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Why am | here?

Disclaimer:

» This speaker has nothing to say on the quantum Hall effect,
mathematical or otherwise.

Instead: | will report on. ..

» ...a program to find applications of non-commutative
moment polytopes for quantum information.

> ...extracting global information about a pure state from
single-particle measurements alone.

[M. Walter, B. Doran, D. Gross, M. Christandl, Science '13],
[C. Schilling, D. Gross, M. Christandl, PRL '13].
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Quantum Marginal Problems
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Marginals in classical probability

In classical probability theory:
» Marginals are distributions of subsets of a number of random
variables.
> If these overlap = non-trivial compatibility conditions.
» Compatible subsets are convex polytopes
(in QM, known as Bell polytopes)
> In general, membership problem is NP-hard.
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“One of the most important challenges in quantum
chemistry”—National Science Foundation ('70s).

> For subset S; specify state p;.

<, > Q: Are these compatible:
Q“ ’ - pi =tr\s p
3 O

for some global p?

Solves all physical ground-state problems:

m|n trHp = mmZtrh,J p = min Ztrh,d Pij-

i {pij} i

Terms live on two systems = simple (if marginal prob is).
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» Seemed attractive: circumvents expo. large Hilbert space.

But:
» Ground state problem is intrinsically hard: QMA-complete.

» Convex optimization = so is quantum marginal problem. ®



Single-site marginal problem

Specific instance: marginals do not overlap, global state pure

©000 *

& S S,



Single-site marginal problem
Specific instance: marginals do not overlap, global state pure

©000 *

& S S,

» Studied since 1970s in context of quantum chemistry.
» No evidence that it helps ground state problem. ..

» . ..but seems to have rich structure.



Single-site marginal problem

Specific instance: marginals do not overlap, global state pure
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» Studied since 1970s in context of quantum chemistry.
» No evidence that it helps ground state problem. ..

. but seems to have rich structure.

ClaSS|ca| version:

> Globally pure
< no global randomness
= no local randomness.

> . .trivial.
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» Local basis change does not affect compatibility
> = can assume p; are diagonal.

Question becomes:

Which set of ordered local eigenvalues X can occur?

... progress was scant for three decades ...

» ...until A. Klyachko identified
these sets as images of moment
maps.

> In particular: Compatible sets are
convex polytopes.
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Physics warm-up
Physics warm-up: work out solution for two qubits.

» Schmidt-decomposition (entanglement spectra):
1Y) = VAD]er) @ [A) + VA |e) @ |f)
> With

p1 = ABler)(er]+23) &) (ea), p2 = AR (AH+AD[B) (.

» So eigenvalues must be equal: A1 = Ap.
(“Singular values invariant under transpose”).

\a)
N
"
In terms of largest eigenvalue, get
simple polytope:
.
T (A
A A A
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> Let M be manifold with symplectic form w
> Let G be Lie group with algebra g and
g:g — F(M)
g — (Hg tme Hg(m))
be a function that associates with every one-parameter group
e'& a Hamiltonian Hj.

This defines a group action of G on M, where the flow generated
by e'€ is the Hamiltonian flow of Hg.
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Moment maps
» Re-arranging parameters, one gets moment map

p:M — (g"~g)
m (g»—>Hg(m))

g sending points of the manifold into Lie algebra.
» Usual action of U(C9) on P(C?) induced by

p()(g) = trl)(vlg

with symplectic form: Im(-|-).
Hcr?:{ t) = » Specializing to local action U(C9)*" on tensor
products ((Dd)®n:
£ el o, ,
p) g @ dgn) =Y trpllg

so that
/~L(¢) ~ p(l) D P p(")'



Convexity properties of moment map

Central theorem by Kirwan ('84):

Image of moment map in positive Weyl chambre (here: diag-
onal matrices with ordered eigenvalues) is convex polytope.




Summary: Overview of Quantum Marginal Prob

v

Quantum Marginal Prob originates in chemistry.

v

Generally computationally intractable.

v

Single-site quantum-marginal problem non-trivial, but seems
tractable. ..

> ...due to unexpected geometric structure.
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Entanglement

» Two pure states v, ¢ are in same entanglement class if they
can be converted into each other with finite probability of
success using local operations and classical communication.

» Often referred to as SLOCC classes. But that sounds too
unpleasant.

> Formally:

Y~ & V=(g1® - ®gn)o

with g; local invertible matrices (filtering operations).
> So we're looking at SL(C9)*"-orbits in (C9)".



