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• An effective field theory for the Fractional 
quantum Hall effect, as a dynamical 
emergent spatial metric describing flux 
attachment

• Quantum geometry and analogies to gravity

Emergent dynamical metric of the FQHE

Geometric Aspects of the QHE, Köln December 14, 2015
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• momentum ħk of a quasiparticle-quasihole pair is 
proportional to its electric dipole moment pe ~ka = �abBpbe

k�B

gap for electric dipole excitations is a MUCH stronger 
condition than charge gap: doesn’t transmit pressure!

(origin of Virasoro algebra  in FQHE ?)
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• It has a striking holomorphic form that is generally attributed 
to “Lowest Landau Level physics”

• It has a natural interpretation in terms of “flux attachment”

• It involves a “complex structure” z = x+iy that defines a 
unimodular metric on a Riemann surface

• It has the rotational symmetry of this metric, and has been 
recognized to be mathematically equivalent  to a “conformal 
block” of a 2D conformal field theory

Laughlin’s model wavefunction has provided the inspiration for the 
modern understanding of the fractional quantum Hall effect
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• Despite what Laughlin told us, its holomorphic 
structure has nothing to do with the electrons 
being in the “Lowest Landau Level”

• It should not be regarded as a “wavefunction”, 
but as a Heisenberg state of guiding centers, 
which obey a “quantum geometry”

• It was proposed as a “trial wavefunction” with 
no apparent variational parameter:  it does in 
fact have such a parameter: its metric.

I will give a somewhat heretical reinterpretation of the Laughlin state
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• Perhaps one of the most surprising (and very 
fruitful) aspects of the Laughlin state is its 
connection to conformal field theory.

• Its “conformal block” property  was noticed as 
an empirical  observation, but has never really 
been explained.

• Incompressible (bulk) FQHE states are 
essentially unlike gapless cft’s (the 
conformal group here is the “(2+0)d” 
conformal orthogonal group, not the “(1+1)d” 
Lorentz variant)
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• The conformal orthogonal group CO(2) is a profound local 
extension of the global SO(2) rotation group (that can be 
regarded as “the rotation group on steroids” !)

• non-generic “Toy models” with CFT properties are 
particularly simple to treat, because the CFT makes their 
generic topological properties easy to expose, but the 
topological properties do not require conformal invariance

• I will argue that SO(2) rotational invariance is a “toy 
model” feature that should not be part of a fundamental 
theory of the FQHE, just as the SO(3) and Galilean 
invariance of the free electron gas should not be part of 
the theory of metals. 
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• The “standard model” for the QHE is 
usually taken to be the  Galileian-invariant 
Newtonian-dynamics model
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• However, the continuous translational symmetry 
“plane” on which the electrons move  is an 
emergent symmetry of a low-density of electrons 
moving on a crystal  lattice plane, and generically 
does NOT have the rotational invariance of 
Newtonian dynamics

• The only generic point symmetry of a crystal 
plane is 2D inversion (180o rotation in plane)

2D plane of epitaxial quantum well
embedded in 3D crystal
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• The effective continuum Hamiltonian is

H =
X

i

"(pi) +
X

i<j

V (xi � xj)

• The model has 2D inversion symmetry if

"(p) = "(�p)

• The only role played by the Euclidean metric of the inertial 
background frame is the non-relativistic criterion
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Generic model with translation and inversion 
symmetry only, no rotational symmetry
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X
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• two distinct unrelated  sources of geometry
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equipotentials around point charge
(from 3D dielectric tensor)

shape of Landau orbit around 
guiding center

affected by elastic 
degrees of freedom
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• The “holomorphic lowest Landau level 
wavefunction”  is a property of a SO(2) 
rotationally-invariant system:
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Two sets of ladder operators:
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• Now write the Laughlin state as a 
Heisenberg state, not a Schrödinger 
wavefunction:
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p
2`
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bi|0i = 0 lowest Landau level condition

In the Heisenberg form, we see that the LLL 
condition is quite incidental to the Laughlin 
state, which involves guiding-center correlations
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• The fundamental form of the Laughlin state 
does not reference the details of the 
Landau level in any way:
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a unimodular Euclidean-signature metric that 
parameterizes the Laughlin state

det g̃ = 1

• The historical identification of this metric 
with the Euclidean metric is unnecessary 
unless there is SO(2) symmetry.
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• The original form of the Laughlin state is a finite-size droplet of N 
particles on the infinite plane.

