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Bulk-boundary correspondence of 
topological invariants in 2D: IQHE
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Niu, Thouless, Wu (1985): Gab(!,k) = [i! �H(k)]�1
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From TKNN to the boundary, IQHE 5
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This quantity is also a topological invariant; can’t be changed by small perturbations of G
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“Theorem”: N = Nedge

Implication for IQHE: Hall conductance = # of chiral edge modes
Cf: 10am talk by
Hermann Schulz-Baldes
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Bulk-boundary correspondence of 
topological invariants in 2D: FQHE



Interacting Green’s functions 9
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Works very well in 1D: S. Manmana, A. Essin, R. Noack, VG (2012)

How about 2D.
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T âa(k, ⌧) â
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†
b(x

0
, p, 0)

E
 

(n)
b (x0

, p)
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FQHE: boundary topological invariant 11
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At least some of gn have got to be the boundary electron Green’s functions, described 
by chiral Luttinger liquid theory.

Question: what is this invariant equal to for the chiral Luttinger liquid?



New types of invariants for bulk FQHE 12

Given bulk Green’s function G for a FQHE, we can now define a new type of an invariant. 
For IQHE, it’s a Chern number, so it is not really new.  
However, what is it for FQHE?
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By Volovik’s argument, it has got to be equal to the boundary invariant computed 
within the chiral Luttinger liquid theory. 

Perhaps we can compute the bulk invariant numerically within some simulation on 
the torus to relate its value to the known value of a proposed Luttinger liquid theory 
description of the boundary of the state we are attempting to study numerically.
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Attempts to calculate boundary invariant for FQHE



Boundary Green’s function 14
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CFT arguments: electron spin = shift 15
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Green’s functions in momentum space 16
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Green’s functions wind at most once 17

G(!) =
X

n

⇢n
i! � ✏n

⇢n > 0

ImG(!) = �i!
X

n

⇢n
!2 + ✏2n

ImG(!) = 0 ! ! = 0

k0 = !

k1 = p

C

The only two points where Im G = 0. 

As we go around this contour, Green’s 
function cannot wind more than once.

spectral decomposition:
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some kind of a regularized low-energy function.
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Further elucidation of the bulk invariant 18
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Might not be easy to calculate generally; depends on the matrix 
structure of G which describes physics of higher Landau levels 
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Rectified Green’s functions 19
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Identifying “electron operator” 20

Consider a general Abelian quantum Hall state described in terms of a K-matrix. Its boundary action is
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The total conformal spin of this operator trK

However, this theory is supposed to be invariant under K ! WTKW

But tr K is not
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More general electron operators: Vn = ei
P

IJ nIKIJ'J

But which ones to use for the Green’s function?



Summary 21

Non-interacting systems such as IQHE: Chern number can be mapped 
into a boundary invariant counting chiral edge states. 

Interacting systems such as FQHE: a bulk and an edge invariants can be 
defined, generalizing the Chern-number and the IQHE boundary invariant. 

However, computing it for interacting boundary described by a Luttinger 
liquid theory remains a challenge. 
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