Zeros and Critical Points for Random Polynomials

Boris Hanin

MIT

December 18, 2015

Theorem (Gauss-Lucas)

The critical points of a polynomial in one complex variable lie inside the convex hull of its zeros.

- Q. How are critical points distributed inside convex hull?
- **Q.** Are there long-range correlations between zeros and critical points?

æ

• p_N – degree N polynomial

æ

・聞き ・ ほき・ ・ ほき

- p_N degree N polynomial
- $p_N: S^2 \to S^2$ meromorphic function

白とくヨとく

-

э

Interpretation

- p_N degree N polynomial
- $p_N: S^2 \to S^2$ meromorphic function
- We have

$$rac{d}{dw}p_N(w)=0\quad\longleftrightarrow\quad rac{d}{dw}\log|p_N(w)|=0$$

母▶ ∢ ≣▶

э

- p_N degree N polynomial
- $p_N: S^2 \to S^2$ meromorphic function
- We have

$$rac{d}{dw} p_N(w) = 0 \quad \longleftrightarrow \quad rac{d}{dw} \log |p_N(w)| = 0$$

But

$$\Delta \log |p_N(w)| = Div(p_N) = -N \cdot \delta_\infty + \sum_{p_N(z)=0} \delta_z$$

- **→** → **→**

- p_N degree N polynomial
- $p_N: S^2 \to S^2$ meromorphic function
- We have

$$rac{d}{dw} p_N(w) = 0 \quad \longleftrightarrow \quad rac{d}{dw} \log |p_N(w)| = 0$$

But

$$\Delta \log |p_N(w)| = Div(p_N) = -N \cdot \delta_{\infty} + \sum_{p_N(z)=0} \delta_z$$

• So $\left\{\frac{d}{dw}p_N(w)=0\right\} = \{\text{equilibria of E-field from } Div(p_N)\}$

同 ト イ ヨ ト イ ヨ ト

Model Ensembles

æ

P.

• Degree N SU(2) polynomial:

→ ∢ ≣

Model Ensembles

• Degree N SU(2) polynomial:

$$p_N(z) \stackrel{def}{=} \sum_{j=0}^N a_j \cdot {\binom{N}{j}}^{1/2} z^j \qquad a_j \sim N(0,1)_{\mathbb{C}}$$
 indep.

→ ∢ ≣

Model Ensembles

• Degree N SU(2) polynomial:

$$p_N(z) \stackrel{def}{=} \sum_{j=0}^N a_j \cdot {\binom{N}{j}}^{1/2} z^j \qquad a_j \sim N(0,1)_{\mathbb{C}}$$
 indep.

• IID zeros:

$$p_N(z) \stackrel{def}{=} \prod_{j=0}^{N-1} (z-\xi_j) \qquad \xi_j \sim \mu_{FS} \ i.i.d.$$

→ ∢ ≣

Pairing of Zeros and Crits for SU(2) Polynomials

"Proof" of Pairing of Zeros and Crits

→ < ∃→

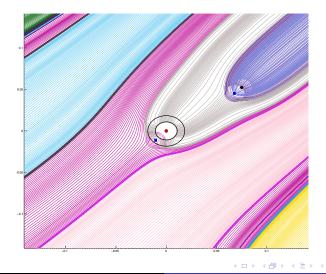
Boris Hanin Zeros and Critical Points

- ∢ ≣ ▶

Def. Let p_N be a degree N polynomial and fix $\epsilon > 0$.

Def. Let p_N be a degree N polynomial and fix $\epsilon > 0$. A zero at ξ and critical point at w are ϵ -paired if $N^{-1-\epsilon} < |\xi - w| < N^{-1+\epsilon}$.

Def. Let p_N be a degree N polynomial and fix $\epsilon > 0$. A zero at ξ and critical point at w are ϵ -paired if $N^{-1-\epsilon} < |\xi - w| < N^{-1+\epsilon}$.



/⊒ > < ∃ >

Theorem (H)

Fix
$$\xi \in S^2 \setminus \{0,\infty\}$$
 .

Theorem (H)

Fix $\xi \in S^2 \setminus \{0, \infty\}$. Let $p_N(z)$ be a degree N SU(2) polynomial conditioned to have $p_N(\xi) = 0$.

