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Gauss-Lucas Theorem

Theorem (Gauss-Lucas)

The critical points of a polynomial in one complex variable lie
inside the convex hull of its zeros.

Q. How are critical points distributed inside convex hull?

Q. Are there long-range correlations between zeros and
critical points?
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Interpretation

pN − degree N polynomial

pN : S2 → S2 meromorphic function

We have

d

dw
pN(w) = 0 ←→ d

dw
log |pN(w)| = 0

But

∆ log |pN(w)| = Div(pN) = −N · δ∞ +
∑

pN(z)=0

δz

So
{

d
dw pN(w) = 0

}
= {equilibria of E-field from Div(pN)}
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Model Ensembles

Degree N SU(2) polynomial:

pN(z)
def
=

N∑
j=0

aj ·
(
N

j

)1/2

z j aj ∼ N(0, 1)C indep.

IID zeros:

pN(z)
def
=

N−1∏
j=0

(z − ξj) ξj ∼ µFS i .i .d .
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Pairing of Zeros and Crits for SU(2) Polynomials
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“Proof” of Pairing of Zeros and Crits
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Definition of Pairing of Zeros and Crits for SU(2)

Def. Let pN be a degree N polynomial and fix ε > 0. A zero at ξ
and critical point at w are ε−paired if N−1−ε < |ξ − w | < N−1+ε.
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Pairing Zeros with Critical Points for SU(2) Polynomials

Theorem (H)

Fix ξ ∈ S2\ {0,∞} . Let pN(z) be a degree N SU(2) polynomial
conditioned to have pN(ξ) = 0. For each ε ∈ (0, 12), there exists
K = K (ε) such that

P (∃! ε− paired w to ξ) ≥ 1− K · N−3/2+3ε.

Remark

Holds for general positive smooth hermitian metric h and can be
extended to N1−η well-spaced zeros simultaneously.
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Pairing Zeros with Critical Points for IID Zeros

Theorem (H)

Fix ξ ∈ S2\ {0,∞} and ε ∈ (0, 1). Let pN(z) be degree N with iid
zeros conditioned to have pN(ξj) = 0, j = 1, . . .N1−ε. For each
δ ∈ (0, 1), there exists K = K (ε, δ) such that

P (∃! paired wj to ξj) ≥ 1− K · N−1+δ.

Remark

Holds for ξj ∼ µ a general smooth measure on S2.
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Bargmann-Fock as Scaling Limit of SU(2)

SU(2) scaling limit:

pN

(
z0 +

u√
N

)
−→

∞∑
j=0

aj
z j√
j!

is Ginebre.

Boris Hanin Zeros and Critical Points



Bargmann-Fock as Scaling Limit of SU(2)

SU(2) scaling limit:

pN

(
z0 +

u√
N

)
−→

∞∑
j=0

aj
z j√
j!

is Ginebre.

Boris Hanin Zeros and Critical Points



Zeros and Critical Points for Kac Polynomials

Can model zeros on curve. E.g. Kac polynomials:

pN(z) =
N∑
j=0

ajz
j , aj ∼ N(0, 1)C i .i .d .
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