Zeros and Critical Points for Random Polynomials

Boris Hanin

MIT

December 18, 2015

Gauss-Lucas Theorem

Theorem (Gauss-Lucas)

The critical points of a polynomial in one complex variable lie inside the convex hull of its zeros.

- Q. How are critical points distributed inside convex hull?
- Q. Are there long-range correlations between zeros and critical points?

Interpretation

- p_{N} - degree N polynomial
- p_{N} - degree N polynomial
- $p_{N}: S^{2} \rightarrow S^{2}$ meromorphic function

Interpretation

- p_{N} - degree N polynomial
- $p_{N}: S^{2} \rightarrow S^{2}$ meromorphic function
- We have

$$
\frac{d}{d w} p_{N}(w)=0 \quad \longleftrightarrow \quad \frac{d}{d w} \log \left|p_{N}(w)\right|=0
$$

Interpretation

- p_{N} - degree N polynomial
- $p_{N}: S^{2} \rightarrow S^{2}$ meromorphic function
- We have

$$
\frac{d}{d w} p_{N}(w)=0 \quad \longleftrightarrow \quad \frac{d}{d w} \log \left|p_{N}(w)\right|=0
$$

- But

$$
\Delta \log \left|p_{N}(w)\right|=\operatorname{Div}\left(p_{N}\right)=-N \cdot \delta_{\infty}+\sum_{p_{N}(z)=0} \delta_{z}
$$

- p_{N} - degree N polynomial
- $p_{N}: S^{2} \rightarrow S^{2}$ meromorphic function
- We have

$$
\frac{d}{d w} p_{N}(w)=0 \quad \longleftrightarrow \quad \frac{d}{d w} \log \left|p_{N}(w)\right|=0
$$

- But

$$
\Delta \log \left|p_{N}(w)\right|=\operatorname{Div}\left(p_{N}\right)=-N \cdot \delta_{\infty}+\sum_{p_{N}(z)=0} \delta_{z}
$$

- So $\left\{\frac{d}{d w} p_{N}(w)=0\right\}=\left\{\right.$ equilibria of E-field from $\left.\operatorname{Div}\left(p_{N}\right)\right\}$

Model Ensembles

Model Ensembles

- Degree $N S U(2)$ polynomial:

Model Ensembles

- Degree $N S U(2)$ polynomial:

$$
p_{N}(z) \stackrel{\text { def }}{=} \sum_{j=0}^{N} a_{j} \cdot\binom{N}{j}^{1 / 2} z^{j} \quad a_{j} \sim N(0,1)_{\mathbb{C}} \quad \text { indep. }
$$

Model Ensembles

- Degree $N S U(2)$ polynomial:

$$
p_{N}(z) \stackrel{\text { def }}{=} \sum_{j=0}^{N} a_{j} \cdot\binom{N}{j}^{1 / 2} z^{j} \quad a_{j} \sim N(0,1)_{\mathbb{C}} \quad \text { indep. }
$$

- IID zeros:

$$
p_{N}(z) \stackrel{\text { def }}{=} \prod_{j=0}^{N-1}\left(z-\xi_{j}\right) \quad \xi_{j} \sim \mu_{F S} \text { i.i.d. }
$$

Pairing of Zeros and Crits for $S U(2)$ Polynomials

$\equiv \quad \square Q \curvearrowright$
Boris Hanin
Zeros and Critical Points

"Proof" of Pairing of Zeros and Crits

Definition of Pairing of Zeros and Crits for SU(2)

Definition of Pairing of Zeros and Crits for SU(2)

Def. Let p_{N} be a degree N polynomial and fix $\epsilon>0$.

Definition of Pairing of Zeros and Crits for SU(2)

Def. Let p_{N} be a degree N polynomial and fix $\epsilon>0$. A zero at ξ and critical point at w are ϵ-paired if $N^{-1-\epsilon}<|\xi-w|<N^{-1+\epsilon}$.

Definition of Pairing of Zeros and Crits for SU(2)

Def. Let p_{N} be a degree N polynomial and fix $\epsilon>0$. A zero at ξ and critical point at w are ϵ-paired if $N^{-1-\epsilon}<|\xi-w|<N^{-1+\epsilon}$.

Pairing Zeros with Critical Points for SU(2) Polynomials

Pairing Zeros with Critical Points for SU(2) Polynomials

Theorem (H)
 Fix $\xi \in S^{2} \backslash\{0, \infty\}$.

Pairing Zeros with Critical Points for SU(2) Polynomials

> Theorem (H)
> Fix $\xi \in S^{2} \backslash\{0, \infty\}$. Let $p_{N}(z)$ be a degree $N S U(2)$ polynomial conditioned to have $p_{N}(\xi)=0$.

Pairing Zeros with Critical Points for SU(2) Polynomials

Theorem (H)

Fix $\xi \in S^{2} \backslash\{0, \infty\}$. Let $p_{N}(z)$ be a degree $N S U(2)$ polynomial conditioned to have $p_{N}(\xi)=0$. For each $\epsilon \in\left(0, \frac{1}{2}\right)$, there exists $K=K(\epsilon)$ such that

Pairing Zeros with Critical Points for SU(2) Polynomials

Theorem (H)

Fix $\xi \in S^{2} \backslash\{0, \infty\}$. Let $p_{N}(z)$ be a degree $N S U(2)$ polynomial conditioned to have $p_{N}(\xi)=0$. For each $\epsilon \in\left(0, \frac{1}{2}\right)$, there exists $K=K(\epsilon)$ such that

$$
\mathbb{P}(\exists!\epsilon-\text { paired } w \text { to } \xi)
$$

Pairing Zeros with Critical Points for SU(2) Polynomials

Theorem (H)