Theorem (H)

Fix $\xi \in S^2 \setminus \{0, \infty\}$. Let $p_N(z)$ be a degree N SU(2) polynomial conditioned to have $p_N(\xi) = 0$. For each $\epsilon \in (0, \frac{1}{2})$, there exists $K = K(\epsilon)$ such that

Fix $\xi \in S^2 \setminus \{0, \infty\}$. Let $p_N(z)$ be a degree N SU(2) polynomial conditioned to have $p_N(\xi) = 0$. For each $\epsilon \in (0, \frac{1}{2})$, there exists $K = K(\epsilon)$ such that

 $\mathbb{P}(\exists! \ \epsilon - paired \ w \ to \ \xi)$

Fix $\xi \in S^2 \setminus \{0, \infty\}$. Let $p_N(z)$ be a degree N SU(2) polynomial conditioned to have $p_N(\xi) = 0$. For each $\epsilon \in (0, \frac{1}{2})$, there exists $K = K(\epsilon)$ such that

 $\mathbb{P}(\exists ! \epsilon - paired w to \xi) \geq 1 - K \cdot N^{-3/2+3\epsilon}.$

Fix $\xi \in S^2 \setminus \{0, \infty\}$. Let $p_N(z)$ be a degree N SU(2) polynomial conditioned to have $p_N(\xi) = 0$. For each $\epsilon \in (0, \frac{1}{2})$, there exists $K = K(\epsilon)$ such that

$$\mathbb{P}(\exists ! \epsilon - paired w to \xi) \geq 1 - K \cdot N^{-3/2+3\epsilon}$$

Remark

Holds for general positive smooth hermitian metric h and can be extended to $N^{1-\eta}$ well-spaced zeros simultaneously.

@▶ ∢ ≣▶

Theorem (H)

Fix
$$\xi \in S^2 \setminus \{0,\infty\}$$
 and $\epsilon \in (0,1)$.

∰ ▶ ∢ ≣ ▶

Theorem (H)

Fix $\xi \in S^2 \setminus \{0, \infty\}$ and $\epsilon \in (0, 1)$. Let $p_N(z)$ be degree N with iid zeros conditioned to have $p_N(\xi_i) = 0, \ j = 1, \dots N^{1-\epsilon}$.

Theorem (H)

Fix $\xi \in S^2 \setminus \{0, \infty\}$ and $\epsilon \in (0, 1)$. Let $p_N(z)$ be degree N with iid zeros conditioned to have $p_N(\xi_j) = 0, \ j = 1, \dots N^{1-\epsilon}$. For each $\delta \in (0, 1)$, there exists $K = K(\epsilon, \delta)$ such that

Fix $\xi \in S^2 \setminus \{0, \infty\}$ and $\epsilon \in (0, 1)$. Let $p_N(z)$ be degree N with iid zeros conditioned to have $p_N(\xi_j) = 0$, $j = 1, ..., N^{1-\epsilon}$. For each $\delta \in (0, 1)$, there exists $K = K(\epsilon, \delta)$ such that

 $\mathbb{P}(\exists! \text{ paired } w_j \text{ to } \xi_j)$

Fix $\xi \in S^2 \setminus \{0, \infty\}$ and $\epsilon \in (0, 1)$. Let $p_N(z)$ be degree N with iid zeros conditioned to have $p_N(\xi_j) = 0$, $j = 1, ..., N^{1-\epsilon}$. For each $\delta \in (0, 1)$, there exists $K = K(\epsilon, \delta)$ such that

 $\mathbb{P}(\exists ! \text{ paired } w_j \text{ to } \xi_j) \geq 1 - K \cdot N^{-1+\delta}.$

Fix $\xi \in S^2 \setminus \{0, \infty\}$ and $\epsilon \in (0, 1)$. Let $p_N(z)$ be degree N with iid zeros conditioned to have $p_N(\xi_j) = 0$, $j = 1, ..., N^{1-\epsilon}$. For each $\delta \in (0, 1)$, there exists $K = K(\epsilon, \delta)$ such that

$$\mathbb{P}(\exists! \text{ paired } w_j \text{ to } \xi_j) \geq 1 - K \cdot N^{-1+\delta}.$$

Remark

Holds for $\xi_i \sim \mu$ a general smooth measure on S^2 .

Bargmann-Fock as Scaling Limit of SU(2)

• SU(2) scaling limit:

$$p_N\left(z_0+\frac{u}{\sqrt{N}}\right) \longrightarrow \sum_{j=0}^{\infty} a_j \; \frac{z^j}{\sqrt{j!}}$$

is Ginebre.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

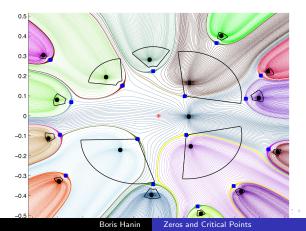
э

Bargmann-Fock as Scaling Limit of SU(2)

• SU(2) scaling limit:

$$p_N\left(z_0+\frac{u}{\sqrt{N}}\right) \longrightarrow \sum_{j=0}^{\infty} a_j \frac{z^j}{\sqrt{j!}}$$

is Ginebre.



Zeros and Critical Points for Kac Polynomials

• Can model zeros on curve. E.g. Kac polynomials:

$$p_N(z) = \sum_{j=0}^N a_j z^j, \qquad a_j \sim N(0,1)_{\mathbb{C}} \ i.i.d.$$

Zeros and Critical Points for Kac Polynomials

• Can model zeros on curve. E.g. Kac polynomials:

$$p_N(z) = \sum_{j=0}^N a_j z^j, \qquad a_j \sim N(0,1)_{\mathbb{C}} \ i.i.d.$$

