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Coulomb gas in 2D

We consider n repelling particles in 2D confined by a potential
V : C→ R. The interaction energy between the repelling particles
is modelled by

E intV :=
∑

j ,k:j 6=k

log
1

|zj − zk |
,

where zj denotes the position of the j-th particle, and the potential
energy is given by

EpotV :=
n∑

j=1

V (zj).

The total energy of a configuration (z1, . . . , zn) ∈ Cn is then given
by

EV := E intV + EpotV .
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Coulomb gas. Gibbs model and inverse temperature

In any reasonable gas dynamics model, the low energy states
should be more likely than the high energy states. Fix a positive
constant β, and let Zn be the constant (“partition function”)

Zn :=

∫
Cn

e−
β
2
EV dvol2n,

where vol2n denotes standard volume measure in Cn ∼= R2n. Here,
we need to assume that V grows at sufficiently at infinity to make
the integral converge. The Gibbs model gives the joint density of
states

1

Zn
e−

β
2
EV ,

which we use to define a probability point process Πn ∈ prob(Cn)
by setting

dΠn :=
1

Zn
e−

β
2
EV dvol2n.
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Simulation of the Ginibre ensemble V (z) = m|z |2 (1700
pts)
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Electron cloud interpretation. Marginal measures

The process Πn models a cloud of electrons in a confining
potential. Clearly, Πn is random probabilty measure on Cn. In order
to study this process as n→ +∞, it is advantageous to introduce

the marginal probability measures Π
(k)
n (for 0 ≤ k ≤ n) given by

Π
(k)
n (e) := Πn(e × Cn−k),

for Borel measurable subsets e ⊂ Ck . In particular, Π
(n)
n = Πn.

The associated measures

Γ
(k)
n :=

n!

(n − k)!
Π

(k)
n

are called intensity (or correlation) measures. To simplify the

notation, we write Γn := Γ
(n)
n .
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Aggregation of quantum droplets. Monotonicity

It is of interest to analyze what the addition of one more particle
means for the process.
THEOREM 1. If β = 2, then

∀k : Γ
(k)
n ≤ Γ

(k)
n+1.

This means that for the special inverse temperature β = 2, the
addition of a new particle monotonically increases all the
intensities.

REMARK 2. The assertion of Theorem 1 fails for β > 2. For
β < 2, however, we conjecture that the assertion of Theorem 1
remains valid.
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The determinantal nature of β = 2 case (1)

The proof of Theorem 1 is based on the fact that the point process
Πn is determinantal for β = 2. To explain what this means, we
need the space Poln of all polynomials in z of degree ≤ n − 1. We
equip Poln with the inner product structure of L2(C, e−V ). Then
under standard assumptions on V , point evaluations are bounded,
and we obtain elements Kw ∈ Poln such that

p(w) = 〈p,Kw 〉L2(C,e−V ).

The function K (z ,w) := Kw (z) may be written in the form

K (z ,w) =
n−1∑
j=0

ej(z)ēj(w),

where the ej form an ONB. It is called the reproducing kernel.
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The determinantal nature of β = 2 case (2)

The determinantal structure of the process is easiest to see by
considering intensities:

dΓ
(k)
n (z) = e−

∑
j V (zj ) det[K (zi , zj)]ki ,j=1.

For instance, if we are interested in the intensity Γ
(1)
n , we should

analyze K (z , z)e−V (z). The expression

un(z) :=
1

n
K (z , z)e−V (z)

is called the 1-point function. The determinantal case β = 2
models Random Normal Matrices.
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Renormalization of the potential

To obtain a reasonable limit as n→ +∞, we need to renormalize
the potential. So we put V := mQ, where the parameter m is
essentially proportional to n as n tends to infinity. Here, Q is a
fixed confining potential.

N. B. Note that in the determinantal case, we just need to analyze
the (polynomial) reproducing kernels K (z ,w) for the space of
polynomials of degree ≤ n − 1 with respect to the weight e−mQ in
the plane C.
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Approximation of the energy (1)

We recall that

EmQ = E intmQ + EpotmQ =
∑

j ,k:j 6=k

log
1

|zj − zk |
+ m

n∑
j=1

Q(zj),

so that

EmQ

n2
=

1

n2

∑
j ,k:j 6=k

log
1

|zj − zk |
+

m

n2

n∑
j=1

Q(zj).

