕj of

the Schrödinger operator
(
−~2

2 ∆+ V
)
.

How can we still retain the geometry and picture the stationary
states of atoms, i.e. the eigenfunctions ϕj?
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Some pictures of the hydrogen atom

Figure: Intensity plots of energy states of the hydrogen atom.

In the Figure above, the brighter regions represent |ϕj(x)|2 being
large, i.e. the most probable locations of an electron.

Question
How is ϕj distributed? How large can ϕj (i.e. its L

p-norms) be,
relative to the energy Ej(~)? How are the excursion sets
Ωj ,A,r := {x : |ϕj(x)|2 ≥ A~−r} distributed?
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Some pictures of the hydrogen atom

There are also illuminative plots of the nodal hypersurfaces, i.e.
where the probability density of the particle’s position vanishes.

Figure: Nodal hypersurfaces, upon which ϕj(x) vanishes.

Question
How is the nodal set distributed as the energy gets larger? How
large is the size of the nodal set?
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Hydrogen atom under the quantum microscope

Figure: Nodal structure of an excited hydrogen atom.

In 2013, A. Stodolna, FOM Institute for Atomic and Molecular
Physics, the Netherlands, M. Vrakking, the Max-Born-Institute in
Berlin, Germany, etc, have shown that photoionization microscopy
can directly obtain the nodal structure of the electronic orbital
of a hydrogen atom placed in a static electric field.
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The framework

We consider a smooth closed Riemannian manifold (M, g) of
dimension n. Denote the Laplace-Beltrami operator acting on
functions by ∆. It is well-known that ∆ possesses a discrete
spectrum of eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞.

We are interested in the asymptotic behaviour as λi → ∞ (i.e.
in the high-energy limit) of the corresponding eigenfunctions

∆ϕλ = λϕλ. (4)

On one hand, the idea is that the limit λ→ ∞ (corresponding to
the semi-classical limit ~ → 0) should capture the relation
between classical and quantum mechanics, i.e. between
eigenfunctions and the the underlying Hamiltonian dynamics of the
geodesic flow of (M, g).
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Nodal sets and nodal domains
Roughly, we investigate the geometry of an eigenfunction ϕλ (level
sets, localization, etc). The primary objects of concerns will be the
following. Define the nodal set of an eigenfunction ϕλ as

Nλ := {x ∈ M|ϕλ(x) = 0}. (5)

The nodal domains, usually denoted by Ωλ, are defined to be the
connected components of the complement of the nodal set.

Figure: Nodal domains (the black and white regions) on S2.
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Some questions

I How large can an eigenfunction ϕλ be in terms of λ? How
large is the set where ϕλ is largest? What is the location of
the set where ϕλ is largest?

I How large is the nodal set? How is it distributed? The
variational characterization of eigenfunctions suggests that the
nodal set becomes very dense as λ→ ∞.

I How large can a nodal domain be? How thin (in terms of its
inner radius) can a nodal domain be?

I How many nodal domains are there?

I How does the underlying geometry affect the eigenfunction’s
asymptotic behaviour (e.g. the effect of curvature)?
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Some results and major conjectures

Quantum Ergodicity (Colin de Verdière-Schnirelman-Zelditch)

Assume that M possesses an ergodic geodesic flow. Then, up to a
density 1 subsequence, the probability measures |ϕj(x)|2dx
converge weakly to the uniform measure dx

Vol(M) .

Manifolds with maximal/minimal eigenfunction growth

Classification results due to Sogge-Zelditch and Toth-Zelditch.

Yau’s conjecture

The hypersurface (Hausdorff) measure of the nodal set is
asymptotically ∼

√
λ. Confirmed for real-analytic (M, g) by

Donnelly-Fefferman (1988). In the smooth case major progress has
been made by A. Logunov (2016).
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Quantum ergodicity

Figure: High-energy eigenfunctions on a cardioid and the Bunimovich
stadium.
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Quantum ergodicity

Figure: The different colours denote different nodal domains.
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Global and local techniques

Roughly speaking, one may distinguish two major directions of
investigation.

Local analysis

One works in a small wavelength ball B of radius ∼ 1/
√
λ. After

parametrizing the ball B using the unit ball B1 in Rn, the
eigenequation ∆ϕλ = λϕλ becomes ∆ϕ+ ϵϕ = 0, where ϵ > 0 is
small. That is, ϕλ is almost harmonic in B. Classical PDE
techniques for harmonic functions in Rn can be applied. Examples
include the works on Yau’s conjecture of Donnelly-Fefferman,
Nazarov-Polterovich-Sodin, Logunov, etc.