• Somewhat confusingly, in this droplet state the metric parameter 
fixes both the shape of the droplet state and the shape of the 
correlation hole around each particle formed by “flux attachment”:

e
correlation 

hole

edge of droplet
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• to remove the edge, compactify on the 
torus with NΦ flux quanta:

• An unnormalized holomorphic single-
particle state has the form
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• Laughlin state on torus (⌫ = 1/m, m > 1)
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• Unlike the filled LL state, the Laughlin state 
does depend on the metric, which characterizes 
the shape of the correlation hole (flux 
attachment).
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• The Laughlin state is indeed a variational 
trial state, we must choose its metric to 
minimize the correlation energy
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• The Laughlin states are also the exact zero-
energy ground states of the metric-
dependent “pseudopotential” interaction
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• Degenerate (flat) Landau levels
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This is the entire problem:
nothing other than this matters!

• generator of translations and 
electric dipole moment!
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• Laughlin state
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• the essential unit of the 1/3 Laughlin state is  the 
electron bound to a correlation hole corresponding 
to  “units of flux”, or three of the available single-
particle states which are exclusively occupied by the 
particle to which they are “attached”

• In general, the elementary unit of the FQHE fluid is 
a “composite boson” of p particles with q “attached 
flux quanta”

• This is the analog of a unit cell in a solid....
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• The Laughlin state is parametrized by a unimodular metric: 
what is its  physical meaning?

• In the  ν  = 1/3 Laughlin state, each electron sits in a 
correlation hole with an area containing 3 flux quanta.  
The metric controls the shape of the correlation hole.

• In the ν  = 1 filled LL Slater-determinant state, there is no 
correlation hole (just an exchange hole), and this state 
does not depend on a metric

correlation holes
in two states with 
different metrics
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• quantum solid

• repulsion of other particles make an attractive

potential well strong enough to bind particle

• unit cell is 
correlation hole

• defines geometry

solid melts if well is not strong enough to contain 
zero-point motion  (Helium liquids)
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• similar story in FQHE:

• “flux attachment” creates 
correlation hole

• potential well must be 
strong enough to bind 
electron 

• defines an emergent 
geometry

• new physics:  Hall viscosity,  
geometry............

e-

• continuum model, but 
similar physics to Hubbard 
model

but no broken symmetry
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• The composite boson fluid covers the plane, 
and provide an intrinsic dimensionless spatial 
distance measure on the plane, analogous to 
measuring distances in lattice units in the solid.

•   The effective field theory should only involve 
a connection compatible with the intrinsic 
spatial metric, not the connection compatible 
with the Euclidean metric.
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• space-time connection compatible with a time-
dependent intrinsic spatial metric gab(x, t)

rµfa = @µfa � �b
µafb

�a
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1
2g

ac
�
@µgbc + �dµ (@bgcd � @cgbd)

�
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spatial indices �a

b = �a
µbdx

µ

�a
b ^ d�b

a +
2
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a
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• Geometric Chern-Simons 3-form is analog of gravitational 
CS form, but trace is over spatial indices

= 2! ^ d!
spin connection
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• conserved Gaussian curvature current of 
intrinsic metric:

gab =
p
gg̃ab

unimodular part

Jµ
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�
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�

(Brioschi formula)

@µJ
µ
g = 0

• any non-singular time-dependent symmetric spatial tensor field 
can define a conserved Gaussian curvature current
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• three dynamical ingredients gab, va,Pa:

• a “dynamic emergent 2D spatial metric”   
gab(x,t) with g ≡ det g, and Gaussian 
curvature current 

• a flow velocity field va(x,t)

• an electric  polarization field Pa(x,t)

• a composite boson current  

here a is a 2D spatial index, and  µ  is a (2+1D) space-time index.     The fluid 
motion is non-relativistic relative to the preferred inertial rest frame of the crystal 
background

Jµ
g = ✏µ⌫�@⌫!�(x, t)

Jµ
b =

p
g(x, t) (�µ0 + va(x, t)�µa )
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• effective bulk action:
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2
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• shape of correlation hole (flux attachment) fluctuates, 
adapts to environment (electric field gradients)

e-
e-

• polarizable, B x electric dipole = momentum, 

e-
x

origin of  “inertial mass”

geometric distortion
(preserving inversion symmetry)

electric polarizability

creates “curvature”
of metric

shape=metric

new property:
“spin” couples
to curvature

S
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e

the electron  excludes other particles from a 
region containing  3 flux quanta, creating a 
potential well in which it is bound

1/3  Laughlin state If the central orbital is filled, 
the next two are empty

The composite boson
has inversion symmetry

about its center

It has a “spin”
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• Furthermore, the local electric charge 
density of the fluid with   ν = p/q  is 
determined by a combination of the 
magnetic flux density and the Gaussian 
curvature of the metric

J0
e (x) =

e

2⇡q

✓
peB

~ � sKg(x)

◆

Gaussian curvature of the metricTopologically quantized “guiding center spin”
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• In fact, it is locally determined, if there is an 
inhomogeneous slowly-varying substrate 
potential

H =
X

i

vn(Ri) +
X

i<j

Vn(Ri �Rj)

vn(x)

deformation
near edgey

x
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