If n/m = τ , then

EmQ

n2
=

1

n2

∑
j ,k:j 6=k

log
1

|zj − zk |
+

1

nτ

n∑
j=1

Q(zj).
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Approximation of the energy (2)

If we put (for probability measures σ)

IQ [σ] :=

∫
C

∫
C

log
1

|ξ − η|
dσ(ξ)dσ(η) +

∫
C
Qdσ,

then
EmQ

n2
≈ IQ/τ [σ],

where

dσ =
1

n

n∑
j=1

dδzj .

Here, “≈” means that we disregard the singularities which appear
from diagonal terms in the integral. We write I ]Q/τ [σ] to indicate

that we have removed the singular diagonal part from IQ/τ [σ].
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The Gibbs model and energy heuristics

We recall the density of states from the Gibbs model

dΠn :=
1

Zn
e−

β
2
E(λ1,...,λn)dvol2n =

1

Zn
e
−n2 β

2
I ]
Q/τ

[σ]
dvol2n.

The factor n2 in the exponent means that high energy states get
severely punished and we expend generally convergence to the
lowest energy state. To make this more precise, let σ̂τ ∈ probc(C)
minimize

min
σ

IQ/τ [σ].

The measure σ̂τ is called the equilibrium measure.
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Johansson’s marginal measure theorem

THEOREM 3. Under minimal growth and smoothness
assumptions on Q, we have for fixed k that

Π
(k)
n → σ̂⊗kτ as n→ +∞, while n = mτ + o(m),

in the weak-star sense of measures.

REMARK 4. In particular, the 1-point function converges to the
equilibrium density. Theorem 3 was obtain by K. Johansson in the
case of Coulomb gas on the real line [J1]. His techniques work also
in the planar case, with some modifications [HM1].
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Obstacle problem and the equilibrium measure

We consider the obstacle problem

Q̂τ (z) := sup{q(z) : q ≤ Q on C, q ∈ Subhτ (C)},

where Subhτ (C) denotes the convex set of subharmonic functions
u : C→ [−∞,+∞[ with

u(z) ≤ 2τ log+ |z |+ O(1).

For a measure σ, its logarithmic potential Uσ is

Uσ(ξ) := 2

∫
C

log
1

|ξ − η|
dσ(η).

THEOREM 5 (Frostman) For some constant c ,

Q̂τ = c − τU σ̂τ .
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The support of the equilibrium measure

Let Sτ := supp σ̂τ . This is called the (spectral) droplet.

THEOREM 6 (Kinderlehrer-Stampacchia theory) Under
smoothness on Q, we have

∆Q̂τ = 1Sτ∆Q,

so that

dσ̂τ =
1Sτ∆Q

4πτ
.

REMARK 7 It follows that the study of the dynamics of the
equilibrium measures σ̂τ reduces to the study of the supports Sτ .
This is in contrast with the 1D theory.
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Comparison with Hermitian ensebles

If we consider the degenerate case when Q = +∞ on C \ R, we
get the usual Hermitian ensebles (the eigenvalues are forced to be
real). This can be thought of as a limit of smooth potentials

Q̃(x + iy) := Q(x) + ay2,

where we let a→ +∞. We expect that the droplets Sa tend to a
compact subset of R as a→ +∞, where the eigenvalues
accumulate, and that the local vertical width of Sa corresponds to
the local density of eigenvalues in the Hermitian ensemble. The
relation

τdσ̂τ =
1

4π
∆Q̂τdA

should survive also in the Hermitian case, although the right hand
side must be understood in the sense of distribution theory. E.g.,
the Wigner semi-circle law comes from an obstacle problem with
Q(x) = x2 along the real line and Q = +∞ elsewhere in C.
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Linear statistics

We now mention an application of Johansson’s marginal measure
theorem (Theorem 3) to linear statistics. For f ∈ Cb(C), put

trnf := f (z1) + · · ·+ f (zn).

THEOREM 8 Under the assumptions of Theorem 3, we have the
convergence

1

n
trnf →

∫
C
f dσ̂τ

in all moments as m→ +∞ and n = mτ + o(m).