Global analysis

One applies global wave equation techniques and works with the

wave propagator e it
√
∆, Fourier integral operators, restriction

theorems, etc. Vivid examples include the works of Zelditch,
Sogge, Toth, etc.
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Yau’s conjecture

Stated formally, Yau’s conjecture asserts that

C1

√
λ ≤ Vol(Nλ) ≤ C2

√
λ, (6)

where C1,C2 are constants which depend on (M, g) but not on λ.

Donnelly-Fefferman (1988): If (M, g) is real analytic, Yau’s
conjecture is true. A major insight is that an eigenfunction ϕλ can
be approximated by polynomials of degree

√
λ. A technical

argument shows that ϕλ is close to its average on most of the
wavelength small cubes, i.e. the growth of the eigenfunction is
controlled. This lead to tameness of the nodal geometry.
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Yau’s conjecture

Until recently, the bounds in Yau’s conjecture for smooth (M, g)
seemed quite non-optimal. The best known lower bounds
(Colding-Minicozzi, Sogge-Zelditch) were polynomially decaying in
λ and the best known upper bounds (Hardt-Simon) were
exponentially exploding in λ.

In 2016, A. Logunov made a breakthrough and was able to prove
the lower bound in Yau’s conjecture and obtain a polynomially
exploding upper bound. Roughly, his arguments, local and
combinatorial in nature, exploited delicate harmonic function
estimates, verifying a conjecture of Nadirashvili about harmonic
functions.
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The volume of a tube around the nodal set (real-analytic
case)

M. Sodin and C. Fefferman posed the question about obtaining
estimates on the volume of an at most wavelength in radius
tubular neighbourhood around the nodal set.

Theorem (Jakobson-Mangoubi, 2007)

Let (M, g) be a real-analytic. Let Tρ denote a tubular
neighbourhood of radius ρ around the nodal set. Then there exist
positive constants C1,C2,C3 depending only on (M, g), such that

C1ρ
√
λ ≤ Vol(Tρ) ≤ C2ρ

√
λ, (7)

whenever ρ
√
λ ≤ C3.

The idea was to exploit the machinery, developed by
Donnelly-Fefferman, and to ’sneak-in’ an additional parameter,
which corresponds to the tubular neigbhourhood’s radius.
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The volume of a tube around the nodal set (smooth case)

Theorem (G.-Mukherjee, 2016)

Let (M, g) be a smooth closed Riemannian manifold. Then there
exist constants C1,C2,C3 depending only on (M, g), such that

C1λ
1/2−ϵρ ≤ Vol(Tρ) ≤ C2λ

kρ. (8)

Here, ϵ > 0 is some apriori chosen arbitrary small number; k is a
positive constant, depending only on (M, g).

Roughly, the proof uses an iteration argument, exploiting estimates
of Han-Lin on the growth/frequency of eigenfunctions, along with
the recent results of A. Logunov.
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The geometry of nodal domains

Some aspects of the geometry of nodal domains Ωλ have been
studied intensely.

I The volume of a nodal domain. Results by
Donnelly-Fefferman and Mangoubi of the form

Vol(Ωλ ∩ B)

Vol(B)
≥ C

λα
, (9)

where α depends on dimM.

I Thickness and ’straighntess’ of nodal domains.
Techniques from Brownian motion due to S. Steinerberger.

I The inner radius of a nodal domain. Simple examples and
empirical data suggest that the inner radius of a nodal domain
should be of wavelength order, i.e. ∼ 1/

√
λ.
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Brownian motion tools

Using tools from Brownian motion, Steinerberger (2013) was able
to prove that no nodal domain cannot be squeezed in a wavelength
neighbourhood around a sufficiently flat hypersurface. A main
insight is the use of the Feynman-Kac formula.

Let Ωλ be e nodal domain and w.l.o.g. let ϕλ|Ωλ
> 0. Setting

Φ(t, x) := e−λtϕ(x), we see that Φ is a solution to the diffusion
process

(∂t −∆)Φ = 0, x ∈ Ωλ,

Φ = 0, x ∈ ∂Ωλ,

Φ = ϕ(x), t = 0, x ∈ Ωλ.