SLOCC, SLOCC! = Who's There?

» For three qubits (d = 2, n = 3), equivalence classes known
since mid-1800s. Re-discovered in 2000 to great effect:

Three qubits can be entangled in two inequivalent ways

W Ddr, G Vidal... - Arxiv preprint quant-ph/0005115, 2000 - anxiv.org

Abstract: Invertible local transformations of a multipartite system are used to define
equivalence classes in the set of entangled states. This classification concemns the
entanglement properties of a single copy of the state. Accordingly, we say that two states ...
Cited by 1683 - Related articles - BL Direct - All 22 versions - Import into BibTex

Four qubits can be entangled in nine different ways

E Verstraete, J Dehaene, B De Moor... - Physical Review A, 2002 - APS

... to the singlet state by SLOCC operations 3. In the case of three entangled qubits, it was shown
2.4 5 that each state can be converted by SLOCC operations either to the GHZ-state (000 111

W&, or to the W-state (001 010 100 )/), leading to two inequivalent ways of entangling ...

Cited by 350 - Related articles - BL Direct - All 12 versions - Import into BibTeX

Control and measurement of three-qubit entangled states

CF Roos, M Riebe, H Haffner, W Hansel... - Science, 2004 - sciencemag.org

... The ions’ electronic qubit states are initialized in the S state by optical pumping. Three
qubits can be entangled in only two inequivalent ways, represented by the
Greenberger-Home-Zeilinger (GHZ) state, | and the W state, (17). ...

Cited by 273 - Related articles - All 13 versions - Import into BibTeX




Examples

Classes:
> Products ¢ = ¢1 ® ¢ ® ¢s.
> Three classes of bi-separable states: 1) = ¢1 ® ¢2 3.
» The W-class:

|W) = ]001) + |010) + |100).
» The GHZ-class:

|GHZ) = [000) + |111).
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» Classification apparently first obtained in QI community
[Verstraete et al. (2002)].

» Nine families of four complex parameters each.



Further examples

4 qubits:
» Classification apparently first obtained in QI community
[Verstraete et al. (2002)].
» Nine families of four complex parameters each.
Beyond:

» Number of parameters required to label orbits increases
exponentially.

» Only sporadic facts known.
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Can we come up with theory that
> is systematic
(any number of particles, local dimensions, symmetry
constraints),
> is efficient
(only polynomial number of parameters have to be learned),
» experimentally feasible
(parameters easily accessible, robust to noise)?



Desiderata

Can we come up with theory that
> is systematic
(any number of particles, local dimensions, symmetry
constraints),
> is efficient
(only polynomial number of parameters have to be learned),
» experimentally feasible
(parameters easily accessible, robust to noise)?

Claim:
The single-site quantum marginal problem lives up to these
standards.




Entanglement Polytopes

[M. Walter, B. Doran, D. Gross, M. Christandl, Science '13]
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Central observation, entanglement polytopes

Set of allowed eigenvalues may depend on entanglement class
of global state.

Thus:

> To every class C, associated set A¢ of local eigenvalues of
states in (closure of) C.

» Turns out: A¢ is again polytope: the entanglement polytope
associated with C.
» Clearly: the position of X(¢)) w.r.t. the entanglement

polytopes contains all local information about global
entanglement class.
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Examples re-visited: 3 qubit entanglement polytopes

For three qubits, polytopes resolve all 6 entanglement classes:

[Hang et al. (2004), Sawicki et al. (2012), our paper]

W-class corresponds to ‘“upper

(a) s
= pyramid”:

AL+ A2+ 28, > 2

Any violation of that witnesses
GHZ-type entanglement.
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Examples re-visited: 4 qubit entanglement polytopes

4 qubits:
» Entanglement classes:

9 families with up to four complex parameters each
[Verstraete et al. (2002)].

» Entanglement Polytopes:
13 polytopes, 7 of which are genuinely 4-party entangled.

Example: 4-qubit W-class
Cw > ]0001) + |0010) + |0100) + |1000)
again an “upper pyramid”:

AB AR A8, + A > 3.



Example: 4 qubit entanglement polytopes

qev
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Tool: Brion's convexity result

In case of SL-orbits C in projective space, group-theoretical
characterization due to Brion ('87):

> Let F, be the homogeneous polynomials on C of degree n.

» C is SL-orbit = SL acts on F,,.

» Let (p1,...,M4n) be (SL((Dd))X" irrep in F, (with u; Young
frames). Note that %,u,- are formally probability distributions.