REMARK 9 We may interpret this as the statement that when
applied to a test function, the empirical measure converges to the
equilibrium measure.
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Fluctuations (1)

We now fix τ = 1 and write S = S1. In the context of Theorem 8,
with smooth compactly test functions f , we would like to analyze
first

E trnf − n〈f , σ̂〉.

THEOREM 10 Under smoothness of Q and simple-connectedness
of S , and smoothness of ∂S ,

E trnf − n〈f , σ̂〉 → 1

8π
〈f ,∆(1S + LS)〉,

where L := log ∆Q, and LS is the harmonic extension to the
outside of L|S .
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Fluctuations (2)

The next level to understand is fluctuations.

THEOREM 11 Under smoothness of Q and simple-connectedness
of S , and smoothness of ∂S ,

trnf − E trnf → N(0, s2),

where

s2 =
1

4π

∫
C
|∇f S |2dvol2.
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Techniques: correlation kernels

The specific choice we made of the inverse temperature gives us
correlation kernel structure. That is, the whole process is
determined by the correlation kernel L(z ,w), which depends on
n,m,Q, which has the form

L(z ,w) := K (z ,w) e−
m
2

(Q(z)+Q(w)),

where K (z ,w) is the reproducing kernel for the space of
polynomials of degree ≤ n − 1 with inner product norm

‖f ‖2 =

∫
C
|f |2e−mQdA < +∞.
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Techniques: correlation kernels

The specific choice we made of the inverse temperature gives us
correlation kernel structure. That is, the whole process is
determined by the correlation kernel L(z ,w), which depends on
n,m,Q, which has the form

L(z ,w) := K (z ,w) e−
m
2

(Q(z)+Q(w)),

where K (z ,w) is the reproducing kernel for the space of
polynomials of degree < n with inner product norm

‖f ‖2 =

∫
C
|f |2e−mQdA < +∞.

H. Hedenmalm Coulomb gas ensembles in 2D



Correlations

The determinant
det
([
L(zi , zj)

]k
i ,j=1

)
describes the intensity of finding a k-tuple of electrons at the
points z1, . . . , zk . E.g., L(z , z) describes the density of electrons in
position z .
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Reproducing kernel expansion

Reproducing kernel expansions have a long history, rooted in the
works of Hörmander, Fefferman, Boutet de Monvel, Sjöstrand,
Berndtsson, etc. We use the recent version due to Berman,
Berndtsson, and Sjöstrand to get the following.

THEOREM 12. We have, for n ≥ m − 1,

K (z , z)e−mQ(z) = m∆Q(z) +
1

2
∆ log ∆Q(z) + O(m−1/2),

on any compact subset Σ of the interior of S with ∆Q > 0 on Σ.

There exists a polarized version of this diagonal approximation:

Km,n(z ,w)e−mQ∗(z,w) = m∆∗Q∗(z ,w) +
1

2
∆∗ log ∆∗Q∗(z ,w)

+ O
(
m−1/2e(m/2)[Q(z)+Q(w)−2ReQ∗(z,w)]

)
.
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Berezin quantization

The probablity measure

dB〈w〉(z) =
|K (z ,w)|2

K (w ,w)
e−mQ(z)dA(z)

we call the Berezin measure. For w ∈ S it converges to a point
mass at w as m, n→ +∞ while n = m + O(1), while for
w ∈ C \ S it converges to harmonic measure for w in the domain
C \ S . In case w is a bulk point (i.e., it is in the interior of S with
∆Q(w) > 0), one can show that the Berezin measure – suitably
blown up so that the scale m−1/2 becomes 1 – tends to a radially
symmetric Gaussian in the plane.
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Ginibre interpretation

The observation that the Berezin measure – rescaled – tends to
the Gaussian at interior points with ∆Q > 0, corresponds to the
blown-up process converging to Gin(∞), with correlation kernel

L∞(z ,w) = ezw̄e−
1
2

(|z|2+|w |2).