The Feynman-Kac formula allows to express Φ(t, x) as an integral
(expectation) over Brownian paths starting at x .
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Brownian motion tools

Let x0 ∈ Ωλ be such that ϕ(x0) = maxx∈Ωλ
ϕ(x). Then

e−λtϕ(x0) =: Φ(t, x0) = Ex0 (ϕλ(ω(t))ψΩλ
(ω, t)) ≤

≤ ∥ϕ∥L∞(Ωλ)Ex0 (ψΩλ
(ω, t)) = ϕ(x0)(1− pt(x0)). (10)

Here ω(t) denotes an element of the probability space of Brownian
motions starting at x0. We define

ψΩλ
(ω, t) =

{
1, if ω([0, t]) ⊂ Ωλ,

0, otherwise.
(11)

Lastly, pt(x) is defined as the probability that a Brownian motion
particle started at x ∈ Ωλ will hit the boundary within time t.
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Brownian motion tools

Cancelling the factors of ϕ(x0), one gets

pt(x0) ≤ 1− e−λt . (12)

For small times t ∼ ϵ/λ, one has pt(x0) ≪ 1, which can be
interpreted as x0 being situated deeply into the nodal domain.

Implications to ’squeezing’ of nodal domains - Steinerberger
(2013) and G.-Mukherjee (2016)

Suppose that a nodal domain is contained in a wavelength
neighbourhood around a ’flat’ submanifold. Classical hitting
probabilities of Brownian motion would imply that pt(x0) is large,
i.e. a Brownian particle should exit the domain quickly. This
contradicts the last estimate above.
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An improvement of a result of E. Lieb

In a celebrated work of E. Lieb ( Invent. Math., 1983), an arbitrary
domain Ω ⊂ Rn was shown to possess an ’almost inscribed’ ball
(i.e. in the sense, that the ’non-inscribed’ subset of the ball is
relatively small in volume) of radius ∼ 1/λ1(Ω), where λ1(Ω) is
the first Dirichlet eigenvalue of Ω.

Using the derived estimate pt(x0) ≤ 1− e−λt along with hitting
probabilities due to Grigor’yan-Sallof-Coste (2002), in
G.-Mukherjee (2016) we were able to improve Lieb’s result by
specifying that the almost inscribed ball can be positioned at a
point of maximum of the first Dirichlet eigenfunction (w.l.o.g.
assumed positive).

We also obtained an estimate of the decay of the non-inscribed
subset as one shrinks the ball, and applied the result to nodal
domains.
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The inner radius of nodal domains (smooth case)

Due to Mangoubi, the following inradius estimates on a nodal
domain are known.

Theorem (Mangoubi, 2006)

Let (M, g) be a smooth manifold of dimension n. Then

C1

λβ
≤ inrad(Ωλ) ≤

C2√
λ
, (13)

where β = n+1
4 − 1

2n and C1,C2 are constants depending on
(M, g). In particular, the estimates are sharp for surfaces.

The upper bound follows directly from the monotonicity of
eigenvalues with respect to inclusion.
Note that the lower bound decays far quicker than the upper one
in higher dimensions.
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The inner radius of nodal domains (smooth case)

Briefly, the heart of the argument behind the lower bound on
inrad(Ωλ) lies on asymmetry estimates of the form

Vol({ϕλ > 0} ∩ B)

Vol(B)
≥ C

λγ
. (14)

These can be proven via local techniques and classical elliptic PDE
estimates.
One then chops the nodal domain Ωλ into cubes of size
∼ inrad(Ωλ) and uses a Poincare inequality (due to Maz’ya) and
the asymmetry estimates above to obtain a relation between the
volume of one of the small cubes and λ - this yields the lower
bound on inrad(Ωλ).

Note that an improvement of the asymmetry would lead to a direct
improvement of the inner radius and tame geometry of the nodal
domains.
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The inner radius of nodal domains (real-analytic case)

Theorem (G., 2016)

Let (M, g) be real-analytic. Let Ωλ be a nodal domain and w.l.o.g.
ϕλ|Ωλ

> 0. Then

C1

λ
≤ inrad(Ωλ) ≤

C2√
λ
, (15)

where C1,C2 are depending only on (M, g). Moreover, a ball of
radius 1/λ can be inscribed not further than a wavelength distance
from a maximum point of ϕλ.

We note that the result of Mangoubi, does not specify the location
of the inscribed ball.
From the extension of Lieb’s result in G.-Mukherjee (2016) we are
able to specify the position of a maximal inscribed ball in
Mangoubi’s result - that is, at points where ϕλ reaches a
maximum.
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The inner radius of nodal domains (real-analytic case)

Sketch of the lower bound

I At a maximal point one can almost inscribe a wavelength
cube Q up to a certain error set S , which is relatively small in
volume. In particular, S contains the set Q ∩ {ϕλ < 0} which
should therefore also be small in volume.