Fix $\xi \in S^{2} \backslash\{0, \infty\}$. Let $p_{N}(z)$ be a degree $N S U(2)$ polynomial conditioned to have $p_{N}(\xi)=0$. For each $\epsilon \in\left(0, \frac{1}{2}\right)$, there exists $K=K(\epsilon)$ such that

$$
\mathbb{P}(\exists!\epsilon-\text { paired } w \text { to } \xi) \geq 1-K \cdot N^{-3 / 2+3 \epsilon}
$$

Pairing Zeros with Critical Points for SU(2) Polynomials

Theorem (H)

Fix $\xi \in S^{2} \backslash\{0, \infty\}$. Let $p_{N}(z)$ be a degree $N S U(2)$ polynomial conditioned to have $p_{N}(\xi)=0$. For each $\epsilon \in\left(0, \frac{1}{2}\right)$, there exists $K=K(\epsilon)$ such that

$$
\mathbb{P}(\exists!\epsilon-\text { paired } w \text { to } \xi) \geq 1-K \cdot N^{-3 / 2+3 \epsilon} .
$$

Remark

Holds for general positive smooth hermitian metric h and can be extended to $\mathrm{N}^{1-\eta}$ well-spaced zeros simultaneously.

Pairing Zeros with Critical Points for IID Zeros

Pairing Zeros with Critical Points for IID Zeros

Theorem (H)
 Fix $\xi \in S^{2} \backslash\{0, \infty\}$ and $\epsilon \in(0,1)$.

Pairing Zeros with Critical Points for IID Zeros

Theorem (H)

Fix $\xi \in S^{2} \backslash\{0, \infty\}$ and $\epsilon \in(0,1)$. Let $p_{N}(z)$ be degree N with iid zeros conditioned to have $p_{N}\left(\xi_{j}\right)=0, j=1, \ldots N^{1-\epsilon}$.

Pairing Zeros with Critical Points for IID Zeros

Theorem (H)

Fix $\xi \in S^{2} \backslash\{0, \infty\}$ and $\epsilon \in(0,1)$. Let $p_{N}(z)$ be degree N with iid zeros conditioned to have $p_{N}\left(\xi_{j}\right)=0, j=1, \ldots N^{1-\epsilon}$. For each $\delta \in(0,1)$, there exists $K=K(\epsilon, \delta)$ such that

Pairing Zeros with Critical Points for IID Zeros

Theorem (H)

Fix $\xi \in S^{2} \backslash\{0, \infty\}$ and $\epsilon \in(0,1)$. Let $p_{N}(z)$ be degree N with iid zeros conditioned to have $p_{N}\left(\xi_{j}\right)=0, j=1, \ldots N^{1-\epsilon}$. For each $\delta \in(0,1)$, there exists $K=K(\epsilon, \delta)$ such that

$$
\mathbb{P}\left(\exists!\text { paired } w_{j} \text { to } \xi_{j}\right)
$$

Pairing Zeros with Critical Points for IID Zeros

Theorem (H)

Fix $\xi \in S^{2} \backslash\{0, \infty\}$ and $\epsilon \in(0,1)$. Let $p_{N}(z)$ be degree N with iid zeros conditioned to have $p_{N}\left(\xi_{j}\right)=0, j=1, \ldots N^{1-\epsilon}$. For each $\delta \in(0,1)$, there exists $K=K(\epsilon, \delta)$ such that

$$
\mathbb{P}\left(\exists!\text { paired } w_{j} \text { to } \xi_{j}\right) \geq 1-K \cdot N^{-1+\delta} .
$$

Pairing Zeros with Critical Points for IID Zeros

Theorem (H)

Fix $\xi \in S^{2} \backslash\{0, \infty\}$ and $\epsilon \in(0,1)$. Let $p_{N}(z)$ be degree N with iid zeros conditioned to have $p_{N}\left(\xi_{j}\right)=0, j=1, \ldots N^{1-\epsilon}$. For each $\delta \in(0,1)$, there exists $K=K(\epsilon, \delta)$ such that

$$
\mathbb{P}\left(\exists!\text { paired } w_{j} \text { to } \xi_{j}\right) \geq 1-K \cdot N^{-1+\delta} .
$$

Remark

Holds for $\xi_{j} \sim \mu$ a general smooth measure on S^{2}.

Bargmann-Fock as Scaling Limit of $S U(2)$

- $S U(2)$ scaling limit:

$$
p_{N}\left(z_{0}+\frac{u}{\sqrt{N}}\right) \quad \longrightarrow \quad \sum_{j=0}^{\infty} a_{j} \frac{z^{j}}{\sqrt{j!}}
$$

is Ginebre.

Bargmann-Fock as Scaling Limit of $S U(2)$

- $S U(2)$ scaling limit:

$$
p_{N}\left(z_{0}+\frac{u}{\sqrt{N}}\right) \quad \longrightarrow \quad \sum_{j=0}^{\infty} a_{j} \frac{z^{j}}{\sqrt{j!}}
$$

is Ginebre.

Zeros and Critical Points for Kac Polynomials

- Can model zeros on curve. E.g. Kac polynomials:

$$
p_{N}(z)=\sum_{j=0}^{N} a_{j} z^{j}, \quad a_{j} \sim N(0,1)_{\mathbb{C}} \text { i.i.d. }
$$

Zeros and Critical Points for Kac Polynomials

- Can model zeros on curve. E.g. Kac polynomials:

$$
p_{N}(z)=\sum_{j=0}^{N} a_{j} z^{j}, \quad a_{j} \sim N(0,1)_{\mathbb{C}} \text { i.i.d. }
$$