This corresponds to the reproducing kernel for the Bargmann-Fock
space. The stochastic process is translation invariant with infinitely
many points equidistributed in the entire plane.
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Boundary point blow-up (1)

In case of the usual Ginibre ensemble, with reproducing kernel

K (z ,w) = m
n−1∑
j=0

(mzw̄)j

j!
,

we can make explicit calculations. The droplet S is the closed unit
disk, so the boundary is the unit circle. If we blow up at a
boundary point, the reproducing kernel tends to the reproducing
kernel for a naturally defined subspace of the Bargmann-Fock
space. The concrete expression involves the error function. This is
most likely universal for smooth boundary points of S , for other
(real-analytic) weights Q.
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Boundary point blow-up (2)

The analysis of the Ginibre ensemble suggested that for interior
points and for boundary points, the limit of the blow-ups of the
correlation kernel is determined by the reproducing kernel of a
Hilbert space of entire functions. Probably this is universal. In
fact, for GUE we have the sine kernel at bulk points, which is the
reproducing kernel for the Paley-Wiener space. And at the
boundary we have the Airy process, with a different local scaling of
m−2/3. The Airy kernel is also associated with a space of entire
functions. Moreover, the different typical distance m−2/3 comes
from the fact that the Wigner semi-circle law has zero density at
the boundary point, with a square-root type approach.
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Boundary point blow-up (3)

To obtain a more satisfactory analysis of the polynomial kernel
K (z ,w) near the boundary of the droplet S = S1, we really need
an asymptotic expression for the orthogonal polynomials. This
would then also help in the analysis of the free energy logZn.
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The orthogonal polynomials and the kernel

Let p0, p1, p2, . . . denote the normalized (holomorphic) orthogonal
polynomials in L2(C, e−mQ), such that pj has degree j . Then

K (z ,w) =
n−1∑
j=0

pj(z)p̄j(w),

is the reproducing kernel for the polynomial subspace (degree
≤ n − 1). We consider asymptotics as n = mτ + o(1). The kernel
expansion technique of [AHM1], [Ameur1] (which goes back to
[BBS]) works well in the bulk of the droplet Sτ , and with effort
within distance m−1/2 logm from the boundary ∂Sτ . But to go
further and analyze in depth the behavior of K (z ,w) near ∂Sτ , we
need to understand the individual orthogonal polynomials.
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Orthogonal polynomial expansion

It was observed in [AHM2], [AHM3] that the orthogonal
polynomials have the following limit:

|pn(z)|2e−mQ(z)dA(z)→ dωτ (z), n = mτ + o(1),

where the right-hand side expresses the harmonic measure from ∞
in C \ Sτ . In other words, the (first) hitting probability from
Brownian starting at infinity and ending at ∂Sτ . With some further
effort involving Euler-Maclaurin summation, a second correction
term could be guessed from [AHM3]. Note that the left-hand side
expresses a probability measure, which is analogous to how the
mod-squared of the wave function is a probability distribution.
This suggests that it might be possible to analyze pn near ∂Sτ and
in particular give a more detailed understanding of “the wave
function probability”.
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Orthogonal polynomial expansion (2)

We should think of the bulk of Sτ as the domain of “diffusion”,
where information travels only approximately the distance
O(m−1/2). The exterior C \ Sτ however is “rigid”, and information
travels instantaneously. Based on such thinking, we look for pn of
the form

pn(z) ∼ Cm,n φ(z)nφ′(z) e
1
2
mQ(z)(B0(z) + m−1B1(z) + . . .),

where Cm,n = O(m1/4) is a normalizing constant, φ is the
conformal mapping C \ Sτ → De := {z : |z | > 1} which fixes the
point at infinity, Q(z) is a bounded holomorphic function in C \ Sτ
whose real part equals Q on ∂Sτ , and the functions Bj are to be
found.
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Orthogonal polynomial expansion (3)

The functions Bj are obtained algorithmically. For instance,

B0(z) = eH(z),

where H(z) is the bounded holomorphic function in C \ Sτ whose
real part equals

ReH(z) =
1

4
log

∆Q(z)

|φ′(z)|2
, z ∈ ∂Sτ .
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Polyanalytic ensembles

We might consider polynomials in z and z̄ , with the degree in z̄ at
most q − 1, and the degree in z at most n− 1. This was studied in
[HH1] in the Ginibre case Q(z) = |z |2, and in the general case in
[HH2], [H1].
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Simulation of the polyanalytic Ginibre (200X20 pts)
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Simulation of the polyanalytic Ginibre (60X60 pts)
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