Then
1

(1, 1) € D
d(:ulv ,u) C

» Points arising this way are dense in A¢.

= Entanglement polytope corresponds to normalized irreps
in the homogeneous coordinate ring over C.

> ...we use computer algebra system to reduce out coordinate
ring.
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Example: Marginal polytope for all bi-partite states

Q: which (SL x SL)-irreps occur in Sym"(C9 @ C9)?

Sym"(V @ V) (V& V)® )

(
(V ®V®”)"
(B e u) o (BW)eu))”

pkEn w'tn

D (e W)™ ® U, Uy
T
= Du.eu

pkEn

12

12

12

Hence, for bi-partite pure state: 2D = X,
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Example: Bosonic qubits

Consider n bosonic qubits:

¥ € Sym" (C?).
» Symmetry = all local reductions are equal:

P\ = (vlalajly).

» = single number captures all: A\ € [0.5,1].

Analyze polytopes:
» [0,...,0) inall C's = A¢ = [y, 1]

» Turns out: Possible choices are

S A T

> ...with innermost point « the image of W-type states.
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Example: No Solipsism

» A vector is genuinely n-partite entangled if it does not
factorize w.r.t. any bi-partition:

Y #h1 @ .

Observation: sometimes detectable from local spectra alone.
& spectra (X(l), . .,X(")) compatible, but no bi-partition is.

Example:

1 1 1 1
)\S&gx )\Srrgx =\ 5 1-— o1 =
O M) = (54251 =

Interpretation:

» no solipsism: love needs a partner!
(And entangled qubits need their counter-parts).
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Example: Distillation

Entanglement measures from local information:

» (Linear) entropy of entanglement

1
E()=1- NZU"P%

simple function of Euclidean distance of
eigenvalue point to origin.

» “Closer to origin = more entanglement”.

» = can bound distillable entanglement from local information!

» Can even give distillation procedure without need to know
state beyond local densities
(generalizing [Verstraete et al. 2002]).
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Pure???

» Yeah, but no pure state exists in Nature.

> Results are epsilonifiable: if distance d of spectrum to a

polytope A exceeds
4N+/1 — p,
then p & conv(A).

» p = trp? is purity, which an be lower-bounded from local
information alone.



Experiments

Recently, two experimental implentations.

Step 1 Step 2 Step 3 Step 4

[0) pe——rt

[0)

[Aguilar, et al., PRX '15]



Summary of Entanglement Polytopes

» Locally accessible info about global entanglement encoded in
entanglement polytopes — subpolytopes of the set of
admissible local spectra.

» Provides a systematic and efficient way of obtaining
information about entanglement classes.



Another facet:

The Pauli principle and a generalization of
Hartree-Fock
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Generalizing the Pauli Principle [Klyachko]

Consider Fermionic wave function
¥ e A"(CY).
» Eigenvalues of 1-RDM

Ay = (wlalajly).

also subject to polytopal constraints.
» Most prominent:
A <1
also known as Pauli exclusion principle.
.. but one of many linear constraints.

Questions:

» Are these additional constraints saturated in “typical”
physical systems?

» Do they have an effect on e.g. ground state wave
functions?
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Motivation: Klyachko's “super-selection rules”

Vectors 1) that map to a facet of the
polytope are “simple”:
> Take the set of weights that lie
on the affine hull of the facet,

» then 1 has non-zero coefficients
only w.r.t. these weight vectors.

VO o=

> l.e., such %'s have a sparse
representation.

» Klyachko presented numerical evidence that certain
few-electron atoms show “pinned” spectra.
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Super-selection rules
Extensive quantum chemistry calculations [Schilling et al.]:

» Klyachko's atomic states aren't actually pinned. ..
> ... but very close to.

Analytic results needed [Schilling, Gross, Christandl, PRL "13]:
» Solve model systems of coupled

Fermions. v@o....

» Obtain eigenvalue trajectory as
function of interaction strength.

VO 2=

» Distance to boundary stays zero to ~ o'
many (but not all) orders

Very recent [Schilling, Benavides, Vrana, '17]:
» Super-selection rules are stable:
» "“Quasi-pinned” = “quasi-sparse”.
» Physical mechanism responsible for quasi-pinning?
» Generalize theory on structure of quasi-pinned wave functions.



Physics?

To be done:
» Physical mechanism responsible for quasi-pinning?

» Applications?



Some words on computational aspects?



Thank you for your attention!

David Gross

April 2017
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