I Chop Q into even smaller cubes of size ∼ 1/λ.
Real-analyticity and polynomial approximation implies that at
least over 90% of the small cubes ϕλ has bounded growth -
these are the good cubes.

I By elliptic estimates, bounded growth in a small cube C
implies controlled geometry of the nodal set and that
Vol({ϕλ > 0} ∩ C ) ∼ Vol({ϕλ < 0} ∩ C ) if the nodal set
intersects C deeply enough.

I If the nodal set intersects deeply each of the small good
cubes, the set {ϕλ < 0} will pick up volume and contradict
the first step. Hence, there is a non-intersected cube.
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The inner radius of nodal domains (real-analytic case)

Sketch of the lower bound

I At a maximal point one can almost inscribe a wavelength
cube Q up to a certain error set S , which is relatively small in
volume. In particular, S contains the set Q ∩ {ϕλ < 0} which
should therefore also be small in volume.

I Chop Q into even smaller cubes of size ∼ 1/λ.
Real-analyticity and polynomial approximation implies that at
least over 90% of the small cubes ϕλ has bounded growth -
these are the good cubes.

I By elliptic estimates, bounded growth in a small cube C
implies controlled geometry of the nodal set and that
Vol({ϕλ > 0} ∩ C ) ∼ Vol({ϕλ < 0} ∩ C ) if the nodal set
intersects C deeply enough.

I If the nodal set intersects deeply each of the small good
cubes, the set {ϕλ < 0} will pick up volume and contradict
the first step. Hence, there is a non-intersected cube.
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The inner radius of nodal domains (real-analytic case)

Sketch of the lower bound

I At a maximal point one can almost inscribe a wavelength
cube Q up to a certain error set S , which is relatively small in
volume. In particular, S contains the set Q ∩ {ϕλ < 0} which
should therefore also be small in volume.

I Chop Q into even smaller cubes of size ∼ 1/λ.
Real-analyticity and polynomial approximation implies that at
least over 90% of the small cubes ϕλ has bounded growth -
these are the good cubes.

I By elliptic estimates, bounded growth in a small cube C
implies controlled geometry of the nodal set and that
Vol({ϕλ > 0} ∩ C ) ∼ Vol({ϕλ < 0} ∩ C ) if the nodal set
intersects C deeply enough.

I If the nodal set intersects deeply each of the small good
cubes, the set {ϕλ < 0} will pick up volume and contradict
the first step. Hence, there is a non-intersected cube.
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The inner radius of nodal domains (real-analytic case)

Sketch of the lower bound

I At a maximal point one can almost inscribe a wavelength
cube Q up to a certain error set S , which is relatively small in
volume. In particular, S contains the set Q ∩ {ϕλ < 0} which
should therefore also be small in volume.

I Chop Q into even smaller cubes of size ∼ 1/λ.
Real-analyticity and polynomial approximation implies that at
least over 90% of the small cubes ϕλ has bounded growth -
these are the good cubes.

I By elliptic estimates, bounded growth in a small cube C
implies controlled geometry of the nodal set and that
Vol({ϕλ > 0} ∩ C ) ∼ Vol({ϕλ < 0} ∩ C ) if the nodal set
intersects C deeply enough.

I If the nodal set intersects deeply each of the small good
cubes, the set {ϕλ < 0} will pick up volume and contradict
the first step. Hence, there is a non-intersected cube.
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The inner radius of nodal domains (real-analytic case)

Some remarks

I One might try to directly rule out the error set S through a
propagation of smallness estimate. Work in progress.

I The techniques and tools in the smooth case are still far from
the real analytic case - one simply cannot find that many large
enough good cubes. The growth of ϕλ may be wild on many
of the cubes.

I Possible applications of the lower inradius bound: e.g. in
G.-Mukherjee (2016) we were able to obtain interior cone
conditions through the inradius bound of nodal domains on
Sn−1.
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The inner radius of nodal domains (real-analytic case)

Some remarks

I It is natural to ask whether and how the global geometry of
M affects the inradius estimate. In G. (2016) we give log-type
improvements for manifolds with negative curvature - the
observation uses a small scale quantum ergodicity result of H.
Hezari (2016).

I The bounds on the inradius are related to the distribution of
L2 norm - in G. (2016) we show that if a nodal domain has
most of its L2-mass in good cubes, then its inner radius is
large.
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